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Abstract: In this work, we propose a computational algorithm for calculating the fair price of
five-asset Equity-Linked Securities under a step-down structure and a knock-in barrier condition.
By using the Android platform, we implement a Monte Carlo simulation to accurately compute
the fair price of Equity-Linked Securities with five-asset dynamics, which offers the advantage of
location-independent pricing through mobile devices. We use the Cholesky decomposition to generate
correlated random numbers based on the correlation matrix of the five underlying assets. To generate
the discrete stock price paths, a discretized stochastic differential model is considered under the
geometric Brownian motion assumption. The findings confirm the usefulness of the Monte Carlo
simulation in pricing five-asset step-down Equity-Linked Securities derivatives and demonstrate the
practicality of conducting advanced financial calculations on mobile devices. The implementation of
this algorithm on the Android platform represents a significant advancement in the development of
multi-asset Equity-Linked Securities, which offer the potential for higher coupon yields. Moreover,
this research highlights the potential for further innovations in Fintech and suggests that the integration
of technology has the capacity to improve the investment process by improving the accessibility and
efficiency of financial tools.
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1. Introduction

An Equity-Linked Security (ELS) is a financial instrument issued and sold by security companies,
whose returns are linked to the performance of individual stock prices or stock indices. These financial
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products are risky and there is a possibility of a principal loss. ELS crossed the knock-in barrier, which
is tied to the Hang Seng China Enterprises Index (HSCEI), declining by as much as 58% between
2021 and 2024 [1]. This event resulted in significant investor losses. Investors lack effective tools
to accurately evaluate the risk of loss inherent in ELS financial products. For these reasons, there
is a clear need for a framework that enables investors to comprehensively understand the structural
characteristics and risk levels of ELS financial products. The ELS financial products linked to multiple
underlying assets typically offer higher coupon rates, but they also entail an increased risk of substantial
losses. In [1], the authors investigated the application of Markov Regime-Switching models in pricing
ELS, especially in response to significant losses observed in HSCEI-linked ELS products in South
Korea during 2024. The motivation stems from the inadequacy of conventional methods (e.g., historical
or implied volatilities) to capture long-term market regime changes and tail risk.

A number of studies have been conducted on the pricing of ELS, especially those structured with
one to four underlying assets. Fractional derivatives serve as a critical tool in financial mathematics by
enabling the modeling of long-range dependence and memory effects observed in asset dynamics.
Their incorporation into pricing and volatility models enhances the representation of non-local
temporal behaviors, leading to improved analytical accuracy and robustness in complex financial
systems. The general time-fractional diffusion equation (TFDE), as addressed in [2], provides a
valuable framework for modeling anomalous diffusion and memory-dependent processes. The authors
introduce a generalized fractional derivative involving both a scale function and a weight function,
thereby allowing the model to more accurately capture complex physical behaviors than standard
Caputo-type derivatives. Their aim was to derive analytical solutions, analyze regularity, and develop
high-order numerical algorithms for both deterministic and stochastic versions of the TFDEs [3, 4].
In [5], a compact finite difference scheme was presented for solving the time-fractional Black–Scholes
model used in European option pricing. This model generalizes the classical Black–Scholes equation
by incorporating a Caputo fractional derivative in time to better capture memory and hereditary
properties inherent in financial markets. Pricing frameworks [6, 7] have been studied for three-asset
step-down ELS options by replacing traditional geometric Brownian motion with fractional Brownian
motion. These studies can provide a more realistic representation of the long-memory behavior
observed in financial markets, which is often inadequately described by conventional models with
independent increments. On the other hand, in the field of ELS pricing, the Monte Carlo method excels
at modeling the random behavior of underlying assets, making it well-suited for valuing derivatives
linked to multiple assets and those with complex payoff structures [8–10]. Its application allows for
the simulation of a vast number of possible scenarios, providing accurate estimates of the expected
value of the securities while accounting for the inherent uncertainty and volatility in the financial
markets [11]. The Monte Carlo method is particularly advantageous when analytical solutions are not
readily available or are computationally intensive, thus offering a versatile and robust approach for ELS
pricing in practice. Moreover, the Monte Carlo approach to option pricing has been implemented using
Compute Unified Device Architecture (CUDA) [12]. Recently, the authors in [13] explored a quantum
computing approach for pricing options, particularly focusing on the use of the amplitude estimation
algorithm to achieve a quadratic speed-up over classical Monte Carlo methods. In studies on the
structure of multi-asset ELS, the fair value of ELS has been calculated using both the finite difference
method [14] and the Monte Carlo method [8–11]. Additionally, the efficiency of the calculations has
been enhanced by using the Brownian bridge method [15–17]. These methods were implemented on
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the Android platform, enabling investors to independently calculate the fair value. While prior studies
have proposed analytical or numerical methods including finite difference schemes and FMB-based
models, they often lack implementation in real-time computing environments or mobile platforms.
Furthermore, most existing works did not address the practical computational challenges of pricing
multi-asset (five or more) ELS with both step-down and knock-in barrier features.

In this study, we propose an analysis of a five-asset structured ELS product, and apply the Monte
Carlo simulation technique as a numerical method to calculate both its fair value and the associated risk
rate. The Monte Carlo simulation is particularly suited for this task due to its ability to model complex,
path-dependent features and capture the stochastic nature of financial markets. To facilitate practical
application, this model is implemented on the Android platform, enabling real-time computation and
accessibility for end-users. The risk rate, in this context, is defined as the ratio of the number of times
the knock-in barrier is breached during the simulation trials to the total number of trials conducted. This
risk rate metric functions as a quantitative indicator of the likelihood of a knock-in event occurring,
thereby providing a measurable gauge of the risk associated with the ELS financial products. By
incorporating this approach, we aim to enhance the understanding of the pricing dynamics and risk
profiles of multi-asset-linked ELS products in a market-driven environment.

The contents of this study are organized as follows. In Section 2, we present the numerical algorithm
using the Monte Carlo simulation. In Section 3, computational experiments are conducted using the
proposed Android platform. Finally, Section 5 presents the conclusion of the findings of this paper.

2. Numerical approach for the simulation

In this section, we describe the numerical methodology used to simulate the fair value of five-asset
ELS with step-down and knock-in barrier structures. We use the Monte Carlo method with correlated
geometric Brownian motion to model asset dynamics. The correlation among the underlying assets is
incorporated through the Cholesky decomposition of the correlation matrix.

Now, we provide a detailed explanation of how the Cholesky decomposition is employed to generate
correlated random numbers based on the correlation matrix of the five underlying assets. Let A ∈
R5×5 denote the correlation matrix among the five underlying assets, with entries ρi j representing the
correlation between asset i and j. We assume that all the eigenvalues of a matrix A are positive. Then
the matrix A is symmetric and positive definite [18]:

A =


1 ρ12 ρ13 ρ14 ρ15

ρ12 1 ρ23 ρ24 ρ25

ρ13 ρ23 1 ρ34 ρ35

ρ14 ρ24 ρ34 1 ρ45

ρ15 ρ25 ρ35 ρ45 1


. (2.1)

Cholesky decomposition is a matrix factorization technique applicable to symmetric positive
definite matrices [19–21]. The matrix A is represented as the product of a lower triangular matrix
L (Cholesky factor) and its transpose L⊤, i.e.,

A = LL⊤, (2.2)
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where L is detailed as follows:

L =


L1,1 0 0 0 0
L2,1 L2,2 0 0 0
L3,1 L3,2 L3,3 0 0
L4,1 L4,2 L4,3 L4,4 0
L5,1 L5,2 L5,3 L5,4 L5,5


. (2.3)

Here, Li, j denotes the (i, j)-th entry of the lower triangular matrix L, with (1 ≤ i, j ≤ 5). In this study,
the matrix A represents the correlation matrix of five underlying assets and is symmetric and positive
definite by construction. Therefore, we can apply Cholesky decomposition to A to obtain the lower
triangular matrix L, which is used to generate correlated standard normal variables in the Monte Carlo
simulation. The entries of L can be computed recursively: the diagonal elements use the first formula,
and the off-diagonal elements use the second as

Li,i =

√√
Ai,i −

i−1∑
k=1

L2
i,k, L j,i =

1
Li,i

A j,i −

i−1∑
k=1

L j,kLi,k

 , for j > i. (2.4)

The entries of L are given in detail as follows:

L1,1 = 1, L2,1 = ρ12, L2,2 =

√
1 − ρ2

12, L3,1 = ρ13, L3,2 =
(ρ23 − ρ12ρ13)√

1 − ρ2
12

, L3,3 = α, (2.5)

L4,1 = ρ14, L4,2 =
ρ24 − ρ12ρ14√

1 − ρ2
12

, L4,3 =
β

α
, L4,4 =

√
δ −
(
β

α

)2
, L5,1 = ρ15, (2.6)

L5,2 =
ρ25 − ρ12ρ15√

1 − ρ2
12

, L5,3 =
γ

α
, L5,4 =

λ − βγ
α2√

δ −
(
β

α

)2 , (2.7)

L5,5 =

√√√√√
1 − ρ2

15 −
(ρ25 − ρ12ρ15)2

1 − ρ2
12

−

(
γ

α

)2
−

(
λ − βγ

α2

)2
δ −
(
β

α

)2 , (2.8)

where the intermediate variables α, β, δ, γ, λ are described as

α =

√
1 − ρ2

13 −
(ρ23 − ρ12ρ13)2

1 − ρ2
12

, β = ρ34 − ρ13ρ14 −
(ρ23 − ρ12ρ13)(ρ24 − ρ12ρ14)

1 − ρ2
12

, (2.9)

δ = 1 − ρ2
14 −

(ρ24 − ρ12ρ14)2

1 − ρ2
12

, γ = ρ35 − ρ13ρ15 −
(ρ23 − ρ12ρ13)(ρ25 − ρ12ρ15)

1 − ρ2
12

, (2.10)

λ = ρ45 − ρ14ρ15 −
(ρ24 − ρ12ρ14)(ρ25 − ρ12ρ15)

1 − ρ2
12

. (2.11)

The lower triangular matrix L is used to convert a vector of independent standard normal variables
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into a vector of correlated standard normal variables:
Z∗1
Z∗2
Z∗3
Z∗4
Z∗5


= L


Z1

Z2

Z3

Z4

Z5


=


L1,1 0 0 0 0
L2,1 L2,2 0 0 0
L3,1 L3,2 L3,3 0 0
L4,1 L4,2 L4,3 L4,4 0
L5,1 L5,2 L5,3 L5,4 L5,5




Z1

Z2

Z3

Z4

Z5


. (2.12)

The explicit form is given by:

Z∗1 = Z1, Z∗2 = ρ12Z1 +

√
1 − ρ2

12Z2, Z∗3 = ρ13Z1 +
(ρ23 − ρ12ρ13)√

1 − ρ2
12

Z2 + αZ3, (2.13)

Z∗4 = ρ14Z1 +
ρ24 − ρ12ρ14√

1 − ρ2
12

Z2 +
β

α
Z3 +

√
δ −
(
β

α

)2
Z4, (2.14)

Z∗5 = ρ15Z1 +
ρ25 − ρ12ρ15√

1 − ρ2
12

Z2 +
γ

α
Z3 +

λ − βγ
α2√

δ −
(
β

α

)2 Z4 +

√√√√√
1 − ρ2

15 −
(ρ25 − ρ12ρ15)2

1 − ρ2
12

−

(
γ

α

)2
−

(
λ − βγ

α2

)2
δ −
(
β

α

)2 Z5,

(2.15)

where Z1, Z2, Z3, Z4, and Z5 are identically independent standard normal distributions.
Using these transformed values, we shall simulate the asset prices under geometric Brownian

motion. To price the fair value of the five-asset step-down ELS applying the Monte Carlo simulation,
let us consider the following discrete stock paths:

S j(ti+1) = S j(ti)e
(
r−0.5σ2

j

)
∆t+σ j

√
∆tZ∗j (ti), j = 1, 2, 3, 4, 5, (2.16)

where ti = i∆t, r is the risk-free interest, ∆t = 1/360 is the time step size, and σ j denotes the
volatility of the j-th underlying asset, with j = 1, 2, 3, 4, 5. This computation is repeated over
multiple time steps and across a large number of paths in the Monte Carlo framework. The resulting
paths are then used to compute the fair price and risk profile of the structured ELS product. For a
more comprehensive discussion of the implementation details, including algorithmic procedures and
parameter configurations, the reader is referred to [14,22], which provide in-depth treatments of similar
Monte Carlo simulation frameworks applied to four-asset Equity-Linked Securities.

3. Computational tests

We shall now perform computational tests to implement the proposed pricing algorithm on the
Android platform. The computational results will be obtained using the proposed Android calculator
on a Pixel 8 Pro device with API level 33 of the Android platform, equipped with a 1.82 GHz hexa-
core processor and 1.5 GB of RAM. The graphical results will be generated using MATLAB version
R2024a on a PC with an Intel(R) Core(TM) i7-12700 CPU @ 2.10 GHz and 16 GB of RAM.

Unless explicitly specified, the parameters listed in Table 1 are employed throughout this section.
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Table 1. A list of parameters used in Section 3.

Parameters Values
Repayment dates, [T1,T2,T3,T4,T5,T6] [0.5, 1, 1.5, 2, 2.5, 3]

Maturity date, T = T6 3
Time step size, ∆t 1/360

The number of total time step, Nt = T/∆t 1080
Volatilities of five underlying assets,

[σ1, σ2, σ3, σ4, σ5, σ6] [0.2, 0.3, 0.25, 0.24, 0.32]
Strike price ratios,

[K1,K2,K3,K4,K5,K6] [0.85, 0.8, 0.75, 0.7, 0.65, 0.6]
Knock-in barrier, kib 0.5

Coupon rates on redemption dates,
[c1, c2, c3, c4, c5, c6] [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]

Dummy rate on maturity date, d 0.3
Initial prices of five underlying assets,
[X1(0), X2(0), X3(0), X4(0), and X5(0)] [100, 100, 100, 100, 100]

Face value, F 10, 000
Interest rate, r 0.01

The number of simulations, Np 106

Correlation coefficients matrix, A


1 0.7 0.48 0.27 0.18

0.7 1 0.45 0.3 0.34
0.48 0.45 1 0.5 0.26
0.27 0.3 0.5 1 0.37
0.18 0.34 0.26 0.37 1



Figure 1 displays the main interface of the Android-based ELS pricing application developed in this
study. Figure 1(a) and Figure 1(b) show the user input screen, where one can specify key simulation
parameters such as early redemption dates, maturity, interest rate, volatilities, correlation coefficients,
coupon rates, strike prices, knock-in barrier rate, dummy rate, face value, and number of simulation.
The bottom part of Figure 1(b) shows the resulting fair price, risk rate, and elapsed computation time,
which are displayed after the user presses the “Calculate” button. The computational results vary based
on the input data, which varies with the simulation count.
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(a) (b)
Figure 1. Calculator for pricing five-asset ELS on the Android platform.

Now, we provide the pseudo algorithm. In the initialization phase, the user inputs the initial prices of
the five underlying assets, the strike conditions including early redemption dates and knock-in barriers,
and the parameters required to simulate their stochastic dynamics, such as volatilities and correlation
coefficients. Algorithm 1 describes the step-by-step procedure to price a five-asset step-down ELS
using a Monte Carlo simulation framework:

1. Step 1: Cholesky decomposition of the correlation matrix.
First, we construct the correlation matrix A and apply the Cholesky factorization, yielding a
lower triangular matrix L. This matrix L is then used to generate correlated random draws from
independent standard normal variables, ensuring that the correlation structure of underlying assets
is accurately reflected in the simulation.

2. Step 2: Monte Carlo path generation for underlying assets.
The main loop iterates over Np Monte Carlo trials. In each trial, we generate daily price paths for
all five underlying assets by discretizing a geometric Brownian motion. Specifically:

• Compute Z∗ = LZ, where Z is a vector of five i.i.d. N(0, 1) random variables.
• Update the asset prices at each discrete time step ∆t according to

S j(ti+1) = S j(ti)e
(
r−0.5σ2

j

)
∆t+σ j

√
∆tZ∗j (ti), j = 1, 2, 3, 4, 5. (3.1)

These paths incorporate both drift and volatility, as well as the correlation captured by the
Cholesky factorization.
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3. Step 3: Worst performer and early redemption.
After generating a full set of asset paths for a single trial, the algorithm identifies the worst
performer (WP) by taking the minimum of all five asset ratios (i.e., S 1, S 2, S 3, S 4, S 5) at each
coupon date. It then checks whether WP exceeds each corresponding strike level Ki on early
redemption dates Ti:

• If WP(Ti) ≥ Ki, the ELS is assumed to redeem early, and the coupon ci (plus principal) is
credited to the payoff Mi.

• If no early redemption occurs through all prescribed dates, the algorithm checks whether the
knock-in barrier has been breached at any time. If a breach has occurred, the final payoff is
determined by the terminal value of the worst performer. Otherwise, if the barrier has not
been touched, the payoff is adjusted by a “dummy rate” coupon rate (e.g., 1 + d).

4. Step 4: Discounting and averaging over simulations.
Each realized payoff Mi (or final payoff M6) is then discounted to present value using the risk-free
rate r. Finally, the average across all Np trials is computed to obtain the estimated fair price of

the five-asset step-down ELS: V0 =
1

Np

6∑
k=1

e−rτkPayoffk where τk is the relevant redemption (or

maturity) time for the k-th trial. Simultaneously, the Risk rate, corresponding to the probability of
knock-in, is approximated by counting how many paths out of Np breach the barrier at least once:
Risk rate = Number of knock-in events

Np
. This statistic quantifies the likelihood of incurring principal loss

due to the knock-in condition.

In summary, Algorithm 1 offers a systematic approach for pricing multi-asset step-down ELS
with knock-in barriers. By incorporating correlated geometric Brownian motions (via Cholesky
decomposition) and explicitly modeling the boundary conditions (early-redemption and knock-in
features), it captures the key structural characteristics of these structured products. Monte Carlo
simulation, while computationally intensive, is particularly suitable for products whose payoffs depend
on the paths of multiple underlying assets. Moreover, this algorithm can be readily implemented
on mobile devices, making advanced derivative pricing more accessible for practitioners and retail
investors. The knock-in probability (Risk rate) further aids in quantifying downside exposure, shedding
light on the product’s risk-reward profile and assisting both issuers and investors in assessing its
attractiveness.

AIMS Mathematics Volume 10, Issue 5, 10452–10470.



10460

Algorithm 1 Pricing algorithm for five-assets step-down ELS using MCS
Require:

Redemption dates (dates when redemption is possible) : T1, T2, T3, T4, T5, T6

Maturity date (final contract expiration date) : T = T6

Time step size (discrete time increment for simulation) : ∆t = 1/360
The number of total time step (total number of time steps) : Nt = T/∆t
Volatilities of five underlying assets : σ1, σ2, σ3, σ4, σ5

Strike price ratios (threshold levels for redemption evaluation) : K1, K2, K3, K4, K5, K6

Knock-in barrier (barrier level for knock-in condition) : kib
Coupon rates on redemption dates (fixed returns paid at redemption dates) : c1, c2, c3, c4, c5, c6

Dummy rate on maturity date (notional rate applied only at maturity to adjust the final payoff) : d
Initial prices of five underlying assets : X1(0), X2(0), X3(0), X4(0), and X5(0)
Scale the underlying assets with the initial price
: S 1(t1) = X1(t1)/X1(0), S 2(t1) = X2(t1)/X2(0), S 3(t1) = X3(t1)/X3(0), S 4(t1) = X4(t1)/X4(0), and S 5(t1) = X5(t1)/X5(0), where t1 = 0
Face value (principal amount of the contract) : F
Interest rate (risk-free continuous interest rate) : r
The number of simulations (number of Monte Carlo sample paths) : Np

Correlation coefficients matrix : A =


1 ρ12 ρ13 ρ14 ρ15

ρ12 1 ρ23 ρ24 ρ25

ρ13 ρ23 1 ρ34 ρ35

ρ14 ρ24 ρ34 1 ρ45

ρ15 ρ25 ρ35 ρ45 1

 (Eq. (2.1))

▷ Step 1. Cholesky decomposition of a (5 × 5) correlation matrix A is given by A = LLT , where L is a lower triangular matrix given

by L =


L1,1 0 0 0 0
L2,1 L2,2 0 0 0
L3,1 L3,2 L3,3 0 0
L4,1 L4,2 L4,3 L4,4 0
L5,1 L5,2 L5,3 L5,4 L5,5

 (Eq. (2.3))

Set payment on redemption dates M1 = M2 = M3 = M4 = M5 = M6 = 0
Set risk (the number of times the knock-in barrier is breached) risk = 0
for iteration = 1 to Np do
▷ Step 2. Generate daily discrete stock paths for t j using the Monte Carlo method
for j = 1 to Nt do(

Z∗1 ,Z
∗
2 ,Z

∗
3 ,Z

∗
4 ,Z

∗
5

)⊤
= L ×

(
Z1,Z2,Z3,Z4,Z5

)⊤
, Zn ∼ N(0, 1), (n = 1, 2, 3, 4, 5) (Eq. (2.12))

S n(t j+1) = S n(t j) exp
((

r − 0.5σ2
n

)
∆t + σn

√
∆tZn

∗(t j)
)

(Eq. (3.1))
end for
▷ Define worst performer value
WP = min ([S 1, S 2, S 3, S 4, S 5])
▷ Step 3. Check the values of discrete stock paths at checking days
if WP(T1) ≥ K1 then M1 = M1 + (1 + c1)F
else if WP(T2) ≥ K2 then M2 = M2 + (1 + c2)F
else if WP(T3) ≥ K3 then M3 = M3 + (1 + c3)F
else if WP(T4) ≥ K4 then M4 = M4 + (1 + c4)F
else if WP(T5) ≥ K5 then M5 = M5 + (1 + c5)F
else if WP(T6) ≥ K6 then M6 = M6 + (1 + c6)F
else if min

1≤ j≤Nt
{WP(T j)} ≤ kib then M6 = M6 +WP(tNt )F

risk = risk + 1
else

M6 = M6 + (1 + d)F
end if

end for
▷ Step 4. Discount to present price and take average

Price =
6∑

i=1

(
e−rTi Mi/Np

)
Risk rate = risk/Np
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Figure 2 illustrates both the convergence behavior of our Monte Carlo simulations for four-asset
and five-asset ELS pricing and the associated computational costs. Specifically, Figure 2(a) shows the
fair-price estimates as a function of the total number of simulated paths Np, plotted for each of the
two product structures (four-asset vs. five-asset). In Figure 2(a), for each number of paths, we display
results from 20 simulations. The vertical spread indicates the variance or confidence interval in the
estimates across multiple independent runs. The plot demonstrates that, as Np increases, the simulated
ELS prices converge toward stable values, confirming the robustness and consistency of the underlying
Monte Carlo approach. In Figure 2(b), the measured elapsed times (in seconds) for performing the
full pricing procedure are depicted, again for both four- and five-asset configurations. This highlights
the computational overhead introduced by additional underlying assets. As expected, the five-asset
ELS requires more simulation steps for generating and processing correlated asset paths, resulting in
a longer runtime. Finally, Figure 2(c) shows the ratio of the elapsed times between the five-asset and
four-asset cases, providing a more direct comparison of the relative computational expense. The result
demonstrates that the computational cost increases nonlinearly with the number of underlying assets,
suggesting that the correlation structure and the higher-dimensional random draws impose additional
complexity. Overall, the computational results in Figure 2 confirm both the efficiency and accuracy of
our Monte Carlo framework, while also underscoring the trade-off between realism (more underlying
assets) and computational time in practical ELS pricing scenarios.

Figure 3 depicts the evolution of the worst performer (WP) over the number of checking days,
for cases ranging from one to five underlying assets. The WP at each time step is defined as the
minimum scaled value among all included underlying assets. Each colored curve corresponds to a
different total number of underlying assets, highlighting that as the asset count grows, the WP trajectory
generally shifts downward. This behavior stems from the increased probability that at least one asset
will underperform when more underlying assets are included. Thus, a five-asset configuration typically
exhibits a lower WP than scenarios with fewer underlying assets. This phenomenon implies a higher
likelihood of crossing the knock-in barrier, reflecting the inherent trade-off between offering higher
coupons and exposing investors to greater downside risk.

We calculated and compared risk rates for each number of underlying assets and each number of
trials in Figure 4. The risk rate is the number of times the knock-in-barrier is hit divided by the number
of trials. Each point is the average of values calculated 10 times in MATLAB.

As shown in Figure 4, the variance of the estimated risk rate decreases as the number of simulation
paths Np increases, and the estimate gradually converges. We further confirm that the risk rate generally
increases with the number of underlying assets, since the worst performer condition is more readily
satisfied, making it easier to breach the knock-in barrier kib. This aligns with practical financial
intuition: adding more underlying assets can offer a higher coupon but also entails greater knock-in
(and thus principal loss) risk. The risk rate is defined as the ratio of “the number of simulations in which
the knock-in barrier is touched at least once” to “the total number of simulations”. Mathematically, if
kibn is the number of knock-in occurrences out of Np total Monte Carlo trials, then the estimated risk
rate p̂ is

p̂ =
kibn

Np
. (3.2)
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(a)

(b) (c)
Figure 2. (a) Convergence of the Monte Carlo-estimated ELS prices for four-asset and five-
asset products as the number of simulated paths Np increases. (b) The elapsed times of
four-asset and five-asset ELS pricing. (c) The elapsed time ratio of four-asset and five-asset
ELS pricing.

Figure 3. Worst performer (WP) trajectories for one through five underlying assets, plotted
over the number of checking days. Each colored line corresponds to the WP for a different
number of underlying assets.
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Figure 4. Estimated knock-in risk rates (for short, Risk rate) across varying numbers of
Monte Carlo simulation paths and different counts of underlying assets.

Given that kibn follows a binomial (Np, p) distribution, p̂ is the sample mean of this binomial random
variable. For sufficiently large Np, the Central Limit Theorem implies that p̂ can be approximated by a
normal distribution with mean p and standard error SE:

SE(p̂) ≈

√
p̂ (1 − p̂)

Np
. (3.3)

For instance, if Np = 106 and the estimated risk rate is p̂ = 0.20, then the standard error is
approximately

SE(p̂) ≈

√
0.22 × 0.78
1, 000, 000

= 0.0004, (3.4)

yielding a 95% confidence interval of about 0.20± 2× 0.0004. This is indicates that with a sufficiently
large number of simulations, the risk rate can be estimated accurately, and the confidence interval for p̂
becomes very narrow. Meanwhile, from an investor’s perspective, the risk rate indicates the likelihood
of breaching the knock-in barrier, thereby signaling the potential for principal loss. For example, if a
five-asset ELS exhibits an estimated risk rate of 0.20, it suggests a 20% chance that the product will
transition into a knock-in state, exposing the investor to greater downside. Consequently, investors
must weigh “the higher coupon benefit” against “the increased risk of principal loss”. In addition,
statistical analysis of the risk rate is of considerable value for product structuring. A securities issuer
aiming to maintain the risk rate below a certain threshold, for instance, can adjust the composition of
underlying assets S i, the knock-in barrier kib, the strike Ki, or the coupon rates ci. Conversely, if the
issuer focuses on maximizing coupon rates (accepting higher risk), such parameter adjustments can
also be explored accordingly.

Table 2 shows the computed fair prices of the step-down ELS for varying numbers of underlying
assets, ranging from one to five. The ELS prices are calculated in MATLAB. Each ELS price represents
the average of 10 simulation runs, each based on Np = 106 Monte Carlo simulations. Each entry
corresponds to the Monte Carlo-estimated price under identical model settings (e.g., the same knock-
in barrier, coupon rates, and correlation assumptions, etc.), with only the number of underlying assets
changing. The results indicate a notable decline in the ELS price as the number of underlying assets
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increases. This pattern can be attributed primarily to the worst performer effect, whereby a greater
number of assets heightens the likelihood that at least one asset will underperform, thereby reducing
the product’s final payoff. Such findings underscore the trade-off between offering a potentially higher
coupon by including multiple underlying assets and incurring a greater risk of principal loss from
knock-in events.

Table 2. Computed ELS fair prices as the number of underlying assets increases from one to
five.

Number of assets 1 2 3 4 5
ELS price 10465.979 10188.187 10012.546 9842.888 9375.536

Table 3 reports the fair ELS prices under three different increments of the coupon rate (increases
of 0.02, 0.04, and 0.06, respectively). For each scenario, the same baseline parameters remain fixed,
ensuring that the only varying factor is the coupon rate. The prices were computed by averaging
the results of multiple Monte Carlo simulations (e.g., five independent runs of 106 paths each) to
improve the reliability of the estimates. A notable trend is that, as the coupon rate is increased, the fair
price of the ELS decreases. This reflects the heightened risk borne by the issuer, as a higher coupon
raises potential payouts to investors but also reduces the product’s market-consistent value. From an
investor’s perspective, a higher coupon is attractive yet comes with a potentially higher probability of
knock-in if the underlying assets perform poorly. Meanwhile, from an issuer’s perspective, the lower
fair price indicates the increased cost associated with providing a richer payoff structure. This trade-off
underscores the importance of selecting an optimal coupon rate that balances investment appeal with
risk and pricing considerations.

Table 3. Fair prices for step-down five-asset ELS with the knock-in barrier condition, under
three different incremental increases in the coupon rate (0.02, 0.04, and 0.06).

Increase in each coupon rate and dummy rate 0.02 0.04 0.06
ELS price 9528.42 9681.53 9839.27

Figure 5 presents screenshots of the proposed Android-based ELS pricing calculator, focusing on
how the computational results of fair price as the coupon rates and dummy rate values are incrementally
increased. In Figure 5(a), Figure 5(b), and Figure 5(c), each coupon rate and dummy rate value are
raised by 0.02, 0.04, and 0.06, respectively, compared to their baseline values. As these values increase,
the application displays higher fair prices and updates the corresponding risk rates in real time. This
behavior reflects the structural properties of multi-asset step-down ELS, where increasing coupon rates
and dummy rate components generally enhances the potential payoff to investors, thus leading to a
higher estimated product value. The figure also highlights that the calculator interface conveniently
reports the total computation time, demonstrating that even with added complexity such as elevated
coupon rates or larger dummy rate values, real-time simulation on a mobile device is both feasible and
user-friendly.
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(a) (b) (c)
Figure 5. Calculator for pricing five-asset ELS with increased coupon and dummy rates.
Each coupon rate and dummy rate are increased by 0.02, 0.04, and 0.06 in (a), (b), and (c),
respectively.

4. Discussion

Despite the strengths of the proposed framework, several limitations should be acknowledged. First,
as five-asset ELS products are not yet widely available in the financial market, and empirical validation
using real transaction data was not feasible. Therefore, the computational experiments in this study
were conducted using synthetic but structurally realistic input parameters, inspired by commonly
traded ELS products with fewer underlying assets. Although this limits the ability to directly assess
real-world pricing accuracy, the proposed framework is designed to be adaptable and applicable to
actual market data when such products become available in the future.

Future research could extend the current model by incorporating fractional Brownian motion,
regime-switching dynamics, time-varying volatilities, or jump-diffusion processes to better reflect
market complexities. Additionally, integrating machine learning techniques or variance reduction
methods may further improve the efficiency and generalizability of the pricing algorithm. Evaluating
the robustness of the framework across various market conditions will also be an important step toward
real-world deployment of the proposed mobile-based pricing tool.

5. Conclusions

In this study, we developed a robust and efficient Monte Carlo simulation framework for pricing
five-asset ELS with step-down and knock-in barrier structures. The robustness of the proposed method
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is supported by convergence analyses of simulated ELS prices and risk rates across varying numbers
of assets and simulation paths, as well as by the precise modeling of asset correlations via Cholesky
decomposition. The efficiency of the framework is demonstrated through its successful implementation
on an Android platform, enabling real-time computations on resource-constrained mobile devices.
This highlights the feasibility of performing complex financial calculations in portable environments,
thereby enhancing the accessibility of advanced pricing tools. A key contribution of this work is the
practical deployment of the pricing algorithm on a mobile platform, allowing for real-time evaluation
of both fair price and associated risk. Through extensive computational experiments, we examined
the convergence behavior of the simulation, evaluated the sensitivity of ELS prices to changes in the
number of underlying assets and coupon rates, and analyzed the corresponding risk profiles. The results
consistently show that an increase in the number of underlying assets leads to lower ELS prices and
elevated risk exposure, primarily due to the worst performer effect. The Android-based pricing tool
enhances accessibility and usability for both individual investors and financial institutions, supporting
more informed investment decisions. Overall, this study not only advances numerical techniques
in multi-asset derivative pricing but also shows how mobile-based Fintech solutions can deliver
sophisticated quantitative methods that enhance transparency, accessibility, and investor education in
evaluating structured financial products, thereby strengthening confidence in complex instruments and
advancing the Fintech agenda.
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Appendix

The following MATLAB source code computes the risk rate and determines the fair price of a
five-asset step-down ELS with a knock-in barrier condition:

1 c l e a r a l l ;
2 T=3; d t = 1 / 3 6 0 ; N= round ( T / d t ) ;
3 coupon = [ 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3 ] ;
4 s t e p =[1 2 3 4 5 6]*N/ 6 ;
5 S r a t e = [ 0 . 8 5 0 . 8 0 0 . 7 5 0 . 7 0 0 . 6 5 0 . 6 0 ] ;
6 dummy = 0 . 3 ; k i b = 0 . 5 ; ns =1 .0 e +6; f a c e =10000; S=[1 1 1 1 1 ] ; r = 0 . 0 1 ;
7 v o l = [ 0 . 2 0 . 3 0 . 2 5 0 . 2 4 0 . 3 2 ] ;
8 rho = [ 0 . 7 0 . 4 8 0 . 2 7 0 . 1 8 0 . 4 5 0 . 3 0 . 3 4 0 . 5 0 . 2 6 0 . 3 7 ] ;
9 s t e p n = l e n g t h ( s t e p ) ; s t r i k e c h ( 1 , s t e p n ) =0;

10 p a y o f f ( 1 , s t e p n ) =0; dsum ( 1 , s t e p n ) =0;
11 d i s c p a y o f f ( 1 , s t e p n ) =0; payment= z e r o s ( 1 , 1 0 ) ;
12 SP1 ( 1 :N+1) =0; SP2 ( 1 :N+1) =0; SP3 ( 1 :N+1) =0; SP4 ( 1 :N+1) =0; SP5 ( 1 :N+1) =0;
13 a l p h a = s q r t (1 − rho ( 2 ) ˆ2 −( rho ( 5 ) − rho ( 1 ) * rho ( 2 ) ) ˆ2 . . .

AIMS Mathematics Volume 10, Issue 5, 10452–10470.

https://dx.doi.org/https://doi.org/10.7468/jksmeb.2021.28.4.329
https://dx.doi.org/https://doi.org/10.1007/s10614-019-09947-2
https://dx.doi.org/https://doi.org/10.1007/s10614-019-09947-2
https://dx.doi.org/https://doi.org/10.12941/jksiam.2021.25.082
https://dx.doi.org/http://dx.doi.org/10.12941/jksiam.2020.24.079
https://dx.doi.org/https://doi.org/10.1080/00029890.1970.11992465
https://dx.doi.org/https://doi.org/10.1007/978-0-387-21617-1
https://dx.doi.org/https://doi.org/10.1109/WSC.2006.323100
https://dx.doi.org/https://doi.org/10.3934/math.20231078
https://dx.doi.org/http://doi.org/10.12941/jksiam.2022.26.343


10469

14 / ( 1 − rho ( 1 ) ˆ 2 ) ) ;
15 b e t a = rho ( 8 ) − rho ( 2 ) * rho ( 3 ) −( rho ( 5 ) − rho ( 1 ) * rho ( 2 ) ) . . .
16 *( rho ( 6 ) − rho ( 1 ) * rho ( 3 ) ) / (1 − rho ( 1 ) ˆ 2 ) ;
17 d e l t a =1− rho ( 3 ) ˆ2 −( rho ( 6 ) − rho ( 1 ) * rho ( 3 ) ) ˆ 2 / . . .
18 (1 − rho ( 1 ) ˆ 2 ) ;
19 gamma= rho ( 9 ) − rho ( 2 ) * rho ( 4 ) −( rho ( 5 ) − rho ( 1 ) * rho ( 2 ) ) . . .
20 *( rho ( 7 ) − rho ( 1 ) * rho ( 4 ) ) / (1 − rho ( 1 ) ˆ 2 ) ;
21 lambda= rho ( 1 0 ) − rho ( 3 ) * rho ( 4 ) −( rho ( 6 ) − rho ( 1 ) * rho ( 3 ) ) . . .
22 *( rho ( 7 ) − rho ( 1 ) * rho ( 4 ) ) / (1 − rho ( 1 ) ˆ 2 ) ;
23 f o r j =1 : s t e p n
24 payment ( 1 , j ) = f a c e *(1+ coupon ( j ) ) ;
25 end
26 SP1 ( 1 ) =S ( 1 ) ; SP2 ( 1 ) =S ( 2 ) ; SP3 ( 1 ) =S ( 3 ) ; SP4 ( 1 ) =S ( 4 ) ; SP5 ( 1 ) =S ( 5 ) ; r i s k =0;
27 f o r i =1 : ns
28 Z= randn (N, 5 ) ;
29 Z1=Z ( : , 1 ) ;
30 Z2= rho ( 1 ) *Z ( : , 1 ) + s q r t (1 − rho ( 1 ) ˆ 2 ) *Z ( : , 2 ) ;
31 Z3= rho ( 2 ) *Z ( : , 1 ) +( rho ( 5 ) − rho ( 1 ) * rho ( 2 ) ) / s q r t (1 − rho ( 1 ) ˆ 2 ) . . .
32 *Z ( : , 2 ) + a l p h a *Z ( : , 3 ) ;
33 Z4= rho ( 3 ) *Z ( : , 1 ) +( rho ( 6 ) − rho ( 1 ) * rho ( 3 ) ) / s q r t (1 − rho ( 1 ) ˆ 2 ) . . .
34 *Z ( : , 2 ) +( b e t a / a l p h a ) *Z ( : , 3 ) + s q r t ( d e l t a −( b e t a / a l p h a ) ˆ 2 ) *Z ( : , 4 ) ;
35 Z5= rho ( 4 ) *Z ( : , 1 ) +( rho ( 7 ) − rho ( 1 ) * rho ( 4 ) ) / s q r t (1 − rho ( 1 ) ˆ 2 ) . . .
36 *Z ( : , 2 ) +gamma / a l p h a *Z ( : , 3 ) +( lambda −( b e t a *gamma / a l p h a ˆ 2 ) ) . . .
37 / s q r t ( d e l t a −( b e t a / a l p h a ) ˆ 2 ) *Z ( : , 4 ) + s q r t (1 − rho ( 4 ) ˆ2 −( rho ( 7 ) . . .
38 − rho ( 1 ) * rho ( 4 ) ) ˆ 2 / ( 1 − rho ( 1 ) ˆ 2 ) −(gamma / a l p h a ) ˆ2 −( lambda − b e t a . . .
39 *gamma / a l p h a ˆ 2 ) ˆ 2 / ( d e l t a −( b e t a / a l p h a ) ˆ 2 ) ) *Z ( : , 5 ) ;
40

41 f o r j =1 :N
42 SP1 ( j +1)=SP1 ( j ) * exp ( ( r −0 .5* v o l ( 1 ) ˆ 2 ) * d t + v o l ( 1 ) * s q r t ( d t ) *Z1 ( j ) ) ;
43 SP2 ( j +1)=SP2 ( j ) * exp ( ( r −0 .5* v o l ( 2 ) ˆ 2 ) * d t + v o l ( 2 ) * s q r t ( d t ) *Z2 ( j ) ) ;
44 SP3 ( j +1)=SP3 ( j ) * exp ( ( r −0 .5* v o l ( 3 ) ˆ 2 ) * d t + v o l ( 3 ) * s q r t ( d t ) *Z3 ( j ) ) ;
45 SP4 ( j +1)=SP4 ( j ) * exp ( ( r −0 .5* v o l ( 4 ) ˆ 2 ) * d t + v o l ( 4 ) * s q r t ( d t ) *Z4 ( j ) ) ;
46 SP5 ( j +1)=SP5 ( j ) * exp ( ( r −0 .5* v o l ( 5 ) ˆ 2 ) * d t + v o l ( 5 ) * s q r t ( d t ) *Z5 ( j ) ) ;
47 end
48 WP=min ( [ SP1 ; SP2 ; SP3 ; SP4 ; SP5 ] ) ;
49 s t r i k e c h =WP( s t e p ) ;
50 p a y o f f ( 1 , : ) =0 ;
51 t a g =0;
52 f o r j =1 : s t e p n
53 i f s t r i k e c h ( 1 , j )>= S r a t e ( j )
54 p a y o f f ( j ) =payment ( j ) ;
55 t a g =1;
56 b r e a k ;
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57 end
58 end
59 i f t a g == 0
60 k i e v e n t = any (WP( : )<k i b ) ;
61 i f k i e v e n t == 0
62 i f (WP( end )>=k i b )
63 p a y o f f ( 1 , end ) = f a c e *(1+dummy) ;
64 end
65 e l s e
66 p a y o f f ( end ) = f a c e *WP( end ) ;
67 r i s k = r i s k +1;
68 end
69 end
70 dsum=dsum+ p a y o f f ;
71 end
72 e x p p a y o f f =dsum / ns ;
73 f o r j =1 : s t e p n
74 d i s c p a y o f f ( j ) = e x p p a y o f f ( j ) * exp ( − r * s t e p ( j ) / 3 6 0 ) ;
75 end
76 ELS Pr ice =sum ( d i s c p a y o f f )
77 R i s k r a t e = r i s k / ns
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