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Abstract: The Dempster–Shafer evidence theory is a very practical concept for handling uncertain 

information. The foundation of this theory lies in the basic probability assignment (BPA), which 

exclusively accounts for the degree of support attributed to focal elements (FEs). In this study, 

neutrosophic evidence sets (NESs) are defined to introduce additional probabilistic measures, aimed 

at addressing the uncertainty, imprecision, incompleteness, and inconsistency present in real-world 

information. The basic element of NESs is a neutrosophic basic probability assignment (NBPA), 

which consists of three components. The truth degree of FEs is represented by the first BPA, the 

second BPA represents the indeterminacy degree of FEs, and the last BPA characterizes the falsity 

degree of FEs. In NESs, each support degree of FEs is shown separately without any limitation. 

Therefore, the general concept of NESs is broader compared to traditional evidence sets and 

intuitionistic fuzzy evidence sets. Unlike the neutrosophic set (NS), the NBPA method assigns 

truth-support, uncertainty-support, and false-support degrees, as well as these support degrees, to 

single and multiple subsets in a discriminative framework. This paper aimed to develop some 

information measures for NESs, such as neutrosophic Deng entropy (NDE), neutrosophic cosine 

similarity measure, and neutrosophic Jousselme distance. Then, an improved method based on NDE 

and neutrosophic cosine similarity measure was established to combine contradictory evidence to 

increase the influence of reliable evidence on the one hand and to reduce the influence of unreliable 

evidence on the other hand. Finally, a case involving sensor data integration for target identification 

was studied to highlight the importance of these innovative ideas. The numerical example 

demonstrates that the proposed method provides more reliable and superior fusion performance 

compared to classical models, particularly in scenarios involving high conflict and uncertain 
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information. However, the effectiveness of the method is partially influenced by the structure of the 

similarity matrix and the entropy parameters, which necessitates careful parameter tuning to achieve 

optimal results. These limitations are explicitly highlighted to serve as a guide for future 

improvements and broader applications of the method. 

Keywords: Dempster–Shafer evidence theory; neutrosophic evidence sets; neutrosophic belief 

(Deng) entropy; sensor fusion; target recognition 

Mathematics Subject Classification: 03E72, 94A17 

 

1. Introduction 

Uncertainty is an important factor in knowledge representation, especially in civil engineering, 

supply chain management, risk analysis, medical care, and other fields. Even so, there has been 

significantly more focus on the control of hesitancy [1,2]. Many theories have been built on this, 

such as probability theory, fuzzy set theory [3], intuitionistic fuzzy set (IFS) theory [4], neutrosophic 

set theory [5], Dempster–Shafer (DS) evidence theory [6,7], and D-system theory [8]. The 

neutrosophic set (NS) is a powerful formal framework that is an extension of the classical set, fuzzy 

set, interval fuzzy set, IFS, interval IFS, dialectical set, paradoxical set, and tautological set. In 

contrast to the aforementioned sets, each element of the NS is characterized by three degrees of 

truth-membership, indeterminacy-membership, and falsity-membership; these degrees of 

membership are explicitly defined independently of each other. For the technical applications of NSs, 

the domain and range of truth-membership, indeterminacy-membership, and falsity-membership can be 

restricted to the standard real unit range [0, 1]. Wang et al. [9] proposed the single-valued neutrosophic 

set (SVNS) as a type of NSs. SVNSs have the ability to identify and hold ambiguous and complex 

information that cannot be identified or managed. Recently, the NSs and SVNSs have been 

extensively used in various fields such as set theories [10,11] and some applications [12–14]. 

It is very difficult to make decisions based on uncertain and ambiguous situations. Therefore, 

hesitant and inaccurate data have become a major problem in the decision-making process. A final 

judgment in the decision-making process is based on different measurements and criteria. In turn, 

decision makers face difficulties in making logical inferences when making decisions with uncertain, 

imprecise, and incomplete information. The DS theory was developed to achieve precise conclusions 

in scenarios with incomplete information and hesitancy (see [6,7]). Unlike classical probability 

theories, the DS theory does not measure the probability of a given event occurring as a number; 

instead, it considers specific data about both the occurrence and non-occurrence of the event. Known 

as an effective tool for reasoning under uncertainty, the DS theory of evidence was first introduced 

by Dempster [6] and later developed by Shafer [7]. The DS evidence theory has been widely used in 

different fields for knowledge fusion [15–17] as it effectively models ambiguity and imprecision 

even without prior knowledge [18,19]. Despite its numerous benefits, the DS evidence theory can 

produce unexpected results when integrating highly contradictory pieces of evidence. Several 

approaches have been introduced to address this problem. Yager [20] established that the evidence of 

conflict was invalid and proceeded by distinguishing the conflicting beliefs. Dubois and Prade [21] 

argued that the useful information of conflicting evidence should be preserved and assigned conflict 

information only to the conflict proposition. Smets [22] left the conflict belief outside of the solution. 

Although several recent studies have shown promising progress [23–25], further research is still 
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needed to address unresolved aspects of DS theory, such as conflicting management issues, 

independence of various sources of evidence, approaches to generating basic probability assignments 

(BPAs), incompleteness in the frame of discernment, and processing uncertain information. 

With the ability to represent uncertain and imprecise information through IFSs and neutrosophic 

sets (NS), the DS theory, which can only handle single-valued uncertainties, has become inadequate 

for addressing real-world problems expressed within these frameworks. One strategy to address these 

unresolved concerns is to recognize and manage the level of hesitancy in ambiguous data before 

proceeding with processing. At the outset, it is important to consider the uncertainty, inconsistency, 

and incompleteness of the evidence, as these can lead to incomplete and counterintuitive conclusions. 

Moreover, in practical applications of the original DS theory, it is possible that some or all 

probability masses may be uncertain or imprecise, instead of requiring precise degrees of belief and 

belief structures. Also, ambiguity in language, lack of knowledge, incompleteness, or vagueness can 

lead to vagueness or imprecision. Classical evidence theory places constraints on the BPA of focal 

elements according to the level of support available. Of course, these assessments can be used to 

obtain an accurate estimate of value, but they eventually result in the loss of certain important details. 

Numerous recent efforts have been made to extend DS theory to intuitionistic fuzzy belief 

structures such as sensor dynamics [26] and combination processes [27–29]. In these research works, 

a non-support degree is assigned to the BPA class of focal elements to extend BPAs to intuitionistic 

fuzzy information, leading to the identification of intuitionistic BPAs. Given the previous dialog, it is 

clear that support levels for BPA need to be increased, which is the main goal of this paper. Clearly, 

deciding the level of conflict between different pieces of evidence is a crucial issue. This paper 

introduces not only the fusion rule of evidence theory but also a different enhancement to the belief 

function. The classical basic probability assignment only takes into account the levels of support of 

the evidence. Despite the widespread use of DS theory and its various extensions, such as risk 

assessment [30], supply chain management [31], and industrial safety [32], several important 

limitations persist in practical applications. Most notably, existing methods either fail to represent 

indeterminacy as an independent and quantifiable component or rely on distance-based or 

entropy-based evaluations, without integrating both in a unified manner. Furthermore, existing 

cardinality-based normalizations in fuzzy and intuitionistic frameworks are insufficient when applied 

to neutrosophic systems, due to their interval-based definitions and limited applicability in real-world 

decision problems. These gaps form the core motivation for the present study, which aims to 

establish a more comprehensive structure for evidence representation and fusion under uncertainty. 

To address this issue, a neutrosophic evidence set (NES) is proposed that takes into account the 

ability of NS to deal with hesitation. The NES framework takes into account the accuracy-support, 

uncertainty-support, and falsity-support ratings of focal elements. An NBPA can be viewed as a 

triplet of consecutive BPAs, where the first BPA represents degrees of truth-support, the second BPA 

represents degrees of indeterminacy-support, and the third BPA represents degrees of falsity-support. 

Given that the primary focus of the NBPA is on various aspects of the discrimination framework, the 

proposed NES proves to be a versatile tool for capturing uncertainty in decision-making. Therefore, a 

greater amount of information can be processed by combining features of DS evidence theory and 

NS. Most of the previously mentioned techniques rely on the Jousselme distance [33] as the key 

factor in calculating the weight vector used to update bodies of evidence. However, in this research, 

the weight of evidence is calculated using an improved cosine similarity measure based on Jousselme 

distance and extended belief (Deng) entropy, which is extended to the neutrosophic evidence 

universe. 

The main achievements of this paper are summarized below: 
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1) Classical neutrosophic sets are extended to neutrosophic evidence sets. 

2) The classical basic likelihood assignment, which is determined only by the degree of 

support of the focal elements, is extended to a neutrosophic basic likelihood assignment 

function where the focal elements have three basic degrees of support. This allows 

additional information to be processed. 

3) Neutrosophic belief (Deng) entropy is defined by applying Deng entropy to neutrosophic 

evidence sets to quantify the hesitation of newly proposed neutrosophic basic probability 

assignments (NBPAs). 

4) Furthermore, a refined cosine similarity metric is constructed by considering three pieces 

of evidence information (angle, distance, and vector norm) to measure the similarity of 

two NBPAs. 

5) A decision model is built using the similarity and entropy information metrics introduced 

earlier. This model categorizes evidence as safe and unsafe based on their degree of 

trustworthiness, calculated using a given similarity metric. Furthermore, a positive 

influence function and a negative influence function are created to evaluate the 

information content of various types of evidence. Then, the neutrosophic belief (Deng) 

entropy function is used to increase the influence of reliable evidence and decrease the 

influence of unreliable evidence. Thus, the weight value calculated in the first step is 

adjusted according to the volume of information obtained. As a result, the final weight of 

the evidence is obtained. Then, this weight is used in the process of weighing pieces of 

evidence. A specific numerical notation is provided to show that the proposed approach is 

both practical and effective. 

The rest of this paper is organized as follows: Section 2 briefly introduces the preliminaries. 

Then, Section 3 defines the NESs and NBPA, as well as some extended information measures. 

Section 4 proposes a new method based on an improved cosine similarity measure of evidence and 

neutrosophic belief (Deng) entropy. Section 5 provides a numerical example to demonstrate the 

effectiveness of the method. A statistical experiment and a detailed discussion are conducted in 

Section 6. Finally, Section 7 presents the results. 

2. Preliminary 

2.1. Dempster–Shafer (DS) theory of evidence and related concepts 

The initial discoveries about DS theory, also known as evidence theory, were found in 

Dempster’s research. The goal was to assess any event using upper and lower probabilities. 

Following this study, Shafer expanded the DS theory in his 1976 book “A mathematical theory of 

evidence”. The DS theory, a new model, has since been applied in various fields like hesitant 

information modeling, data fusion, and decision-making. 

The first building block of the DS theory of evidence is to define a finite set of mutually 

exclusive elements called the frame of discernment, denoted by Ω. P(Ω) denotes the power set of Ω 

and contains all possible combinations of sets in Ω, including Ω itself. Singular clusters in the Ω 

detection framework do not contain non-empty subsets and are thus called atomic clusters. It is 

assumed that only one set of atoms can be true at any given time. An observer can demonstrate the 

belief that one or more sets in the power set of Ω may be true by assigning belief masses to these sets. 

Belief mass on an atomic set A∈P(Ω) is interpreted as the belief that the set in question is true. 

Belief mass on a non-atomic set A∈P(Ω) is interpreted as the belief that one of the atomic sets it 
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contains is true, but the observer is uncertain about which. The following definitions are necessary 

for the basic processes of DS theory [6,7]. Accordingly, these definitions provide the theoretical basis 

for the development of the proposed neutrosophic evidence sets. 

Definition 1. Let 

Ω = {𝒜1, 𝒜2, … ,𝒜𝑛} 

be the frame of discernment. A basic probability assignment (BPA) is a function 𝓂:P(Ω)  → [0,1], 

satisfying the two following conditions: 

𝓂(∅) = 0 and ∑ 𝓂(𝒜)𝒜⊆𝛺 = 1,        (1) 

where ∅ denotes empty set, 𝒜 is any subset of Ω, and 𝓂 is called mass function. For each subset 

𝒜 ⊆ Ω, the value taken by the BPA at 𝒜 is called the basic probability mass of 𝒜, denoted by 

𝓂(𝒜). 

Now, we define belief and plausibility functions, which determine the upper and lower bounds 

of the discernment frame. 

Definition 2. For any proposition 𝒜 ⊆ Ω, the belief function 𝐵𝑒𝑙: P(Ω) → [0,1] and the plausibility 

function 𝑃𝑙: P(Ω) → [0,1] are defined as 

𝐵𝑒𝑙(𝒜) = ∑ 𝑚(ℬ)ℬ⊆𝒜 , 𝑃𝑙(𝒜) = 1 − 𝐵𝑒𝑙(𝒜𝑐) = ∑ 𝑚(ℬ)ℬ∩𝒜≠∅ ,   (2) 

where 𝒜𝑐 is the complement of 𝒜. It is clear that 

𝐵𝑒𝑙(ℬ) ≤ 𝑃𝑙(ℬ). 

An interval [ 𝐵𝑒𝑙(ℬ), 𝑃𝑙(ℬ) ] is called the belief interval (𝐵𝐼). It can also be interpreted as an 

interval enclosing the “true probability” of ℬ[33]. The following definition provides Dempster's 

combination rule, which combines two independent BPAs defined on the same frame of discernment Ω. 

Definition 3. Let 𝑚1 and 𝑚2 be independent BPAs defined on the frame of discernment Ω. 

Dempster’s combination rule combines two BPAs and generates a new BPA as follows: 

𝑚(𝒜) = {
0 ,𝒜 = ∅,

∑ 𝑚1(ℬ)𝑚2(𝒞)ℬ∩𝒞=𝒜,∀ℬ,𝒞∈P(Ω)

1−𝐾
, 𝒜 ≠ ∅,

     (3) 

where 𝐾 is the conflict coefficient and indicates the degree or amount of conflict between 𝑚1 and 

𝑚2. It is noteworthy that the value of 𝐾 is between 0 and 1. Formally, 𝐾 can be defined as 

𝐾 = ∑ 𝑚1(ℬ)𝑚2(𝒞)ℬ∩𝒞=∅,∀ℬ,𝒞∈P(Ω) .       (4) 

When 𝐾 = 0, it indicates no conflict between 𝑚1 and 𝑚2. When 𝐾 = 1, it represents complete 

conflict between 𝑚1 and 𝑚2. 

In evidence theory, the Jousselme distance plays a central role in assessing the degree of 

disagreement between two BPAs. Unlike standard distance measures, it takes into account the 

structure of the power set and the semantic relationships between focal elements by incorporating a 

cardinality based on set intersections and unions. This allows it to capture not only numerical 

differences but also the overlap in meaning between different hypotheses. As such, it has been widely 

used to measure conflict, to evaluate the reliability of evidence sources, and to determine weights in 

fusion processes. Its flexibility also makes it adaptable to extended frameworks like fuzzy, 

intuitionistic fuzzy, and neutrosophic evidence structures. By offering a meaningful and 
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mathematically grounded way to compare belief functions, the Jousselme distance significantly 

enhances both the theoretical depth and practical effectiveness of evidence combination strategies. 

Definition 4. [33] Let 𝑚1 and 𝑚2 be two BPAs on the same frame of discernment Ω. 𝒜𝑖 and ℬ𝑗 

are focal elements. The Jousselme distance, denoted by 𝑑(𝑚1, 𝑚2), is defined as follows: 

𝑑(𝑚1, 𝑚2) = √0.5(‖𝑚1‖
2 + ‖𝑚2‖

2 − 2〈𝑚1, 𝑚2〉),     (5) 

where 

‖𝑚1‖
2 = 〈𝑚1, 𝑚1〉,‖𝑚2‖

2 = 〈𝑚2, 𝑚2〉;〈𝑚1, 𝑚2〉 

represents the scalar product of two vectors. It is defined as follows: 

〈𝑚1, 𝑚2〉 = ∑ ∑ 𝑚1(𝒜𝑖)𝑚2(ℬ𝑗)
|𝒜𝑖∩ℬ𝑗|

|𝒜𝑖∪ℬ𝑗|

𝑠
𝑗=1

𝑠
𝑖=1 ,      (6) 

where 𝑠 is the number of the elements of the power set, 𝒜𝑖 and ℬ𝑗 are the elements of frame of 

discernment Ω, |𝒜𝑖 ∩ ℬ𝑗| is the cardinality of common objects between elements 𝒜𝑖 and ℬ𝑗, and 

|𝒜𝑖 ∪ ℬ𝑗| is the number of subsets of union of 𝒜𝑖 and ℬ𝑗. 

A modified cosine similarity measure proposed by Jiang et al. [34] is an efficient approach to 

measure the similarity between vectors because it considers three important factors, namely, angle, 

distance, and vector norm. The modified cosine similarity measure among these BPAs can determine 

whether the pieces of evidence contradict each other. A large similarity indicates that this piece of 

evidence has more support than another piece of evidence, while a small similarity indicates that this 

piece of evidence has less support than another piece of evidence. 

In the following definitions, we use standard letters instead of script letters to emphasize the 

distinction between the evidence sets and other elements. 

Definition 5. [34] Let 

𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} 

and 

𝐵 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛} 

be two vectors of 𝑅𝑛. The modified cosine similarity between vectors 𝐴 and 𝐵 is defined as 

𝑠(𝐴, 𝐵) = {
0.5 ∗ {𝛼−𝑑(𝐴,𝐵) +𝑚𝑖𝑛 (

|𝐴|

|𝐵|
,
|𝐵|

|𝐴|
)} 𝑐𝑣(𝐴, 𝐵), 𝐴 ≠ 0, 𝐵 ≠ 0,

0, 𝐴 = 0 𝑜𝑟 𝐵 = 0,
   (7) 

where 𝛼 is a constant whose value is greater than 1, 𝑑(𝐴, 𝐵) is the Euclidean distance between the 

two vectors 𝐴  and 𝐵 , 𝛼−𝑑(𝐴,𝐵)  is the distance-based similarity measure, min (
|𝐴|

|𝐵|
,
|𝐵|

|𝐴|
) is the 

minimum of 
|𝐴|

|𝐵|
 and 

|𝐵|

|𝐴|
, and 𝑐𝑣(𝐴, 𝐵) is the cosine similarity of vectors, defined by 

𝑐𝑣(𝐴, 𝐵) = 𝑐𝑜𝑠(𝜃) =
𝐴⋅𝐵

|𝐴||𝐵|
=

∑ (𝐴𝑖∗𝐵𝑖)
𝑛
𝑖=1

√∑ (𝐴𝑖)
2𝑛

𝑖=1 ∗√∑ (𝐵𝑖)
2𝑛

𝑖=1

, 0 ≤ 𝑐𝑣(𝐴, 𝐵) ≤ 1.   (8) 

The larger the 𝛼, the greater the impact of distance on vector similarity will be. 
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2.2. Neutrosophic sets (NSs) 

To bridge the classical and newly introduced concepts, it is essential to emphasize the structural 

and functional differences between the traditional BPA and the proposed neutrosophic BPA (NBPA). 

While classical BPAs assign a single degree of belief to each focal element, NBPA will extend this 

structure by incorporating three components—truth, indeterminacy, and falsity degrees—allowing 

for a more expressive representation of uncertainty. Therefore, we give the neutrosophic notions in 

this section. 

Smarandache defined a NS for handling uncertain information as follows: 

Definition 6. [5] Let 𝑋 be a space of points (objects), with a generic element in 𝑋 denoted by 𝑥. 

An NS 𝐴  in 𝑋  is characterized by a truth-membership function 𝑇𝐴(𝑥) , an 

indeterminacy-membership function 𝐼𝐴(𝑥) , and a falsity-membership function 𝐹𝐴(𝑥) . 𝑇𝐴(𝑥) , 

𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) are real standard or nonstandard subsets of ]0−, 1+[, that is, 𝑇𝐴: 𝑋 → ]0−, 1+[, 
𝐼𝐴: 𝑋 → ]0−, 1+[, and 𝐹𝐴: 𝑋 → ]0−, 1+[. There is no restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 

𝐹𝐴(𝑥), therefore  

0− ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤ 3
+, ∀𝑥 ∈ 𝑋, 

where sup𝑇𝐴(𝑥), sup 𝐼𝐴(𝑥), and sup𝐹𝐴(𝑥) denote the supremum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥), 
respectively. The values 𝑇𝐴(𝑥),  𝐼𝐴(𝑥) , and 𝐹𝐴(𝑥)  characterize the truth-membership degree, 

indeterminacy-membership degree, and falsity-membership degree, respectively, of the element of 𝑥 

to the set 𝐴. 

It is difficult to apply the NS to real decision-making problems because of its definition. In 

order to overcome this situation, Wang et al. [9] defined the concept of a single-valued neutrosophic 

set (SVNS). 

Definition 7. [9] Let 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) be truth-membership, indeterminacy-membership, 

and falsity-membership functions, respectively. A SVNS is defined as 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋},        (9) 

where the functions 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) are real standard subset of [0,1], i.e., 

𝑇𝐴: 𝑋 → [0,1],𝐼𝐴: 𝑋 → [0,1], 𝐹𝐴: 𝑋 → [0,1] 

with the condition 

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

For the sake of convenience, we take 

𝑎 = 〈𝑇𝐴, 𝐼𝐴, 𝐹𝐴〉 

is a neutrosophic element (NE) of the single valued neutrosophic number in a SVNS. 

Assume that 

𝐴 = {〈𝑥𝑗 , 𝑇𝐴(𝑥𝑗), 𝐼𝐴(𝑥𝑗), 𝐹𝐴(𝑥𝑗) ∶ 𝑥𝑗 ∈ 𝑋〉} 

and 

𝐵 = {〈𝑥𝑗 , 𝑇𝐵(𝑥𝑗), 𝐼𝐵(𝑥𝑗), 𝐹𝐵(𝑥𝑗) ∶ 𝑥𝑗 ∈ 𝑋〉} 
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are two NSs in 

𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛}, 

then for all 𝑥𝑗 ∈ 𝑋 

𝐴 ∩ 𝐵 = {〈𝑥𝑗 , min (𝑇𝐴(𝑥𝑗), 𝑇𝐵(𝑥𝑗)) ,max (𝐼𝐴(𝑥𝑗), 𝐼𝐵(𝑥𝑗)) ,max (𝐹𝐴(𝑥𝑗), 𝐹𝐵(𝑥𝑗))〉}, 

𝐴 ∪ 𝐵 = {〈𝑥𝑗 , max (𝑇𝐴(𝑥𝑗), 𝑇𝐵(𝑥𝑗)) ,min (𝐼𝐴(𝑥𝑗), 𝐼𝐵(𝑥𝑗)) ,min (𝐹𝐴(𝑥𝑗), 𝐹𝐵(𝑥𝑗))〉}. 

An SVNS 𝐴 is contained in another SVNS 𝐵, denoted by 𝐴 ⊆ 𝐵, if and only if 

𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐵(𝑥) ≥ 𝐼𝐴(𝑥) and 𝐹𝐵(𝑥) ≥ 𝐹𝐴(𝑥) 

for any 𝑥 ∈ 𝑋. 

Definition 8. [35] Let 𝐴 and 𝐵 be any two NSs in 𝑋. Then the cosine similarity measures between 

𝐴 and 𝐵 are defined as follows 

𝑐(𝐴, 𝐵) =
1

𝑛
∑ 𝑐𝑜𝑠 [

𝜋(|𝑇𝐴(𝑥𝑗)−𝑇𝐵(𝑥𝑗)|∨|𝐼𝐴(𝑥𝑗)−𝐼𝐵(𝑥𝑗)|∨|𝐹𝐴(𝑥𝑗)−𝐹𝐵(𝑥𝑗)|)

2
]𝑛

𝑗=1 ,     (10) 

where the symbol ∨ is the maximum operation. Moreover, let 

𝑎 = 〈𝑇𝐴, 𝐼𝐴, 𝐹𝐴〉 

be a NE and 𝜆 ∈ (0,1], then we have the equation 

𝜆𝑎 = 𝜆〈𝑇𝐴, 𝐼𝐴, 𝐹𝐴〉 = 〈1 − (1 − 𝑇𝐴)
𝜆, (𝐼𝐴)

𝜆, ( 𝐹𝐴)
𝜆〉, 

which we will use in further sections. 

The neutrosophic aggregation operator has garnered significant attention as a key tool in 

information fusion. Şahin and Yiğider [12] introduced two notable operators: the single-valued 

neutrosophic weighted averaging (SVNWA) operator and the single-valued neutrosophic weighted 

geometric (SVNFWG) operator, as described below: 

Assume 

𝐴𝑗 = 〈𝑇𝑗 , 𝐼𝑗 , 𝐹𝑗〉(𝑗 = 1,2,… , 𝑛) 

is a collection of SVNNs, the SVNWA defined as 

𝑆𝑉𝑁𝑊𝐴(𝐴1, 𝐴2, … , 𝐴𝑛) = ∑ 𝜔𝑗𝐴𝑗
𝑛
𝑗=1 = (1 − ∏ (1 − 𝑇𝑗)

𝜔𝑗𝑛
𝑗=1 , ∏ 𝐼𝑗

𝜔𝑗𝑛
𝑗=1 , ∏ 𝐹𝑗

𝜔𝑗𝑛
𝑗=1 ),  (11) 

where 𝜔𝑗 is the weight vector of each 𝐴𝑗 (𝑗 = 1,2,… , 𝑛), with 𝜔𝑗 ∈ [0,1] and 

∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

3. Neutrosophic framework of DS theory 

Recently, Li and Deng [28] revealed that there exists a strong relationship between IFSs and the 

DS theory. The main purpose of this chapter is to extend this idea to the neutrosophic universe. 

Considering the power of neutrosophic sets compared to IFSs, we can say that the results will be 

more effective in multi criteria decision making (MCDM). Within the framework of DS theory in 

neutrosophic sets, a precise definition of neutrosophic cardinality is essential for the normalization of 
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basic probability assignments, the formulation of combination rules, the computation of the 

Jousselme distance, the application of modified similarity measures, and the evaluation of belief 

entropy. Before defining neutrosophic cardinality, it is instructive to examine the definitions of fuzzy 

and intuitionistic cardinalities, as they provide the foundational developments that lead to the 

formalization of neutrosophic cardinality. 

Initially, DeLuca and Termini [36] extended the classical notion of cardinality to fuzzy sets in 

order to quantify the number of elements within a fuzzy set. To this end, they introduced a cardinality 

measure known as the sigma count, defined as follows: 

∑𝑐𝑜𝑢𝑛𝑡(𝐴) = ∑ 𝜇𝐴(𝑥)𝑥∈𝑋 , 

where 𝐴 is a fuzzy set on 𝑋. Subsequently, Szmidt and Kacprzyk [37] generalized this definition to 

IFSs as: 

∑𝑐𝑜𝑢𝑛𝑡 (𝐴) = [∑ 𝜇𝐴(𝑥)𝑥∈𝑋 , ∑ 𝜇𝐴(𝑥) + 𝜋𝐴(𝑥)𝑥∈𝑋 ]. 

Tripathy et al. [38] rearranged this definition as 

∑𝑐𝑜𝑢𝑛𝑡 (𝐴) = [∑ 𝜇𝐴(𝑥)𝑥∈𝑋 , ∑ 1 − 𝜈𝐴(𝑥)𝑥∈𝑋 ]. 

Thus, if 

𝜈𝐴(𝑥) = 1 − 𝜇𝐴(𝑥), 

then it reduces to ∑𝑐𝑜𝑢𝑛𝑡 of a fuzzy set 𝐴. They also showed some properties of this cardinality. 

However, since these cardinality definitions are expressed as intervals, the classical cardinality 

concept has been employed in the applications of DS theory to fuzzy and IFSs. This, in turn, 

diminishes the full impact of DS theory within these frameworks. In the context of neutrosophic sets, 

Majumdar and Samanta [39] proposed a cardinality definition parallel to those of fuzzy and IFSs as 

follows: 

∑𝑐𝑜𝑢𝑛𝑡(𝐴) = [∑ 𝑇𝐴(𝑥𝑗)
𝑛
𝑗=1 , ∑ (𝑇𝐴(𝑥𝑗) + (1 − 𝐼𝐴(𝑥𝑗))

𝑛
𝑗=1 ], 

where 𝐴 is a NS in 𝑋. Nevertheless, it is still in an interval, and we cannot use it effectively in 

applications. Therefore, we need a new neutrosophic cardinality definition. In order to remain within 

the theoretical boundaries of fuzzy and intuitionistic fuzzy frameworks, we propose the following 

definition in parallel with the aforementioned cardinality formulations. 

Definition 9. Let 𝐴 be a NS in 𝑋. Then the sigma count of 𝐴 is defined as 

∑𝑐𝑜𝑢𝑛𝑡(𝐴) = [∑ 𝑇𝐴(𝑥𝑗)
𝑛
𝑗=1 , ∑ (1 − 𝐼𝐴(𝑥𝑗))

𝑛
𝑗=1 , ∑ (1 − 𝐹𝐴(𝑥𝑗))

𝑛
𝑗=1 ]. 

Proposition 1. If 

𝐼𝐴(𝑥𝑗) = ∅, 

then it reduces to ∑𝑐𝑜𝑢𝑛𝑡 of an IFS and if both 

𝐼𝐴(𝑥𝑗) = ∅ 

and 

𝐹𝐴(𝑥𝑗) = ∅, 
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then it reduces to ∑𝑐𝑜𝑢𝑛𝑡 of a fuzzy set. 

In order to effectively use it in applications, we need to reduce the sigma count of 𝐴 to a real 

number. 

Definition 10. Let 𝐴 be a NS in 𝑋. Then, the average possible neutrosophic cardinality of 𝐴, 

denoted by |𝐴|𝓃, is defined as 

|𝐴|𝓃 =
1

3
∑ (𝑇𝐴(𝑥𝑗) + 1 − 𝐼𝐴(𝑥𝑗) + 1 − 𝐹𝐴(𝑥𝑗))
𝑛
𝑗=1 .      (12) 

Proposition 2. Let 𝐴 be a NS in 𝑋 and |𝐴| be the cardinality of 𝐴, then we have the following 

situations. 

1) For all 𝑥𝑗 ∈ 𝑋, if 

〈𝐹𝐴(𝑥𝑗), 𝑇𝐴(𝑥𝑗), 𝐼𝐴(𝑥𝑗)〉 = 〈1,0, 0〉, 

that is, it is largest neutrosophic set, then the cardinality of 𝐴 is computed as 

|𝐴|𝓃 = 𝑛. 

2) For all 𝑥𝑗 ∈ 𝑋, if 

〈𝐹𝐴(𝑥𝑗), 𝑇𝐴(𝑥𝑗), 𝐼𝐴(𝑥𝑗)〉 = 〈0,1, 1〉, 

that is, it is smallest neutrosophic set, then the cardinality of 𝐴 is computed as  

|𝐴|𝓃 = 0. 

3) 0 ≤ |𝐴|𝓃 ≤ 𝑛. 

Theorem 1. Let 𝐴 and 𝐵 be two neutrosophic sets on 𝑋, then 

1) ∑𝑐𝑜𝑢𝑛𝑡(𝐴 ∪ 𝐵) + ∑𝑐𝑜𝑢𝑛𝑡(𝐴 ∩ 𝐵) = ∑𝑐𝑜𝑢𝑛𝑡(𝐴) + ∑𝑐𝑜𝑢𝑛𝑡(𝐵), 

2) |𝐴|𝓃 + |𝐴
𝑐|𝓃 = 𝑛. 

Proof. 1) We have 

∑𝑐𝑜𝑢𝑛𝑡(𝐴 ∪ 𝐵) = [
max{∑ 𝑇𝐴(𝑥𝑗)

𝑛
𝑗=1 , ∑ 𝑇𝐵(𝑥𝑗)

𝑛
𝑗=1 } ,min {∑ (1 − 𝐼𝐴(𝑥𝑗))

𝑛
𝑗=1 , ∑ (1 − 𝐼𝐵(𝑥𝑗))

𝑛
𝑗=1 } ,

min {∑ (1 − 𝐹𝐴(𝑥𝑗))
𝑛
𝑗=1 , ∑ (1 − 𝐹𝐵(𝑥𝑗))

𝑛
𝑗=1 } ,

], 

and 

∑𝑐𝑜𝑢𝑛𝑡(𝐴 ∩ 𝐵) = [
min{∑ 𝑇𝐴(𝑥𝑗)

𝑛
𝑗=1 , ∑ 𝑇𝐵(𝑥𝑗)

𝑛
𝑗=1 } ,max {∑ (1 − 𝐼𝐴(𝑥𝑗))

𝑛
𝑗=1 , ∑ (1 − 𝐼𝐵(𝑥𝑗))

𝑛
𝑗=1 } ,

max {∑ (1 − 𝐹𝐴(𝑥𝑗))
𝑛
𝑗=1 , ∑ (1 − 𝐹𝐵(𝑥𝑗))

𝑛
𝑗=1 }

]. 

So, 
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∑𝑐𝑜𝑢𝑛𝑡(𝐴 ∪ 𝐵) +∑𝑐𝑜𝑢𝑛𝑡(𝐴 ∩ 𝐵)

=

[
 
 
 
 
 
 
 
 
 

max {∑𝑇𝐴(𝑥𝑗)

𝑛

𝑗=1

,∑𝑇𝐵(𝑥𝑗)

𝑛

𝑗=1

} +min{∑𝑇𝐴(𝑥𝑗)

𝑛

𝑗=1

,∑𝑇𝐵(𝑥𝑗)

𝑛

𝑗=1

} ,

min {∑(1 − 𝐼𝐴(𝑥𝑗))

𝑛

𝑗=1

,∑(1 − 𝐼𝐵(𝑥𝑗))

𝑛

𝑗=1

} +max{∑(1 − 𝐼𝐴(𝑥𝑗))

𝑛

𝑗=1

, ∑(1 − 𝐼𝐵(𝑥𝑗))

𝑛

𝑗=1

} ,

min {∑(1 − 𝐹𝐴(𝑥𝑗))

𝑛

𝑗=1

,∑(1 − 𝐹𝐵(𝑥𝑗  ))

𝑛

𝑗=1

} +max{∑(1 − 𝐹𝐴(𝑥𝑗))

𝑛

𝑗=1

,∑(1 − 𝐹𝐵(𝑥𝑗))

𝑛

𝑗=1

}

]
 
 
 
 
 
 
 
 
 

= [∑𝑇𝐴(𝑥𝑗)

𝑛

𝑗=1

+∑𝑇𝐵(𝑥𝑗)

𝑛

𝑗=1

,∑(1 − 𝐼𝐴(𝑥𝑗))

𝑛

𝑗=1

+∑(1 − 𝐼𝐵(𝑥𝑗))

𝑛

𝑗=1

,∑(1 − 𝐹𝐴(𝑥𝑗))

𝑛

𝑗=1

+∑(1 − 𝐹𝐵(𝑥𝑗))

𝑛

𝑗=1

]

= [∑𝑇𝐴(𝑥𝑗)

𝑛

𝑗=1

,∑(1 − 𝐼𝐴(𝑥𝑗))

𝑛

𝑗=1

,∑(1 − 𝐹𝐴(𝑥𝑗))

𝑛

𝑗=1

]

+ [∑𝑇𝐵(𝑥𝑗)

𝑛

𝑗=1

,∑(1 − 𝐼𝐵(𝑥𝑗))

𝑛

𝑗=1

,∑(1 − 𝐹𝐵(𝑥𝑗))

𝑛

𝑗=1

] =∑𝑐𝑜𝑢𝑛𝑡(𝐴) +∑𝑐𝑜𝑢𝑛𝑡(𝐵). 

3) Since 

|𝐴|𝓃 =
1

3
∑(𝑇𝐴(𝑥𝑗) + 1 − 𝐼𝐴(𝑥𝑗) + 1 − 𝐹𝐴(𝑥𝑗))

𝑛

𝑗=1

 

and 

𝐴𝑐 = {〈𝑥𝑗 , 𝐹𝐴(𝑥𝑗), 1 − 𝐼𝐴(𝑥𝑗), 𝑇𝐴(𝑥𝑗) ∶ 𝑥𝑗 ∈ 𝑋〉}, 

we have 

|𝐴𝑐|𝓃 =
1

3
∑(𝐹𝐴(𝑥𝑗) + 1 − (1 − 𝐼𝐴(𝑥𝑗)) + (1 − 𝑇𝐴(𝑥𝑗)))

𝑛

𝑗=1

 

=
1

3
∑(𝐹𝐴(𝑥𝑗) + 𝐼𝐴(𝑥𝑗) + 1 − 𝑇𝐴(𝑥𝑗))

𝑛

𝑗=1

. 

Therefore, 
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|𝐴|𝓃 + |𝐴
𝑐|𝓃 =

1

3
∑(𝑇𝐴(𝑥𝑗) + 𝐹𝐴(𝑥𝑗) + 1 − 𝐼𝐴(𝑥𝑗) + 𝐼𝐴(𝑥𝑗) + 1 − 𝐹𝐴(𝑥𝑗) + 1 − 𝑇𝐴(𝑥𝑗))

𝑛

𝑗=1

 

=
1

3
∑3

𝑛

𝑗=1

= 𝑛. 

If we have four neutrosophic elements in an NS and all these elements are the biggest NNs, then, 

intuitively, the cardinality of this NS should be 4. 

Example 1. Let 

𝐴 = {(1,0,0), (1,0,0), (1,0,0), (1,0,0)} 

be a SVNS. Then, the cardinality of this set is 

|𝐴|𝓃 =
1

3
((1 + 1 + 1) + (1 + 1 + 1) + (1 + 1 + 1) + (1 + 0 + 0)) = 4. 

Example 2. Let 

𝐴 = {(1,0,0), (1,0,0), (0,1,1), (0,1,1)} 

be a SVNS. Then, the cardinality of this set is 

|𝐴|𝓃 =
1

3
((1 + 1 + 1) + (1 + 1 + 1) + (0 + 0 + 0) + (0 + 0 + 0)) = 2. 

Example 3. Let 

𝐴 = {(1,0,0), (1,1,1), (0,1,1)} 

be a SVNS. Then, the cardinality of this set is 

|𝐴|𝓃 =
1

3
((1 + 1 + 1) + (1 + 0 + 0) + (0 + 0 + 0)) = 1.33. 

Example 4. Let 

𝐴 = {(0.7,0.5,0.8), (0.1,0.3,0.9), (0.5,0.6,1.0)} 

be a SVNS. Then, the cardinality of this set is 

|𝐴|𝓃 =
1

3
((0.7 + 0.5 + 0.2) + (0.1 + 0.7 + 0.1) + (0.5 + 0.4 + 0)) = 1.06. 

3.1. Neutrosophic evidence sets (NESs) 

The fundamental component of the NES is the neutrosophic basic probability assignment 

(NBPA). Similar to the BPAs in classical evidence theory, the NBPA is defined over a finite set of 

mutually exclusive elements, known as the frame of discernment. 

Definition 10. Let 

Ω = {𝑠1, 𝑠2, … , 𝑠𝑛} 

be a frame of discernment and let 𝑃(Ω) denote its power set, i.e., 

𝑃(Ω) = {{𝑠1}, … , {𝑠𝑛}, {𝑠1, 𝑠2}, … , {𝑠1, 𝑠2, … , 𝑠𝑖}, … , Ω}. 
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Let each 𝒜𝑖 ∈ 𝑃(Ω) be an element of the power set. Then the functions 

𝑚+(𝒜𝑖): 𝑃(Ω) → [0,1], 𝑚0(𝒜𝑖): 𝑃(Ω) → [0,1] 

and 

𝑚−(𝒜𝑖): 𝑃(Ω) → [0,1] 

represent the truth-support degree, indeterminacy-support degree, and falsity-support degree, 

respectively. Then, a neutrosophic basic probability assignment 𝑚 on 𝑃(Ω) is defined as 

𝑚 = {〈𝒜𝑖 , 𝑚
+(𝒜𝑖),𝑚

0(𝒜𝑖),𝑚
−(𝒜𝑖):𝒜𝑖 ∈ 𝑃(Ω)〉.     (13) 

Subject to the following conditions: 

1) 𝑚+(∅) = 0, 𝑚0(∅) = 0 and 𝑚−(∅) = 0; 

2) ∑ 𝑚+(𝒜𝑖)𝒜𝑖∈𝑃(Ω) = 1;          (14) 

3) ∀𝒜𝑖 ≠ Ω, 𝑚+(𝒜𝑖) + 𝑚
0(𝒜𝑖) + 𝑚

−(𝒜𝑖) ≤ 3. 

Definition 11. For an NBPA 𝑚 on Ω, any subset 𝒜𝑖 ⊆ 𝑃(Ω) is called a focal element of 𝑚 if 

𝑚+(𝒜𝑖) > 0 or 𝑚0(𝒜𝑖) > 0 or 𝑚−(𝒜𝑖) > 0. 

Definition 12. Let 𝑚 be an NBPA on Ω given as 

𝑚 = {〈𝒜𝑖 , 𝑚
+(𝒜𝑖),𝑚

0(𝒜𝑖),𝑚
−(𝒜𝑖):𝒜𝑖 ∈ 𝑃(Ω)〉. 

Then the neutrosophic belief and plausibility functions of 𝑚 also have two components, defined as 

follows: 

𝐵𝑙(𝒜𝑖) = 〈𝑏𝑙
+(𝒜𝑖), 𝑏𝑙

0(𝒜𝑖), 𝑏𝑙
−(𝒜𝑖)〉, 𝑃𝑙(𝒜𝑖) = 〈𝑝𝑙

+(𝒜𝑖), 𝑝𝑙
0(𝒜𝑖), 𝑝𝑙

−(𝒜𝑖)〉,  (15) 

where 

𝑏𝑙+(𝒜𝑖) = ∑ 𝑚+(𝒜𝑗)𝒜𝑗⊆𝒜𝑖
, 𝑝𝑙+(𝒜𝑖) = ∑ 𝑚+(𝒜𝑗)𝒜𝑗∩𝒜𝑖≠∅ , 

𝑏𝑙0(𝒜𝑖) =
1

2|𝑚|𝓃
∑ 𝑚0(𝒜𝑗)𝒜𝑗⊆𝒜𝑖

, 𝑝𝑙0(𝒜𝑖) =
1

2|𝑚|𝓃
∑ 𝑚0(𝒜𝑗)𝒜𝑗∩𝒜𝑖≠∅ , 

𝑏𝑙−(𝒜𝑖) =
1

2|𝑚|𝓃
∑ 𝑚−(𝒜𝑗)𝒜𝑗⊆𝒜𝑖

, 𝑝𝑙−(𝒜𝑖) =
1

2|𝑚|𝓃
∑ 𝑚−(𝒜𝑗)𝒜𝑗∩𝒜𝑖≠∅ . 

It is evident that if the second and third components of an NBPA are empty, it reduces to a 

traditional BPA. However, a traditional BPA cannot be transformed into an NBPA, as the NBPA 

inherently contains more information than the BPA. Furthermore, the coefficient 
1

2|𝑚|𝓃
 ensures that 

the second and third components of the belief and plausibility functions remain within the defined 

range. Specifically, 𝑏𝑙0(𝒜𝑖) and 𝑏𝑙−(𝒜𝑖) are computed by summing over all subsets 𝒜𝑗 ⊆ 𝒜𝑖, 

which may lead to large sums. Therefore, they can be normalized with the coefficient 
1

2|𝑚|𝓃
. The 

same idea applies to 𝑝𝑙0(𝒜𝑖) and 𝑝𝑙−(𝒜𝑖). Otherwise, these sums would exceed their defined 

limits resulting in unbounded values. 

Example 5. Let 

Ω = {𝑎, 𝑏, 𝑐} 

and let 𝒜𝑖 ∈ 𝑃(Ω), where the focal elements are 
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𝒜𝑖 = ({𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}). 

Suppose two observations are given in the form of NBPAs as follows: 

𝑚1 = {〈{𝑎}, (0.3,0.2,0.4)〉, 〈{𝑎, 𝑏}, (0.5,0,6,1.0)〉, 〈{𝑎, 𝑏, 𝑐}, (0.2,0,9,0.5)〉}, 

𝑚2 = {〈{𝑎}, (0.2,0.6,0.8)〉, 〈{𝑎, 𝑏}, (0.6,0,2,0.8)〉, 〈{𝑎, 𝑏, 𝑐}, (0.1,0,9,0.6)〉}. 

Here, for example, 

𝑚1({𝑎}) = (0.3,0.2,0.4). 

It is easy to see that 

∑ 𝑚1
+3

𝑖=1 = 1, 

while the sums of the indeterminacy and falsity components exceed 1. Since {𝑎} ⊆ {𝑎, 𝑏} and 

{𝑎} ⊆ {𝑎, 𝑏, 𝑐}, the neutrosophic belief function for the truth component is calculated as: 

𝑏𝑙+({𝑎}) = 𝑚1
+({𝑎}) + 𝑚1

+({𝑎, 𝑏}) + 𝑚1
+({𝑎, 𝑏, 𝑐}) = 0.3 + 0.5 + 0.2 = 1.0. 

To calculate 𝑏𝑙0(𝑎), we first compute the neutrosophic cardinality as 

|𝑚1|𝓃 =
1

3
((0.3 + 0.8 + 0.6) + (0.5 + 0.4 + 0.0) + (0.2 + 0.1 + 0.5)) =

3.4

3
= 1.1333. 

Hence, 

𝑏𝑙0({𝑎}) =
1

21.1333
(0.2 + 0.6 + 0.9) = 0.7750, 

𝑏𝑙−({𝑎}) =
1

21.1333
(0.4 + 1.0 + 0.5) = 0.8662. 

Now, for the element {𝑎, 𝑏}, note that {𝑎, 𝑏} ⊆ {𝑎, 𝑏, 𝑐} only, so 

𝑏𝑙+({𝑎, 𝑏}) = 𝑚1
+({𝑎, 𝑏}) + 𝑚1

+({𝑎, 𝑏, 𝑐}) = 0.5 + 0.2 = 0.7, 

𝑏𝑙0({𝑎, 𝑏}) =
1

21.1333
(0.6 + 0.9) = 0.6838, 

𝑏𝑙−({𝑎, 𝑏}) =
1

21.1333
(1 + 0.5) = 0.6838. 

To highlight the difference between the belief and plausibility functions, let us compute 𝑃𝑙({𝑎, 𝑏}). 

Since 

{𝑎, 𝑏} ∩ {𝑎} = {𝑎} and {𝑎, 𝑏} ∩ {𝑎, 𝑏, 𝑐} = {𝑎, 𝑏, 𝑐}, 

we include all focal elements 

𝑝𝑙+({𝑎, 𝑏}) = 0.3 + 0.5 + 0.2 = 1, 

𝑝𝑙0({𝑎, 𝑏})
1

21.1333
(0.2 + 0.6 + 0.9) = 0.7750, 

𝑝𝑙−({𝑎, 𝑏})
1

21.1333
(0.4 + 1.0 + 0.5) = 0.8662. 

The remaining belief and plausibility values for other focal elements can be calculated in a similar 

manner. 

Definition 13. Suppose 𝑚  is a NBPA on Ω  where each subset 𝒜 ∈ 𝑃(Ω)  is assigned a 

neutrosophic probability mass 

𝑚(𝒜) = 〈𝑚+(𝒜),𝑚0(𝒜),𝑚−(𝒜)〉. 
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Then, a reduced BPA denoted by 𝑚∗ can be obtained from 𝑚 using 

𝑚∗(𝒜) =
𝑚+(𝒜)+ (1−𝑚0(𝒜))(1− 𝑚−(𝒜))

2
.       (16) 

It is evident that 𝑚∗(𝐴) ∈ [0,1]. However, the use of only one NBPA is not enough in real 

decision-making problems. To operate multiple NBPAs, a combination of NBPAs is needed, which is 

defined below. 

Definition 14. Assume 𝑚1 and 𝑚2 are two NBPAs on Ω; the combination result is denoted as 

𝑚1⊗𝑚2, which is proposed as follows: 

𝑚1⊗𝑚2(𝒜) = 〈𝑚1,2
+ (𝒜),𝑚1,2

0 (𝒜),𝑚1,2
− (𝒜)〉,      (17) 

where 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑚1,2
+ (∅) = 0,

𝑚1,2
+ (𝒜𝑘) =

∑ 𝑚1
+(𝐴𝑖)𝑚2

+(𝐴𝑗)𝐴𝑖∩𝐴𝑗=𝒜𝑘 

1−∑ 𝑚1
+(𝐴𝑖)𝑚2

+(𝐴𝑗)𝐴𝑖∩𝐴𝑗=∅
,

𝑚1,2
0 (∅) = 0,

𝑚1,2
0 (𝒜𝑘) =

∑ 𝑚1
0(𝐴𝑖)𝑚2

0(𝐴𝑗)𝐴𝑖∩𝐴𝑗=𝒜𝑘 

|𝐴𝑖∩𝐴𝑗|𝓃
(1−∑ 𝑚1

0(𝐴𝑖)𝑚2
0(𝐴𝑗)𝐴𝑖∩𝐴𝑗=∅

)
,

𝑚1,2
0 (∅) = 0,

𝑚1,2
− (𝒜𝑘) =

∑ 𝑚1
−(𝐴𝑖)𝑚2

−(𝐴𝑗)𝐴𝑖∩𝐴𝑗=𝒜𝑘 

|𝐴𝑖∩𝐴𝑗|𝓃
(1−∑ 𝑚1

−(𝐴𝑖)𝑚2
−(𝐴𝑗)𝐴𝑖∩𝐴𝑗=∅

)
,

     (18) 

and each NBPA 𝑚(𝒜𝑘) is defined as 

𝑚(𝒜𝑘) = {

0 ,𝒜𝑘 = ∅,

∑ 𝑚1(𝐴𝑖)𝑚2(𝐴𝑗)𝐴𝑖∩𝐴𝑗=𝒜𝑘,∀𝐴𝑖,𝐴𝑗∈𝑃(Ω)

1−𝐾
, 𝒜𝑘 ≠ ∅,

      (19) 

where 𝐾 is the degree of conflict between 𝑚1 and 𝑚2 and is called the conflict coefficient. 𝐾 is 

defined as 

𝐾 =
1

|𝐴𝑖|𝓃

1

|𝐴𝑗|𝓃

∑ 𝑚1(𝐴𝑖)𝑚2(𝐴𝑗)𝐴𝑖∩𝐴𝑗=∅,∀𝐴𝑖,𝐴𝑗∈𝑃(Ω) ,      (20) 

where 𝐾 = [0,1]. If 𝐾 = 0, it indicates that there is no conflict between 𝑚1 and 𝑚2. Conversely, 

if 𝐾 = 1, it signifies complete conflict between 𝑚1 and 𝑚2. Just like the BPA elements given in (15), 

the coefficient 
1

|𝐴𝑖|

1

|𝐴𝑗|
 for 𝐾 ensures that it stays in the interval [0,1]. Also, it is the same for the 

second and third components in (18). 

3.2. Jousselme distance for NESs 

It is necessary to measure the distance between two NBPAs in decision-making problems. 

Therefore, we extend the Jousselme distance into NESs. 

Definition 15. Let 
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𝑚1 = {〈𝒜𝑖 , 𝑚1
+(𝒜𝑖),𝑚1

0(𝒜𝑖),𝑚1
−(𝒜𝑖):𝒜𝑖 ∈ 𝑃(Ω)〉 

and 

𝑚2 = {〈ℬ𝑗 , 𝑚2
+(ℬ𝑗),𝑚2

0(ℬ𝑗),𝑚2
−(ℬ𝑗): ℬ𝑗 ∈ 𝑃(Ω)〉 

be two NBPAs on Ω. The Jousselme distance in NESs, denoted by 𝑑𝑁(𝑚1, 𝑚2), is defined as 

follows: 

𝑑𝑁(𝑚1, 𝑚2) = √0.5(‖𝑚1‖
2 + ‖𝑚2‖

2 − 2〈𝑚1, 𝑚2〉),      (21) 

where 

‖𝑚1‖
2 = 〈𝑚1, 𝑚1〉,‖𝑚2‖

2 = 〈𝑚2, 𝑚2〉; 

〈𝑚1, 𝑚2〉 is the scalar product of two vectors defined as follows: 

〈𝑚1, 𝑚2〉 = ∑ ∑
1

3
{𝑚1

+(𝒜𝑖)𝑚2
+(ℬ𝑗) + 𝑚1

0(𝒜𝑖)𝑚2
0(ℬ𝑗) + 𝑚1

−(𝒜𝑖)𝑚2
−(ℬ𝑗)}

|𝒜𝑖∩ℬ𝑗|𝓃
|𝒜𝑖∪ℬ𝑗|𝓃

𝑠
𝑗=1

𝑠
𝑖=1 , (22) 

where 𝑠 is the number of the elements of the power set, and |𝒜𝑖 ∩ ℬ𝑗|𝓃 and |𝒜𝑖 ∪ ℬ𝑗|𝓃 are the 

neutrosophic cardinalities of intersection and union of NSs 𝒜𝑖 and ℬ𝑗, respectively. 

It can be easily proven that the 𝑑𝑁(𝑚1, 𝑚2) satisfies the basic properties of a distance measure. 

3.3. Modified cosine similarity measure of neutrosophic BPAs 

Similarity measures evaluate the degree of agreement or closeness between different pieces of 

evidence. Depending on the structure of the similarity function (e.g., cosine-based, distance-based, 

etc.), the weight or influence of the evidence may vary. High similarity between elements may lead 

to stronger mutual reinforcement during fusion. Moreover, the similarity measure is the starting point 

of the calculations of weights of evidence in the fusion process. Therefore, we introduce a modified 

cosine similarity measure of NPBAs to enhance the sensitivity and robustness of neutrosophic 

evidence combination mechanisms by providing a principled approach to comparing 

multi-dimensional evidence structures. Its use contributes to more informed and reliable fusion 

outcomes, especially in complex environments where information is uncertain, inconsistent, or 

incomplete. 

Assume that E1 and E2 are two sources of evidence under frame of discernment Ω and let 

𝒜𝑗 ⊆ 𝑃(Ω) where 𝑗 = 1,2, … , 𝑛 represents singleton sets. Let 𝑚1 and 𝑚2 be two NBPAs defined 

over the same Ω. For each singleton subset 𝒜𝑗, the corresponding belief and plausibility measures 

are given by 

Bl1(𝒜𝑗) = 〈bl1
+(𝒜𝑗), bl1

0(𝒜𝑗), bl1
−(𝒜𝑗)〉, 

Pl1(𝒜𝑗) = 〈pl1
+(𝒜𝑗), pl1

0(𝒜𝑗), pl1
−(𝒜𝑗)〉, 

Bl2(𝒜𝑗) = 〈bl2
+(𝒜𝑗), bl2

0(𝒜𝑗), bl2
−(𝒜𝑗)〉, 

Pl2(𝒜𝑗) = 〈pl2
+(𝒜𝑗), pl2

0(𝒜𝑗), pl2
−(𝒜𝑗)〉. 

To make it formally easier, NBPAs can be expressed as two vectors on the singleton subsets 

indexed by 𝑖 = 1,2 as 

Bli = (Bli(𝒜1), Bli(𝒜2), … , Bli(𝒜𝑛)), 
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Pli = (Pli(𝒜1), Pli(𝒜2), … , Pli(𝒜𝑛)). 

Based on these representations, we now define the novel similarity measure of NBPAs integrating 

the modified cosine similarity. 

Definition 16. Let 𝑆(Bl1, Bl2) and 𝑆(Pl1, Pl2) be the modified cosine similarities of NBPAs. Then, 

a novel similarity of NBPAs is defined as 

𝑆𝑁 = 𝛿 ∗ 𝑆(𝐵𝑙1, 𝐵𝑙2) + (1 − 𝛿) ∗ 𝑆(𝑃𝑙1, 𝑃𝑙2),       (23) 

where 

𝛿 = (
1

6𝑛
(∑ ∑(|bl𝑖

+(𝒜𝑗) − pl𝑖
+(𝒜𝑗)|

2
+ |bl𝑖

0(𝒜𝑗) − pl𝑖
0(𝒜𝑗)|

2
+ |bl𝑖

−(𝒜𝑗) − pl𝑖
−(𝒜𝑗)|

2
)

𝑛

𝑗=1

2

𝑖=1
))

1
2

, 

𝑠(Bl1, Bl2) = {
0.5 ∗ {𝛼−𝑑(Bl1,Bl2) +min(

|Bl1|𝓃
|Bl2|𝓃

,
|Bl2|𝓃
|Bl1|𝓃

)} ∗ 𝑐(Bl1, Bl2), Bl1 ≠ 0, Bl2 ≠ 0,

0, Bl1 = 0 or Bl2 = 0,

 

𝑠(Pl1, Pl2) = {
0.5 ∗ {𝛼−𝑑(Pl1,Pl2) +min(

|Pl1|𝓃
|Pl2|𝓃

,
|Pl2|𝓃
|Pl1|𝓃

)} ∗ 𝑐(Pl1, Pl2), Pl1 ≠ 0, Pl2 ≠ 0,

0, Pl1 = 0 or Pl2 = 0,

 

where 𝛿  is the total uncertainty of NBPAs with 0 ≤ 𝛿 ≤ 1 , 𝛼 ≥ 1 , 𝑑  is the neutrosophic 

Jousselme distance, and 𝑐(Bl1, Bl2) and 𝑐(Pl1, Pl2) are the cosine similarities of vectors (Bl1, Bl2) 
and (Pl1, Pl2), given in (15), respectively. When 

Bli(𝒜𝑗) = 〈1, 0, 0〉 

and 

Pli(𝒜𝑗) = 〈0, 1, 1〉, 

i.e., Bl is maximum and Pl is minimum, then 𝛿 = 1, which is the maximum value; if 

Bli(𝒜𝑗) = Pli(𝒜𝑗), 

then 𝛿 = 0, which is the minimum value. 

The new similarity of NBPAs 𝑆𝑁 satisfies the following features: 

1) 𝑚1 = 𝑚2 ⟹ 𝑆𝑁(𝑚1, 𝑚2) = 1; 

2) 𝑆𝑁(𝑚1, 𝑚2) = 𝑆𝑁(𝑚2, 𝑚1); 

3) 0 ≤ 𝑆𝑁(𝑚2, 𝑚1) ≤ 1 

4) 𝑆𝑁(𝑚1, 𝑚2) = 0, iff 𝑚1 and m2 have no compatible element. 

3.4. Neutrosophic belief (Deng) entropy 

Shannon entropy is a measure of ambiguity or randomness in a system, introduced by Shannon 
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in information theory. It quantifies the amount of information contained in a probability distribution, 

where higher entropy indicates greater uncertainty or unpredictability. Mathematically, it is defined 

as 

𝑆 = −∑ 𝑝𝑖 𝑙𝑜𝑔2
1

𝑝𝑖

𝑙
𝑖=1 ,         (24) 

where 𝑙 is the number of events, and 𝑝𝑖 represents the probability of event 𝑖 in the system that 

satisfies 

∑ 𝑝𝑖
𝑙
𝑖=1 = 0. 

Next, we discuss Deng entropy in the present section. Since its initial proposal for 

thermodynamics by Clausius in 1865 [40], various forms of entropy have been introduced to 

quantify system hesitancy, including Shannon entropy [41], Tsallis entropy [42], and nonadditive 

entropy [43]. In the context of information theory, Shannon entropy is frequently employed to assess 

the information content of a system or process and to determine the expected value of the 

information conveyed in a message. 

A new method named Deng entropy [44] was recently introduced to quantify the uncertainty of 

the BPAs. Deng entropy is essentially an extension of Shannon entropy because Deng entropy equals 

Shannon entropy when a probability measure is established by BPA. In simpler terms, Deng entropy 

can be viewed as a form of generalized Shannon entropy. When a BPA is converted into a probability 

distribution, Deng entropy subsequently transforms into Shannon entropy. 

The Deng entropy is able to accurately assess the level of ambiguity of BPA. Nevertheless, there 

is still a question as to how to quantify the level of vagueness in assigning fundamental probabilities 

when operating within a domain that lacks precise, adequate, and comprehensive data. A primary 

focus of this research article is the creation of a novel entropy known as NDE. NDE is an extended 

form of both Shannon entropy and Deng entropy. When BPA transforms into a probability 

distribution, the NDE transforms into Shannon entropy. In this section, we will introduce Deng 

entropy and discuss some of its properties. 

Definition 17. [44] Deng entropy for a BPA 𝑚 is defined as 

𝐸𝑑(𝑚) = −∑ 𝑚(𝒜) 𝑙𝑜𝑔2 (
𝑚(𝒜)

2|𝒜|−1
)𝒜⊆𝑋;𝑚(𝒜)>0 ,     (25) 

where |𝒜| is the cardinality of 𝒜. Here, if the BPA 𝑚 is assigned to single elements, it is 

degenerated to Shannon entropy as 

𝐸𝑑(𝑚) = −∑ 𝑚(𝒜) 𝑙𝑜𝑔2𝑚(𝒜)𝒜⊆𝑋 .      (26) 

Deng entropy quantifies the level of unpredictability in a given evidence set based on the 𝑚 

and |𝒜|, without taking into account the size of the frame of discernment. Thus, this approach is 

inadequate for evaluating variations in an uncertain degree when there are similar basic probability 

assessments within distinct frames of reference. 

Zhou and colleagues [45] utilized the Dempster–Shafer evidence theory (DSET) to evaluate the 

ambiguity of the evidence set by taking into account mass functions and the size of the frame of 

discernment. They introduced a new belief entropy model, derived from Deng entropy, to overcome 

the constraints of Deng entropy. 

Definition 18. [45] Improved Deng entropy for a BPA 𝑚 is defined as 
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𝐸𝑖𝑑(𝑚) = −∑ 𝑚(𝒜) 𝑙𝑜𝑔2 (
𝑚(𝒜)

2|𝒜|−1
𝑒
|𝒜|−1

|𝑋| )𝒜⊆𝑋 ,       (27) 

where |𝒜| and |𝑋| are the cardinality of 𝒜 and 𝑋, which are the number of elements in frame of 

discernment. Here, the exponential factor 𝑒
|𝒜|−1

|𝑋|  gives more uncertain information in a body of 

evidence compared to Deng entropy. 

Now, we will define NDE using the neutrosophic information where the BPAs have three 

components. 

Definition 19. Let 𝑚 be a NBPA on a frame of discernment. Then, NDE of 𝑚 is defined as 

𝐸𝑁𝐷𝐸(𝑚) = − ∑ 𝑚+(𝒜) 𝑙𝑜𝑔2 (
𝑚+(𝒜)

2|𝒜|𝓃 − 1
𝑒
|𝒜|𝓃−1
|𝑋|𝓃 )

𝒜⊆𝑋

− ∑ 𝑚0(𝒜) 𝑙𝑜𝑔2 (
𝑚0(𝒜)

2|𝒜|𝓃 − 1
𝑒
|𝒜|𝓃−1
|𝑋|𝓃 )

𝒜⊆𝑋

 

−∑ 𝑚−(𝒜) 𝑙𝑜𝑔2 (
𝑚−(𝒜)

2|𝒜|𝓃−1
𝑒
|𝒜|𝓃−1

|𝑋|𝓃 )𝒜⊆𝑋 ,          (28) 

and, where |𝒜|𝓃 is the neutrosophic cardinality of 𝒜. It is clear that the value range of the NDE 

is (0,∞). 

Furthermore, because of the unpredictable and varying nature of data in real life, the evidence 

that is gathered must be classified in various ways. We categorize this classification into two groups: 

reliable evidence and unreliable evidence. Hence, determining reliable and unreliable evidence and 

adjusting their weights is crucial in enhancing the impact of reliable evidence and reducing the 

influence of unreliable evidence on the final merging outcomes. Therefore, we employ the adjusted 

cosine similarity of evidence to assess their credibility. When the target has a high similarity measure 

with other alternative evidence, it indicates that this evidence substantiates the target and, therefore, 

should be viewed as reliable evidence. Conversely, a low similarity measure between the target 

evidence and other alternative evidence suggests that the target evidence lacks support, indicating its 

unreliability. Therefore, to amplify the impact of reliable evidence, it is important to prioritize 

reliable evidence; reducing the influence of unreliable evidence can help mitigate its negative effects. 

Based on this foundation, we aim to achieve the most optimal decision outcome by assessing the 

weights of evidence through various evaluations based on different types of evidence. 

Definition 20. Suppose that 𝑚𝑖 (𝑖 = 1,2, … , 𝑛) is a reliable NBPA on a frame of discernment and 

𝐸𝑁𝐷𝐸(𝑚𝑖) is the NDE of 𝑚𝑖. Then the positive impact function 𝑃(𝑚𝑖) of 𝑚𝑖 with 𝐸𝑁𝐷𝐸(𝑚𝑖) is 

calculated as 

𝑃(𝑚𝑖) = 𝑒
[𝐸𝑁𝐷𝐸(𝑚𝑖)].         (29) 

Definition 21. Suppose that 𝑚𝑖 (𝑖 = 1,2, … , 𝑛) is an unreliable NBPA on a frame of discernment 

and 𝐸𝑁𝐷𝐸(𝑚𝑖)  is the NDE of 𝑚𝑖 . Then the negative impact function 𝑁(𝑚𝑖)  of 𝑚𝑖  with 

𝐸𝑁𝐷𝐸(𝑚𝑖) is calculated as 

𝑁(𝑚𝑖) = 𝑒
[−(𝐸𝑁𝐷𝐸

𝑚𝑎𝑥(𝑚𝑖)−𝐸𝑁𝐷𝐸(𝑚𝑖))].       (30) 

It is easy to see that both functions are monotonically increasing. Therefore, for unreliable 

evidence, a smaller entropy value indicates that the evidence receives less support from other sources, 

which in turn gives a lower weight assignment to such unreliable evidence. 

  



10490 

AIMS Mathematics  Volume 10, Issue 5, 10471–10503. 

4. Decision model 

We present a decision model based on the definitions of NESs. Let Ω  be a frame of 

discernment and 

∀𝒜𝑖 ∈ 𝑃(Ω) 

denote an element of its power set. Consider a collection of 𝑛 NBPAs defined as 

𝑚1 = {〈𝒜𝑖 , 𝑚1
+(𝒜𝑖),𝑚1

0(𝒜𝑖),𝑚1
−(𝒜𝑖):𝒜𝑖 ∈ 𝑃(Ω)〉, 

… 

𝑚𝑛 = {〈𝒜𝑖 , 𝑚𝑛
+(𝒜𝑖),𝑚𝑛

0(𝒜𝑖),𝑚𝑛
−(𝒜𝑖):𝒜𝑖𝑃(Ω)〉. 

Let 𝑆𝑁(𝑚𝑖 , 𝑚𝑗) be the similarity value between two NBPAs 𝑚𝑖 and 𝑚𝑗 where 𝑖, 𝑗 = 1,2, … , 𝑛. 

Step 1. Obtain the global credibility weight of the pieces of evidence. 

Using (23), construct the similarity matrix 𝑆𝑛𝑥𝑛 as follows: 

𝑆𝑖𝑗 = [

1 𝑆𝑁(𝑚1, 𝑚2) ⋯ 𝑆𝑁(𝑚1, 𝑚𝑛)

𝑆𝑁(𝑚2, 𝑚1) 1 ⋯ 𝑆𝑁(𝑚2, 𝑚𝑛)
⋮ ⋮ ⋮ ⋮

𝑆𝑁(𝑚𝑛, 𝑚1) 𝑆𝑁(𝑚𝑛, 𝑚2) ⋯ 1

].    (31) 

To compute an entry such as 𝑆𝑁(𝑚1, 𝑚2), we follow these steps. First, calculate Bl1(𝒜𝑖) and 

Pl1(𝒜𝑖) for 𝑚1 and Bl2(𝒜𝑖) and Pl2(𝒜𝑖) for  𝑚2 using (15). Then, using (10), compute cosine 

similarities 𝑐(Bl1, Bl2)  and 𝑐(Pl1, Pl2) . Next, determine Jousselme distances 𝑑(Bl1, Bl2)  and 

𝑑(Pl1, Pl2) applying (22). For a given 𝛼 ≥ 1 and acquired 𝛿, we can obtain modified cosine 

similarities of Blk(𝒜𝑖) and Plk(𝒜𝑖) for 𝑘 = 1,2 using (23). 

Thus, the support degree 𝑆𝐷(𝑚𝑖) of each NBPA 𝑚𝑖 is calculated by summing the similarity 

values of its corresponding column in the matrix: 

𝑆𝐷(𝑚𝑖) = ∑ 𝑆𝑁(𝑚𝑖 , 𝑚𝑗)
𝑛
𝑗=1,𝑖≠𝑗 .       (32) 

The credibility degrees 𝐶𝐷(𝑚𝑖) of NBPAs 𝑚𝑖 are then determined by normalizing the support 

degrees 

𝐶𝐷(𝑚𝑖) =
𝑆𝐷(𝑚𝑖)

∑ 𝑆𝐷(𝑚𝑗)
𝑛
𝑗=1

.        (33) 

Finally, the global credibility degree 𝐺𝐶𝐷(𝑚) of the entire body of evidence is computed by 

averaging the individual credibility degrees 

𝐺𝐶𝐷(𝑚) =
∑ 𝐶𝐷(𝑚𝑖)
𝑛
𝑖=1

𝑛
.        (34) 

Step 2. Classify the evidence. 

All evidence can be categorized into two distinct classes, reliable and unreliable, based on the 

comparison between the credibility degree 𝐶𝐷(𝑚𝑖) and the global credibility degree 𝐺𝐶𝐷(𝑚𝑖). 

This classification is defined as: 

𝑚𝑖 = {
reliable evidence, 𝐶𝐷(𝑚𝑖) ≥ 𝐺𝐶𝐷(𝑚),

unreliable evidence, 𝐶𝐷(𝑚𝑖) < 𝐺𝐶𝐷(𝑚).
     (35) 
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Step 3. Measure the ambiguity of evidence. 

The NDE 𝐸𝑁𝐷𝐸(𝑚𝑖) of the NBPA 𝑚𝑖 (𝑖 = 1,2, … , 𝑛) can be calculated according to (28). 

This entropy quantifies the degree of uncertainty or ambiguity inherent in the evidence 𝑚𝑖. 

Step 4. Compute the general information volume for the reliable and unreliable evidence. 

Based on the positive impact function 𝑃(𝑚𝑖) and the negative impact function 𝑁(𝑚𝑖) derived 

from the entropy 𝐸𝑁𝐷𝐸(𝑚𝑖) using (28), the general information volume 𝐺𝐼(𝑚𝑖) of the pieces of 

evidence are computed as: 

𝐼(𝑚𝑖) = {
𝑃(𝑚𝑖) = 𝑒

[𝐸𝑁𝐷𝐸(𝑚𝑖)], if 𝑚𝑖 is reliable,

𝑁(𝑚𝑖) = 𝑒
[−𝐸𝑁𝐷𝐸

𝑚𝑎𝑥(𝑚𝑖)−𝐸𝑁𝐷𝐸(𝑚𝑖)], if 𝑚𝑖 is unreliable.
    (36) 

Step 5. Modify the CDs of the evidence. 

To adjust the original credibility values based on information volume, the modified credibility 

degree 𝑀𝐶𝐷(𝑚𝑖) of each NBPA is calculated as: 

𝑀𝐶𝐷(𝑚𝑖) =
𝐶𝐷(𝑚𝑖)×𝐺𝐼(𝑚𝑖)

∑ 𝐶𝐷(𝑚𝑖)×𝐺𝐼(𝑚𝑖)
𝑛
𝑖=1

, (𝑖 = 1,2, … , 𝑛).     (37) 

These modified values serve as final weights in the subsequent aggregation process. 

Step 6. Obtain the weighted average of the pieces of evidence. 

Using 𝑀𝐶𝐷(𝑚𝑖), the weighted average evidence 𝑊𝐴𝐸(𝑚) is defined as: 

𝑊𝐴𝐸(𝑚) = ∑ (𝑀𝐶𝐷(𝑚𝑖) × 𝑚𝑖)
𝑛
𝑖=1 , (𝑖 = 1,2, … , 𝑛).     (38) 

This represents the fused result that incorporates both the quality and quantity of individual 

evidences. 

Step 7. Fuse the 𝑊𝐴𝐸 of 𝑚. 

Since there are 𝑛 pieces of evidence, the 𝑊𝐴𝐸(𝑚) is combined using the proposed rule given 

in (17) as 

𝐹(𝑚) = (((𝑊𝐴𝐸(𝑚)⊕𝑊𝐴𝐸(𝑚))
1
⊕⋯⊕)

ℎ
⊕𝑊𝐴𝐸(𝑚))

(𝑛−1)

,   (39) 

for 𝑛 − 1 times. After fusing operation, we obtain the final fusion result of the evidence integrating 

their credibility, ambiguity, and relative consistency.  

The flowchart of the decision model is illustrated in Figure 1, and the step-by-step algorithm is 

given in Algorithm 1. 
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Figure 1. Flowchart of decision model. 
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Algorithm 1. Information fusing on NES. 

Input: A set of NBPAs {𝒜1, 𝒜2, … ,𝒜𝑛} and a set of evidences {𝑚1, 𝑚2, … ,𝑚𝑚} 

Steps: 

1) For 𝑖 = 1:𝑚 

       For 𝑗 = 1:𝑚  

              Determine Bl𝑘(𝒜𝑖) and Pl𝑘(𝒜𝑖) vectors for k= 1,2. using (15). 

              Compute cosine similarities of Bli(𝒜𝑖) and Pli(𝒜𝑖) using (10). 

              Calculate Jousselme distance of Bli(𝒜𝑖) and Pli(𝒜𝑖) using (22). 

              Find the total uncertainty 𝛿 of Bli(𝒜𝑖) and Pli(𝒜𝑖) using (23). 

              Calculate the modified cosine similarities of NBPAs Bli(𝒜𝑖)  and 

Pli(𝒜𝑖) using (23). 

              Determine the 𝑆𝑁(𝑖, 𝑗) similarity matrix. 

        End 

End 

2) Calculate the support degree SD (𝑚i) and the credibility degree CD (𝑚i) using (32) and 

(33), respectively. 

3) Determine the global credibility degree (GCD) GCD(𝑚i) of evidence mi by utilizing 

(34). 

4) Classify the evidences based on (35). 

5) Compute the NDE of the pieces of evidence by using (28) and the cardinality definition 

given in (12). 

6) Determine the general information volume GI(𝑚i)  according to the positive impact 

function P(𝑚i) and the negative impact function N(𝑚i) of 𝑚i with the (36). 

7) Determine the MCD(𝑚i) of the NBPA mi by the (37). 

8) Calculate the WAE(𝑚) by aggregating evidences using (11) taking MCD(𝑚i) as weight 

vector. Then calculate the reduced NBPAs using (16). 

9) Do  

Fuse the WAE(𝑚)s by using (17)–(20) , and determine the reduced BPAs by using (16). 

n-1 times 

10) Obtain the final result. 

Output: Final fusion result of 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 

5. Numerical example 

We apply the decision-making model of the multi sensor–based target recognition system 

proposed by Qian et al. [46], by integrating it into a neutrosophic environment to show the 

applicability and effectiveness of the method developed in the neutrosophic framework. This system 

includes observations of objects that are acquired from five different kinds of sensors. Here, 𝑥1, 𝑥2, 

and 𝑥3 are the three objects in 

𝑋 = {𝑥1, 𝑥2, 𝑥3}. 

We take the BPAs in [46] as the truth degrees and randomly add other BPAs that are the 

indeterminacy degree and the falsity degree to obtain NBPAs, which is given in Table 1. 
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Table 1. NBPA matrix of the observations. 

Pieces of 

evidence 

NBPAs 

{𝑥1} {𝑥2} {𝑥3} {𝑥1, 𝑥2, 𝑥3} 
𝑚1(. ) 
𝑚2(. ) 
𝑚3(. ) 
𝑚4(. ) 
𝑚5(. ) 

(0.30,0,70,0.40) (0.20,1,00,0.30) (0.10,0,70,0.70) (0.40,0,40,0.20) 
(0.00,0,10,0.50) (0.90,0,20,0.80) (0.10,0,40,0.90) (0.00,0,80,0.60) 
(0.60,0,20,1.00) (0.10,0,30,1.00) (0.10,0,30,0.40) (0.20,0,10,0.70) 
(0.70,0,20,0.10) (0.10,0,80,0.40) (0.10,0,70,0.40) (0.10,0,70,0.10) 
(0.70,1,00,0.90) (0.10,0,80,0.90) (0.10,0,40,0.70) (0.10,0,60,0.60) 

Step 1. Using (23), the similarity matrix 𝑆𝑖𝑗  is calculated with 𝛼 = 1.5 and is given in Table 2. 

Table 2. The similarity matrix of NBPAs. 

 𝑚1(. ) 𝑚2(. ) 𝑚3(. ) 𝑚4(. ) 𝑚5(. ) 

𝑚1(. ) 
𝑚2(. ) 
𝑚3(. ) 
𝑚4(. ) 
𝑚5(. ) 

1.000 0.8435 0.8007 0.9016 0.8386 

0.8435 1.000 0.8435 0.7978 0.8255 

0.8007 0.8435 1.0000 0.7238 0.7716 

0.9016 0.7978 0.7238 1.0000 0.7648 

0.8386 0.8255 0.7716 0.7648 1.0000 

According to (32)–(34) the support degree SD(𝑚𝑖), the credibility degree CD(𝑚𝑖), and the 

global credibility degree GCD(𝑚𝑖) of evidence 𝑚𝑖 is obtained as shown in Table 3. 

Table 3. The related degree measures of NBPAs. 

Items 

Pieces of evidence  

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

𝑆𝐷(𝑚) 
𝐶𝐷(𝑚) 
𝐺𝐶𝐷(𝑚) 

3.3844 3.3103 3.1395 3.1880 3.2005 

0.2086 0.2041 0.1935 0.1965 0.1973 

0.2000 

Step 2. Using (35), all possible evidence is classified as reliable and unreliable evidence. It is easy to 

see in Table 3 that 𝑚1 and 𝑚2 are reliable evidence and 𝑚3, 𝑚4, and 𝑚5 are unreliable evidence. 

Step 3. Based on (28), the information volume (NDE) of the NBPA 𝑚𝑖 (𝑖 = 1,2, … ,5) is computed 

and given in Table 4. 

Table 4. Neutrosophic belief (Deng) of NBPAs. 

 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

𝐸𝑁𝐷𝐸(𝑚𝑖) 2.3768 2.8185 2.7474 2.1017 7.3928 

Step 4. By applying (36), the general information volume for evidence, using the positive impact 

function 𝑃(𝑚𝑖) and the negative impact function 𝑁(𝑚𝑖) of 𝑚𝑖 are measured, respectively, and 

given in Table 5. 
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Table 5. The related degree measures of NBPAs. 

Items 

Pieces of evidence  

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

𝐺𝐼(𝑚) 10.7707 16.7523 0.0096 0.0050 1 

Step 5. On the basis of (37), MCD(m) of the NBPA 𝑚𝑖 is generated and given in Table 6. 

Table 6. The related degree measures of NBPAs. 

Items 

Pieces of evidence  

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

𝑀𝐶𝐷(𝑚) 0.3831 0.5828 0.0003 0.0002 0.0336 

Step 6. The weighted average evidence WAE(m) is computed by utilizing (38), as shown in Table 7. 

Table 7. The neutrosophic WAE(m) and its first result 𝐹(𝑚). 

Items 

NBPAs 

{𝑥1} {𝑥2} {𝑥3} {𝑥1, 𝑥2, 𝑥3} 

WAE(m) (0.6810,0.1527,0.2105) (0.0743,0.1078,0.2480) (0.0872,0.3324,0.3643) (0.1575,0.4071,0.1771) 

Reduced 

BPAs 
0.6749 0.3726 0.2558 0.3227 

Step 7. Since there are 5 observations, WAE(m) is fused 4 times with the proposed combination rule 

that is given in Table 8. 

From the results given in Table 8 and the graphical illustration in Figure 1, we can conclude that 

the proposed method has a high convergence rate. Figure 1 shows clearly that the NPBA 𝑥1 differs 

from others right from the beginning. The values at fusion step 0 are the beginning values that are 

also given in Table 7. The starting point of 𝑥1 is 0.6749, which leads to faster convergence. We also 

give the neutrosophic values of NPBAs in each step since the others converge to around 0.5 when 

they should ideally converge to near 0. The reason for this behavior lies in the given neutrosophic 

reduced function 𝑚∗ in (16). However, as given in Table 8, the F(m) values are neutrosophic 

numbers and their truth, indeterminacy, and falsity values converge to 0, which is the desired 

outcome. Therefore, the fact that the reduced values of {𝑥2}, {𝑥3}, and {𝑥1, 𝑥2, 𝑥3} approach 

around 0.5 does not constitute a contradiction or absurdity. Besides, all three NBPAs converge to the 

same point, which separates them from the 𝑥1. Furthermore, the second and third components of 𝑥1 

are getting smaller as the steps progress, which can be interpreted as a reduction in the uncertainty of 

the conflict of 𝑥1. 
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Table 8. The fusion results of the neutrosophic WAE(m)s. 

Fusion step 1 

 𝑚1, 𝑚2 

NBPAs 𝑊𝐴𝐸(𝑚) Reduced 𝑚∗ 

{𝑥1} (0.8842,0.0510,0.0428 0.8963 

{𝑥2} (0.0377,0.0343,0.0537) 0.4758 

{𝑥3} (0.0457,0.1315,0.0941) 0.4162 

{𝑥1, 𝑥2, 𝑥3} (0.0324,0.1716,0.0338) 0.4163 

Fusion step 2 

 𝑚1, 𝑚2, 𝑚3 

NBPAs 𝑊𝐴𝐸(𝑚) Reduced 𝑚∗ 

{𝑥1} (0.9619,0.0185,0.0080) 0.9678 

{𝑥2} (0.0140,0.0122,0.0106) 0.4957 

{𝑥3} (0.0176,0.0521,0.0215) 0.4726 

{𝑥1, 𝑥2, 𝑥3} (0.0064,0.0707,0.0061) 0.4650 

Fusion step 3 

 𝑚1, 𝑚2, 𝑚3, 𝑚4 

NBPAs 𝑊𝐴𝐸(𝑚) Reduced 𝑚∗ 

{𝑥1} (0.9883,0.0071,0.0015) 0.9899 

{𝑥2} (0.0045,0.0047,0.0020) 0.4989 

{𝑥3} (0.0059,0.0208,0.0046) 0.4903 

{𝑥1, 𝑥2, 𝑥3} (0.0012,0.0289,0.0011) 0.4856 

Fusion step 4 

 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 

NBPAs 𝑊𝐴𝐸(𝑚) Reduced 𝑚∗ 

{𝑥1} (0.9965,0.0028,0.0003) 0.9967 

{𝑥2} (0.0014,0.0018,0.0004) 0.4996 

{𝑥3} (0.0019,0.0083,0.0010) 0.4963 

{𝑥1, 𝑥2, 𝑥3} (0.0002,0.0118,0.0002) 0.4941 

6. Comparison and discussion 

We discuss the benefits of the new approach by comparing it to other existing methods. Table 9 

presents the combined findings from several studies. Based on Table 9, we observe that Dempster’s 

combination method produces paradoxical results. If we evaluate the results obtained by integrating 

only two pieces of evidence, the proposed method indicates that the target is 𝑥1 in the beginning, 

while other methods indicate that the target is 𝑥2. With three pieces of evidence, Murphy’s [48] and 

Deng et al. [49]’s methods do not allow us to decide that the belief assigned to object 𝑥1 is below 50%. 

Qian et al. [46] and Xiao and Qin [47] reported BPA values of 61.10% and 57.79% for object 𝑥1, 

respectively. In contrast, the probability that the proposed approach gives to target 𝑥1 is 88.14%. 

Adding a fifth piece of evidence, for object 𝑥1, the combination methods of Murphy [48], Deng 
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et al. [49], Qian et al. [46], and Xiao and Qin [47] show improved results, leading to BPA values 

of 83.89%, 94.99%, 95.25%, and 97.13%, respectively. Therefore, it can be said that the methods are 

able to successfully handle conflicting evidence. However, based on the five data points in Table 9, 

the proposed method significantly outperforms the other combination methods by computing the 

BPA value of the object at 99.67% as can be seen in Figures 2 and Figure 3. Therefore, we can 

conclude that the proposed technique is as effective as other techniques. It can also be concluded that 

the newly developed technique is superior to other methods in integrating opposing evidence to 

obtain more unpredictable results. To further explain, the proposed approach outperforms alternative 

methods in terms of performance. There are several main reasons for this. Initially, in the proposed 

method, each focal element is assigned a basic probability with three levels of support, which 

distinguishes it from other methods. In addition, the proposed approach takes into account various 

types of evidence, categorizing types of evidence with both a positive influence function and a 

negative influence function using NDE. By following these steps, the influence of reliable evidence 

is increased while the influence of unreliable evidence is reduced. This allows for the positive and 

negative effects of the evidence to be taken into account in the final aggregation results, overcoming 

other alternative methods. 

Table 9. The final fusion result F(m). 

Evidence 

 NBPAs Target 

Methods {𝑥1} {𝑥2} {𝑥3} {𝑥1, 𝑥2, 𝑥3} 

𝑚1, 𝑚2 

Dempster [6] 0.0000 0.9153 0.0847 0.0000 𝑥2 

Murphy [48] 0.1187 0.7518 0.0719 0.0576 𝑥2 

Deng et al. [49] 0.1187 0.7518 0.0719 0.0576 𝑥2 

 Qian et al. [46] 0.1187 0.7518 0.0719 0.0576 𝑥2 

 Xiao and Qin [47] 0.1187 0.7518 0.0719 0.0576 𝑥2 

 Proposed method 0.8963 0.4758 0.4162 0.4163 𝑥1 

𝑚1, 𝑚2, 𝑚3 

Dempster [6] 0.0000 0.9153 0.0847 0.0000 𝑥2 

Murphy [48] 0.3324 0.5909 0.0540 0.0227 𝑥2 

Deng et al. [49] 0.4477 0.4546 0.0644 0.0333 − 

 Qian et al. [46] 0.6110 0.2861 0.0659 0.0370 𝑥1 

 Xiao and Qin [47] 0.5779 0.3070 0.0714 0.0438 𝑥1 

 Proposed method 0.9678 0.4957 0.4726 0.4650 𝑥1 

𝑚1, 𝑚2, 𝑚3, 𝑚4 

Dempster [6] 0.0000 0.9153 0.0847 0.0000 𝑥2 

Murphy [48] 0.6170 0.3505 0.0272 0.0053 𝑥1 

Deng et al. [49] 0.8007 0.1640 0.0283 0.0070 𝑥1 

 Qian et al. [46] 0.8472 0.1221 0.0249 0.0058 𝑥1 

 Xiao and Qin [47] 0.8785 0.0857 0.0271 0.0076 𝑥1 

 Proposed method 0.9899 0.4989 0.4903 0.4856 𝑥1 

𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 

Dempster [6] 0.0000 0.9153 0.0847 0.0000 𝑥2 

Murphy [48] 0.8389 0.1502 0.0099 0.0010 𝑥1 

Deng et al. [49] 0.9499 0.0411 0.0080 0.0010 𝑥1 

 Qian et al. [46] 0.9525 0.0393 0.0074 0.0008 𝑥1 

 Xiao and Qin [47] 0.9713 0.0204 0.0073 0.0010 𝑥1 

 Proposed method 0.9967 0.4996 0.4963 0.4941 𝑥1 
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Figure 2. Fusing results of each step. 

 

Figure 3. Fusing comparison of NPBAs in each step. 

To provide a deeper analytical justification for the superiority of the proposed model, it is 

essential to highlight its dual integration of similarity and entropy-based mechanisms. Unlike 

traditional models that rely on support degrees or distance measures, the proposed approach 

leverages a modified cosine similarity that captures both set-based relationships with cardinality and 
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vector norms in Jousselme distance, which allows it to assess the directional consistency between 

evidence sources. This prevents overestimation of similarity when evidence vectors are orthogonal or 

sparse—scenarios where classical cosine similarity or Euclidean metrics tend to fail. Moreover, the 

use of Deng entropy introduces a measure of internal uncertainty within each piece of evidence. This 

entropy component not only detects the ambiguity of a single evidence source but also enables a 

relative weighting based on its informational volume. Through the positive and negative impact 

functions, the model amplifies the effect of credible evidence and suppresses unreliable contributions, 

creating a dynamic weighting system that adapts to evidence quality rather than treating all sources 

equally. In addition, the classification step based on GCD enhances robustness by systematically 

excluding evidence that falls below a statistical credibility threshold. This step contributes 

significantly to reducing noise and instability in the fusion output, especially in highly conflicting 

scenarios. The analytical strength of the model thus comes from its ability to simultaneously measure 

reliability (via similarity), internal uncertainty (via entropy), and contextual impact (via information 

volume), making it more flexible and durable compared to conventional evidence fusion approaches. 

7. Conclusions 

This paper extends the classical BPA, which focuses solely on the support degree of focal 

elements, to the neutrosophic BPA with three components. This involves taking into account the level 

of support, the level of non-support, and the level of uncertain support for each focal element. 

Furthermore, a similarity measure based on Jousselme distance is established for quantifying the 

similarity between evidence. Then, the Deng entropy is extended to assess the impact of evidence on 

weight in NESs, leading to the introduction of neutrosophic belief (Deng) entropy. A novel method is 

suggested for integrating contradictory evidence by utilizing the similarity measure of evidence and 

belief function entropy. An example with numbers is shown to illustrate how practical and successful 

the method is. The outcomes demonstrate that the new method exhibits improved performance with 

enhanced accuracy. 

However, like any modeling technique, our method presents certain limitations. Its performance 

may degrade in high-dimensional settings or when the amount of evidence increases substantially, 

due to the computational complexity associated with pairwise similarity calculations and entropy 

evaluations. Moreover, in cases where evidence is either highly conflicting or uniformly uncertain, 

the entropy-based discrimination mechanism may lose its effectiveness. While the model performs 

well in structured decision-making environments, it may encounter challenges in highly dynamic 

applications—such as continuous sensor data streams or scenarios requiring rapid real-time fusion. 

In such cases, the time complexity of computing similarity matrices and entropy values may limit the 

model’s practical usability. Additionally, the method assumes a relatively stable frame of discernment 

and clearly distinguishable sources of evidence, conditions that may not always hold in domains 

characterized by noisy or rapidly evolving information. 

From an analytical perspective, while the superiority of our model in terms of fusion accuracy is 

empirically validated, its theoretical benefits stem from the combined use of similarity and entropy, 

allowing simultaneous evaluation of information content and consistency. This dual perspective 

ensures that both supportive and hesitant evidence is proportionally represented in the fusion result. 

Future work can explore expanding this framework to handle dynamic data streams and 

real-time decision-making scenarios, particularly in applications involving complex sensor networks, 

autonomous systems, and intelligent monitoring. The potential of integrating neutrosophic-based 

methods with machine learning algorithms also remains a promising area for enhancing data-driven 
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decision systems. 
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