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1. Introduction

Through the progressive evolution of the domains encompassing partial differential equations,
nonlinear analysis, and other cognate disciplines, modern harmonic analysis, by virtue of its
idiosyncratic perspectives and methodologies, has established itself as an indispensable apparatus
for the intricate classification and stratification of functions. This analytical ingenuity has, in turn,
precipitated the formulation of multifarious specialized theories concerning function spaces, including,
but not limited to: Hardy spaces, Herz spaces, and Morrey spaces. As early as 1931, Orlicz, in the
seminal work [1], initiated the articulation and preliminary investigation of the theoretical framework
underpinning variable exponent Lp spaces. Nevertheless, it was not until the year 1991, after the
dissemination of the pivotal contributions by Kováčik and Rákosnı́k (refer to [2]), that the paradigm
of variable function spaces garnered significant and widespread scholarly attention. In [2, 3], the
authors undertook the generalization of classical Sobolev and Lebesgue spaces, thereby extending
them to the domains of variable Sobolev and Lebesgue spaces, while rigorously establishing the
foundational properties inherent to these variable function spaces. Furthermore, such variable function
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spaces have found extensive applications in the analysis of fluid mechanics and differential equations
characterized by non-standard growth conditions (see [4]). This has incited a substantial body of
scholarly inquiry, wherein numerous researchers have dedicated considerable effort to the study
of variable exponent spaces, yielding a proliferation of results. Additionally, this exploration has
precipitated the development and investigation of further variable exponent spaces, including, but not
limited to, variable Triebel-Lizorkin spaces, variable Besov spaces, variable Herz spaces, and variable
Hardy spaces (see [5–10]).

In recent years, significant progress has been made in establishing the boundedness of numerous
pivotal operators within the framework of harmonic analysis on variable exponent function spaces.
For instance, in [5, 9–12], the respective authors have undertaken comprehensive investigations into
the boundedness of various integral operators on such variable function spaces, employing the intricate
properties inherent to variable Lp spaces as a foundational analytical tool. Conversely, since the seminal
contributions of Peetre (see [13]), the advancement of Morrey spaces has progressively emerged
as a dominant paradigm within the corpus of modern harmonic analysis. Numerous scholars have
undertaken rigorous inquiries into the structural and functional properties of central Morrey spaces and
central BMO spaces (refer to [10,14]), thereby rendering the theory of operator boundedness on central
Morrey spaces increasingly comprehensive and refined. Motivated by the burgeoning development of
variable function spaces, Fu et al., in their influential work [15], extended the classical central Morrey
spaces from a constant exponent framework to the realm of variable exponents in the year 2019.
They introduced the conceptual framework of central Morrey spaces and central BMO spaces with
variable exponents, wherein they established comprehensive estimates for singular integral operators
and their associated commutators. This endeavor significantly advanced the theoretical development
and analytical sophistication of central Morrey spaces. Leveraging the conceptual underpinnings and
intrinsic properties of variable function spaces, it is a natural intellectual progression for scholars
to investigate the boundedness of operators within this framework. Between the years 2019 and
2022, various researchers engaged in the rigorous examination of the boundedness of numerous
classes of operators and their commutators within the context of variable central Morrey spaces. For
instance, Wang et al., in [16, 17], undertook an extensive exploration of the boundedness properties of
multilinear singular integral operators and multilinear fractional integral operators, thereby extending
and enriching the foundational study presented in [15]. Moreover, in 2022, Hussain et al., in [18],
addressed the boundedness of the Hardy operator within the framework of variable central Morrey
spaces, further advancing the theoretical discourse in this domain.

In the year 1920, Hardy initially introduced the notion of the one-dimensional Hardy operator,
as delineated in [19]. Subsequently, an increasing number of researchers engaged in the study
and refinement of the definition, alongside the exploration of various generalized forms of Hardy-
type operators. In 1995, Christ and Grafakos, in their seminal work [20], extended the conceptual
framework of the Hardy operator from the one-dimensional case to the n-dimensional setting and
rigorously established its boundedness within the context of Lp spaces. Fu et al., in [21], advanced
the generalization of Hardy operators by introducing the notion of n-dimensional fractional Hardy
operators. Furthermore, they meticulously established the boundedness of the commutators associated
with these operators within the analytical frameworks of Lebesgue spaces and homogeneous Herz
spaces. Subsequently, the boundedness properties of Hardy operators garnered significant scholarly
interest, motivating numerous researchers to delve into this intricate subject. Notably, Fu et al., in [22],
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undertook a profound investigation into the boundedness of n-dimensional rough Hardy operators
and their associated commutators, thereby contributing substantially to the theoretical advancement
of this field. Hussain et al., in [18], derived rigorous estimates pertaining to fractional Hardy operators
and their commutators within the analytical framework of variable o-central Morrey spaces, thereby
augmenting the theoretical understanding of operator behavior in such variable exponent settings.
These two scholarly contributions serve as a profound source of intellectual inspiration. With the
ever-expanding impact of variable exponent function spaces on the advancement of disciplines such
as information science, and related fields, the investigation into the boundedness of multilinear
operators within the framework of variable exponent function spaces has, in recent years, ascended
to the forefront of contemporary research endeavors. Accordingly, this paper endeavors to achieve a
substantive breakthrough in the examination of the boundedness properties of n-dimensional bilinear
fractional Hardy operators and their associated commutators within the framework of weighted central
Morrey spaces characterized by variable exponents. Building upon the foundational analysis of the
boundedness of bilinear fractional Hardy operators, this study further delves into the boundedness
of adjoint bilinear fractional Hardy operators and their corresponding commutators. Subsequently, it
undertakes a comparative assessment of the methodologies and results pertaining to the boundedness
of bilinear fractional operators, thereby deriving pertinent conclusions regarding the broader class of
multilinear operators.

Let ζ1 and ζ2 be functions residing in Rn that are locally integrable, and let the parameter τ satisfy
0 ≤ τ < mn. The n-dimensional multilinear fractional Hardy operator, in conjunction with its adjoint
counterpart, is formally defined as follows:

Hτ(ζ1, ..., ζm) =
1
|t|nm−τ

∫
|(ξ1,...,ξm)|<|t|

m∏
i=1

ζi(ξi)dξ1, ..., dξm.

H∗τ(ζ1, ..., ζm) =

∫
|(ξ1,...,ξm)|>|t|

1
|ξ|nm−τ

m∏
i=1

ζi(ξi)dξ1, ..., dξm.

Moreover, the commutators associated with the n-dimensional multilinear fractional Hardy operator,
as well as its adjoint counterpart, are rigorously characterized by the following expressions:

[b,Hτ](ζ1, ..., ζm)(ξ) =

m∑
i=1

[bi,Hi
τ](ζ1, ..., ζm)(ξ)

[b,H∗τ](ζ1, ..., ζm)(ξ) =

m∑
i=1

[bi,H∗iτ ](ζ1, ..., ζm)(ξ)

[bi,Hi
τ](ζ1, ..., ζm)(ξ) = bi(ξ)Hτ(ζ1, ..., ζm)(ξ) − Hτ(ζ1, ..., ζi−1, ζibi, ζi+1, ..., ζm)(ξ).

[bi,H∗iτ ](ζ1, ..., ζm)(ξ) = bi(ξ)H∗τ(ζ1, ..., ζm)(ξ) − H∗τ(ζ1, ..., ζi−1, ζibi, ζi+1, ..., ζm)(ξ).

Subsequently, we shall elucidate the structural framework of this treatise. In Section 2, we
commence by succinctly recapitulating certain foundational notations and pivotal lemmas within
the theory of variable Lebesgue spaces, concomitantly introducing the formal definitions of central
bounded mean oscillation (BMO) spaces and weighted central Morrey spaces characterized by variable

AIMS Mathematics Volume 10, Issue 5, 10431–10451.



10434

exponents. Thereafter, in Section 3, we shall rigorously establish the boundedness properties of the n-
dimensional bilinear fractional Hardy operator and its adjoint operator when acting upon weighted
central Morrey spaces endowed with variable exponents. Finally, in Section 4, we shall expound
upon the boundedness of the commutators associated with the n-dimensional bilinear fractional Hardy
operator and its adjoint operator within the framework of central Morrey spaces exhibiting variable
exponents. To govern the continuity prerequisites of the m-linear fractional Hardy operator, we shall
invoke the boundedness properties of the fractional integral, formally delineated by the expression:

Iτ(h)(ξ) =

∫
Rn

h(η)
|ξ − η|n−τ

dη.

2. Symbols and descriptions

In the subsequent exposition, we shall delineate certain foundational attributes of variable Lebesgue
spaces alongside pivotal definitions pertaining to variable exponent function spaces. Throughout the
entirety of this treatise, we employ the notations |B|, C, and χB to signify, respectively, the Lebesgue
measure, a generic constant, and the characteristic function corresponding to a measurable subset B ⊂
Rn.

Let E ⊂ Rn be an open set and q(·) : E → [1,∞) a measurable function. The space Lq(·)(E) is
defined as the collection of measurable functions ζ on E for which there exists a constant o such that
the integral ∫

E

(
|ζ(x)|
o

)q(x)

dx < ∞.

This set is endowed with the structure of a Banach function space upon the imposition of the
Luxemburg-Nakano norm, articulated as

‖ζ‖Lq(·)(E) = inf
{
o > 0 :

∫
E

(
|ζ(x)|
o

)q(x)

dx ≤ 1
}
.

Such spaces are denominated as variable Lebsgue spaces Lq(·), insofar as they extend and generalize
the classical framework of standard Lq spaces.

The space Lq(·)
loc (F) is rigorously characterized as

Lq(·)
loc (F) = {ζ : ζ ∈ Lq(·)(E) f or all compact subsets E ⊂ F}.

We designate P(F) as the collection of all measurable functions q(·) : F → (1,∞) satisfying the
condition where

q− := essinf
x∈F

q(x), q+ := esssup
x∈F

q(x).

Furthermore, q′(·) signifies the conjugate exponent corresponding to q(·), defined implicitly through
the functional relationship

1
q(·)

+
1

q′(·)
= 1,

thereby establishing the duality condition inherent in their reciprocal interaction. Let D(F) denote the
subset of P(F) for which the Hardy-Littlewood maximal operatorM, defined by

Mζ(x) = sup
r

1
|Br|

∫
Br∩F
|ζ(y)|dy
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exhibits boundedness on the space Lp(·)(F). Here, Br = {y ∈ Rn : |x − y| < r} represents the ball of
radius r centered at x.

Within the framework of variable Lp(·) spaces, several pivotal lemmas are established as follows.

Definition 2.1. Let q(·) be a real-valued function defined on Rn. The following designations and
properties are articulated:
(i) Clog

loc(Rn) represents the set of all locally log-Hölder continuous functions q(·) satisfying

|q(x) − q(y)| ≤
−C

log(|x − y|)
, |y − x| <

1
2
, x, y ∈ Rn.

(ii) For q(·) ∈ Clog
0 (Rn), the following condition holds at the origin:

|q(x) − q(0)| ≤
C

log( 1
|x| + e)

, x ∈ Rn.

(iii) For q(·) ∈ Clog
∞ (Rn), the following inequality is satisfied at infinity:

|q(x) − q∞| ≤
C∞

log(|x| + e)
, x ∈ Rn.

(iv) The space Clog = C
log
loc

⋂
C

log
∞ denotes the set of all globally log-Hölder continuous functions q(·).

It has been demonstrated in [24] that if q(·) ∈ P(Rn) ∩ Clog(Rn), the Hardy-Littlewood maximal
operatorM is bounded on Lq(·)(Rn).

Suppose w(x) is a weight function on Rn that is nonnegative and locally integrable. The space
Lq(·)(w) comprises all complex-valued functions ζ on Rn such that ζw

1
q(·) ∈ Lq(·)(Rn). This space forms a

Banach function space with the norm

‖ζ‖Lq(·)(w) = ‖ζw
1

q(·) ‖Lq(·) .

In [23], Benjamin Muckenhoupt introduced the Ap-weight theory for (1 < p < ∞) on Rn.
Subsequently, Noi and Izuki extended the Muckenhoupt Ap-class by allowing p to vary, as described
in [25, 26].

Definition 2.2. Assume that q(·) ∈ P(Rn). A weight w is deemed an Aq(·)-weight if it satisfies the
condition

sup
B
|B|−1‖w−1/q(·)χB‖Lq′(·)‖w1/q(·)χB‖Lq(·) < ∞,

where the supremum is taken over all balls B ⊂ Rn. It was established in [27] that w ∈ Aq(·) if and only if
the Hardy-Littlewood maximal operatorM is bounded on the variable exponent Lebesgue space Lq(·).

Remark 2.3. [25] Let q(·), p(·) ∈ P(Rn) ∩ Clog(Rn) and suppose that q(·) ≤ p(·) holds pointwise on
Rn. Under these stipulations, it is deducible that

A1 ⊂ Aq(·) ⊂ Ap(·).

AIMS Mathematics Volume 10, Issue 5, 10431–10451.



10436

Definition 2.4. Let τ ∈ (0, n) and suppose that p1(·), p2(·) ∈ P(Rn) such that the relation

1
p1(x)

=
1

p2(x)
+
τ

n

holds pointwise for all x ∈ Rn. A weight w is designated as an A(p1(·), p2(·))-weight if it satisfies the
inequality

|B|
τ
n−1‖χB‖(Lp1(·)(wp1(·)))′‖χB‖Lp2(·)(wp2(·)) ≤ C,

where the constant C is independent of the choice of the ball B ⊂ Rn.

Definition 2.5. [25] Assume that τ ∈ (0, n), p1(·), p2(·) ∈ P(Rn), and that the relationship

1
p1(x)

=
1

p2(x)
+
τ

n

holds pointwise on Rn. Under these conditions, it is both necessary and sufficient for w ∈ A(p1(·),p2(·))

that wp2(·) ∈ A1+p2(·)/p′1(·).

Definition 2.6. If p(·) ∈ P and o ∈ R, the weighted central Morrey space with a variable exponent,
denoted as Ḃp(·),o(wp(·)), is defined by:

Ḃp(·),o(w) = {ζ ∈ Lp(·)
loc (w) : ‖ζ‖Ḃp(·),o(w) < ∞},

where the norm is given by:

‖ζ‖Ḃp(·),o(w) = sup
R>0

‖ζχB(0,R)‖Lp(·)(w)

|B(0,R)|o‖χB(0,R)‖Lp(·)(w)
.

Definition 2.7. If p(·) ∈ P and o < 1
n , the weighted o−BMO space with a variable exponent, denoted

by CBMOp(·),o(wp(·)), is defined as:

CBMOp(·),o(w) = {ζ ∈ Lp(·)
loc (w) : ‖ζ‖CBMOp(·),o(w) < ∞},

where the norm is expressed by:

‖ζ‖CBMOp(·),o(w) = sup
R>0

‖(ζ − ζB(0,R))χB(0,R)‖Lp(·)(w)

|B(0,R)|o‖χB(0,R)‖Lp(·)(w)
.

Lemma 2.8. [28] Let X be a Banach function space. Then the following properties hold:
(1) The associated space X′, defined as the Kothe dual of X, is necessarily also a Banach function

space.
(2) The norms ‖·‖X and ‖·‖(X′)′ are equivalent, preserving the parallel structure of these dual spaces.
(3) (Generalized Hölder inequality) For every ζ ∈ X′ and ψ ∈ X, the inequality∫

Rn
|ψ(x)ζ(x)| ≤ ‖ζ‖X′‖ψ‖X

holds, characterizing the duality between X and X′.
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Proposition 2.9. [29] Let E be an open set and let p(·) ∈ P(E) satisfy the following conditions:

|p(t) − p(z)| ≤
−c

log(|t − z|)
,

1
2
≥ |t − z| (2.1)

|p(t) − p(z)| ≤
−c

log(|t| + e)
, |t| ≤ |z|. (2.2)

Then p(·) ∈ D(Rn), where C is a positive constant independent of t and z.

Lemma 2.10. [30] Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal
operatorM is weakly bounded on X, satisfying the condition

‖χ{Mζ>ρ}‖X . ρ
−1‖ζ‖X

for all ρ > 0 and every ζ ∈ X. Under this assumption, it follows that

sup
B:ball

1
|B|
‖χB‖X‖χB‖X′ < ∞.

Lemma 2.11. [25] For any ball B ⊂ Rn and any Banach function space X, it holds that

1 ≤
1
|B|
‖χB‖X‖χB‖X′ .

Lemma 2.12. [25] Let X be a Banach function space, and suppose the Hardy-Littlewood maximal
operatorM is bounded on the associate space X′. Then, for any measurable sets E ⊂ Rn and S ⊂ E,
there exists a constant σ ∈ (0, 1), such that the inequality

‖χS ‖X

‖χE‖X
.

(
|S |
|E|

)σ
is satisfied, where the implicit constant is independent of S and E.

Lemma 2.13. [31]
(1) The space X(Rn,w), defined as

‖ζ‖X(Rn,w) = ‖ζw‖X,

is a Banach function space under the norm

X(Rn,w) = {ζ ∈ M : ζw ∈ X}.

(2) The associated space X′(Rn,w−1), defined analogously, is likewise a Banach function space.

Remark 2.14. Let p(·) ∈ P(Rn). Upon comparing the variable exponent Lebesgue spaces Lp(·)(wp(·))
and Lp′(·)(w−p′(·)) with the generalized function space X(Rn,W), the following observations arise:

1: If w = W and X = Lp(·)(Rn), then

Lp(·)(wp(·)) = Lp(·)(Rn,w).

2: If w−1 = W and X = Lp′(·)(Rn), then

Lp′(·)(Rn,w−1) = Lp′(·)(w−p′(·)).

By invoking the result of Lemma 2.6, we deduce that
Lp′(·)(Rn,w−1) = (Lp(·)(Rn,w))′ = Lp′(·)(w−p′(·)) = (Lp(·)(wp(·)))′.
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Lemma 2.15. [32] Assume p(·) ∈ P(Rn)∩ Clog(Rn) and that the weight wp2(·) ∈ Ap2(·) ensures w−p′2(·) ∈

Ap′2(·). Under these conditions, there exist constantsσ33, σ44 ∈ (0, 1) such that the following inequalities
hold:

‖χS ‖(LP2(·)wp2(·))′

‖χE‖(LP2(·)wp2(·))′
.

(
|S |
|E|

)σ33

,
‖χS ‖(LP1(·)wp1(·))′

‖χE‖(LP1(·)wp1(·))′
.

(
|S |
|E|

)σ44

(2.3)

for every ball E ⊂ Rn and for all measurable subsets S ⊂ E.
In an analogous manner, should the conditions p1(·), p2(·) ∈ D(Rn) be satisfied, it follows by virtue

of Lemma 2.15 that there exist constants σ11 ∈ (0, 1
(q1)+ ) and σ22 ∈ (0, 1

(q2)+
) such that the following

inequalities hold:
‖χS ‖Lp1(·)(Rn)

‖χE‖Lp1(·)(Rn)
≤ C

(
|S |
|E|

)σ11

(2.4)

‖χS ‖Lp2(·)(Rn)

‖χE‖Lp2(·)(Rn)
≤ C

(
|S |
|E|

)σ22

(2.5)

for all balls E ⊂ Rn and S ⊂ E.

Lemma 2.16. [25] Let p(·) ∈ P(Rn)∩Clog(Rn), 0 < τ < n
p+
, and suppose the relationship 1

q(.) = 1
p(.) −

τ
n

holds. Under these conditions, the fractional integral operator Iτ is bounded from the variable exponent
Lebesgue space Lp(.)(wP(.)) to Lq(.)(wq(.)) provided that the weight w satisfies the Muckenhoupt-type
condition w ∈ A(p(.), q(.)).

Lemma 2.17. [33] Assume that q(·) ∈ P(Rn). Then, for any b ∈ BMO and for all integers all j, i ∈ Z
with j > i, the following inequalities hold:

1. The characterization of the BMO via variable exponent Lebesgue norms is:

C−1‖b‖BMO ≤ sup
B:Ball

1
‖χB‖Lq(·)

‖(b − bB)χB‖Lq(·) ≤ C‖b‖BMO, (2.6)

where bB = 1
|B|

∫
B

b(x)dx, and C is a constant independent of b and B.
2. A decay estimate for the difference of b over disjoint balls is:

‖(b − bBi)χB j‖Lq(·) ≤ C( j − i)‖b‖BMO‖χB j‖Lq(·) , (2.7)

where Bi and B j are nested balls, and C is a constant depending only on q(·).

3. Boundedness properties of the n-dimensional bilinear fractional Hardy operator and its
adjoint operator

Theorem 3.1. Presume that p(·) ∈ P(Rn) complies with the stipulations delineated in conditions (2.1)
and (2.2) as articulated in Proposition 2.9. Let us prescribe the variable exponent q(·) such that

1
q(·) + τ

n = 1
p(·) , where 1

p(·) = 1
q1(·) + 1

q2(·) . Additionally, assume that wq1(·),wq2(·) ∈ A1. Define the parameter
o = o1 + o2 + τ

n and impose the restriction o > (σ33 + σ44 + σ), where the constants σ33, σ44, and σ
are identical to those introduced in Lemmas (2.15) and (2.12). Under these assumptions, the following
inequality holds:

‖Hτ(ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)).
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Proof. If we formulate the identities ζ1 = ζ1 · χi = ζ1 · χBi and ζ2 = ζ2 · χi = ζ2 · χBi for an arbitrary
i ∈ Z, it follows that the functions ζ1 and ζ2 can be decomposed in the following manner:

ζ1(x) =

∞∑
i=−∞

ζ1(x) · χi(x) =

∞∑
i=−∞

ζ1χ(x)Bi .

ζ2(x) =

∞∑
i=−∞

ζ2(x) · χi(x) =

∞∑
i=−∞

ζ2χ(x)Bi .

Leveraging the extended Hölder inequality, we deduce the following bound:

|Hτ(ζ1, ζ2)(x) · χ j(x)| ≤
1
|x|2n−τ

∫
B j

∫
B j

|ζ1(y1)||ζ2(y2)|dy1dy2 · χ j(x)

=
1
|x|2n−τ

∫
B j

|ζ1(y1)|dy1

∫
B j

|ζ2(y2)|dy2 · χ j(x)

≤ C2−2 jn
j∑

i=−∞

‖ζ1‖Lq1(.)(wq1(·))‖χi‖(Lq1(.)(wq1(·)))′‖ζ2‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′2
jτχ j(x).

‖Hτ(ζ1, ζ2) · χ j‖Lq(.)(wq(·))

≤ C2 jτ
j∑

i=−∞

‖ζ1‖Lq1(.)(wq1(·))‖χi‖(Lq1(.)(wq1(·)))′‖ζ2‖Lq2(.)(wq2(·))‖χi‖(Lq2(.)(wq2(·)))′2
−2 jn‖χ j‖Lq(.)(wq(·))

≤ C
j∑

i=−∞

‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′2
− j(2n−τ)‖χ j‖Lq(.)(wq(·)). (3.1)

We postulate ζ = χB j and exploit the defining characteristics of the operator Iτ, yielding

Iτ(χB j)(x) ≥ C2 jτχB j(x),

χB j(x) ≤ C2− jτIτ(χB j)(x).

Applying the norm to both sides and leveraging the results encapsulated in Lemmas 2.11 and 2.16, we
infer the following estimate:

‖χB j‖Lq(·)(wq(·)) ≤ C2− jτ||IτχB j ||Lq(·)(wq(·))

≤ C2− jτ||χB j ||Lp(·)(wp(·))

≤ C2− jτ||χB j ||Lq1(·)(wq1(·))||χB j ||Lq2(·)(wq2(·))

≤ C2 j(2n−τ)‖χB j‖
−1
(Lq1(·)(wq1(·)))′‖χB j‖

−1
(Lq2(·)(wq2(·)))′ . (3.2)
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To advance the argument, the substitution of Eq (3.2) into inequality (3.1), followed by the invocation
of Lemma 2.15, furnishes the bound

‖Hτ(ζ1, ζ2) · χ j‖Lq(.)(wq(·)) ≤ C
j∑

i=−∞

‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′

× ‖χ j‖
−1
(Lq1(.)(wq1(·)))′‖χ j‖

−1
(Lq2(.)(wq2(·)))′

≤ C
j∑

i=−∞

‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))
‖χi‖(Lq2(.)(wq2(·)))′

‖χ j‖(Lq2(.)(wq2(·)))′

‖χi‖(Lq1(.)(wq1(·)))′

‖χ j‖(Lq1(.)(wq1(·)))′

≤ C
j∑

i=−∞

2nσ33(i− j)2nσ44(i− j)‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))

≤ C
j∑

i=−∞

2(nσ33+nσ44)(i− j)‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·)).

‖Hτ(ζ1, ζ2) · χ j‖Lq(.)(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)w(Bi)o1w(Bi)o2

× ‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·)).

Under the structural stipulations 1
q(·) = 1

q1(·) + 1
q2(·) −

τ
n and o = o1 + o2 + τ

n , one may expound upon the
norm relation of the characteristic function χi in a manner that accentuates the fundamental measure-
theoretic decomposition:

‖χi‖Lq(·)(wq(·)) = w(Bi)
1

q(·) = w(Bi)
1

q1(·) + 1
q2(·)−

τ
n = ‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·))w(Bi)−

τ
n .

Subsequently, an invocation of Lemma 2.12 facilitates the reconfiguration of the preceding inequality
into a more structurally refined form:

‖Hτ(ζ1, ζ2) · χ j‖Lq(. )(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)w(Bi)o1+o2+ τ
n ‖χi‖Lq(·)(wq(·))

≤ C‖ζ1‖Ḃq1 ,o1 (wq1(·))‖ζ2‖Ḃq2 ,o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)w(B j)o
w(Bi)o

w(B j)o
‖χ j‖Lq(·)(wq(·))

‖χi‖Lq(·)(wq(·))

‖χ j‖Lq(·)(wq(·))

≤ C‖ζ1‖Ḃq1 ,o1 (wq1(·))‖ζ2‖Ḃq2 ,o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)w(B j)o
w(Bi)o

w(B j)o
‖χ j‖Lq(·)(wq(·))

‖χi‖Lq(·)(wq(·))

‖χ j‖Lq(·)(wq(·))

≤ C‖ζ1‖Ḃq1 ,o1 (wq1(·))‖ζ2‖Ḃq2 ,o2 (wq2(·))

j∑
i=−∞

2(σ33+σ44+σ+o)n(i− j)w(B j)o‖χ j‖Lq(·)(wq(·)).

This sequence of transformations, meticulously orchestrated through a synthesis of functional analytic
principles and weighted norm inequalities, underscores the interplay between the scaling properties of
the weight functions and the underlying structure of the central Morrey space embeddings.

‖Hτ(ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(σ33+σ44+σ+o)n(i− j).
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By invoking the constraint o > −(σ33 +σ44 +σ), one may deduce the requisite boundedness condition,
culminating in the refined estimate

‖Hτ(ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)).

Theorem 3.2. Assume that q1(·) and q2(·), both elements of the class P(Rn), adhere to the constraints
prescribed by conditions (2.1) and (2.2) as delineated in Proposition 2.9. The variable exponent q(·) is
then rigorously defined by the relation:

1
q(·)

=
1

q2(·)
+

1
q1(·)

−
τ

n
.

Let o satisfy the expression o = o1 + o2 + τ
n and impose the restriction τ < n(σ11 + σ22 − σ + o),

where the constants σ11, σ22, and σ correspond to those appearing in inequalities (2.4) and (2.5).
Under these circumstances, the subsequent inequality holds:

‖H∗τ(ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)).

Proof. By invoking Hölder’s inequality, we establish the following upper bound:

|H∗τ(ζ1, ζ2)(x) · χ j(x)| ≤
∫

Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)||ζ2(y)|dy1dy2 · χ j(x)

≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))

× ‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′χ j(x).

Consequently, taking the norm in the weighted variable exponent Lebesgue space, one arrives at

‖H∗τ(ζ1, ζ2)(x) · χ j‖Lq(.)(wq(·)) ≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))

× ‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′‖χ j‖Lq(·)(wq(·)).

Employing the inequality (3.2), one deduces the refined estimate:

‖H∗τ(ζ1, ζ2)(x) · χ j‖Lq(.)(wq(·)) ≤ C
∞∑

i= j+1

‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))

× ‖χi‖
−1
Lq(·)(wq(·))‖χ j‖Lq(·)(wq(·))

≤ C
∞∑

i= j+1

2nσ( j−i)‖ζ1‖Lq1(.)(wq1(·))‖ζ2‖Lq2(.)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2nσ( j−i) w(Bi)o1

w(B j)o1
w(B j)o1

w(Bi)o2

w(B j)o2
w(B j)o2

×
‖χi‖Lq1(·)(wq1(·))

‖χ j‖Lq1(·)(wq1(·))
‖χ j‖Lq1(·)(wq1(·))

‖χi‖Lq2(·)(wq2(·))

‖χ j‖Lq2(·)(wq2(·))
‖χ j‖Lq2(·)(wq2(·))

AIMS Mathematics Volume 10, Issue 5, 10431–10451.



10442

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2(nσ−nσ11−nσ22)( j−i)
(

w(Bi)
w(B j)

)o1+o2

w(B j)o1+o2

× ‖χ j‖Lq1(·)(wq1(·))‖χ j‖Lq2(·)(wq2(·)).

In the present exposition, we invoke the fundamental identity 1
q(·) = 1

q1(·) + 1
q2(·) −

τ
n in conjunction with

the structural relation o = o1 + o2 + τ
n , which subsequently yields the expression

‖χ j‖Lq(·)(wq(·)) = ‖χ j‖Lq1(·)(wq1(·))‖χ j‖Lq2(·)(wq2(·))w(B j)−
τ
n .

Consequently, leveraging the preceding formulation, we establish the upper bound

‖H∗τ(ζ1, ζ2)(x) · χ j‖Lq(.)(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2(nσ−nσ11−nσ22)( j−i)

×

(
w(Bi)
w(B j)

)o1+o2

w(B j)o1+o2+ τ
n ‖χ j‖Lq(·)(wq(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2(nσ−nσ11−nσ22−no+τ)( j−i)w(B j)o‖χ j‖Lq(·)(wq(·))

‖H∗τ(ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2(nσ−nσ11−nσ22−no+τ)( j−i).

In light of the imposed constraint τ < n(σ11 +σ22−σ+o), the summation converges, thereby furnishing
the desired boundedness assertion

‖H∗τ(ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)).

4. Commutators associated with the n-dimensional bilinear fractional Hardy operator and its
adjoint operator

Theorem 4.1. Let p(·) ∈ P(Rn) be a function that satisfies the hypotheses stipulated by conditions (2.1)
and (2.2), as articulated in Proposition 2.9. The variable exponent q(·) is hereby defined via the relation

1
q(·)

+
τ

n
=

1
p(·)

,

where 1
p(·) = 1

q1(·) + 1
q2(·) .

Assume further that o = ν+o1 +o2 + τ
n , and that the inequality o > (σ33 +σ44 +σ) is satisfied, where

σ33, σ44, and σ are constants consistent with those introduced in Lemma (2.15). Then, the following
inequality holds:

‖[b,Hτ](ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖b‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)),

where b = (b1, b2) and b ∈ CBMOq(·),ν(wq(·)).
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Proof. By invoking the generalized Hölder inequality in conjunction with Lemma 2.17, we derive the
ensuing estimate:

|[b1,Hτ](ζ1, ζ2)(x) · χ j(x)| ≤
1
|x|2n−τ

∫
B j

∫
B j

|ζ1(y1)ζ2(y2)(b1(x) − b1(y1))|dy1dy2 · χ j(x)

≤
1
|x|2n−τ

j∑
i=−∞

∫
B j

∫
B j

|ζ1(y1)ζ2(y2)(b1(x) − (b1)Bi + (b1)Bi − b1(y1))|dy1dy2 · χ j(x)

≤
1
|x|2n−τ

j∑
i=−∞

∫
B j

∫
B j

|ζ1(y1)ζ2(y2)(b1(x) − (b1)Bi)|dy1dy2 · χ j(x)

+
1
|x|2n−τ

j∑
i=−∞

∫
B j

∫
B j

|ζ1(y1)ζ2(y2)(b1(y1) − (b1)Bi)|dy1dy2 · χ j(x)

= I + II.

The term I can then be estimated by employing the generalized Hölder inequality over variable
exponent weighted Lebesgue spaces. Explicitly, one obtains:

I =
1
|x|2n−τ

j∑
i=−∞

∫
B j

∫
B j

|ζ1(y1)ζ2(y2)(b1(x) − (b1)Bi)|dy1dy2 · χ j(x)

≤ C2− j(2n−τ)
j∑

i=−∞

‖ζ1i‖Lq1(.)(wq1(·))‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′ |(b1(x) − (b1)Bi)χ j(x)|.

‖I‖Lq(.)(wq(·)) ≤ C2− j(2n−τ)
j∑

i=−∞

‖ζ1i‖Lq1(.)(wq1(·))‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′‖(b1(x) − (b1)Bi)χ j(x)‖Lq(.)(wq(·))

≤ C2− j(2n−τ)
j∑

i=−∞

‖ζ1i‖Lq1(.)(wq1(·))‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′( j − i)‖b1‖BMO‖χ j‖Lq(.)(wq(·)). (4.1)

In a similar fashion, the term II may be estimated as follows:

II =
1
|x|2n−τ

j∑
i=−∞

∫
B j

∫
B j

|ζ1(y1)ζ2(y2)(b1(y1) − (b1)Bi)|dy1dy2 · χ j(x)

≤ C2− j(2n−τ)
j∑

i=−∞

‖ζ1i‖Lq1(.)(wq1(·))‖b1‖BMO‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′ |χ j(x)|

‖II‖Lq(.)(wq(·)) ≤ C2− j(2n−τ)
j∑

i=−∞

‖ζ1i‖Lq1(.)(wq1(·))‖b1‖BMO‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq1(·)))′‖χ j‖Lq(.)(wq(·)). (4.2)
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By virtue of inequalities (4.1) and (4.2), we deduce the following bound:

‖[b1,Hτ](ζ1, ζ2) · χ j‖Lq(.)(wq(·)) ≤ C2− j(2n−τ)
j∑

i=−∞

( j − i)‖ζ1i‖Lq1(.)(wq1(·))‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′‖b1‖BMO‖χ j‖Lq(.)(wq(·)).

‖[b1,Hτ](ζ1, ζ2) · χ j‖Lq(.)(wq(·))

≤ C
j∑

i=−∞

( j − i)‖b1‖BMO‖ζ1i‖Lq1(.)(wq1(·))‖ζ2i‖Lq2(.)(wq2(·))‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′2
− j(2n−τ)‖χ j‖Lq(.)(wq(·)).

(4.3)
In order to advance further, the substitution of (3.2) into (4.3) furnishes the ensuing inequality:

‖[b1,Hτ](ζ1, ζ2) · χ j‖Lq(. )(wq(·)) ≤ C
j∑

i=−∞

( j − i)‖b1‖BMO‖ζ1i‖Lq1(. )(wq1(·))‖ζ2i‖Lq2(. )(wq2(·))‖χi‖(Lq1(. )(wq1(·)))′‖χi‖(Lq2(. )(wq2(·)))′

× ‖χ j‖
−1
(Lq1(. )(wq1(·)))′‖χ j‖

−1
(Lq2(. )(wq2(·))

≤ C
j∑

i=−∞

( j − i)‖b1‖BMO‖ζ1i‖Lq1(. )(wq1(·))‖ζ2i‖Lq2(. )(wq2(·))
‖χi‖(Lq2(. )(wq2(·))

‖χ j‖(Lq2(. )(wq2(·)))′

‖χi‖(Lq1(. )(wq1(·)))′

‖χ j‖(Lq1(. )(wq1(·)))′

≤ C
j∑

i=−∞

2nσ33(i− j)2nσ44(i− j)( j − i)‖b1‖BMO‖ζ1i‖Lq1(. )(wq1(·))‖ζ2i‖Lq2(. )(wq2(·))

≤ C
j∑

i=−∞

2(nσ33+nσ44)(i− j)( j − i)‖b1‖BMO‖ζ1i‖Lq1(. )(wq1(·))‖ζ2i‖Lq2(. )(wq2(·)).

‖[b1,Hτ](ζ1, ζ2) · χ j‖Lq(. )(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)( j − i)‖b1‖BMOw(Bi)o1 w(Bi)o2

× ‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)( j − i)
‖(b1 − (b1)bi )χBi‖Lq(·)(wq(·))

‖χBi‖Lq(·)(wq(·))

× w(Bi)o1 w(Bi)o2‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)( j − i)
‖(b1 − (b1)bi )χBi‖Lq(·)(wq(·))

w(Bi)ν‖χBi‖Lq(·)(wq(·))

× w(Bi)νw(Bi)o1 w(Bi)o2‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(nσ33+nσ44)(i− j)( j − i)‖b1‖CBMOq(·),ν(wq(·))

× w(Bi)ν+o1+o2‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·)).

Under the stipulated conditions 1
q(·) = 1

q1(·) + 1
q2(·) −

τ
n and o = ν + o1 + o2 + τ

n , the norm expression can
be reformulated as follows:

‖χi‖Lq(·)(wq(·)) = w(Bi)
1

q(·) = w(Bi)
1

q1(·) + 1
q2(·)−

τ
n = ‖χi‖Lq1(·)(wq1(·))‖χi‖Lq2(·)(wq2(·))w(Bi)−

τ
n .
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The preceding inequality may be reformulated into an equivalent yet structurally refined expression, as
follows:

‖[b1,Hτ](ζ1, ζ2) · χ j‖Lq(.)(wq(·)) ≤ C‖b1‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

×

j∑
i=−∞

2(nσ33+nσ44)(i− j)w(Bi)ν+o1+o2+ τ
n ‖χi‖Lq(·)(wq(·))

≤ C‖b1‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1 ,o1 (wq1(·))‖ζ2‖Ḃq2 ,o2 (wq2(·))

×

j∑
i=−∞

2(nσ33+nσ44)(i− j)w(B j)o
w(Bi)o

w(B j)o
‖χ j‖Lq(·)(wq(·))

‖χi‖Lq(·)(wq(·))

‖χ j‖Lq(·)(wq(·))

≤ C‖b1‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq1(·))

×

j∑
i=−∞

2(σ33+σ44+σ+o)n(i− j)w(B j)o‖χ j‖Lq(·)(wq(·)).

The preceding inequality admits a further refinement into a more succinct and structurally elucidative
formulation, expressed as follows:

‖[b1,Hτ](ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖b1‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

j∑
i=−∞

2(σ33+σ44+σ+o)n(i− j).

By invoking the constraint o > −(σ33 + σ44 + σ), one secures the subsequent fundamental bound:

‖[b1,Hτ](ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖b1‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)).

In an analogous manner, a straightforward adaptation of the preceding argument yields the
corresponding estimate:

‖[b2,Hτ](ζ1, ζ2)‖Ḃq(·),o(wq(·)) ≤ C‖b2‖CBMOq(·),ν(wq(·))‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·)).

Theorem 4.2. Consider q1(·) and q2(·), elements of the class P(Rn), satisfying the constraints
enunciated in conditions (2.1) and (2.2) as expounded in Proposition 2.9. The variable exponent q(·)
is prescribed through the relation:

1
q(·)

=
1

q2(·)
+

1
q1(·)

−
τ

n
.

Let the parameter o be given as o = ν + o1 + o2 + τ
n , and suppose that the inequality o < nσ11 +

nσ22−nσ− τ
n is satisfied, where the constants σ11, σ22, and σ are those appearing in inequalities (2.4)

and (2.5). Under these assumptions, the following inequality holds:

‖[b,H∗τ](ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b1‖CBMOq(·),ν(wq(·)),

where b = (b1, b2) and b ∈ CBMOq(·),ν.
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Proof. By invoking Hölder’s inequality, one deduces the following bound:

|[b1,H∗τ](ζ1, ζ2)(x) · χ j(x)| ≤
∫

Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(x) − b1(y1))|dy1dy2 · χ j(x)

=

∫
Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(x) − (b1)Bi + (b1)Bi − b1(y1))|dy1dy2 · χ j(x)

≤

∫
Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(x) − (b1)Bi)|dy1dy2 · χ j(x)

+

∫
Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(y1) − (b1)Bi)|dy1dy2 · χ j(x)

= I + II.

I =

∫
Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(x) − (b1)Bi)|dy1dy2 · χ j(x)

II =

∫
Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(y1) − (b1)Bi)|dy1dy2 · χ j(x)

|I| ≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq1(.)(wq1(·))′‖χi‖(Lq2(.)(wq2(·)))′(b1(x1) − (b1)Bi) · χ j(x).

‖I‖Lq(·)(wq(·)) ≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′‖(b1(x1) − (b1)Bi) · χ j(x)‖Lq(·)(wq(·))

≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq1(.)(wq1(·)))′‖χi‖(Lq2(.)(wq2(·)))′‖b1‖BMO‖χ j‖Lq(·)(wq(·)). (4.4)

Now,

II =

∫
Rn\B j

∫
Rn\B j

1
|y|2n−τ |ζ1(y)ζ2(y)(b1(y1) − (b1)Bi)|dy1dy2 · χ j(x)

≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖(b1(y1) − (b1)Bi) · χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))‖χi‖(Lq2(.)(wq2(·)))′ · χ j(x).

By invoking Lemma 2.17, one establishes the ensuing bound:

‖II‖Lq(·)(wq(·)) ≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖(b1(y1) − (b1)Bi) · χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖(Lq2(.)(wq2(·)))′‖χ j‖Lq(·)(wq(·))

≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖b1‖BMO‖χi‖(Lq1(.)(wq1(·)))′‖ζ2i‖Lq2(.)(wq2(·))‖χi‖(Lq2(.)(wq2(·)))′‖χ j‖Lq(·)(wq(·)).

(4.5)

AIMS Mathematics Volume 10, Issue 5, 10431–10451.



10447

By synthesizing the implications of Eqs (4.4) and (4.5), one arrives at the following estimate:

‖[b1,H∗τ](ζ1, ζ2)(x) · χ j‖Lq(.)(wq(·)) ≤ C
∞∑

i= j+1

2−i(2n−τ)‖ζ1i‖Lq1(.)(wq1(·))‖b1‖BMO‖χi‖(Lq1(.)(wq1(·)))′

× ‖ζ2i‖Lq2(.)(wq2(·))‖χi‖(Lq2(.)(wq2(·)))′‖χ j‖Lq(·)(wq(·)) .

Subsequently, by invoking inequality (3.2) in conjunction with Lemma 2.15, one derives:

[b]‖[b1,H∗τ](ζ1, ζ2)(x) · χ j‖Lq(.)(wq(·)) ≤ C
∞∑

i= j+1

‖b1‖BMO‖ζ1i‖Lq1(.)(wq1(·))‖ζ2i‖Lq2(.)(wq2(·))

× ‖χi‖
−1
Lq(·)(wq(·))‖χ j‖Lq(·)(wq(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2nσ( j−i) ‖(b1 − (b1)bi)‖Lq(·)(wq(·))

‖χBi‖Lq(·)(wq(·))

×
w(Bi)o1

w(B j)o1
w(B j)o1

w(Bi)o2

w(B j)o2
w(B j)o2

×
‖χi‖Lq1(·)(wq1(·))

‖χ j‖Lq1(·)(wq1(·))
‖χ j‖Lq1(·)(wq1(·))

‖χi‖Lq2(·)(wq2(·))

‖χ j‖Lq2(·)(wq2(·))
‖χ j‖Lq2(·)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2nσ( j−i) ‖(b1 − (b1)bi)‖Lq(·)(wq(·))

w(Bi)ν‖χBi‖Lq(·)(wq(·))

× w(Bi)ν
w(Bi)o1

w(B j)o1
w(B j)o1

w(Bi)o2

w(B j)o2
w(B j)o2

×
‖χi‖Lq1(·)(wq1(·))

‖χ j‖Lq1(·)(wq1(·))
‖χ j‖Lq1(·)(wq1(·))

‖χi‖Lq2(·)(wq2(·))

‖χ j‖Lq2(·)(wq2(·))
‖χ j‖Lq2(·)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))

∞∑
i= j+1

2nσ( j−i) ‖(b1 − (b1)bi)‖Lq(·)(wq(·))

w(Bi)ν‖χBi‖Lq(·)(wq(·))

×
w(Bi)ν

w(B j)ν
w(B j)ν

w(Bi)o1

w(B j)o1
w(B j)o1

w(Bi)o2

w(B j)o2
w(B j)o2

×
‖χi‖Lq1(·)(wq1(·))

‖χ j‖Lq1(·)(wq1(·))
‖χ j‖Lq1(·)(wq1(·))

‖χi‖Lq2(·)(wq2(·))

‖χ j‖Lq2(·)(wq2(·))
‖χ j‖Lq2(·)(wq2(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b1‖CBMOq(·),ν(wq(·))

×

∞∑
i= j+1

2(nσ−nσ11−nσ22)( j−i)
(

w(Bi)
w(B j)

)o1+o2+ν

w(B j)o1+o2+ν

× ‖χ j‖Lq1(·)(wq1(·))‖χ j‖Lq2(·)(wq2(·)).

Here, we utilize the identity 1
q(·) = 1

q1(·) + 1
q2(·) −

τ
n , along with the relationship o = ν + o1 + o2 + τ

n , to
express the following equivalence:

‖χ j‖Lq(·)(wq(·)) = ‖χ j‖Lq1(·)(wq1(·))‖χ j‖Lq2(·)(wq2(·))w(B j)−
τ
n .
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Consequently, we deduce the inequality:

‖[b1,H∗τ](ζ1, ζ2)(x) · χ j‖Lq(.)(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b1‖CBMOq(·),ν(wq(·))

∞∑
i= j+1

2(nσ−nσ11−nσ22)( j−i)

×

(
w(Bi)
w(B j)

)ν+o1+o2

w(B j)ν+o1+o2+ τ
n ‖χ j‖Lq(·)(wq(·))

≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b1‖CBMOq(·),ν(wq(·))

×

∞∑
i= j+1

2(nσ−nσ11−nσ22−o+
τ
n )( j−i)w(B j)o‖χ j‖Lq(·)(wq(·))

‖[b1,H∗τ](ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b1‖CBMOq(·),ν(wq(·))

∞∑
i= j+1

2(nσ−nσ11−nσ22−o+
τ
n )( j−i).

By invoking the condition o < nσ11 + nσ22 − nσ − τ
n , we obtain the requisite conclusion:

‖[b1,H∗τ](ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b1‖CBMOq(·),ν(wq(·)).

In a similar vein, we may swiftly approximate the ensuing result:

‖[b2,H∗τ](ζ1, ζ2)(x)‖Ḃq(·),o(wq(·)) ≤ C‖ζ1‖Ḃq1(·),o1 (wq1(·))‖ζ2‖Ḃq2(·),o2 (wq2(·))‖b2‖CBMOq(·),ν(wq(·)).

5. Conclusions

This treatise furnishes substantial advancements in the analytical exploration of bilinear fractional
Hardy operators within the framework of weighted central Morrey spaces endowed with variable
exponents. The findings herein elucidate profound insights into the boundedness characteristics of
commutators linked to Hτ (or H∗τ) in conjunction with the weighted o-central BMO function, thereby
enriching the theoretical landscape of such operators.
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