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Abstract: The Dempster—Shafer evidence theory is a very practical concept for handling uncertain
information. The foundation of this theory lies in the basic probability assignment (BPA), which
exclusively accounts for the degree of support attributed to focal elements (FEs). In this study,
neutrosophic evidence sets (NESs) are defined to introduce additional probabilistic measures, aimed
at addressing the uncertainty, imprecision, incompleteness, and inconsistency present in real-world
information. The basic element of NESs is a neutrosophic basic probability assignment (NBPA),
which consists of three components. The truth degree of FEs is represented by the first BPA, the
second BPA represents the indeterminacy degree of FEs, and the last BPA characterizes the falsity
degree of FEs. In NESs, each support degree of FEs is shown separately without any limitation.
Therefore, the general concept of NESs is broader compared to traditional evidence sets and
intuitionistic fuzzy evidence sets. Unlike the neutrosophic set (NS), the NBPA method assigns
truth-support, uncertainty-support, and false-support degrees, as well as these support degrees, to
single and multiple subsets in a discriminative framework. This paper aimed to develop some
information measures for NESs, such as neutrosophic Deng entropy (NDE), neutrosophic cosine
similarity measure, and neutrosophic Jousselme distance. Then, an improved method based on NDE
and neutrosophic cosine similarity measure was established to combine contradictory evidence to
increase the influence of reliable evidence on the one hand and to reduce the influence of unreliable
evidence on the other hand. Finally, a case involving sensor data integration for target identification
was studied to highlight the importance of these innovative ideas. The numerical example
demonstrates that the proposed method provides more reliable and superior fusion performance
compared to classical models, particularly in scenarios involving high conflict and uncertain
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information. However, the effectiveness of the method is partially influenced by the structure of the
similarity matrix and the entropy parameters, which necessitates careful parameter tuning to achieve
optimal results. These limitations are explicitly highlighted to serve as a guide for future
improvements and broader applications of the method.

Keywords: Dempster—Shafer evidence theory; neutrosophic evidence sets; neutrosophic belief
(Deng) entropy; sensor fusion; target recognition
Mathematics Subject Classification: 03E72, 94A17

1. Introduction

Uncertainty is an important factor in knowledge representation, especially in civil engineering,
supply chain management, risk analysis, medical care, and other fields. Even so, there has been
significantly more focus on the control of hesitancy [1,2]. Many theories have been built on this,
such as probability theory, fuzzy set theory [3], intuitionistic fuzzy set (IFS) theory [4], neutrosophic
set theory [5], Dempster—Shafer (DS) evidence theory [6,7], and D-system theory [8]. The
neutrosophic set (NS) is a powerful formal framework that is an extension of the classical set, fuzzy
set, interval fuzzy set, IFS, interval IFS, dialectical set, paradoxical set, and tautological set. In
contrast to the aforementioned sets, each element of the NS is characterized by three degrees of
truth-membership, indeterminacy-membership, and falsity-membership; these degrees of
membership are explicitly defined independently of each other. For the technical applications of NSs,
the domain and range of truth-membership, indeterminacy-membership, and falsity-membership can be
restricted to the standard real unit range [0, 1]. Wang et al. [9] proposed the single-valued neutrosophic
set (SVNS) as a type of NSs. SVNSs have the ability to identify and hold ambiguous and complex
information that cannot be identified or managed. Recently, the NSs and SVNSs have been
extensively used in various fields such as set theories [10,11] and some applications [12-14].

It is very difficult to make decisions based on uncertain and ambiguous situations. Therefore,
hesitant and inaccurate data have become a major problem in the decision-making process. A final
judgment in the decision-making process is based on different measurements and criteria. In turn,
decision makers face difficulties in making logical inferences when making decisions with uncertain,
imprecise, and incomplete information. The DS theory was developed to achieve precise conclusions
in scenarios with incomplete information and hesitancy (see [6,7]). Unlike classical probability
theories, the DS theory does not measure the probability of a given event occurring as a number;
instead, it considers specific data about both the occurrence and non-occurrence of the event. Known
as an effective tool for reasoning under uncertainty, the DS theory of evidence was first introduced
by Dempster [6] and later developed by Shafer [7]. The DS evidence theory has been widely used in
different fields for knowledge fusion [15-17] as it effectively models ambiguity and imprecision
even without prior knowledge [18,19]. Despite its numerous benefits, the DS evidence theory can
produce unexpected results when integrating highly contradictory pieces of evidence. Several
approaches have been introduced to address this problem. Yager [20] established that the evidence of
conflict was invalid and proceeded by distinguishing the conflicting beliefs. Dubois and Prade [21]
argued that the useful information of conflicting evidence should be preserved and assigned conflict
information only to the conflict proposition. Smets [22] left the conflict belief outside of the solution.
Although several recent studies have shown promising progress [23-25], further research is still
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needed to address unresolved aspects of DS theory, such as conflicting management issues,
independence of various sources of evidence, approaches to generating basic probability assignments
(BPAs), incompleteness in the frame of discernment, and processing uncertain information.

With the ability to represent uncertain and imprecise information through IFSs and neutrosophic
sets (NS), the DS theory, which can only handle single-valued uncertainties, has become inadequate
for addressing real-world problems expressed within these frameworks. One strategy to address these
unresolved concerns is to recognize and manage the level of hesitancy in ambiguous data before
proceeding with processing. At the outset, it is important to consider the uncertainty, inconsistency,
and incompleteness of the evidence, as these can lead to incomplete and counterintuitive conclusions.
Moreover, in practical applications of the original DS theory, it is possible that some or all
probability masses may be uncertain or imprecise, instead of requiring precise degrees of belief and
belief structures. Also, ambiguity in language, lack of knowledge, incompleteness, or vagueness can
lead to vagueness or imprecision. Classical evidence theory places constraints on the BPA of focal
elements according to the level of support available. Of course, these assessments can be used to
obtain an accurate estimate of value, but they eventually result in the loss of certain important details.

Numerous recent efforts have been made to extend DS theory to intuitionistic fuzzy belief
structures such as sensor dynamics [26] and combination processes [27—29]. In these research works,
a non-support degree is assigned to the BPA class of focal elements to extend BPAs to intuitionistic
fuzzy information, leading to the identification of intuitionistic BPAs. Given the previous dialog, it is
clear that support levels for BPA need to be increased, which is the main goal of this paper. Clearly,
deciding the level of conflict between different pieces of evidence is a crucial issue. This paper
introduces not only the fusion rule of evidence theory but also a different enhancement to the belief
function. The classical basic probability assignment only takes into account the levels of support of
the evidence. Despite the widespread use of DS theory and its various extensions, such as risk
assessment [30], supply chain management [31], and industrial safety [32], several important
limitations persist in practical applications. Most notably, existing methods either fail to represent
indeterminacy as an independent and quantifiable component or rely on distance-based or
entropy-based evaluations, without integrating both in a unified manner. Furthermore, existing
cardinality-based normalizations in fuzzy and intuitionistic frameworks are insufficient when applied
to neutrosophic systems, due to their interval-based definitions and limited applicability in real-world
decision problems. These gaps form the core motivation for the present study, which aims to
establish a more comprehensive structure for evidence representation and fusion under uncertainty.
To address this issue, a neutrosophic evidence set (NES) is proposed that takes into account the
ability of NS to deal with hesitation. The NES framework takes into account the accuracy-support,
uncertainty-support, and falsity-support ratings of focal elements. An NBPA can be viewed as a
triplet of consecutive BPAs, where the first BPA represents degrees of truth-support, the second BPA
represents degrees of indeterminacy-support, and the third BPA represents degrees of falsity-support.
Given that the primary focus of the NBPA is on various aspects of the discrimination framework, the
proposed NES proves to be a versatile tool for capturing uncertainty in decision-making. Therefore, a
greater amount of information can be processed by combining features of DS evidence theory and
NS. Most of the previously mentioned techniques rely on the Jousselme distance [33] as the key
factor in calculating the weight vector used to update bodies of evidence. However, in this research,
the weight of evidence is calculated using an improved cosine similarity measure based on Jousselme
distance and extended belief (Deng) entropy, which is extended to the neutrosophic evidence
universe.

The main achievements of this paper are summarized below:
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1) Classical neutrosophic sets are extended to neutrosophic evidence sets.

2) The classical basic likelihood assignment, which is determined only by the degree of
support of the focal elements, is extended to a neutrosophic basic likelihood assignment
function where the focal elements have three basic degrees of support. This allows
additional information to be processed.

3) Neutrosophic belief (Deng) entropy is defined by applying Deng entropy to neutrosophic
evidence sets to quantify the hesitation of newly proposed neutrosophic basic probability
assignments (NBPAS).

4) Furthermore, a refined cosine similarity metric is constructed by considering three pieces
of evidence information (angle, distance, and vector norm) to measure the similarity of
two NBPAs.

5) A decision model is built using the similarity and entropy information metrics introduced
earlier. This model categorizes evidence as safe and unsafe based on their degree of
trustworthiness, calculated using a given similarity metric. Furthermore, a positive
influence function and a negative influence function are created to evaluate the
information content of various types of evidence. Then, the neutrosophic belief (Deng)
entropy function is used to increase the influence of reliable evidence and decrease the
influence of unreliable evidence. Thus, the weight value calculated in the first step is
adjusted according to the volume of information obtained. As a result, the final weight of
the evidence is obtained. Then, this weight is used in the process of weighing pieces of
evidence. A specific numerical notation is provided to show that the proposed approach is
both practical and effective.

The rest of this paper is organized as follows: Section 2 briefly introduces the preliminaries.
Then, Section 3 defines the NESs and NBPA, as well as some extended information measures.
Section 4 proposes a new method based on an improved cosine similarity measure of evidence and
neutrosophic belief (Deng) entropy. Section 5 provides a numerical example to demonstrate the
effectiveness of the method. A statistical experiment and a detailed discussion are conducted in
Section 6. Finally, Section 7 presents the results.

2. Preliminary
2.1. Dempster—Shafer (DS) theory of evidence and related concepts

The initial discoveries about DS theory, also known as evidence theory, were found in
Dempster’s research. The goal was to assess any event using upper and lower probabilities.
Following this study, Shafer expanded the DS theory in his 1976 book “A mathematical theory of
evidence”. The DS theory, a new model, has since been applied in various fields like hesitant
information modeling, data fusion, and decision-making.

The first building block of the DS theory of evidence is to define a finite set of mutually
exclusive elements called the frame of discernment, denoted by Q. P(Q) denotes the power set of Q
and contains all possible combinations of sets in Q, including Q itself. Singular clusters in the Q
detection framework do not contain non-empty subsets and are thus called atomic clusters. It is
assumed that only one set of atoms can be true at any given time. An observer can demonstrate the
belief that one or more sets in the power set of Q may be true by assigning belief masses to these sets.
Belief mass on an atomic set AEP(Q) is interpreted as the belief that the set in question is true.
Belief mass on a non-atomic set A€ P(Q) is interpreted as the belief that one of the atomic sets it
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contains is true, but the observer is uncertain about which. The following definitions are necessary
for the basic processes of DS theory [6,7]. Accordingly, these definitions provide the theoretical basis
for the development of the proposed neutrosophic evidence sets.

Definition 1. Let
Q={Aq, Ay, ..., Ay}

be the frame of discernment. A basic probability assignment (BPA) is a function m:P(Q) — [0,1],
satisfying the two following conditions:

m(@) = 0and ¥ 4com(A) =1, 1)

where @ denotes empty set, A is any subset of Q, and m is called mass function. For each subset
A < Q, the value taken by the BPA at A is called the basic probability mass of A, denoted by
m(A).

Now, we define belief and plausibility functions, which determine the upper and lower bounds
of the discernment frame.

Definition 2. For any proposition A < Q, the belief function Bel: P(Q) — [0,1] and the plausibility
function Pl:P(Q) — [0,1] are defined as

Bel(A) = Xpcam(B), PI(A) =1 — Bel(A°) = YpnazpM(B), )
where A€ is the complement of A. It is clear that
Bel(B) < PI(B).

An interval [ Bel(B),PI(B) ] is called the belief interval (BI). It can also be interpreted as an
interval enclosing the “true probability” of B[33]. The following definition provides Dempster's
combination rule, which combines two independent BPAs defined on the same frame of discernment (.

Definition 3. Let m; and m, be independent BPAs defined on the frame of discernment Q.
Dempster’s combination rule combines two BPAs and generates a new BPA as follows:

O ;C’q = Q;
m(A) = {zgne=ﬂ,va,eeiaig2ml(B)mz(C) A0

©)

where K is the conflict coefficient and indicates the degree or amount of conflict between m; and
m,,. It is noteworthy that the value of K is between 0 and 1. Formally, K can be defined as

K = Yane=gvacep(a) M1 (B)m,(C). (4)

When K = 0, it indicates no conflict between m; and m,. When K =1, it represents complete
conflict between m,; and m,.

In evidence theory, the Jousselme distance plays a central role in assessing the degree of
disagreement between two BPAs. Unlike standard distance measures, it takes into account the
structure of the power set and the semantic relationships between focal elements by incorporating a
cardinality based on set intersections and unions. This allows it to capture not only numerical
differences but also the overlap in meaning between different hypotheses. As such, it has been widely
used to measure conflict, to evaluate the reliability of evidence sources, and to determine weights in
fusion processes. Its flexibility also makes it adaptable to extended frameworks like fuzzy,
intuitionistic fuzzy, and neutrosophic evidence structures. By offering a meaningful and
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mathematically grounded way to compare belief functions, the Jousselme distance significantly
enhances both the theoretical depth and practical effectiveness of evidence combination strategies.

Definition 4. [33] Let m; and m, be two BPAs on the same frame of discernment Q. A; and B;
are focal elements. The Jousselme distance, denoted by d(m,, m,), is defined as follows:

d(my,my) = /0.5(|lmylI? + [Im, 12 — 2(my, m,)), (5)
where
”ml”Z = (ml,ml),||m2||2 = (m,, my);{my, my,)

represents the scalar product of two vectors. It is defined as follows:

|A;nBj|
|A;UB;|’

(my,my) = f=12 1My (A; )mz(B ) (6)

where s is the number of the elements of the power set, A; and B; are the elements of frame of
discernment Q, |A4; N B;| is the cardinality of common objects between elements A; and B;, and
|-4; U B;| is the number of subsets of union of A; and B;.

A modified cosine similarity measure proposed by Jiang et al. [34] is an efficient approach to
measure the similarity between vectors because it considers three important factors, namely, angle,
distance, and vector norm. The modified cosine similarity measure among these BPAs can determine
whether the pieces of evidence contradict each other. A large similarity indicates that this piece of
evidence has more support than another piece of evidence, while a small similarity indicates that this
piece of evidence has less support than another piece of evidence.

In the following definitions, we use standard letters instead of script letters to emphasize the
distinction between the evidence sets and other elements.

Definition 5. [34] Let

A ={ay,ayas,...,a,}
and

B = {by, by, b3, ..., b}

be two vectors of R™. The modified cosine similarity between vectors A and B is defined as

—d(A,B) . (14| |B|
s(A,B) = {0.5 * {a + min (IBI' IAI)} c,(A,B), A=+0,B+0,

0, A=0o0orB =0,

)

where a is a constant whose value is greater than 1, d(A4, B) is the Euclidean distance between the

two vectors A and B, a~¢@B) js the distance-based similarity measure, min (:A: :j:) is the
minimum of ' ' and :i: and ¢, (A, B) is the cosine similarity of vectors, defined by
— — — Zl 1(4i*B;)
c,(A,B) = cos(0) = , 0<c,(A4,B) <1. (8)

'A“B' Jz” (A2 Jz? (B2

The larger the «, the greater the impact of distance on vector similarity will be.
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2.2. Neutrosophic sets (NSs)

To bridge the classical and newly introduced concepts, it is essential to emphasize the structural
and functional differences between the traditional BPA and the proposed neutrosophic BPA (NBPA).
While classical BPAs assign a single degree of belief to each focal element, NBPA will extend this
structure by incorporating three components—truth, indeterminacy, and falsity degrees—allowing
for a more expressive representation of uncertainty. Therefore, we give the neutrosophic notions in
this section.

Smarandache defined a NS for handling uncertain information as follows:

Definition 6. [5] Let X be a space of points (objects), with a generic element in X denoted by x.
An NS A in X is characterized by a truth-membership function T,(x) , an
indeterminacy-membership function I,(x) , and a falsity-membership function F,(x). T,(x),
I,(x), and F,(x) are real standard or nonstandard subsets of ]0—, 1+[, that is, T;: X —» ]0~,17][,
I;:X - ]07,1*%[, and F,:X — ]0~,1*[. There is no restriction on the sum of T,(x), I,(x), and
F4(x), therefore

0~ <supT,(x) +suply(x) +supF,(x) <3*Vx €X,

where sup T,(x), supl,(x), and sup F,(x) denote the supremum of T,(x), I,(x), and F,(x),
respectively. The values T,(x), I4(x) , and F,(x) characterize the truth-membership degree,
indeterminacy-membership degree, and falsity-membership degree, respectively, of the element of x
to the set A.

It is difficult to apply the NS to real decision-making problems because of its definition. In
order to overcome this situation, Wang et al. [9] defined the concept of a single-valued neutrosophic
set (SVNS).

Definition 7. [9] Let T,(x), I,(x), and F,(x) be truth-membership, indeterminacy-membership,
and falsity-membership functions, respectively. A SVNS is defined as

A = {(x, Ty(x), 4(x), F4(x)): x € X}, (9)
where the functions T,(x), I,(x), and F,(x) are real standard subset of [0,1], i.e.,
Ty:X - [0,1],1;:X - [0,1],F4: X - [0,1]
with the condition
0 < Tha(x) +14(x) + FA(x) < 3.
For the sake of convenience, we take
a = (Ty, Iy, Fy)

is a neutrosophic element (NE) of the single valued neutrosophic number in a SVNS.
Assume that

A= {0, Ta(x), L (%), Fa()) = x5 € X))
and

B = {(x;, Te (%), Is (%), F5 (%) * %; € X)}

AIMS Mathematics Volume 10, Issue 5, 10471-10503.
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are two NSs in

X = {xq, x5, .. X1 },

then forall x; € X
ANB = {(xj,mln (TA(x]) TB(x])) max (IA( ) Ig(x )) max (FA(x]) FB(x])))},
AUB = {(xj, max (TA (xj), Ty (x])) ,min (IA (xj), Ig (x])) ,min (FA (xj), Fg (xj)))}

An SVNS A is contained in another SVNS B, denoted by A < B, if and only if
Ty(x) < Tp(x), Ig(x) = I4(x) and Fg(x) = Fy(x)
forany x € X.

Definition 8. [35] Let A and B be any two NSs in X. Then the cosine similarity measures between
A and B are defined as follows

C(A,B) — %Z}l:l cos 7T(|TA(xj)_TB(xj)|V|1A(Xj)—IB(Xj)lvlFA(Xj)—FB(xj)l) (10)

> ,
where the symbol Vv is the maximum operation. Moreover, let
a = (Ty, Iy, Fy)
beaNE and A € (0,1], then we have the equation
Ada = KTy, 1y, Fp) = (1 - (1 — TA)A' (IA)A' ( FA)AX

which we will use in further sections.

The neutrosophic aggregation operator has garnered significant attention as a key tool in
information fusion. Sahin and Yigider [12] introduced two notable operators: the single-valued
neutrosophic weighted averaging (SVNWA) operator and the single-valued neutrosophic weighted
geometric (SVNFWG) operator, as described below:

Assume

A =(T;, I, F;)(j =1.2,..,n)
is a collection of SVNNs, the SVNWA defined as

SVNWA(Ay, Ay, e, An) = S0y wjd; = (1= Ty (1 = T) ™ Ty 9, T2, F29), (10)

j=1%j

where w; is the weight vector of each 4; (j = 1,2,...,n), with w; € [0,1] and

3. Neutrosophic framework of DS theory

Recently, Li and Deng [28] revealed that there exists a strong relationship between IFSs and the
DS theory. The main purpose of this chapter is to extend this idea to the neutrosophic universe.
Considering the power of neutrosophic sets compared to IFSs, we can say that the results will be
more effective in multi criteria decision making (MCDM). Within the framework of DS theory in
neutrosophic sets, a precise definition of neutrosophic cardinality is essential for the normalization of
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basic probability assignments, the formulation of combination rules, the computation of the
Jousselme distance, the application of modified similarity measures, and the evaluation of belief
entropy. Before defining neutrosophic cardinality, it is instructive to examine the definitions of fuzzy
and intuitionistic cardinalities, as they provide the foundational developments that lead to the
formalization of neutrosophic cardinality.

Initially, DeLuca and Termini [36] extended the classical notion of cardinality to fuzzy sets in
order to quantify the number of elements within a fuzzy set. To this end, they introduced a cardinality
measure known as the sigma count, defined as follows:

Y count(A) = Yyex Ha(X),

where A is a fuzzy set on X. Subsequently, Szmidt and Kacprzyk [37] generalized this definition to
IFSs as:

Y count (A) = [Zxex #a(x), Yxex ta(x) + ma ()]
Tripathy et al. [38] rearranged this definition as

Y count (A) = [Xxex Ha(x), Xxex 1 —va(x)].
Thus, if
VA(x) =1- ‘LlA(X),

then it reduces to ). count of a fuzzy set A. They also showed some properties of this cardinality.

However, since these cardinality definitions are expressed as intervals, the classical cardinality
concept has been employed in the applications of DS theory to fuzzy and IFSs. This, in turn,
diminishes the full impact of DS theory within these frameworks. In the context of neutrosophic sets,
Majumdar and Samanta [39] proposed a cardinality definition parallel to those of fuzzy and IFSs as
follows:

3. count (4) = S TaCxy), Xiea (Ta () + (1~ 1)

where A is a NS in X. Nevertheless, it is still in an interval, and we cannot use it effectively in
applications. Therefore, we need a new neutrosophic cardinality definition. In order to remain within
the theoretical boundaries of fuzzy and intuitionistic fuzzy frameworks, we propose the following
definition in parallel with the aforementioned cardinality formulations.

Definition 9. Let A be a NS in X. Then the sigma count of A is defined as
Y, count(4) = [ T Ta(xy), 20y (1 — IA(x]-)), - (1 — FA(xj))].

Proposition 1. If

L(x) =9,
then it reduces to ), count of an IFS and if both

L(x)=90
and

Fa(x) = 0,

AIMS Mathematics Volume 10, Issue 5, 10471-10503.
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then it reduces to ). count of a fuzzy set.
In order to effectively use it in applications, we need to reduce the sigma count of A to a real
number.

Definition 10. Let A be a NS in X. Then, the average possible neutrosophic cardinality of A,
denoted by |4|,,, is defined as

AL, =337 (Ta(x) + 1= () + 1 - Fa(xy)). (12)

Proposition 2. Let A be a NS in X and |A| be the cardinality of A, then we have the following
situations.

1) Forall x; € X, if
(Fa(x;), Ta (%)), 1a (%)) = (1,0,0),
that is, it is largest neutrosophic set, then the cardinality of A is computed as
|4l =n
2) Forall xj € X, if
(Fa(x;), Ta(x)), Ia(x))) = (0,1,1),
that is, it is smallest neutrosophic set, then the cardinality of A is computed as
|Al,, = 0.
3) 0<|A], <n.
Theorem 1. Let A and B be two neutrosophic sets on X, then
1) Y. count(AU B) + ) count(A N B) = ), count(A) + Y, count(B),
2) |4, + 14|, = n.
Proof. 1) We have

Y count(AUB) =

max{Z};l Ta(x;), Yi=1Tg (xj)}, min {Z?=1 (1 - IA(xj)) ) (1 — Iy (xj))} ,‘
min {Z}Ll (1 — FA(xj)),Zle (1 - FB(xj))}, ’

and

Y count(ANB) =

min{7, Ta(x7), Xy T (2)}, max {57, (1= L(x)), 2y (1- IB(xj))},]
max{ =1 (1 — FA(xj)) Xj=1 (1 - FB(xj))} .

So,

AIMS Mathematics Volume 10, Issue 5, 10471-10503.
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ZOPYI®

S counth ) + Y count(an &

| max{im )Zu( )}m {Z o).y
o) Zl zB<x,)}+ma {Z (1- 1)),
) il Fa(x;) }+ma {Z (1-Fa()).

j=1

n

w3

NgE

J= 1

1
n
]=1

(x,>+ZTB(x, Z (1-1(x))
1 - Fy(x )‘

1
min 1

M= T

1

j

S

1r 1 T
= ||M:\
3 ||M;: _ M:
- P -

|

(1-13<x,->)}.

(1- FB(xj))}
+i 1—13(x,) i 1-— FA(x])

= Ta(x;). Z(l La(; )) Z(l Fa(x ))‘
+ ' B(x]) Zn:(l IB(xJ)) i (1 FB(xJ))] Zcount(A) +Zcount(B)
3) Since
Al,, = %z”: (1) + 1= () + 1 = Fa()))
and
A¢ = {(x;, Fa(x), 1 = Li(7), Ta(xy) = x5 € X)),
we have
1 =52 (o) 41 (1= 1) + (1)
= %Z (Fa(xy) + () + 1= Tu(x)).
Therefore,
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|A|n + |Acln =

W]
'M:

-
1l
=

(TA(xj) +Fy(x) + 1= Li(x) + La(x) + 1= Fa(x;) + 1 - TA(x]-))

M=
w
I
S

1l
[

W =

J

If we have four neutrosophic elements in an NS and all these elements are the biggest NNs, then,
intuitively, the cardinality of this NS should be 4.

Example 1. Let
A ={(1,0,0),(1,0,0),(1,0,0),(1,0,0)}
be a SVNS. Then, the cardinality of this set is
|A|n=§((1+1+1)+(1+1+1)+(1+1+1)+(1+0+0))=4.
Example 2. Let
A ={(1,0,0),(1,0,0),(0,1,1),(0,1,1)}
be a SVNS. Then, the cardinality of this set is
IAIn:é((1+1+1)+(1+1+1)+(0+0+0)+(0+0+0))=2.
Example 3. Let
A =1{(1,0,0),(1,1,1),(0,1,1)}
be a SVNS. Then, the cardinality of this set is
AL, = (A +1+1)+ @A +0+0)+(0+0+0)) =133,
Example 4. Let
A ={(0.7,0.5,0.8), (0.1,0.3,0.9), (0.5,0.6,1.0)}
be a SVNS. Then, the cardinality of this set is

1Al,, = g((o.7 +0.5+0.2) + (0.1+ 0.7+ 0.1) + (0.5 + 0.4 + 0)) = 1.06.

3.1. Neutrosophic evidence sets (NESS)

The fundamental component of the NES is the neutrosophic basic probability assignment
(NBPA). Similar to the BPAs in classical evidence theory, the NBPA is defined over a finite set of
mutually exclusive elements, known as the frame of discernment.

Definition 10. Let
Q= {sy,S,, .., Sy}
be a frame of discernment and let P(Q)) denote its power set, i.e.,
P(Q) = {{sl}, v 88n b {51, 52} oo {51, 82, s Si ) ...,Q}.
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Leteach A; € P(Q) be an element of the power set. Then the functions
m*(A): P(Q) - [0,1], m®(A;): P(Q) - [0,1]
and
m~(A;): P(Q) - [0,1]

represent the truth-support degree, indeterminacy-support degree, and falsity-support degree,
respectively. Then, a neutrosophic basic probability assignment m on P(() is defined as

m = {{A, m* (A, (A, m™ (A): A; € P(Q)). (13)

Subject to the following conditions:

1) m* (@) = 0, m°(@) = 0 and m~ (@) = 0;

2) Yaerymt(A) =1, (14)

3) VA; # Q, m*(A;) + m°(A;) + m™(A;) < 3.
Definition 11. For an NBPA m on (, any subset A; < P(Q) is called a focal element of m if

mt(A;) >0 or m°(A;) >0 or m™(A;) > 0.
Definition 12. Let m be an NBPAon Q given as
m = {(A;, m*(A;), m°(A;), m™(A;): A; € P(Q)).

Then the neutrosophic belief and plausibility functions of m also have two components, defined as
follows:

BI(A;) = (bl*(A;), bI°(A;), bl (A)), PL(A;) = (pl* (A}, pl°(A), I~ (A;)),  (15)
where
bl*(A;) = Zcﬂjgﬂim+(°qj))pl+(‘/qi) = YA ;nA;#0 m*(A;),
BI®(AY) =z Tt e, M0 (A)), PIO(AD) = s T jnngzo M0 (A;),

2lmlsn

bl=(A;) = Zhn;“bzcﬂjgﬂim_(fﬂj) P (A;) = ﬂ%mzcﬂjﬁcﬂﬁt@ m~(A;).

It is evident that if the second and third components of an NBPA are empty, it reduces to a
traditional BPA. However, a traditional BPA cannot be transformed into an NBPA, as the NBPA

inherently contains more information than the BPA. Furthermore, the coefficient zl%ln ensures that

the second and third components of the belief and plausibility functions remain within the defined
range. Specifically, bl°(A;) and bl~(A;) are computed by summing over all subsets A; S A;,

which may lead to large sums. Therefore, they can be normalized with the coefficient ——. The

2|m|n
same idea applies to pl°(A;) and pl~(A;). Otherwise, these sums would exceed their defined
limits resulting in unbounded values.

Example 5. Let
Q={a,b,c}

and let A; € P(Q), where the focal elements are
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A; = ({a}{a, b}, {a,b,c}).

Suppose two observations are given in the form of NBPAs as follows:

my = {({a}, (0.3,0.2,0.4)), ({a, b}, (0.5,0,6,1.0)), {{a, b, c}, (0.2,0,9,0.5))},

m, = {({a}, (0.2,0.6,0.8)), ({a, b}, (0.6,0,2,0.8)), ({a, b, c}, (0.1,0,9,0.6))}.
Here, for example,

m,({a}) = (0.3,0.2,0.4).
It is easy to see that
i=mi =1,

while the sums of the indeterminacy and falsity components exceed 1. Since {a} < {a, b} and
{a} € {a, b, c}, the neutrosophic belief function for the truth component is calculated as:

bl*({a}) = mf({a}) + m{({a,b}) + mf({a,b,c}) =03+ 0.5+ 0.2 = 1.0.

To calculate bl°(a), we first compute the neutrosophic cardinality as

3.

Imyl,, = g((os +0.840.6) + (0.5+ 0.4+ 0.0) + (0.2 + 0.1+ 0.5)) = ?‘* = 1.1333.
Hence,

bl°({a}) = 21% (0.2 + 0.6 + 0.9) = 0.7750,

1

bl~({a}) = —— (0.4 + 1.0 + 0.5) = 0.8662.

21.1333
Now, for the element {a, b}, note that {a, b} < {a, b,c} only, so

bl*({a,b}) = mf({a,b}) + mf({a,b,c}) =05+ 0.2 =0.7,
bl°({a, b}) = —— (0.6 + 0.9) = 0.6838,

21.1333

bl=({a, b}) = —r777 (1 + 0.5) = 0.6838.

To highlight the difference between the belief and plausibility functions, let us compute Pl({a, b}).
Since

{a,b}n{a} = {a} and {a,b} N {a,b,c} = {a,b,c},
we include all focal elements

pl*({a,b}) =03+05+0.2 =1,
1

pl=({a, b)) 2% (0.4 + 1.0 + 0.5) = 0.8662.

The remaining belief and plausibility values for other focal elements can be calculated in a similar
manner.

Definition 13. Suppose m is a NBPA on Q where each subset A € P(Q)) is assigned a
neutrosophic probability mass

m(A) = (m*(A), m°(A), m™ (A)).
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Then, a reduced BPA denoted by m™* can be obtained from m using

m*(A)+ (1-m°(A)) (1= m~(A)
. :

m*(A) = (16)

It is evident that m*(A) € [0,1]. However, the use of only one NBPA is not enough in real
decision-making problems. To operate multiple NBPAs, a combination of NBPAs is needed, which is
defined below.

Definition 14. Assume m; and m, are two NBPAs on (; the combination result is denoted as
m; @ m,, which is proposed as follows:

M1 @ ma(A) = i (A), i (A), i (A)) (17)
where
( mi, (@) =0,
A ooy
m?,(®) =0,
| m92( A = Sagnaj=a, mYA)m3(4)) (18)

|AinAj|n(1_ZAinAj=¢ m?(Ai)mg(Aj)) '

m(1),2 (Q)) = O,
ZAiﬂAj=c/lk mI(Al)mZ_(A])

|AinAj|n(1—ZAinAj=@ m;(Ai)mg(Aj)) )

Kmf,z (Ay) =

and each NBPA m(A,) is defined as
0 )dq'k = @;

m(a‘lk) = ZAinAj=</lk.VAi,AjEP(Q)ml(Ai)mZ(Af) ’qu i@, (19)

1-K

where K is the degree of conflict between m, and m, and is called the conflict coefficient. K is
defined as
1 1
= |Ai|nmZAinAj=®,VAi,AjEP(Q) my (A;)m, (Aj), (20)
where K = [0,1]. If K = 0, it indicates that there is no conflict between m, and m,. Conversely,
if K =1, itsignifies complete conflict between m,; and m,. Just like the BPA elements given in (15),

the coefficient |A_1-|ﬁ for K ensures that it stays in the interval [0,1]. Also, it is the same for the
ih4j

second and third components in (18).

3.2. Jousselme distance for NESs

It is necessary to measure the distance between two NBPAs in decision-making problems.
Therefore, we extend the Jousselme distance into NESs.

Definition 15. Let
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my = {(A;, m{ (A;), md(A;), mi (A;): A; € P(Q))
and
m, = {(B;, m3(B;), m3(B;), mz(B;): B; € P(Q))

be two NBPAs on (. The Jousselme distance in NESs, denoted by dy(m;, m,), is defined as
follows:

dy(my,my) = /0.5(lmy |2 + [Im, 12 — 2(my, m,)), (21)
where
Imy11? = (my, my),|[Im,|1? = (my, m,);

(m4, m,) is the scalar product of two vectors defined as follows:

1 - . |lA4:nB;|
(my,ma) = By Xjaa 5 {mi (AdmE (B;) + mP(AImE(B;) +my (A)m; (B;)} |=ﬂiUBj'|  (22)
where s is the number of the elements of the power set, and |4; N'B;| ~and |4; UB;| are the
neutrosophic cardinalities of intersection and union of NSs A; and B;, respectively.
It can be easily proven that the dy(m,, m,) satisfies the basic properties of a distance measure.

3.3. Modified cosine similarity measure of neutrosophic BPAs

Similarity measures evaluate the degree of agreement or closeness between different pieces of
evidence. Depending on the structure of the similarity function (e.g., cosine-based, distance-based,
etc.), the weight or influence of the evidence may vary. High similarity between elements may lead
to stronger mutual reinforcement during fusion. Moreover, the similarity measure is the starting point
of the calculations of weights of evidence in the fusion process. Therefore, we introduce a modified
cosine similarity measure of NPBAs to enhance the sensitivity and robustness of neutrosophic
evidence combination mechanisms by providing a principled approach to comparing
multi-dimensional evidence structures. Its use contributes to more informed and reliable fusion
outcomes, especially in complex environments where information is uncertain, inconsistent, or
incomplete.

Assume that E; and E, are two sources of evidence under frame of discernment Q and let
A; € P(Q) where j =1,2,...,n represents singleton sets. Let m; and m, be two NBPAs defined
over the same . For each singleton subset A;, the corresponding belief and plausibility measures

are given by
Bl,(A;) = (blf (A;), bl (A;), bl; (A))),
Pl (A;) = (plf (A;), I3 (A;), Pli (A))),
Bl,(A;) = (bl3 (A;), bI3(A;), blz (A;)),
PL,(A;) = (pl3 (A;), p13(A;), Pz (A))).

To make it formally easier, NBPAs can be expressed as two vectors on the singleton subsets
indexed by i = 1,2 as

Bl; = (BL;(Ay), Bli(Ay), ..., Bli(A,)),
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Pl; = (PLi(Ay), PLi(Ay), ..., PLi(Ay)).

Based on these representations, we now define the novel similarity measure of NBPAs integrating
the modified cosine similarity.

Definition 16. Let S(Bl,,Bl,) and S(Pl, Pl,) be the modified cosine similarities of NBPAs. Then,
a novel similarity of NBPAs is defined as

where
1
n 2
1 2 2 2 3 3 2
5 = a(zmzobv(ﬂj)—plr(ﬂm + D19 (A7) = P12 (A[ + ol () = pl ()] )) .
j=1
|Bl;|,, |Bl,]
0.5 * a_d(Bll'Blz)+min< = 2 )¢t «c(Bl,,Bl,), Bl #0,Bl, #0,
s(Bly, Bl,) = { IBl,1,." [BL, (B, Blz) ! 2
0, Bll = 0 or Blz == 0,
[Pli], [Pl
0.5 x a‘d(Pll'P12)+min( Ly 2]t % c(PL,,Pl,), Pl, #0,Pl, #0,
s(Pl,,Pl,) = { Pl 1, IPLy,, (P, P1) ! g

0, P11 =0Qor Plz = 0,

where § is the total uncertainty of NBPAs with 0<§ <1, a>1, d is the neutrosophic
Jousselme distance, and c¢(Bl;, Bl,) and c(Pl,,Pl,) are the cosine similarities of vectors (BIl;, Bl,)
and (Ply, Pl,), given in (15), respectively. When

Bli(A;) = (1,0,0)

and
PLi(A;) =(0,1,1),

i.e., Bl is maximum and PI is minimum, then § = 1, which is the maximum value; if
Bli(«A;) = PL(A;),

then & = 0, which is the minimum value.
The new similarity of NBPAs SN satisfies the following features:

1) my =my; = SN(my,my) =1;
2) SN(my,m;) = SN(my,my);
3) 0<SN(m,m;) <1

4) SN(my,m,) =0, iff m; and m, have no compatible element.
3.4. Neutrosophic belief (Deng) entropy

Shannon entropy is a measure of ambiguity or randomness in a system, introduced by Shannon
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in information theory. It quantifies the amount of information contained in a probability distribution,
where higher entropy indicates greater uncertainty or unpredictability. Mathematically, it is defined
as

S ==Zipilogs (24)

where [ is the number of events, and p; represents the probability of event i in the system that
satisfies

5:1 p; = 0.

Next, we discuss Deng entropy in the present section. Since its initial proposal for
thermodynamics by Clausius in 1865 [40], various forms of entropy have been introduced to
quantify system hesitancy, including Shannon entropy [41], Tsallis entropy [42], and nonadditive
entropy [43]. In the context of information theory, Shannon entropy is frequently employed to assess
the information content of a system or process and to determine the expected value of the
information conveyed in a message.

A new method named Deng entropy [44] was recently introduced to quantify the uncertainty of
the BPAs. Deng entropy is essentially an extension of Shannon entropy because Deng entropy equals
Shannon entropy when a probability measure is established by BPA. In simpler terms, Deng entropy
can be viewed as a form of generalized Shannon entropy. When a BPA is converted into a probability
distribution, Deng entropy subsequently transforms into Shannon entropy.

The Deng entropy is able to accurately assess the level of ambiguity of BPA. Nevertheless, there
is still a question as to how to quantify the level of vagueness in assigning fundamental probabilities
when operating within a domain that lacks precise, adequate, and comprehensive data. A primary
focus of this research article is the creation of a novel entropy known as NDE. NDE is an extended
form of both Shannon entropy and Deng entropy. When BPA transforms into a probability
distribution, the NDE transforms into Shannon entropy. In this section, we will introduce Deng
entropy and discuss some of its properties.

Definition 17. [44] Deng entropy for a BPA m is defined as

Eq(m) = = Tacxmeaso m(A) log, (F) (25)

21411

where |A| is the cardinality of A. Here, if the BPA m is assigned to single elements, it is
degenerated to Shannon entropy as

Eq(m) = = Yacx m(A) log, m(A). (26)

Deng entropy quantifies the level of unpredictability in a given evidence set based on the m
and |A|, without taking into account the size of the frame of discernment. Thus, this approach is
inadequate for evaluating variations in an uncertain degree when there are similar basic probability
assessments within distinct frames of reference.

Zhou and colleagues [45] utilized the Dempster—Shafer evidence theory (DSET) to evaluate the
ambiguity of the evidence set by taking into account mass functions and the size of the frame of
discernment. They introduced a new belief entropy model, derived from Deng entropy, to overcome
the constraints of Deng entropy.

Definition 18. [45] Improved Deng entropy for a BPA m is defined as
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A ), o

Eid(m) = —Zﬂgxm(o‘l) logz (me 1X]

where |A| and |X| are the cardinality of A and X, which are the number of elements in frame of
|A|-1
discernment. Here, the exponential factor e 1xI gives more uncertain information in a body of

evidence compared to Deng entropy.
Now, we will define NDE using the neutrosophic information where the BPAs have three
components.

Definition 19. Let m be a NBPA on a frame of discernment. Then, NDE of m is defined as

+ |Al,— [A],—
ENDE(m) = Z m+(cfl) log, <Me J|ZX|n 1> - Z mo(dq) log, <M€ C/|lx|n1>

ATX ATX
: (A [Aln—1
~ Sasxm (A log, (Fze e ), (28)

and, where |A|,, is the neutrosophic cardinality of A. It is clear that the value range of the NDE
is (0,00).

Furthermore, because of the unpredictable and varying nature of data in real life, the evidence
that is gathered must be classified in various ways. We categorize this classification into two groups:
reliable evidence and unreliable evidence. Hence, determining reliable and unreliable evidence and
adjusting their weights is crucial in enhancing the impact of reliable evidence and reducing the
influence of unreliable evidence on the final merging outcomes. Therefore, we employ the adjusted
cosine similarity of evidence to assess their credibility. When the target has a high similarity measure
with other alternative evidence, it indicates that this evidence substantiates the target and, therefore,
should be viewed as reliable evidence. Conversely, a low similarity measure between the target
evidence and other alternative evidence suggests that the target evidence lacks support, indicating its
unreliability. Therefore, to amplify the impact of reliable evidence, it is important to prioritize
reliable evidence; reducing the influence of unreliable evidence can help mitigate its negative effects.
Based on this foundation, we aim to achieve the most optimal decision outcome by assessing the
weights of evidence through various evaluations based on different types of evidence.

Definition 20. Suppose that m; (i = 1,2,...,n) is a reliable NBPA on a frame of discernment and
Enpe(m;) is the NDE of m;. Then the positive impact function P(m;) of m; with Eypp(m;) is
calculated as

P(m) = elEnDE(M))] (29)

Definition 21. Suppose that m; (i = 1,2,...,n) is an unreliable NBPA on a frame of discernment
and Eypg(m;) is the NDE of m;. Then the negative impact function N(m;) of m; with
Enpe(m;) is calculated as

N(m,) = e[—(EIT\%ff(mi)—ENDE(mi))]_ (30)

It is easy to see that both functions are monotonically increasing. Therefore, for unreliable
evidence, a smaller entropy value indicates that the evidence receives less support from other sources,
which in turn gives a lower weight assignment to such unreliable evidence.
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4. Decision model
We present a decision model based on the definitions of NESs. Let Q be a frame of
discernment and
VA; € P(Q)
denote an element of its power set. Consider a collection of n NBPAs defined as

my = {(A;, m{ (A;), m{(A;), mi (A): A; € P(Q)),

my, = {{A;, myt (A;), my (A;), my (A;): A P(Q)).

Let SN(m;,m;) be the similarity value between two NBPAs m; and m; where i,j = 1,2,...,n.

Step 1. Obtain the global credibility weight of the pieces of evidence.
Using (23), construct the similarity matrix S,,,, as follows:

1 SN(my,my) - SN(my,my)
Sij = SN(TnEZ’ml) 1 SN(msz’mn) . (31)
SN(mn' ml) SN(mn) mZ) 1

To compute an entry such as SN(my,m,), we follow these steps. First, calculate Bl;(A;) and
Pl,(A;) for m; and Bl,(A;) and Pl,(A;) for m, using (15). Then, using (10), compute cosine
similarities c(Bly,Bl,) and c(Pl;,Pl,). Next, determine Jousselme distances d(Bl;,Bl,) and
d(Pl;, Pl,) applying (22). For a given @ =1 and acquired §, we can obtain modified cosine
similarities of Bl (A;) and Pl (A;) for k = 1,2 using (23).

Thus, the support degree SD(m;) of each NBPA m; is calculated by summing the similarity
values of its corresponding column in the matrix:

SD(m;) = ¥7_y ;SN (m;, m;). (32)

The credibility degrees CD(m;) of NBPAs m; are then determined by normalizing the support
degrees

SD(m;)

CPm) = g 5oy

(33)
Finally, the global credibility degree GCD(m) of the entire body of evidence is computed by
averaging the individual credibility degrees

GCD(m) = Tz 2m) (34)

n

Step 2. Classify the evidence.

All evidence can be categorized into two distinct classes, reliable and unreliable, based on the
comparison between the credibility degree CD(m;) and the global credibility degree GCD(m;).
This classification is defined as:

reliable evidence, CD(m;) = GCD(m),
unreliable evidence, CD(m;) < GCD(m).
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Step 3. Measure the ambiguity of evidence.
The NDE Eypg(m;) of the NBPA m; (i = 1,2,...,n) can be calculated according to (28).
This entropy quantifies the degree of uncertainty or ambiguity inherent in the evidence m;.

Step 4. Compute the general information volume for the reliable and unreliable evidence.

Based on the positive impact function P(m;) and the negative impact function N(m;) derived
from the entropy Eypr(m;) using (28), the general information volume GI(m;) of the pieces of
evidence are computed as:

P(m;) = elEnpsmdl, if m; is reliable,
I(ml) - max (36)
N(m;) = 9[_ENDE(mi)_ENDE(mi)], if m; is unreliable.
Step 5. Modify the CDs of the evidence.
To adjust the original credibility values based on information volume, the modified credibility

degree MCD(m;) of each NBPA is calculated as:

CcD(m)XGI(m;)
Y CD(my)xGI(m;)’

MCD(m;) = (i=12,..,n). (37)

These modified values serve as final weights in the subsequent aggregation process.

Step 6. Obtain the weighted average of the pieces of evidence.
Using MCD (m;), the weighted average evidence WAE (m) is defined as:

WAE(m) = Y=, (MCD(m;) xm;), (i =12,..,n). (38)

This represents the fused result that incorporates both the quality and quantity of individual
evidences.

Step 7. Fuse the WAE of m.
Since there are n pieces of evidence, the WAE (m) is combined using the proposed rule given
in (17) as

F(m) = <((WAE(m) ® WAE(m)), @ - ea)h D WAE(m)> , (39)
(n-1)
for n — 1 times. After fusing operation, we obtain the final fusion result of the evidence integrating
their credibility, ambiguity, and relative consistency.
The flowchart of the decision model is illustrated in Figure 1, and the step-by-step algorithm is
given in Algorithm 1.
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Figure 1. Flowchart of decision model.
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Algorithm 1. Information fusing on NES.

Input: Aset of NBPAs {A,, A,, ..., A,} and a set of evidences {my,m,, ..., m,;,}

Steps:
1)

2)
3)

4)
5)

6)

7)
8)

9)

For i=1:m
For j=1:m
Determine Bl (A;) and Pl (A;) vectors for k= 1,2. using (15).
Compute cosine similarities of Bl;(A;) and Pl;(A;) using (10).
Calculate Jousselme distance of Bl;(A;) and Pl;(A;) using (22).
Find the total uncertainty 6 of Bl;(A;) and Pl;(A;) using (23).
Calculate the modified cosine similarities of NBPAs BI;(A;) and
Pl;(A;) using (23).
Determine the SN(i,j) similarity matrix.
End
End
Calculate the support degree SD (m;) and the credibility degree CD (m;) using (32) and
(33), respectively.
Determine the global credibility degree (GCD) GCD(m;) of evidence m; by utilizing
(34).
Classify the evidences based on (35).
Compute the NDE of the pieces of evidence by using (28) and the cardinality definition
given in (12).
Determine the general information volume GI(m;) according to the positive impact
function P(m,) and the negative impact function N(m;) of m; with the (36).
Determine the MCD(m;) of the NBPA m; by the (37).
Calculate the WAE(m) by aggregating evidences using (11) taking MCD(m;) as weight
vector. Then calculate the reduced NBPAs using (16).
Do
Fuse the WAE(m)s by using (17)—(20) , and determine the reduced BPAs by using (16).
n-1 times

10) Obtain the final result.
Output: Final fusion result of m,, m,, ms, my, mg

5. Numerical example

We apply the decision-making model of the multi sensor—based target recognition system
proposed by Qian et al. [46], by integrating it into a neutrosophic environment to show the
applicability and effectiveness of the method developed in the neutrosophic framework. This system
includes observations of objects that are acquired from five different kinds of sensors. Here, x;, x5,

and x3

are the three objects in

X = {x1,%3,x3}.

We take the BPAs in [46] as the truth degrees and randomly add other BPAs that are the
indeterminacy degree and the falsity degree to obtain NBPAs, which is given in Table 1.
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Table 1. NBPA matrix of the observations.

Pieces of NBPAs

evidence {x1} {x2} {x3} {x1, x5, %3}
my(.) (0.30,0,70,0.40) (0.20,1,00,0.30) (0.10,0,70,0.70) (0.40,0,40,0.20
m,(.) (0.00,0,10,0.50) (0.90,0,20,0.80) (0.10,0,40,0.90) (0.00,0,80,0.60
ms(.) (0.60,0,20,1.00) (0.10,0,30,1.00) (0.10,0,30,0.40) (0.20,0,10,0.70
my(.) (0.70,0,20,0.10) (0.10,0,80,0.40) (0.10,0,70,0.40) (0.10,0,70,0.10
meg(.) (0.70,1,00,0.90) (0.10,0,80,0.90) (0.10,0,40,0.70) (0.10,0,60,0.60

Step 1. Using (23), the similarity matrix S;; is calculated with @ = 1.5 and is given in Table 2.

Table 2. The similarity matrix of NBPAs.

m, () m,(.) ms(.) my(.) ms(.)
my(.) 1.000 0.8435 0.8007 0.9016 0.8386
m,(.) 0.8435 1.000 0.8435 0.7978 0.8255
ms(.) 0.8007 0.8435 1.0000 0.7238 0.7716
my(.) 0.9016 0.7978 0.7238 1.0000 0.7648
mg(.) 0.8386 0.8255 0.7716 0.7648 1.0000

According to (32)-(34) the support degree SD(m;), the credibility degree CD(m;), and the
global credibility degree GCD(m;) of evidence m; is obtained as shown in Table 3.

Table 3. The related degree measures of NBPAs.

Pieces of evidence

Items my m, ms my ms
SD(m) 3.3844 3.3103 3.1395 3.1880 3.2005
CD(m) 0.2086 0.2041 0.1935 0.1965 0.1973
GCD(m) 0.2000

Step 2. Using (35), all possible evidence is classified as reliable and unreliable evidence. It is easy to
see in Table 3 that m,; and m, are reliable evidence and ms, m,, and ms are unreliable evidence.

Step 3. Based on (28), the information volume (NDE) of the NBPA m; (i = 1,2,...,5) is computed
and given in Table 4.

Table 4. Neutrosophic belief (Deng) of NBPAs.

my m, ms my ms
2.3768 2.8185 2.7474 2.1017 7.3928

EnpE (mi)

Step 4. By applying (36), the general information volume for evidence, using the positive impact
function P(m;) and the negative impact function N(m;) of m; are measured, respectively, and
given in Table 5.
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Table 5. The related degree measures of NBPAs.

Pieces of evidence
Items my ms, ms my ms
GI(m) 10.7707 16.7523 0.0096 0.0050 1

Step 5. On the basis of (37), MCD(m) of the NBPA m, is generated and given in Table 6.

Table 6. The related degree measures of NBPAs.

Pieces of evidence
Items my m, ms my msg
MCD(m) 0.3831 0.5828 0.0003 0.0002 0.0336

Step 6. The weighted average evidence WAE(m) is computed by utilizing (38), as shown in Table 7.

Table 7. The neutrosophic WAE(m) and its first result F(m).

NBPAs

Items {x1} {x2} {x3} {x1, %2, x3}
WAE(m) (0.6810,0.1527,0.2105) (0.0743,0.1078,0.2480) (0.0872,0.3324,0.3643) (0.1575,0.4071,0.1771)
Reduced

BPAs

0.6749 0.3726 0.2558 0.3227

Step 7. Since there are 5 observations, WAE(m) is fused 4 times with the proposed combination rule
that is given in Table 8.

From the results given in Table 8 and the graphical illustration in Figure 1, we can conclude that
the proposed method has a high convergence rate. Figure 1 shows clearly that the NPBA x; differs
from others right from the beginning. The values at fusion step 0 are the beginning values that are
also given in Table 7. The starting point of x; is 0.6749, which leads to faster convergence. We also
give the neutrosophic values of NPBAs in each step since the others converge to around 0.5 when
they should ideally converge to near 0. The reason for this behavior lies in the given neutrosophic
reduced function m* in (16). However, as given in Table 8, the F(m) values are neutrosophic
numbers and their truth, indeterminacy, and falsity values converge to 0, which is the desired
outcome. Therefore, the fact that the reduced values of {x,}, {x3}, and {x;,x,, x5} approach
around 0.5 does not constitute a contradiction or absurdity. Besides, all three NBPAs converge to the
same point, which separates them from the x,. Furthermore, the second and third components of x;

are getting smaller as the steps progress, which can be interpreted as a reduction in the uncertainty of
the conflict of x;.
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Table 8. The fusion results of the neutrosophic WAE(m)s.

Fusion step 1

my,m,

NBPAs WAE (m) Reduced m*
{x1} (0.8842,0.0510,0.0428 0.8963
{x,} (0.0377,0.0343,0.0537) 0.4758
{x3} (0.0457,0.1315,0.0941) 0.4162

{x1, x5, x5} (0.0324,0.1716,0.0338) 0.4163
Fusion step 2
my, My, M3

NBPAs WAE (m) Reduced m*
{x,} (0.9619,0.0185,0.0080) 0.9678
{x,} (0.0140,0.0122,0.0106) 0.4957
{x3} (0.0176,0.0521,0.0215) 0.4726

{x1, x5, x5} (0.0064,0.0707,0.0061) 0.4650
Fusion step 3
my, My, M3, My

NBPAs WAE (m) Reduced m*
{x,} (0.9883,0.0071,0.0015) 0.9899
{x,} (0.0045,0.0047,0.0020) 0.4989
{x3} (0.0059,0.0208,0.0046) 0.4903

{x1, x5, x5} (0.0012,0.0289,0.0011) 0.4856
Fusion step 4
my, My, M3, My, Mg

NBPAs WAE (m) Reduced m*
{x1} (0.9965,0.0028,0.0003) 0.9967
{x,} (0.0014,0.0018,0.0004) 0.4996
{x3} (0.0019,0.0083,0.0010) 0.4963

{x1, x5, x5} (0.0002,0.0118,0.0002) 0.4941

6. Comparison and discussion

We discuss the benefits of the new approach by comparing it to other existing methods. Table 9
presents the combined findings from several studies. Based on Table 9, we observe that Dempster’s
combination method produces paradoxical results. If we evaluate the results obtained by integrating
only two pieces of evidence, the proposed method indicates that the target is x, in the beginning,
while other methods indicate that the target is x,. With three pieces of evidence, Murphy’s [48] and
Deng et al. [49]’s methods do not allow us to decide that the belief assigned to object x, is below 50%.
Qian et al. [46] and Xiao and Qin [47] reported BPA values of 61.10% and 57.79% for object x;,
respectively. In contrast, the probability that the proposed approach gives to target x, is 88.14%.

Adding a fifth piece of evidence, for object x;, the combination methods of Murphy [48], Deng
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et al. [49], Qian et al. [46], and Xiao and Qin [47] show improved results, leading to BPA values
of 83.89%, 94.99%, 95.25%, and 97.13%, respectively. Therefore, it can be said that the methods are
able to successfully handle conflicting evidence. However, based on the five data points in Table 9,
the proposed method significantly outperforms the other combination methods by computing the
BPA value of the object at 99.67% as can be seen in Figures 2 and Figure 3. Therefore, we can
conclude that the proposed technique is as effective as other techniques. It can also be concluded that
the newly developed technique is superior to other methods in integrating opposing evidence to
obtain more unpredictable results. To further explain, the proposed approach outperforms alternative
methods in terms of performance. There are several main reasons for this. Initially, in the proposed
method, each focal element is assigned a basic probability with three levels of support, which
distinguishes it from other methods. In addition, the proposed approach takes into account various
types of evidence, categorizing types of evidence with both a positive influence function and a
negative influence function using NDE. By following these steps, the influence of reliable evidence
is increased while the influence of unreliable evidence is reduced. This allows for the positive and
negative effects of the evidence to be taken into account in the final aggregation results, overcoming
other alternative methods.

Table 9. The final fusion result F(m).

NBPAs Target
Evidence Methods {x1} {x,} {x3} {x1, x5, x5}
Dempster [6] 0.0000 0.9153 0.0847 0.0000 X,
Murphy [48] 0.1187 0.7518  0.0719 0.0576 X,
my,m, Deng et al. [49] 0.1187 0.7518  0.0719 0.0576 X,
Qian et al. [46] 0.1187 0.7518 0.0719 0.0576 Xy
Xiao and Qin [47] 0.1187 0.7518 0.0719 0.0576 X
Proposed method 0.8963 0.4758 0.4162 0.4163 X1
Dempster [6] 0.0000 0.9153 0.0847 0.0000 Xy
Murphy [48] 0.3324 0.5909 0.0540 0.0227 Xy
my,my,ms Deng et al. [49] 0.4477 0.4546 0.0644 0.0333 -
Qian et al. [46] 0.6110 0.2861 0.0659 0.0370 Xy
Xiao and Qin [47] 0.5779 0.3070 0.0714 0.0438 Xy
Proposed method 0.9678 0.4957 0.4726 0.4650 X1
Dempster [6] 0.0000 0.9153 0.0847 0.0000 Xy
Murphy [48] 0.6170 0.3505 0.0272 0.0053 X,
my, My, Ms, My Deng et al. [49] 0.8007 0.1640 0.0283 0.0070 X,
Qian et al. [46] 0.8472 0.1221 0.0249 0.0058 X1
Xiao and Qin [47] 0.8785 0.0857 0.0271 0.0076 X,
Proposed method 0.9899 0.4989 0.4903 0.4856 X1
Dempster [6] 0.0000 0.9153 0.0847 0.0000 Xy
Murphy [48] 0.8389 0.1502 0.0099 0.0010 X1
My, My, M3, My, My Deng et al. [49] 0.9499 0.0411 0.0080 0.0010 X1
Qian et al. [46] 0.9525 0.0393 0.0074 0.0008 X1
Xiao and Qin [47] 0.9713 0.0204 0.0073 0.0010 X1
Proposed method 0.9967 0.4996 0.4963 0.4941 X1
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To provide a deeper analytical justification for the superiority of the proposed model, it is
essential to highlight its dual integration of similarity and entropy-based mechanisms. Unlike
traditional models that rely on support degrees or distance measures, the proposed approach
leverages a modified cosine similarity that captures both set-based relationships with cardinality and
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vector norms in Jousselme distance, which allows it to assess the directional consistency between
evidence sources. This prevents overestimation of similarity when evidence vectors are orthogonal or
sparse—scenarios where classical cosine similarity or Euclidean metrics tend to fail. Moreover, the
use of Deng entropy introduces a measure of internal uncertainty within each piece of evidence. This
entropy component not only detects the ambiguity of a single evidence source but also enables a
relative weighting based on its informational volume. Through the positive and negative impact
functions, the model amplifies the effect of credible evidence and suppresses unreliable contributions,
creating a dynamic weighting system that adapts to evidence quality rather than treating all sources
equally. In addition, the classification step based on GCD enhances robustness by systematically
excluding evidence that falls below a statistical credibility threshold. This step contributes
significantly to reducing noise and instability in the fusion output, especially in highly conflicting
scenarios. The analytical strength of the model thus comes from its ability to simultaneously measure
reliability (via similarity), internal uncertainty (via entropy), and contextual impact (via information
volume), making it more flexible and durable compared to conventional evidence fusion approaches.

7. Conclusions

This paper extends the classical BPA, which focuses solely on the support degree of focal
elements, to the neutrosophic BPA with three components. This involves taking into account the level
of support, the level of non-support, and the level of uncertain support for each focal element.
Furthermore, a similarity measure based on Jousselme distance is established for quantifying the
similarity between evidence. Then, the Deng entropy is extended to assess the impact of evidence on
weight in NESs, leading to the introduction of neutrosophic belief (Deng) entropy. A novel method is
suggested for integrating contradictory evidence by utilizing the similarity measure of evidence and
belief function entropy. An example with numbers is shown to illustrate how practical and successful
the method is. The outcomes demonstrate that the new method exhibits improved performance with
enhanced accuracy.

However, like any modeling technique, our method presents certain limitations. Its performance
may degrade in high-dimensional settings or when the amount of evidence increases substantially,
due to the computational complexity associated with pairwise similarity calculations and entropy
evaluations. Moreover, in cases where evidence is either highly conflicting or uniformly uncertain,
the entropy-based discrimination mechanism may lose its effectiveness. While the model performs
well in structured decision-making environments, it may encounter challenges in highly dynamic
applications—such as continuous sensor data streams or scenarios requiring rapid real-time fusion.
In such cases, the time complexity of computing similarity matrices and entropy values may limit the
model’s practical usability. Additionally, the method assumes a relatively stable frame of discernment
and clearly distinguishable sources of evidence, conditions that may not always hold in domains
characterized by noisy or rapidly evolving information.

From an analytical perspective, while the superiority of our model in terms of fusion accuracy is
empirically validated, its theoretical benefits stem from the combined use of similarity and entropy,
allowing simultaneous evaluation of information content and consistency. This dual perspective
ensures that both supportive and hesitant evidence is proportionally represented in the fusion result.

Future work can explore expanding this framework to handle dynamic data streams and
real-time decision-making scenarios, particularly in applications involving complex sensor networks,
autonomous systems, and intelligent monitoring. The potential of integrating neutrosophic-based
methods with machine learning algorithms also remains a promising area for enhancing data-driven
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decision systems.
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