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Abstract: This study introduces octonion-valued b-metric spaces as a natural extension
of the octonion-valued metric spaces developed by establishing a partial ordering relation
on octonions. Octonion-valued b-metric spaces are constructed by modifying the triangle
inequality of a semi-metric space, where one side of the inequality is multiplied by a positive
scalar b ≥ 1. On the other hand, octonion-valued metric spaces generalize the concept
of classical metric spaces by employing octonions, which provide a higher-dimensional and
non-associative algebraic framework. Two key reasons make this novel generalization of
metric spaces very interesting: First, octonions are not even a ring since they do not have
the associative feature in multiplication; second, the spaces do not meet the standard triangle
inequality. In addition to explanations on sequences, convergence, Cauchy characteristics,
boundedness, theorems, and associated conclusions, examples are given to help visualize this
recently formed metric space. Lastly, the building of a fixed point finds extensive applications
in a variety of mathematical analytic subjects as well as applied mathematics domains like
differential equations and dynamical systems. Because of this, octonion-valued b-metric
spaces have been used to study the Banach fixed-point theorem and a few additional fixed-
point theorems.
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1. Introduction

Shortly after Hamilton discovered quaternions, John T. Graves proposed octonions in 1843.
Arthur Cayley then independently developed and expanded the idea. Under the direction of
the Cayley-Dickson construction, hypercomplex number theory has expanded systematically,
as seen by the progression from real numbers to complex numbers, quaternions, and
octonions. From the one-dimensional reals to the two-dimensional complexes, the four-
dimensional quaternions, and the eight-dimensional octonions, this iterative process doubles
the dimensionality at each stage, revealing progressively more complicated algebraic structures.
Octonions stand out due to their special mathematical characteristics. Octonions are neither
commutative nor associative, in contrast to quaternions, which are non-commutative but
associative, and real and complex numbers, which are both commutative. The fact that
they are not associative suggests that the way words are grouped influences the result of
multiplication, so that (ab) c , a (bc). Because of this property, octonions are not included in
traditional algebraic systems; instead, they fall within the more general category of alternative
algebras, which meet the loose associative requirements set by the Moufang identities.
Applications requiring multidimensional data interactions have benefited from the unique non-
associative nature of octonions. In order to demonstrate their usefulness in physics, Kansu et
al. [18] developed duality-invariant field equations for dyons that are comparable to Maxwell’s
equations. These equations, which make use of the eight-dimensional octonion framework,
successfully capture the complex interaction between electric and magnetic elements in a single
model. Octonions have become effective tools for analyzing high-dimensional data in machine
learning. Deep octonion networks (DONs) were first presented by Wu et al. [35]. They used
the multidimensional and compact characteristics of octonions to integrate a variety of features
across neural network layers. In tasks like image classification, this method has demonstrated
significant gains in performance and convergence efficiency. Octonions’ usefulness to control
systems, particularly in the dynamic control of robot manipulators, was further expanded by
Takahashi et al. [33]. Precise multi-axis movement control is made possible by octonian-valued
neural networks, which describe intricate spatial and temporal dynamics. Octonions’ non-
associative characteristics offer the adaptability needed for such complex modeling. To gain a
thorough understanding of octonions, their subalgebraic structures, and their multidisciplinary
applications encompassing octonion theory [8–10], quantum mechanics [4], and the field of
physical algebra [28].

Conversely, fixed point theory has been thoroughly studied in a number of disciplines,
including physics, engineering, and mathematics. Metric fixed point theory, which finds
application in topology, analysis, and practical mathematics, is particularly significant.
Furthermore, academics commonly employ two approaches to generalize the Banach
contraction principle. While the second focuses on generalizing the underlying metric space,
the first necessitates an expansion of the contraction condition applied. One of the key topics in
fixed point theory, which is a generalization of the Banach contraction principle, is the presence
of fixed points of contraction mappings in bipolar metric spaces. In recent years, these and
related subjects have been studied extensively in the context of F -metric spaces [2, 3, 36], and
various other metric structures [24, 26, 34].
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In this study, we introduce octonion-valued b-metric spaces as a natural and logical
extension of octonion-valued metric spaces, constructed by first establishing a partial ordering
relation on octonions. These generalized spaces are built upon the theoretical framework
of octonion-valued metric spaces by relaxing the triangle inequality and taking into account
the non-associative and non-commutative nature of octonions. In addition to comments on
sequences, convergence, Cauchy features, boundedness, theorems, and associated conclusions,
we then provide examples to aid in visualizing this newly created metric space. The Banach
fixed point theorem and numerous other fixed point theorems for octonion-valued b-metric
spaces are studied using a construction of a fixed point that we also provide. This construction
has a broad range of applications in applied mathematics.

The structure of the paper is as follows. Concepts and qualities that will be helpful in the
future are covered in Section 2. Summability theory and some concepts of convergence on b-
metric spaces are covered in Section 3. The Banach fixed point theorem and its applications to
octonion-valued b-metric spaces are the focus of Section 4, which also examines a number of
other fixed point theorems.

2. Some definitions and notations

We now review the fundamental ideas along with a few definitions and symbols. Generalize
the complex metric spaces defined by Azam et al. [7] by taking the codomain as the field of
complex numbers.

Definition 1. [7] Given a non-empty set S . If the transformation ΩC : S × S → C on this set
satisfies the following conditions,

(1) 0C � ΩC(s, t), for all s, t ∈ S and ΩC(s, t) = 0C ⇐⇒ s = t.
(2) ΩC(s, t) = ΩC(t, s) for all s, t ∈ S .
(3) ΩC(s, t) � ΩC(s, v) + ΩC(v, t) for all s, t, v ∈ S .

Then the pair (S ,ΩC) is said to be a complex metric space.
If a complex-valued metric space satisfies the condition

ΩC(s, t) � b ·
(
ΩC(s, v) + ΩC(v, t)

)
, (2.1)

for all s, t, v ∈ S , which is a relaxed version of the triangle inequality for b ≥ 1 derived using the
partial ordering in the third property, such a space is called a complex-valued b-metric space.
Detailed information about this space can be found in the literature, specifically in [27, 29].

These are then generalized to quaternion-valued metric spaces, as defined by Ahmed
et al. [11], taking the codomain as the skew field of quaternions, which serve as a non-
commutative extension of these metric spaces to Clifford algebra analysis.

Definition 2. [11] Given a nonempty set S . If the transformation ΩH : S × S → H on this set
satisfies the following conditions,

(1) 0H � ΩH(s, t) for all s, t ∈ S and ΩH(s, t) = 0H ⇐⇒ s = t,
(2) ΩH(s, t) = ΩH(t, s) for all s, t ∈ S ,

AIMS Mathematics Volume 10, Issue 5, 10504–10527.



10507

(3) ΩH(s, t) � ΩH(s, v) + ΩH(v, t) for all s, t, v ∈ S .

Then ΩH is said to be a quaternion-valued metric on S , and the pair (S ,ΩH) is said to be a
quaternion-valued metric space.

If a quaternion-valued metric space satisfies the condition

ΩH(s, t) � b ·
(
ΩH(s, v) + ΩH(v, t)

)
, (2.2)

for all s, t, v ∈ S , which is a relaxed version of the triangle inequality for b ≥ 1 derived
using the partial ordering in the third property, such a space is called a quaternion-valued b-
metric space. Detailed information about this space can be found in the literature, specifically
in [20–23].

We shall investigate O, Octonions, a non-associative extension of the division algebra of
quaternions, in the next section. We will now start by adding an extra basis element ` to
the quaternion basis elements, which are represented as {1, i, j, k}. According to [15], this
extension allows us to build the eight-dimensional octonion division algebra in detail, including
its algebraic operations and diagrammatic representation.

In Figure 1 is a diagram illustrating the multiplication of the generators of the octonions.
According to this diagram, for example, e2e3 = e1 and e3e4 = e7 can be observed.

e4 = `

e1 = i

e2 = j e3 = k

e5 = i`

e6 = j`e7 = k`

Figure 1. Octonion multiplication diagram.

Consequently, the following form may be used to express each element o ∈ O :

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7, on ∈ R, where n = 0, 1, 2, 3, 4, 5, 6, 7.

The basis elements of O are 1, e1, e2, e3, e4, e5, e6, e7.
Table 1 displays the specific multiplication of these foundational components.
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Table 1. Cayley table for octonion multiplication.
· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

The conjugate element ō is given by

ō = o0 − o1e1 − o2e2 − o3e3 − o4e4 − o5e5 − o6e6 − o7e7.

The norm of an arbitrary octonion is calculated as

‖o‖ =
√

o · ō =

√
o2

0 + o2
1 + o2

2 + o2
3 + o2

4 + o2
5 + o2

6 + o2
7.

Additionally, the inverse of an arbitrary octonion o is given in the form

o−1 =
ō
‖o‖2

.

Similar to a movement vector, the imaginary component of each quaternion may be
expressed as a vector in three-dimensional Euclidean space, whereas the real part of the
quaternion indicates the time of the movement. An alternative viewpoint is also possible by
redefining octonions as a pair made up of a scalar and a vector in a seven-dimensional Euclidean
space. Octonions, being a more complicated structure, lose the associative quality from the
group axioms in multiplication, but quaternions vary from real and complex numbers in their
non-commutative multiplication. This adds to its interesting qualities by making division
algebra over octonions non-associative.

The eight real numbers (o0, o1, o2, o3, o4, o5, o6, o7) can be represented as an ordered set,
with coordinate-wise addition and multiplication determined by a particular table. The real
part in this case is the first component, o0, while the imaginary part is the remaining seven-
tuple (o1, o2, o3, o4, o5, o6, o7).

Accordingly, as previously mentioned, each quaternion may be expressed as
(
o0,
−→u

)
, where

−→u = (o1, o2, o3, o4, o5, o6, o7), and o0 denotes the real part. The following characteristics are
readily observable from this location:

o : =
(
o0,
−→u

)
, −→u ∈ R7; o0 ∈ R

=
(
o0, (o1, o2, o3, o4, o5, o6, o7)

)
; o0, o1, o2, o3, o4, o5, o6, o7 ∈ R

= o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7.

Now, let us define a partial ordering relation � on the non-associative and non-commutative
octonion algebra O as follows.
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o � o′ if and only if Re(o) ≤ Re(o′), Ime(o) ≤ Ime(o′), o, o′ ∈ H; e = e1, e2, e3, e4, e5, e6, e7,
where Imen = on; n = 1, 2, 3, 4, 5, 6, 7. To confirm that it is o � o′, satisfying any one of the 256
conditions derived from the sum of all possible combinations of 8, from 0 to 8 respectively,
will suffice.

Obtained from the 0 combinations of 8, meaning none of its components are equal, this 1
case constitutes

(1) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

Obtained from the 1 combinations of 8, meaning only one component is equal; these 8 cases
constitute

(2) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

(3) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 2, 3, 4, 5, 6, 7; Ime1(o) = Ime1(o

′).
(4) Re(o) < Re(o′); Imen(o) < Imen(o

′), where n = 1, 3, 4, 5, 6, 7; Ime2(o) = Ime2(o
′).

(5) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 4, 5, 6, 7; Ime3(o) = Ime3(o

′).
(6) Re(o) < Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 5, 6, 7; Ime4(o) = Ime4(o
′).

(7) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 6, 7; Ime5(o) = Ime5(o

′).
(8) Re(o) < Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 4, 5, 7; Ime6(o) = Ime6(o
′).

(9) Re(o) < Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6; Ime7(o) = Ime7(o

′).

Obtained from the 2-combinations of 8, meaning only two components are equal; these 27
cases constitute

(10) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 2, 3, 4, 5, 6, 7; Ime1(o) = Ime1(o

′).
(11) Re(o) = Re(o′); Imen(o) < Imen(o

′), where n = 1, 3, 4, 5, 6, 7; Ime2(o) = Ime2(o
′).

(12) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 4, 5, 6, 7; Ime3(o) = Ime3(o

′).
(13) Re(o) = Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 5, 6, 7; Ime4(o) = Ime4(o
′).

(14) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 6, 7; Ime5(o) = Ime5(o

′).
(15) Re(o) = Re(o′); Imen(o) < Imen(o

′), where n = 1, 2, 3, 4, 5, 7; Ime6(o) = Ime6(o
′).

(16) Re(o) = Re(o′); Imen(o) < Imen(o
′), where n = 1, 2, 3, 4, 5, 6; Ime7(o) = Ime7(o

′).
(17) Re(o) < Re(o′); Imen(o) < Imen(o

′), n = 3, 4, 5, 6, 7; Ime1(o) = Ime1(o
′); Ime2(o) =

Ime2(o
′).

(18) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 2, 4, 5, 6, 7; Ime1(o) = Ime1(o

′); Ime3(o) =

Ime3(o
′).

(19) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 2, 3, 5, 6, 7; Ime1(o) = Ime1(o

′); Ime4(o) =

Ime4(o
′).

(20) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 2, 3, 4, 6, 7; Ime1(o) = Ime1(o

′); Ime5(o) =

Ime5(o
′).

(21) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 2, 3, 4, 5, 7; Ime1(o) = Ime1(o

′); Ime6(o) =

Ime6(o
′).

(22) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 2, 3, 4, 5, 6; Ime1(o) = Ime1(o

′); Ime7(o) =

Ime7(o
′).

(23) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 4, 5, 6, 7; Ime2(o) = Ime2(o

′); Ime3(o) =

Ime3(o
′).
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(24) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 5, 6, 7; Ime2(o) = Ime2(o

′); Ime4(o) =

Ime4(o
′).

(25) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 4, 6, 7; Ime2(o) = Ime2(o

′); Ime5(o) =

Ime5(o
′).

(26) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 4, 5, 7; Ime2(o) = Ime2(o

′); Ime6(o) =

Ime6(o
′).

(27) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 3, 4, 5, 6; Ime2(o) = Ime2(o

′); Ime7(o) =

Ime7(o
′).

(28) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 5, 6, 7; Ime3(o) = Ime3(o

′); Ime4(o) =

Ime4(o
′).

(29) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 4, 6, 7; Ime3(o) = Ime3(o

′); Ime5(o) =

Ime5(o
′).

(30) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 4, 5, 7; Ime3(o) = Ime3(o

′); Ime6(o) =

Ime6(o
′).

(31) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 4, 5, 6; Ime3(o) = Ime3(o

′); Ime7(o) =

Ime7(o
′).

(32) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 6, 7; Ime4(o) = Ime4(o

′); Ime5(o) =

Ime5(o
′).

(33) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 5, 7; Ime4(o) = Ime4(o

′); Ime6(o) =

Ime6(o
′).

(34) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 5, 6; Ime4(o) = Ime4(o

′); Ime7(o) =

Ime7(o
′).

(35) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 4, 7; Ime5(o) = Ime5(o

′); Ime6(o) =

Ime6(o
′).

(36) Re(o) < Re(o′); Imen(o) < Imen(o
′), n = 1, 2, 3, 4, 6; Ime5(o) = Ime5(o

′); Ime7(o) =

Ime7(o
′).

The 56 cases where exactly 3 components are equal (taken from the 3-combinations of 8),
the 70 cases with 4 equal components, the 56 cases with 5 equal components, and the 27
cases with 6 equal components may all be readily listed using a similar method. However, we
won’t go into great depth on the remaining 211 intermediate instances to save the post from
becoming unduly boring. To keep things simple, let’s simply concentrate on the 8 cases that
have precisely 7 equal components, which corresponds to the 7-combinations of 8 where only
one component is different.

(248) Re(o) < Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

(249) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 2, 3, 4, 5, 6, 7; Ime1(o) < Ime1(o

′).
(250) Re(o) = Re(o′); Imen(o) = Imen(o

′), where n = 1, 3, 4, 5, 6, 7; Ime2(o) < Ime2(o
′).

(251) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 4, 5, 6, 7; Ime3(o) < Ime3(o

′).
(252) Re(o) = Re(o′); Imen(o) = Imen(o

′), where n = 1, 2, 3, 5, 6, 7; Ime4(o) < Ime4(o
′).

(253) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 6, 7; Ime5(o) < Ime5(o

′).
(254) Re(o) = Re(o′); Imen(o) = Imen(o

′), where n = 1, 2, 3, 4, 5, 7; Ime6(o) < Ime6(o
′).

(255) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 5, 6; Ime7(o) < Ime7(o

′).

Lastly, let’s look at the scenario that results from the 8-combinations of 8, in which the two
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octonions are similar since all associated components are equal.

(256) Re(o) = Re(o′); Imen(o) = Imen(o
′), where n = 1, 2, 3, 4, 5, 6, 7.

Specifically, if ‖o‖ , ‖o′‖ and any condition between (1) and (256) is satisfied,o � o′ will be
writen. If only condition (256) is satisfied, we will denote this by o ≺ o′. We will briefly denote
this situation as

o � o′ =⇒ ‖o‖ ≤ ‖o′‖. (2.3)

We are able to introduce octonion-valued metric spaces by closely examining the 256 criteria
mentioned previously.

Definition 3. Given a nonempty set S . If the transformation ΩO : S × S → O on this set
satisfies following conditions,

(1) 0O � ΩO(s, t) for all s, t ∈ S and ΩO(s, t) = 0O if and only if s = t,
(2) ΩO(s, t) = ΩO(t, s) for all s, t ∈ S ,
(3) ΩO(s, t) � ΩO(s, v) + ΩO(v, t) for all s, t, v ∈ S .

Then ΩO is called be an octonion-valued metric on S , and the pair (S ,ΩO) is called be an
octonion-valued metric space.

Example 1. Let ΩO : O × O → O be an octonion-valued function defined as ΩO(o, o′) =

|o0−o′0|+|o1−o′1|e1+|o2−o′2|e2+|o2−o′2|e2+|o3−o′3|e3+|o4−o′4|e4+|o5−o′5|e5+|o6−o′6|e6+|o7−o′7|e7,
where o, o′ ∈ O with

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7,

o′ = o′0 + o′1e1 + o′2e2 + o′3e3 + o′4e4 + o′5e5 + o′6e6 + o′7e7;

oi, o′i ∈ R; i = 0, 1, 2, 3, 4, 5, 6, 7.

Then (O,ΩO) defines an octonion-valued metric space.

Below, we provide an example of an octonion-valued metric that does not have a known
numerical set as its domain.

Example 2. Let X = {a, b, c} be an arbitrary set with three elements. Define the distances
between the elements of the set by

ΩO(a, b) = ΩO(b, a) = 3 + 4e1 − 6e2 + 4e3 + 3e4 + 3e5 − 2e6 + e7,

ΩO(b, c) = ΩO(c, b) = 1 + 2e1 + 3e3 − 5e4 − 3e6 + 4e7,

ΩO(a, c) = ΩO(c, a) = 2 + 3e1 + e2 + e3 − 2e4 + 2e5 − e6 + 5e7,

ΩO(a, a) = ΩO(b, b) = ΩO(c, c) = 0 + 0e1 + 0e2 + 0e3 + 0e4 + 0e5 + 0e6 + 0e7.

Since they are ‖ΩO(a, b)‖ = 10, ‖ΩO(a, c)‖ = 7, ‖ΩO(c, b)‖ = 8,‖ΩO(a, b) + ΩO(a, c)‖ =
√

195,
‖ΩO(a, b) + ΩO(b, c)‖ =

√
200 and ‖ΩO(c, b) + ΩO(a, c)‖ =

√
169 = 13, it can be seen through

straightforward calculations that the conditions given in Definition 3 above are satisfied.
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The concept of an octonion-valued metric space is a logical extension of the classical
definition of a metric, as well as of complex and quaternion-valued metrics; this is clearly
evident from the definitions and examples provided above. To demonstrate the relationships
among them, we now present the following propositions.

Proposition 1. Every quaternion-valued metric space can be embedded into an octonion-
valued metric space.

Proposition 2. Every complex-valued metric space can be embedded into a quaternion-valued
metric space and an octonion-valued metric space.

Proposition 3. Every metric space can be embedded into a complex-valued metric space, a
quaternion-valued metric space, and an octonion-valued metric space.

3. Main results

The triangle inequality and the partial order relation in the definition of octonion-valued
metric spaces were discussed in the previous section. In this section, we present a new
generalization of metric spaces defined by slightly relaxing it. This is an intriguing
generalization using octonions that are neither commutative nor associative.

3.1. Octonion-valued b-metric spaces

Definition 4. Given a nonempty set S . If the transformation ΩO : S × S → O on this set
satisfies the following conditions,

(1) 0O � ΩO(s, t) for all s, t ∈ S and ΩO(s, t) = 0O if and only if s = t,
(2) ΩO(s, t) = ΩO(t, s) for all s, t ∈ S ,
(3) ΩO(s, t) � b ·

(
ΩO(s, v) + ΩO(v, t)

)
for all s, t, v ∈ S , 1 ≤ b ∈ R.

Then ΩO is called an octonion-valued b-metric on S , and the pair (S ,ΩO) is called be an
octonion-valued b-metric space.

Example 3. Examples 1 and 2 are instances of octonion-valued 1-metric spaces for the real
scalar b = 1.

Remark 1. It should be explicitly noted that, as seen from Definitions 3 and 4, every octonion-
valued metric space is an octonion-valued b-metric space in the special case where b = 1.

The converse of the remark we provided above is not true, except for the special case of
b = 1. The next example we will present is an octonion-valued b-metric space for b = 2, yet it
is not an octonion-valued metric space.

Example 4. Let Ωb
O : O × O → O be an octonion-valued function defined as Ωb

O(o, o′) =

|o0−o′0|
2+ |o1−o′1|

2e1+ |o2−o′2|
2e2+ |o3−o′3|

2e3+ |o4−o′4|
2e4+ |o5−o′5|

2e5+ |o6−o′6|
2e6+ |o7−o′7|

2e7,
where o, o′ ∈ O with

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7,

AIMS Mathematics Volume 10, Issue 5, 10504–10527.



10513

o′ = o′0 + o′1e1 + o′2e2 + o′3e3 + o′4e4 + o′5e5 + o′6e6 + o′7e7;

oi, o′i ∈ R; i = 0, 1, 2, 3, 4, 5, 6, 7.

Then (O,ΩO) defines an octonion-valued b-metric space.
Indeed, note that if we take

o = 3 + 3e1 + 3e2 + 3e3 + 3e4 + 3e5 + 3e6 + 3e7,

o′ = 2 + 2e1 + 2e2 + 2e3 + 2e4 + 2e5 + 2e6 + 2e7,

o′′ = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7,

although they are comparable under the partial ordering relation defined on octonions,

Ωb
O(o, o′′) = 4 + 4e1 + 4e2 + 4e3 + 4e4 + 4e5 + 4e6 + 4e7,

Ωb
O(o, o′) = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7,

Ωb
O(o′, o′′) = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7,

Ωb
O(o, o′) + Ωb

O(o′, o′′) = 2 + 2e1 + 2e2 + 2e3 + 2e4 + 2e5 + 2e6 + 2e7,

which would violate the third property of the axioms for being an octonion-valued metric space
as stated in Definition 3, making it not an octonion-valued metric space. However, if we take
b = 2, in this case, the partial ordering � satisfies the axioms in Definition 4.

As can be seen from the definitions and example above, the definition we provided
is a natural generalization of the classical b-metric definition, as well as complex and
quaternion-valued b-metrics. To express the connections between them, let us present the
following propositions.

Proposition 4. Every quaternion-valued b-metric space can be embedded into an octonion-
valued b-metric space.

Proof. If we take o4 = o5 = o6 = o7 = 0 in the definition given in Definition 4, the desired
result can be directly observed from Figure 1, and Definitions 2 and 3. �

Proposition 5. Every complex-valued b-metric space can be embedded into a quaternion-
valued b-metric space and an octonion-valued b-metric space.

Proof. If we take o2 = o3 = o4 = o5 = o6 = o7 = 0 in the definition given in Definition 4, the
desired result can be directly observed from Figure 1 and Definitions 1 and 2. �

Proposition 6. Every b-metric space can be embedded into a complex-valued b-metric space,
a quaternion-valued b-metric space, and an octonion-valued b-metric space.

Proof. If we take o1 = o2 = o3 = o4 = o5 = o6 = o7 = 0 in the definition given in Definition 4,
the desired result can be directly observed from Figure 1, Definitions 1 and 2 and the definition
of classical metric space. �
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Categorically speaking, the diagrammatic representation of the above propositions and the
transitions between these different metric space categories are as Figure 2:

Met

b − Met

MetC

b − MetC

MetH

b − MetH

MetO

b − MetO
.

Figure 2. Interconnections between various generalizations of metric spaces.

From usual metric spaces, the transition to complex-valued metric spaces is achieved
through the generalization of scalar fields. Further generalization to quaternion-valued metric
spaces extends the integral domain, and non-associative, higher-dimensional extensions lead
to octonion-valued metric spaces. Relaxing the triangle inequality for b ≥ 1 introduces
the categories of classical, complex-valued, quaternion-valued, and octonion-valued b-metric
spaces. These transitions are facilitated by inclusion functors, while reverse transitions occur
through forgetful functors. Here, we focus on the calculus aspects of octonion-valued b-metric
spaces rather than their algebraic and categorical properties.

Thus, we can now proceed to define some fundamental concepts related to the
definition above.

Definition 5. Any point s ∈ S is called an interior point of set A ⊂ S whenever there exists 0O ≺

r ∈ O such that

B(s, r) = {t ∈ S : ΩO(s, t) ≺ r} ⊂ A.

Definition 6. Any point s ∈ S is called a limit point of A ⊂ S whenever for every 0O ≺ r ∈ O

B(s, r) ∩ (A − {s}) , ∅.

Definition 7. Set O is said to be an open set whenever each element of O is an interior point
of O. Subset C ⊂ S is called a closed set whenever each limit point of C belongs to C.
The family

F = {B(s, r) : s ∈ S , 0O ≺ r},

is a subbase for Hausdorff topology τ on S .
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3.2. The concept of convergence in the octonion-valued b-metric spaces

The octonion-valued b-metric spaces that we previously constructed will be analyzed
in this part, along with the idea of convergence in these special mathematical structures.
Using octonions, which provide a higher-dimensional, non-associative algebraic framework,
octonion-valued b-metric spaces extend ordinary metric and b-metric spaces. Convergence
and associated features will be defined, and the impact of octonions’ non-associative nature on
metric structure and convergence behaviors will be further investigated.

Definition 8. Let s ∈ S , and sk be a sequence in the set S . If for each o ∈ O with 0O ≺ o there is
k0 ∈ N such that for all k > k0,ΩO(sk, s) ≺ o, then (sk) is called a convergence sequence. Then,
in this case, the (sk) sequence converges to the limit point s; as notation, sk → s as k → ∞ or
lim
k→∞

sk = s.

Theorem 1. Given an octonion-valued b-metric space (S ,ΩO), let (sk) be a sequence in S .
Then (sk) converges to s if and only if ‖ΩO(sk, s)‖ → 0 for k → ∞.

Proof. Let the sequence (sk) converge to point s. Given a real number ε > 0, suppose that

o =
ε

2
√

2
+ e1

ε

2
√

2
+ e2

ε

2
√

2
+ e3

ε

2
√

2
+ e4

ε

2
√

2
+ e5

ε

2
√

2
+ e6

ε

2
√

2
+ e7

ε

2
√

2
.

In this case, 0O ≺ o ∈ O, and there exists a natural number K such that ΩO(sk, s) ≺ o for every
k > K. Thus, ‖ΩO(sk, s)‖ < ‖o‖ = ε for all k > K. Hence, ‖ΩO(sk, s)‖ → 0 as k → ∞.

On the other hand, suppose that ‖ΩO(sk, s)‖ → 0 as k → ∞. In this case, given o ∈ O with
0O ≺ o, there is a real number δ > 0 such that, as o′ ∈ O,

‖o′‖ < δ =⇒ o′ ≺ o.

Corresponding to this δ, there exists a natural number K such that ‖ΩO(sk, s)‖ < δ for every
k > K. This implies that ΩO(sk, s) ≺ o for every k > K, hence the sequence (sk) converges
to point s. �

Theorem 2. Let (sk) be a sequence in the octonion-valued b-metric space (S ,ΩO), and let the
limit of this sequence be s0 ∈ S . In this case, the limit s0 is unique.

Proof. Suppose that both lim
k→∞

sk = s0 and lim
k→∞

sk = t0. By the third axiom in the definition of
the octonion-valued b-metric space, we have

0O � ΩO(s0, t0) � b ·
(
ΩO(s0, sn) + ΩO(sn, t0)

)
,

and by the partial ordering, we obtain

0 ≤ ‖ΩO(s0, t0)‖ ≤ ‖b·
(
ΩO(s0, sn)+ΩO(sn, t0)

)
‖ ≤ b·

(
‖ΩO(s0, sn)‖+‖ΩO(sn, t0)‖

)
= b·

(
0+0

)
= 0.

From this, it follows that ‖ΩO(s0, t0)‖ = 0. Thus, we have ΩO(s0, t0) = 0O. Finally, by the first
axiom of the octonion-valued b-metric space, we obtain s0 = t0. This completes the proof. �

Corollary 1. In both cases, the quaternion-valued b-metric space (S ,ΩH) and the complex-
valued b-metric space (S ,ΩC), the limit is unique.
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Proof. This can be directly seen from Propositions 4 and 5, respectively. �

Definition 9. Let (S ,ΩO) be an octonion-valued b-metric space and A be a non-empty subset
of S . In this b-metric space, the diameter of the set A is denoted by

Diam(A) = sup
{
‖ΩO(s, t)‖ : s, t ∈ A

}
.

If Diam(A) < ∞, then the set A is said to be bounded in S . A sequence (sk) in S is called a
bounded sequence in S if the set of all terms of the sequence (sk) is bounded in S .

Theorem 3. Let (sk) be a sequence in the octonion-valued b-metric space (S ,ΩO), and let the
limit of this sequence be s0 ∈ S . In this case, the sequence (sk) is bounded.

Proof. For every k ∈ N and arbitrary a ∈ S , by the third axiom of the octonion-valued b−metric
space definition, since it is

ΩO(sk, a) � b ·
(
ΩO(s0, sk) + ΩO(a, s0)

)
,

the inequality
‖ΩO(sk, a)‖ ≤ b ·

(
‖ΩO(s0, sn) + ΩO(a, s0)‖

)
holds. Since lim

k→∞
sk = s0, for 0O � ε, there exists k1 ∈ N such that for all k > k1, ΩO(s0, sk) � 1O

holds. In this case, since it is ‖ΩO(sk, s0)‖ ≤ 1, if we take

M = max
{
‖ΩO(s1, s0)‖, ‖ΩO(s2, s0)‖, · · · , ‖ΩO(sk1 , s0)‖, 1 + ‖ΩO(a, s0)‖

}
,

then for ∀k ∈ N, it will be ‖ΩO(sk, a)‖ ≤ M. This means that (sk) is a bounded sequence in S .
This completes the proof. �

Corollary 2. A convergent sequence is bounded in both the quaternion-valued b-metric
space (S ,ΩH) and the complex-valued b-metric space (S ,ΩC).

Proof. This can be directly seen from Definition 9, and Propositions 4 and 5, respectively. �

Theorem 4. Let (sk) be a sequence in the octonion-valued b-metric space (S ,ΩO). If the
sequence (sk) converges to the point s0, then any arbitrary subsequence (skn) also converges,
and this subsequence converges to the point s0.

Proof. Let (skn) be an arbitrary subsequence of the sequence (sk). Given that lim
k→∞

sk = s0, for
every 0O ≺ ε, there exists some kε ∈ N such that for all k > kε, it is ΩO(sk, s0) ≺ ε. Therefore, as
lim
n→∞

kn = ∞ approaches, there exists some nε ∈ N such that for all n > nε, it is ΩO(skn , s0) ≺ ε.
From this, we obtain lim

kn→∞
skn = s0. This completes the proof. �

Corollary 3. In both the quaternion-valued b-metric space (S ,ΩH) and the complex-valued b-
metric space (S ,ΩC), every subsequence of a convergent sequence converges to the same point.

Proof. This can be directly seen from Theorem 4, Propositions 4 and 5, respectively. �

AIMS Mathematics Volume 10, Issue 5, 10504–10527.



10517

Definition 10. If there exists k0 ∈ N such that for all k > k0,ΩO(sk+m, sk) ≺ o, then (sk) is said to
be a Cauchy sequence in the octonion-valued b-metric space (S ,ΩO). If every Cauchy sequence
is convergent in (S ,ΩO), then (S ,ΩO) is said to be a complete octonion-valued b-metric space.

Note that not every octonion-valued b-metric space must be complete. The following
example of an octonion-valued b-metric space supports this.

Example 5. Let ΩO : N+ × N+ → O be an octonion-valued function defined as

ΩO(n,m) = |
1
n
−

1
m
|2 + |

2
n
−

2
m
|2e1 + |

3
n
−

3
m
|2e2 + |

4
n
−

4
m
|2e3 + |

5
n
−

5
m
|2e4

+ |
6
n
−

6
m
|2e5 + |

7
n
−

7
m
|2e6 + |

8
n
−

8
m
|2e7,

where n,m ∈ N+. Then (N+,ΩO) defines an octonion-valued b-metric space.
However, since it is 0 < N+, this octonion-valued b-metric space is not complete.

Theorem 5. Every convergent sequence in an octonion-valued b-metric space is a
Cauchy sequence.

Proof. Let (sk) be a sequence in the octonion-valued b-metric space (S ,ΩO). Suppose that
lim
k→∞

sk = s0. In this case, for every 0O ≺ ε, there exists some kε ∈ N such that for all k, l > kε,
by the definition of the partial ordering relation given above, and since 0O ≺ ε ∈ O, the octonion
ε

2·b holds for 0O ≺
ε

2·b , moreover, they are ΩO(sk, s0) ≺ ε
2·b and ΩO(sl, s0) ≺ ε

2·b . Therefore, as
k, l > kε, by the third axiom of the octonion-valued metric space definition, since it is

ΩO(sk, sl) � b ·
(
ΩO(s0, sk) + ΩO(a, s0)

)
= b ·

( ε

2 · b
+

ε

2 · b
)

= ε.

Since ΩO(sk, sl) � ε holds for every 0O ≺ ε, (sk) is a Cauchy sequence. This completes
the proof. �

Proposition 7. Every convergent sequence is also a Cauchy sequence in both quaternion-
valued b-metric spaces and complex-valued b-metric spaces.

Proof. This can be directly seen from Theorem 5, Propositions 4 and 5, respectively. �

Theorem 6. Given an octonion-valued b-metric space (S ,ΩO), let (sk) be a sequence in S .
Then (sk) is a Cauchy sequence if and only if ‖ΩO(sk, sk+m)‖ → 0 as k → ∞.

Proof. We assume that (sk) is a Cauchy sequence in S . As a given real number ε > 0,
suppose that

o =
ε

2
√

2
+ e1

ε

2
√

2
+ e2

ε

2
√

2
+ e3

ε

2
√

2
+ e4

ε

2
√

2
+ e5

ε

2
√

2
+ e6

ε

2
√

2
+ e7

ε

2
√

2
.

In this case, 0O ≺ o ∈ O, and there exists a natural number K such that ΩO(sk, sk+m) ≺ o for every
k > K. Then, ‖ΩO(sk, sk+m)‖ < ‖o‖ = ε for every k > K. Thereby, ‖ΩO(sk, sk+m)‖ < ‖o‖ → 0 as
k → ∞.
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On the other hand, we assume that ‖ΩO(sk, sk+m)‖ < ‖o‖ → 0 as k → ∞. So, given o ∈ O
with 0O ≺ o, there is a real number δ > 0 such that as o′ ∈ O,

‖o′‖ < δ =⇒ o′ ≺ o.

Corresponding to this δ, there exists a natural number K such that ‖ΩO(sk, sk+m)‖ < δ for every
k > K, implying that ΩO(sk, sk+m) ≺ o for every k > K. So, (sk) is a Cauchy sequence. Thus,
the proof is complete. �

Theorem 7. Let (sk) be a Cauchy sequence in the octonion-valued b-metric space (S ,ΩO). In
this case, the sequence (sk) is bounded.

Proof. Assume that (sk) is a Cauchy sequence in the octonion-valued b-metric space (S ,ΩO).
In this case, 0O � ε, there exists k1 ∈ N such that for all k, l > k1, ΩO(sl, sk) ≺ ε � 1O holds.
Therefore, since it is ‖ΩO(sk, sl)‖ ≤ 1, if we take

M = max
{
‖ΩO(s1, sk1)‖, ‖ΩO(s2, sk1)‖, · · · , ‖ΩO(sk1 , sk1)‖

}
,

for every k ∈ N we have ‖ΩO(sn, sk1)‖ < M + 1. So, for ∀k, l ∈ N by the third axiom of the
octonion-valued b-metric space definition, since it is

ΩO(sk, sl) � b ·
(
ΩO(sk, sk1) + ΩO(sk1 , sl)

)
,

the inequality

‖ΩO(sk, sl)‖ ≤ b ·
(
‖ΩO(sk, sk1) + ΩO(sk1 , sl)‖

)
≤ b ·

(
‖ΩO(sk, sk1)‖ + ‖ΩO(sk1 , sl)‖

)
≤ b · (M + 1)

holds. This means that (sk) is a bounded Cauchy sequence in S . This completes the proof. �

Corollary 4. A Cauchy sequence is bounded in both the quaternion-valued b-metric
space (S ,ΩH) and the complex-valued b-metric space (S ,ΩC).

Proof. This can be directly seen from Theorem 7, Propositions 4 and 5, respectively. �

Theorem 8. If (sk) is a Cauchy sequence in the octonion-valued b-metric space (S ,ΩO), has
the subsequence (skn) converges to the point s0, then Cauchy sequence (sk) also converges, and
this Cauchy sequence converges to the point s0.

Proof. Let (skn) be an arbitrary convergence subsequence of the Cauchy sequence (sk) in the
octonion-valued b-metric space (S ,ΩO). Given that lim

kn→∞
skn = s0, for every 0O ≺ ε, there exists

some k1 = k1(ε) ∈ N such that for all k > k1, it is ΩO(skn , s0) ≺ ε
2·b . Furthermore, since (sk) is

a Cauchy sequence, there exists some kε ∈ N such that for all k, l > kε, it is ΩO(sk, sl) ≺ ε
2·b .

Moreover, as lim
n→∞

kn = ∞ approaches, there exists some n2 = n2(ε) ∈ N such that for ∀n > k2,
kn > kε. From these three results,

ΩO(sn, s0) � b ·
(
ΩO(sn, skn) + ΩO(skn , s0)

)
≺ b ·

( ε

2 · b
+

ε

2 · b
)

= ε

is obtained for n > nε = max
{
kε, n1, n2

}
.

From this, we obtain lim
k→∞

sk = s0. This completes the proof. �
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Corollary 5. In both the quaternion-valued b-metric space (S ,ΩH) and the complex-valued
b-metric space (S ,ΩC), if an arbitrary Cauchy sequence has a convergent subsequence, then
the Cauchy sequence converges to the same point.

Proof. This can be directly seen from Theorem 8, Propositions 4 and 5, respectively. �

4. Applications of the concept of convergence

Numerous domains of mathematics, including fixed point theory, differential equations,
numerical analysis, general topology, functional analysis, probability theory, machine learning
and optimization, and algorithm analysis, have found use for the idea of convergence. We
will concentrate on the applications of convergence in fixed point theory and provide some
associated theorems and conclusions, because it is not practical for us to cover all of these
applications here.

4.1. Basic fixed point theorems in octonion-valued b-metric spaces

Convergence is a fundamental aspect in the study of fixed point theorems, where iterative
methods are used to show the existence and uniqueness of fixed points in various spaces. This is
particularly useful in optimization problems, economics, and game theory. In this subsection,
we will present several theorems using the newly provided definitions and theorems above.
These theorems in the octonion-valued b-metric space we defined will be generally useful in
the formulation and proof of basic fixed point theorems, which we will discuss subsequently. In
metric spaces fixed point theory, along with its applications and numerous generalizations, have
been studied [16, 19, 30]. In addition to studies conducted in metric spaces, some results have
also been established in Banach spaces [12, 13], and various other types of spaces [1, 14, 17],
for different classes of functions, for instance, Greguš type theorems [5, 31],

In this section, we present some fundamental fixed point theorems in the framework of
complete octonion-valued b-metric spaces. After constructing the notion of a b-metric over
octonions, we provide a concrete example of a contraction mapping within this newly defined
structure to illustrate the applicability of the developed theory. The results presented here
primarily focus on extensions of the classical Banach fixed point theorem to the octonion-
valued b-metric setting. We have established several basic fixed point theorems that serve as
initial developments in this framework.

It is important to note that we have limited our analysis to Banach-type contractions and
some elementary generalizations. Further generalizations, such as Kannan-type or Chatterjea-
type contractions, and the exploration of broader classes of fixed point theorems within
octonion-valued b-metric spaces, remain open for future research. Therefore, the study of
various types of contractions in this setting constitutes a rich and promising direction for
further investigations.

Theorem 9. Let (S ,ΩO) be a complete b-metric space over octonions, where b ≥ 1. Suppose
F : S −→ S is a mapping such that for all s, t ∈ S , the following condition holds:

ΩO
(
F(s), F(t)

)
� αΩO(s, t), (4.1)
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where α ∈
[
0,

1
b
)
. Under this condition, F possesses a unique fixed point in S .

Proof. Let F satisfy condition (4.1), and let s0 ∈ S be an arbitrary point. Define the
sequence (sk) by sk = Fk(s0). Using (4.1), it follows that

ΩO(sk, sk+1) � αΩO(sk−1, sk). (4.2)

Applying (4.1) iteratively, we get

ΩO(sk−1, sk) � αΩO(sk−2, sk−1),

and by substituting this into (4.2),

ΩO(sk, sk+1) � α2ΩO(sk−2, sk−1).

Continuing this process yields

ΩO(sk, sk+1) � αnΩO(s0, s1). (4.3)

Now, using the third property of the b-metric space on octonions and condition (4.3) for all
k, l ∈ N with k < l, we deduce

ΩO(sk, sl) � b
l−1∑
i=k

ΩO(si, si+1) � bαkΩO(s0, s1)
[
1 + bα + (bα)2 + · · · + (bα)l−k−1].

By summing the geometric series and simplifying, we find

ΩO(sk, sl) �
bαk

1 − bα
ΩO(s0, s1).

Since α ∈ [0,
1
b

) and b > 1, we have

lim
k→∞

bαk

1 − bα
ΩO(s0, s1) = 0O.

This implies ΩO(sk, sl) → 0, meaning (sk) is an octonion-valued Cauchy sequence. By the
completeness of (S ,ΩO), there exists a unique u ∈ S such that (sk) converges to u.

To prove that u is a fixed point of F, consider ΩO(u, Fu). For any k ∈ N, we have

ΩO(u, Fu) � b
[
ΩO(u, sk) + ΩO(sk, Fu)

]
.

Substituting from (4.2) and taking k → ∞, since sk → u, we obtain ΩO(u, Fu) = 0, which
implies Fu = u.

Finally, we show the uniqueness. Suppose w , u is another fixed point of F. Then,
using (4.1),

ΩO(w, u) = ΩO(Fw, Fu) � αΩO(w, u).

Since α ∈ [0,
1
b

), we have |ΩO(w, u)| � α|ΩO(w, u)|, implying |ΩO(w, u)| = 0, or w = u. Thus, u
is the unique fixed point of F. �
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Example 6. Let Ωb
O : O × O→ O be an octonion-valued b-metric defined as in Example 4. Let

o = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7 be a fixed octonion, and define the function F : O→ O by

F(x) =
x + o

4
.

(O,Ωb
O) is an octonion-valued complete b-metric space satisfying the condition

ΩO
(
F(s), F(t)

)
� αΩO(s, t),

where since b = 2, it follows that α = 1
16 ∈

[
0,

1
2
)
. Under this condition, F possesses a

unique fixed point in O. It can be seen through simple calculations that this fixed point is
o
3 = 1

3 + 1
3e1 + 1

3e2 + 1
3e3 + 1

3e4 + 1
3e5 + 1

3e6 + 1
3e7.

Theorem 10. Let (S ,ΩO) be a complete octonion-valued b-metric space, where b > 1 is an
integer. Assume F : S −→ S is a continuous mapping satisfying the condition:

ΩO(s, F(s)) �
1
bl (φ(s) − φ(F(s))), (4.4)

for all s ∈ S and integers l ≥ 0, where φ : S → O is a function. Under this condition, the
sequence {Fk(s)} converges to a fixed point of F for all s ∈ S .

Proof. For any fixed s ∈ S , let sk = Fk(s) with k ∈ N. From (4.4), we derive

0O �
1
bl (φ(s) − φ(F(s))) ⇐⇒ φ(s) � φ(F(s)),

for all s ∈ S . Consequently, the sequence (φ(Fk(s))) satisfies:

φ(sk+1) = φ(Fk+1(s)) = φ(F(Fk(s))) = φ(F(sk)) � φ(sk).

This shows that (φ(Fk(s))) is monotonically decreasing and bounded below. Therefore, it
converges to some 0O � o ∈ O, i.e.,

lim
k→∞

φ(Fk(s)) = o.

Now, for l, k ∈ N with l > k, using the third axiom of the b-metric space on octonions and
condition (4.4), we get

ΩO(sk, sl) � b ·
(
ΩO(sk, sk+1) + ΩO(sk+1, sl)

)
= b ·ΩO(sk, sk+1) + b ·ΩO(sk+1, sl)

� b ·ΩO(sk, sk+1) + b ·
(
b ·

(
ΩO(sk+1, sk+2) + ΩO(sk+2, sl)

))
· · ·

· · ·

· · ·

� b ·ΩO(sk, sk+1) + b2 ·ΩO(sk+1, sk+2) + · · · + bl−k ·ΩO(sl−1, sl)
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and substituting ΩO(si, si+1) � 1
bl (φ(si) − φ(si+1)), we have:

ΩO(sk, sl) �
b
bl

[
φ(sk) − φ(sk+1)

]
+

b2

bl

[
φ(sk+1) − φ(sk+2)

]
+ · · · +

bl−k

bl

[
φ(sl−1) − φ(sl)

]
=

b
bl · φ(sk) +

b2 − b
bl · φ(sk+1) +

b3 − b2

bl · φ(sk+2) + · · · +
bl−k − bl−k−1

bl φ(sl−1) −
bl−k

bl φ(sl).

Since lim
k→∞

φ(sk) = o, it follows that

lim
k,l→∞

ΩO(sk, sl) = 0O.

This shows that (sk) is a Cauchy sequence in S . By Theorem 6 and the completeness of (S ,ΩO),
there exists a point u ∈ S such that:

lim
k→∞

Fn(s) = u.

Finally, by the continuity of F, we conclude that:

u = F(u).

Thus, u is the fixed point of F. �

Theorem 11. Let (S ,ΩO) be an octonion-valued complete b-metric space, and let ψ : O −→ O
be a monotone nondecreasing function such that lim

k→∞
ψk(o) = 0O for all 0O ≺ o ∈ O. If

F : S −→ S satisfies the contraction condition

ΩO(F(s), F(t)) � ψ(ΩO(s, t)), (4.5)

for all s, t ∈ S , then F has a unique fixed point u ∈ S , and lim
k→∞

ΩO(Fk(s), u) = 0 for all s ∈ S .

Proof. To demonstrate the existence of a fixed point, let s ∈ S and define the sequence sk =

Fk(s) for k ∈ N. If s1 = F(s) = s, then s is a fixed point of F. Assume s1 = F(s) , s. By the
contraction condition:

ΩO(sk, sk+1) � ψ(ΩO(sk−1, sk)) � ψ2(ΩO(sk−2, sk−1)) � · · · � ψk(ΩO(s, F(s))).

Since lim
k→∞

ψk(o) = 0O for all 0O ≺ o ∈ O, we have:

0O � lim
k→∞

ΩO(sk, sk+1) = lim
k→∞

ψk(ΩO(s, F(s))) = 0O.

Thus:
lim
k→∞

ΩO(sk, sk+1) = 0O. (4.6)

We now show that (sk) is a Cauchy sequence. Let 0O ≺ ε ∈ O and b > 0. Given that
ψ(ε) ≺ ε

2b , we have:

ΩO(sk, sk+1) �
ε

2b
.
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For the set Bε[sk] = {s ∈ S : ΩO(s, sk+1) � ε}, if w ∈ Bε[sk], then ΩO(w, sk−1) � ε and

ΩO(F(w), sk+1) � b ·
[
ΩO

(
F(w), sk

)
+ ΩO

(
sk, sk+1

)]
� b ·

[
ΩO

(
F(w), F(sk−1)

)
+ ΩO

(
(F(sk−1), sk+1)

)]
� b ·

[
ψ
(
ΩO(w, sk)

)
+ ΩO

(
sk, sk+1

)]
� b ·

[
ψ(ε) +

ε

2 · b

]
� b ·

[ ε

2 · b
+

ε

2 · b

]
= ε,

the repeated application of the contraction condition ensures that,

lim
k→∞

ΩO(sk, sk+1) = 0O, and lim
k,l→∞

ΩO(sk, sl) = 0O.

This implies that (sk) is a Cauchy sequence. Since (S ,ΩO) is complete, there exists u ∈ S
such that

lim
k→∞

Fk(s) = u. (4.7)

To show that u is a fixed point of F, we use the continuity of F. By definition:

ΩO(u, F(u)) = lim
k→∞

ΩO(Fk(s), Fk+1(s)).

From (1), lim
k→∞

ΩO(Fk(s), Fk+1(s)) = 0O, which implies:

ΩO(u, F(u)) = 0O =⇒ F(u) = u.

Thus, u is a fixed point of F.
To demonstrate the uniqueness of a fixed point, assume u, v ∈ S are two distinct fixed points

of F. Using the contraction condition (4.5), we have:

ΩO(u, v) = ΩO(F(u), F(v)) � ψ(ΩO(u, v)) � · · · � ψk(ΩO(u, v)).

Taking the limit as k → ∞, and using the fact that lim
k→∞

ψk(t) = 0O for all 0O ≺ o ∈ O, we get,

ΩO(u, v) = 0O =⇒ u = v.

As a result, the mapping F has a unique fixed point u ∈ S , and the sequence {Fk(s)}
converges to u for all s ∈ S . �

Remark 2. It is well known that every field forms a vector space over itself and every ring
forms a module over itself. However, let us explicitly note that octonions, lacking multiplicative
associativity, do not even qualify as a ring, and therefore cannot form a module over themselves.
This makes the metric spaces we have defined and the related results particularly interesting.
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5. Conclusions

In this work, we developed the theory of octonion-valued b-metric spaces, introduced
fundamental topological concepts, and extended the Banach fixed point theorem into this
new setting. By constructing a partial ordering on octonions and proving the existence
of fixed points under contraction conditions, we have demonstrated that fixed point theory
can be effectively applied even in non-associative algebras. Our findings open the way
for future research, including the study of Kannan-type or Chatterjea-type contractions, and
potential applications in areas such as non-associative geometry and theoretical physics, where
octonionic structures naturally arise.
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