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1. Introduction

Through the progressive evolution of the domains encompassing partial differential equations,
nonlinear analysis, and other cognate disciplines, modern harmonic analysis, by virtue of its
idiosyncratic perspectives and methodologies, has established itself as an indispensable apparatus
for the intricate classification and stratification of functions. This analytical ingenuity has, in turn,
precipitated the formulation of multifarious specialized theories concerning function spaces, including,
but not limited to: Hardy spaces, Herz spaces, and Morrey spaces. As early as 1931, Orlicz, in the
seminal work [1], initiated the articulation and preliminary investigation of the theoretical framework
underpinning variable exponent L” spaces. Nevertheless, it was not until the year 1991, after the
dissemination of the pivotal contributions by Kovacik and Rékosnik (refer to [2]), that the paradigm
of variable function spaces garnered significant and widespread scholarly attention. In [2, 3], the
authors undertook the generalization of classical Sobolev and Lebesgue spaces, thereby extending
them to the domains of variable Sobolev and Lebesgue spaces, while rigorously establishing the
foundational properties inherent to these variable function spaces. Furthermore, such variable function
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spaces have found extensive applications in the analysis of fluid mechanics and differential equations
characterized by non-standard growth conditions (see [4]). This has incited a substantial body of
scholarly inquiry, wherein numerous researchers have dedicated considerable effort to the study
of variable exponent spaces, yielding a proliferation of results. Additionally, this exploration has
precipitated the development and investigation of further variable exponent spaces, including, but not
limited to, variable Triebel-Lizorkin spaces, variable Besov spaces, variable Herz spaces, and variable
Hardy spaces (see [5—10]).

In recent years, significant progress has been made in establishing the boundedness of numerous
pivotal operators within the framework of harmonic analysis on variable exponent function spaces.
For instance, in [5, 9-12], the respective authors have undertaken comprehensive investigations into
the boundedness of various integral operators on such variable function spaces, employing the intricate
properties inherent to variable L” spaces as a foundational analytical tool. Conversely, since the seminal
contributions of Peetre (see [13]), the advancement of Morrey spaces has progressively emerged
as a dominant paradigm within the corpus of modern harmonic analysis. Numerous scholars have
undertaken rigorous inquiries into the structural and functional properties of central Morrey spaces and
central BMO spaces (refer to [10,14]), thereby rendering the theory of operator boundedness on central
Morrey spaces increasingly comprehensive and refined. Motivated by the burgeoning development of
variable function spaces, Fu et al., in their influential work [15], extended the classical central Morrey
spaces from a constant exponent framework to the realm of variable exponents in the year 2019.
They introduced the conceptual framework of central Morrey spaces and central BMO spaces with
variable exponents, wherein they established comprehensive estimates for singular integral operators
and their associated commutators. This endeavor significantly advanced the theoretical development
and analytical sophistication of central Morrey spaces. Leveraging the conceptual underpinnings and
intrinsic properties of variable function spaces, it is a natural intellectual progression for scholars
to investigate the boundedness of operators within this framework. Between the years 2019 and
2022, various researchers engaged in the rigorous examination of the boundedness of numerous
classes of operators and their commutators within the context of variable central Morrey spaces. For
instance, Wang et al., in [16, 17], undertook an extensive exploration of the boundedness properties of
multilinear singular integral operators and multilinear fractional integral operators, thereby extending
and enriching the foundational study presented in [15]. Moreover, in 2022, Hussain et al., in [18],
addressed the boundedness of the Hardy operator within the framework of variable central Morrey
spaces, further advancing the theoretical discourse in this domain.

In the year 1920, Hardy initially introduced the notion of the one-dimensional Hardy operator,
as delineated in [19]. Subsequently, an increasing number of researchers engaged in the study
and refinement of the definition, alongside the exploration of various generalized forms of Hardy-
type operators. In 1995, Christ and Grafakos, in their seminal work [20], extended the conceptual
framework of the Hardy operator from the one-dimensional case to the n-dimensional setting and
rigorously established its boundedness within the context of L? spaces. Fu et al., in [21], advanced
the generalization of Hardy operators by introducing the notion of n-dimensional fractional Hardy
operators. Furthermore, they meticulously established the boundedness of the commutators associated
with these operators within the analytical frameworks of Lebesgue spaces and homogeneous Herz
spaces. Subsequently, the boundedness properties of Hardy operators garnered significant scholarly
interest, motivating numerous researchers to delve into this intricate subject. Notably, Fu et al., in [22],
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undertook a profound investigation into the boundedness of n-dimensional rough Hardy operators
and their associated commutators, thereby contributing substantially to the theoretical advancement
of this field. Hussain et al., in [18], derived rigorous estimates pertaining to fractional Hardy operators
and their commutators within the analytical framework of variable A-central Morrey spaces, thereby
augmenting the theoretical understanding of operator behavior in such variable exponent settings.
These two scholarly contributions serve as a profound source of intellectual inspiration. With the
ever-expanding impact of variable exponent function spaces on the advancement of disciplines such
as information science, and related fields, the investigation into the boundedness of multilinear
operators within the framework of variable exponent function spaces has, in recent years, ascended
to the forefront of contemporary research endeavors. Accordingly, this paper endeavors to achieve a
substantive breakthrough in the examination of the boundedness properties of n-dimensional bilinear
fractional Hardy operators and their associated commutators within the framework of weighted central
Morrey spaces characterized by variable exponents. Building upon the foundational analysis of the
boundedness of bilinear fractional Hardy operators, this study further delves into the boundedness
of adjoint bilinear fractional Hardy operators and their corresponding commutators. Subsequently, it
undertakes a comparative assessment of the methodologies and results pertaining to the boundedness
of bilinear fractional operators, thereby deriving pertinent conclusions regarding the broader class of
multilinear operators.

Let £; and ¢, be functions residing in R” that are locally integrable, and let the parameter 7 satisfy
0 < 7 < mn. The n-dimensional multilinear fractional Hardy operator, in conjunction with its adjoint
counterpart, is formally defined as follows:

HT(gl, ooy {m) =

- |t|nm—‘r

f | [a@dz. ... ds,.
(631

,,,,, EmI<lt] “j=1

1 m
mmmm:f — [ [a€ndéi. ... .
e €ttt (€174 lEnder, - de

Moreover, the commutators associated with the n-dimensional multilinear fractional Hardy operator,
as well as its adjoint counterpart, are rigorously characterized by the following expressions:

(b, HA(1s s Ga)©) = > Tbiy HI(Gs o E) )
i=1

(b, HZ1(L1, s §n)(&) = Z[bi’ HN&s s Zn)(€)
i=1

[biy HIJ(L1y weos E)(€) = DAEYH (L1 ooy L) (&) = H (L1 ooy Gimty LDy it s oy L))
[bi, HEN( L1y woos L)(€) = DiEVHE(LL, vy V(€)= HE(L1s oo ity Gy it s weos L) ().

Subsequently, we shall elucidate the structural framework of this treatise. In Section 2, we
commence by succinctly recapitulating certain foundational notations and pivotal lemmas within
the theory of variable Lebesgue spaces, concomitantly introducing the formal definitions of central
bounded mean oscillation (BMO) spaces and weighted central Morrey spaces characterized by variable
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exponents. Thereafter, in Section 3, we shall rigorously establish the boundedness properties of the n-
dimensional bilinear fractional Hardy operator and its adjoint operator when acting upon weighted
central Morrey spaces endowed with variable exponents. Finally, in Section 4, we shall expound
upon the boundedness of the commutators associated with the n-dimensional bilinear fractional Hardy
operator and its adjoint operator within the framework of central Morrey spaces exhibiting variable
exponents. To govern the continuity prerequisites of the m-linear fractional Hardy operator, we shall
invoke the boundedness properties of the fractional integral, formally delineated by the expression:

h
L = [

2. Symbols and descriptions

In the subsequent exposition, we shall delineate certain foundational attributes of variable Lebesgue
spaces alongside pivotal definitions pertaining to variable exponent function spaces. Throughout the
entirety of this treatise, we employ the notations |B|, C, and yp to signify, respectively, the Lebesgue
measure, a generic constant, and the characteristic function corresponding to a measurable subset B C
R".

Let E C R" be an open set and ¢(-) : E — [1,00) a measurable function. The space L/(E) is
defined as the collection of measurable functions £ on E for which there exists a constant 1 such that

the integral
q(x)
f(IZ(X)I) dx < oo
AN

This set is endowed with the structure of a Banach function space upon the imposition of the
Luxemburg-Nakano norm, articulated as

¢l e ) = inf {/T >0: L(lé(;)' )q(X)dx < 1}.

Such spaces are denominated as variable Lebsgue spaces L, insofar as they extend and generalize
the classical framework of standard L spaces.
The space L;’(f'c)(F ) is rigorously characterized as

LIYY(F) = {¢: ¢ € LYYE) for all compact subsets E C F).

loc

We designate ‘P(F) as the collection of all measurable functions g(-) : FF — (1, 0) satisfying the
condition where

q- := essinf g(x), g, := esssup g(x).
xeF xeF

Furthermore, ¢’(-) signifies the conjugate exponent corresponding to ¢(-), defined implicitly through

the functional relationship
1 1

—+ =1,

q¢) q'()
thereby establishing the duality condition inherent in their reciprocal interaction. Let D(F) denote the
subset of P(F) for which the Hardy-Littlewood maximal operator M, defined by

1
M((X)=SUP|B|fB Fl((Y)Idy
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exhibits boundedness on the space LP"(F). Here, B, = {y € R" : |x — y| < r} represents the ball of
radius r centered at x.
Within the framework of variable L") spaces, several pivotal lemmas are established as follows.

Definition 2.1. Let g(-) be a real-valued function defined on R". The following designations and
properties are articulated:

1) C}gf(R") represents the set of all locally log-Holder continuous functions g(-) satisfying

1
D |y_x|<_’ xayeRn'

-C
lg(x) — q(y)| < log(lx——yl) >

(i1) For g(-) € Cg’g(R"), the following condition holds at the origin:

C
lg(x) —q(0)) < ———, x€R"
log(m +e)

(iii) For ¢(-) € C}f,g(R"), the following inequality is satisfied at infinity:

— o] < —=— xeR:
lg(x) — gl ozl + 2) X

(iv) The space C'°¢ = C’fgf N C denotes the set of all globally log-Holder continuous functions g(-).
It has been demonstrated in [24] that if g(-) € B(R") N C'°¢(R"), the Hardy-Littlewood maximal
operator M is bounded on L1O(R").
Suppose w(x) is a weight function on R” that is nonnegative and locally integrable. The space
L99(w) comprises all complex-valued functions ¢ on R” such that w0 € LIO(R™). This space forms a

Banach function space with the norm

1
N a0 6wy = NIEWIO || g0

In [23], Benjamin Muckenhoupt introduced the A,-weight theory for (I < p < oo) on R".
Subsequently, Noi and Izuki extended the Muckenhoupt A ,-class by allowing p to vary, as described
in [25,26].

Definition 2.2. Assume that g(-) € B(R"). A weight w is deemed an A,.-weight if it satisfies the
condition

“1y—1/q( 1/q(:
sup [B7 w1y gl oW 4Oy gl Lo < 0o,
B

where the supremum is taken over all balls B C R". It was established in [27] that w € A, if and only if
the Hardy-Littlewood maximal operator M is bounded on the variable exponent Lebesgue space L0,

Remark 2.3. [25] Let g(-), p() € PR") N C$(R") and suppose that g(-) < p(-) holds pointwise on
R”. Under these stipulations, it is deducible that

Al C Aq(.) C Ap(.).
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Definition 2.4. Let 7 € (0, n) and suppose that p;(-), p2(-) € P(R") such that the relation

1_1+z
pi(x)  p(x) m

holds pointwise for all x € R". A weight w is designated as an A(p;(-), p»(-))-weight if it satisfies the
inequality
|B|r1 |L\/B||(L1'1<‘>(W1'1<‘>))'”XB”LPz(')(sz(-)) <G,

where the constant C is independent of the choice of the ball B ¢ R".
Definition 2.5. [25] Assume that 7 € (0, n), p;(-), p2(-) € B(R"), and that the relationship

1 1 T
= + —
pi(x)  pzx) n

holds pointwise on R". Under these conditions, it is both necessary and sufficient for w € A, .20
that w20 ¢ A1+p2(-)/p; )

Definition 2.6. If p(-) € ¥ and 1 € R, the weighted central Morrey space with a variable exponent,
denoted as B"O1(wPD), is defined by:

BPOY(w) = (¢ € L) © 11 gy < o0,

loc

where the norm is given by:

Kl = sup ——XBORILO6)
BI’('),X( y = .
" k0 1BO, By so.p) oo

Definition 2.7. If p(-) € ¥ and 1 < }l, the weighted I-BMO space with a variable exponent, denoted
by CBMOPO*(wP0), is defined as:

CBMOP (w) = {¢ € L’ (W) 1 11llcamoroia < o),

loc

where the norm is expressed by:

||{|| sup ”(g _ KB(O,R))XB(O,R)”LP(-)(W)
CBMOPOA(w) = .
M=t 1BO, B sl

Lemma 2.8. [28] Let X be a Banach function space. Then the following properties hold:
(1) The associated space X', defined as the Kothe dual of X, is necessarily also a Banach function
space.
(2) The norms ||-||x and ||-||xy are equivalent, preserving the parallel structure of these dual spaces.
(3) (Generalized Holder inequality) For every { € X" and ¥ € X, the inequality

f [ ()l < 11 el x
Rn
holds, characterizing the duality between X and X'.
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Proposition 2.9. [29] Let E be an open set and let p(-) € B(E) satisfy the following conditions:

1
> |t -7 2.1)

—c
Ip() — p(2)| < log(lt——zl)’ 5

Ip() — p(2)| < e <zl (2.2)

—c
log(|t| + e)
Then p(-) € D(R"), where C is a positive constant independent of t and z.

Lemma 2.10. [30] Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal
operator M is weakly bounded on X, satisfying the condition

-1
I imespillx < o~ IIE]x

forall p > 0 and every { € X. Under this assumption, it follows that

1
sup — Il allxlyallx < oo.
B:ball 1Bl

Lemma 2.11. [25] For any ball B C R" and any Banach function space X, it holds that
1
1< EHXB”X”XB”X’-
Lemma 2.12. [25] Let X be a Banach function space, and suppose the Hardy-Littlewood maximal

operator M is bounded on the associate space X'. Then, for any measurable sets E C R" and S C E,
there exists a constant o € (0, 1), such that the inequality

S Ju—
Ivellx — \IE|
is satisfied, where the implicit constant is independent of S and E.
Lemma 2.13. [31]]
(1) The space X(R",w), defined as

s llx (ISI)‘T

ISllxe ) = NIEWIx,
is a Banach function space under the norm
XR"'w)y={leM:{weX}
(2) The associated space X'(R", w™"), defined analogously, is likewise a Banach function space.

Remark 2.14. Let p(-) € B(R"). Upon comparing the variable exponent Lebesgue spaces L0 (wP®)
and L7 O (w=7'0)) with the generalized function space X(R", W), the following observations arise:
1: If w= W and X = L?O(R"), then

LP(')(WP(~)) — Lp(')(R",W).
2: If w! = Wand X = L”O(R"), then
Lp’(-)(Rn’w—l) — Lp,(')(w_p/(')).

By invoking the result of Lemma 2.6, we deduce that
LYOR", why = (LPORY, w)) = LP'Ow=P'0O) = (LPO(wPO)Y.
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Lemma 2.15. [32] Assume p(-) € B(R") N C$(R") and that the weight w") € A, ensures w20 €
A 20 Under these conditions, there exist constants 033, 044 € (0, 1) such that the following inequalities

hold:
s 1l 220200y - (ISI)"33 sl zrionpi oy - (ISI)‘T44

IEl 7 lellgmowmoy = \IE]
for every ball E C R" and for all measurable subsets S C E.
In an analogous manner, should the conditions p(: ) p2(+) € D(R") be satisﬁed it follows by virtue

of Lemma 2.15 that there exist constants o1, € (0, ——) and 0, € (0, ——) such that the following
inequalities hold:

(2.3)

I Ellzprommoy

’(q)+ ’(q)

1) n S 11
s llzr10@n) < C(U) 2.4)
I Ell 1o gy |E]
PO(RR S\
sl ro@n) SC(' |) 2.5)
I Ell 2200y |E]
forallballs ECR"and S C E.
Lemma 2.16. [25] Let p(-) € PR NCER"Y), 0 < T <o , and suppose the relationship — = - -1

g0 ~ PO
holds. Under these conditions, the fractional integral operator I is bounded from the variable exponent

Lebesgue space LPO(wPO) to LIO(wi0) provided that the weight w satisfies the Muckenhoupt-type
condition w € A(p(), q()).

Lemma 2.17. [33] Assume that q(-) € BR"). Then, for any b € BMO and for all integers all j,i € Z
with j > i, the following inequalities hold:
1. The characterization of the BMO via variable exponent Lebesgue norms is:

”b”BMO < sup l(b = be)xsllLa < Clbllsmo, (2.6)

B:Ball | Bllza0

where bg = B f b(x)dx, and C is a constant independent of b and B.

2. A decay estimate for the difference of b over disjoint balls is:

& = bex sl < C(G = DIIblIsmolles,llao, 2.7

where B; and B; are nested balls, and C is a constant depending only on q(-).

3. Boundedness properties of the n-dimensional bilinear fractional Hardy operator and its
adjoint operator

Theorem 3.1. Presume that p(-) € B(R") complies with the stipulations delineated in conditions (2.1)
and (2.2) as articulated in Proposition 2.9. Let us prescribe the variable exponent q(-) such that
% I= p(), where —— p() = () + L qz() Additionally, assume that wi'), w2 € A|. Define the parameter
A=A + A + I and impose the restriction 1 > (0733 + 044 + 0), where the constants 033, 044, and o
are identical to those introduced in Lemmas (2.15) and (2.12). Under these assumptions, the following

inequality holds:
1H($1, Ol gaoragwaery < ClIEH gaoa gy 182l 2o a2y
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Proof. If we formulate the identities ¢ = {; - xi = {1 - xs, and & =& - xi = & - x, for an arbitrary

i € Z, it follows that the functions {; and ¢, can be decomposed in the following manner:

0= ) 4 -xi) = )l

j=—00 i=—00

L@ = ) 60 XX = ) Ly,

i=—00 i=—00

Leveraging the extended Holder inequality, we deduce the following bound:

1

|x|2n—‘r

|H-({1, 82)(x) - x j(x)] < fB.L_|§1(Y1)||§2(Yz)|d)’1dy2'Xj(x)

1
A B; B;

J
_2'
<c2 Z 1211l 10 g on D ill zan g 09y 120l a2

i=—co

X AWill o200 a0y, 27 x ().

|H-({1, &2) « X jlliae ey

j
. by
<C27 Z 21l 1w D ill zn g 09y 121 a2 uanon I ill oz oy 27 D jll 2 (wacry

i=—co

J
—i2n—
<C Z ”{1”L‘Il(')(wfll('))”{2||L‘12(')(w‘12('))“)(i”(L‘11(')(wa(')))’”Xi”(L‘lz(')(qu(')))'z sen T)“Xj”Lq(')(wq(-))-

[=—00

We postulate = yp, and exploit the defining characteristics of the operator I, yielding

L(xs)(x) = C27x (%),

X5,(X) < C27 L (x,)(x).

3.1

Applying the norm to both sides and leveraging the results encapsulated in Lemmas 2.11 and 2.16, we

infer the following estimate:

Il B; 1| a0 ey < C2_jT||Ir)(B,-||Lq<->(wq<-))
<C 2_jT|[XBJ.|| LPO (PO
< Cz_jTlI)(Bj||L‘11('>(W‘11(‘>)|IXBj||Lq2<')(W‘12('>)
< C27 2" N lI 0y B s gy -

(3.2)
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To advance the argument, the substitution of Eq (3.2) into inequality (3.1), followed by the invocation
of Lemma 2.15, furnishes the bound

J
||Hr(§l,§2) ')(jHLq(‘)(wq(')) <C Z ”{1”L‘Il(‘)(wa('))||{2||L‘12(')(W112('))”Xi”(L‘11(')(qu(')))'”Xi”(L‘IZ(')(qu(')))'

i=—oc0
X ”XJ”(LIH()(Wq|()))f”/\/Jll(qu()(qu()))l

”)(i | |(Lz12(')(wq2(-)))f ”Xi”(qu (-)(wa(.))),

<C Z 140000 12l gm0
i=—00 A o )ll)(jll(m(')(qu<~)))/ ”)(j”(qu(‘)(qu(‘)))r

J
<C Z 2n0’33(l—])2n(744(1—])”é"1||qu(‘)(qu(<))||{2||Lq2“(wq2(‘))

j=—00

J
<C Z 2(n0'33+n0'44)(l—])||§1||qu(_)(qu(,))||§2||Lq2(.)(wq2(,))‘

[=—00

J
i~ b y:
1H (L1, 8 - xjllzaoawaery < ClIE gnoar gpn o182l g0 a0 Z sy tnaa)i=Dyy( By B;) ™2
j=—00
X ”Xil|L‘11(')(wq1('))|I/Yi”L‘iz()(qu(‘))-
Under the structural stipulations — e qll(_) + —= qz() ~and 1 = A; + A, + 7, one may expound upon the
norm relation of the characteristic function y; in a manner that accentuates the fundamental measure-
theoretic decomposition:

T

1 14 1 7 _z
”/Vi”Lq(')(Wq(')) = W(Bi)Q(-) = W(Bl-)‘ﬂ(‘) @t n — |IXilqul(_)(qu(_)>“/Yi”qu(.)(qu(_))W(Bi) n

Subsequently, an invocation of Lemma 2.12 facilitates the reconfiguration of the preceding inequality
into a more structurally refined form:

J
i M+l T
1H-(£1, £&2) - X jlleo quaery < ClEganoa guaron 1021l oo (o Z s tn i) =Dy (BT il o

i=—00

(B ) HX:”Lt/H(Wq())

w
< Cll&lga. t](wq,())||§2||3qz A (1200 Z 9 (no33-+n0744)(i= ) w(B; )/1 5, - ”Xj”L'l()(wIU) ™
J

i=—00

||Lq(->(wq<»>)

D ill oo vy

1 w(B,; )
< CliGill g guaron 182l oo (anry Z o (nors+noras) (i j)W(B ) ”)(j“L‘/()(W‘I('))
H/\/j”L‘f(‘)(w‘l('))

i=—00

J
On(i—j a
< CliGill ga i guanon 182l oo ez Z (@3 + T+ + (i J)W(Bj) I 110 -

i=—00

This sequence of transformations, meticulously orchestrated through a synthesis of functional analytic
principles and weighted norm inequalities, underscores the interplay between the scaling properties of
the weight functions and the underlying structure of the central Morrey space embeddings.

J
i
|H=(L15 Ol aoraguaey < ClIG a0 a0y 182l g2 o) Z 3t Tt =),

{=—00
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By invoking the constraint 1 > —(033 + 044 + ), one may deduce the requisite boundedness condition,
culminating in the refined estimate

1H (1, O gaoragwaery < ClIEt gaoar gy 182l 2o a2y

Theorem 3.2. Assume that q,(-) and q,(-), both elements of the class ‘B(R"), adhere to the constraints
prescribed by conditions (2.1) and (2.2) as delineated in Proposition 2.9. The variable exponent q(-) is
then rigorously defined by the relation:

1 1 1 T

—_— —t — — —

q-) @) @) n

Let A satisfy the expression 1 = A, + Ay + © and impose the restriction T < n(oy) + 0 — 0 + ),
where the constants 011, 0y, and o correspond to those appearing in inequalities (2.4) and (2.5).
Under these circumstances, the subsequent inequality holds:

||H: ((1 ’ (2)(x)| |Bq(-)-ﬂ(wq(-)) < C| |§1 ||Bf11<~)»11 w110y | |§2 | |qu(->ﬂz w9200y~

Proof. By invoking Holder’s inequality, we establish the following upper bound:

1
|H; ({1, 0)(x%) - x j(x)] < f,;n\B. j;n\B. |ylzﬁ|§1()’)||§2()’)|d)’1d)’2 - X (x)

—i2n—
< C D 27 o onliall oo,

i=j+1
X “Xi”(L‘Il(')(w‘il(')))’||/Yi||(L‘12(‘)(w‘12(')))’/\/j(x)'
Consequently, taking the norm in the weighted variable exponent Lebesgue space, one arrives at
* —i(2n—
IH (1, 2)) - Xl < C D 278 ool o
i=j+1

X ”XiH(L‘Il(‘)(w‘ll(')))’”Xi”(L‘lz(')(w‘lz(’)))'”)(jlqu(')(Wq(-))-

Employing the inequality (3.2), one deduces the refined estimate:

IH; (&1, )0 - X llisogany < € D Iillno o 162 llogeno,

i=j+1

-1
X il Lq(~)(wq(-))|I)(j”Lq(')(Wq(J)

<C Z Z"U(J_I)HéVl||Lq1<'>(wf11<~>)||§2||qu<‘>(qu<~>)

i=j+1
i a Ve
_y w(B;)" 1 w(B;)™ 1
< Cllgllqul(‘>»1| q1() ||§2||qu(')v/72 q2() zlw(]_l)—W(Bj) 1—W(Bj) 2
o) o >i:ZjH w(B)Y w(B))®
“Xi”qu(-)(wa(-)) ”Xi||qu(->(qu(-))

I ll Lar o) Il L2002

”)(j”qu(-)(qu(-)) “,lequz(')(qu('))
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o] W(B) /IH-/TZ
- - j—i ! A+
S C”{l ||B‘11(')’11 (qu('))||§2||Bq2(')"t2 (qu(.)) Z 2(”0’ no11 l’l0'22)(1 i) _ W(BJ) 1+A42
L w(B;))
i=j+1
X ”Xj”[jn(-)(qu('))||/K/||qu(»>(wq2<~>).

1 1 T

In the present exposition, we invoke the fundamental identity ﬁ =a0%Y20 " n in conjunction with

the structural relation 2 = 1; + A, + %, which subsequently yields the expression

Il il zeo ey = I jllLaro oo I il La20 gy w(B )7

Consequently, leveraging the preceding formulation, we establish the upper bound

(15 82)(x) - x jllarowaery < ClE il ganoras a0y 102l oot a0y Z o =nr2)(=)
i=j+1
y (W(Bi)

1+
l++t
w(B )" 2 P ) (i)
W(Bj)) ( ]) ||XJ||L4 (W10

o0
- . -ni j—i a
S C”él ||B‘11(')’11 (qu(.))||§2||qu(.).gz (qu(.)) Z 2(”0’ no 11 —ho—n +T)(j Z)W(BJ) ”/Yj| |Lq(')(w‘1(‘))

i=j+1

IH (815 &) gaoraguaey < ClIE oo quanen[162ll ootz ) Z ptomnon e,
i=j+1
In light of the imposed constraint 7 < n(oy; + 05, — 0 + ), the summation converges, thereby furnishing
the desired boundedness assertion

1, 22001000y < CIE 0 gunen 1ol et s

4. Commutators associated with the n-dimensional bilinear fractional Hardy operator and its
adjoint operator

Theorem 4.1. Let p(-) € B(R") be a function that satisfies the hypotheses stipulated by conditions (2.1)
and (2.2), as articulated in Proposition 2.9. The variable exponent q(-) is hereby defined via the relation
1 T 1

—_—t = —,
q¢) n  pQ)

41 1

where 0= a0t a0

Assume further that = v+ A, + Ao + 7, and that the inequality 2 > (0733 + 044 + 0) is satisfied, where
033, 044, and o are constants consistent with those introduced in Lemma (2.15). Then, the following
inequality holds:

1[0, H1(41, 2l saraguaey < ClIbllepmoso ooy 111 ga o g o) IE2ll gnotz guoy,

where b = (by, by) and b € CBM OO (wi0),
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Proof. By invoking the generalized Holder inequality in conjunction with Lemma 2.17, we derive the
ensuing estimate:

1
(b1, H1(Z1, £2)(x) - x j(x0)] < Wf f 1511 2)(B1(x) — bi(y)ldyrdys - x j(x)
Bj JBj

1 J
P Z fz; jz; 181371 (y2)(D1(x) = (b)), + (D1)B; — bi(y))ldy1dya - x j(x)

=—00

<

1 J
= |x|2n—'r Z f f |§1(Y1)§2(y2)(b1(X) - (bl)B,-)|dy1dy2 'Xj(x)
Bj JB;

j=—00

1 J
+ X Z f f 111G (32)(D1(v1) = (b1)s)ldydy, - x (x)
i=—o00 VY Bj VB;
=I1+1I.

The term I can then be estimated by employing the generalized Holder inequality over variable
exponent weighted Lebesgue spaces. Explicitly, one obtains:

|
I:W Z j;»fﬂl&(yl){z(yz)(h(x)—(b1)3,~)|dy1dyz'Xj(X)

j
—i(2n—
< €27/ Z S 1ill Lo waron I ill a1 a1 0y 12l Lr

[=—00

X AW ill za20 w20y [(D1(x) = (1) )X j(X).

J
—i2n—
1| argary < C2772%7D Z 11l v wron il Lo w0y 112l | a2

j=—00

X ill o200y 11 () = (D)X () 290

J
—i(2n—
<C2 j@n=) Z ||§1il|Lq1<'>(wa(‘>)”)(i”(L‘11(‘)(w‘il(')))’||§2i||L‘12(')(w‘12('))

j=—00

X il Lo wazony (G = DIl Bmollx jll Laorwar)- 4.1)
In a similar fashion, the term // may be estimated as follows:

1 J
Il = | Z f f 1811 (2)(b1 (1) — (B1)s)ldyrdys - x j(x)
i=—c0 ¥ Bj Y B;

J
—i(2n—
<C2 j@n=) Z ”51i”L‘il(‘)(wa('))”bl||BMO|I/\/ill(qu(‘>(w41<‘>))'||{2i||L42<‘>(w42(‘>)

|=—00

X AW ill 2o a0y D ()]

J
—i(2n—
”II”L‘I(‘)(W‘I(')) <27/ Z ||§1i”L‘11(')(w‘11('))”b1||BMO||/Yi||(L‘11(‘)(w‘11(‘)))’II§2i||L‘12(‘)(w‘12('))

[=—00

X ||Xi||(qu<'>(wa<->)y||Xj||Lq<'>(wq<->)- 4.2)
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By virtue of inequalities (4.1) and (4.2), we deduce the following bound:

J
—i(2n— . .
1061, H(1s £2) X sy < €272 (= DIl o e ill oo gunony 12l ot

j=—00

X \Dill zo20 a0y D1 a0l jll o) osto-

161, He1(415 82) - X il a0 o)

J
. . —i(2n—
<C Z (] - l)”bl||BM0||{11'||L‘11(')(wa('>)”éVZi”L‘IZ(‘)(qu(‘))lI)(i”(L‘il(‘)(w‘ll(')))’”Xi”(L‘lz(')(qu(')))/z j@n T)”,\/j“Lq(')(Wq()).

o 4.3)
In order to advance further, the substitution of (3.2) into (4.3) furnishes the ensuing inequality:

J
b1, HA (L1, &) - x jllisogeoy < € Z (7 = Dbl BaollSiill o guar oy [102ill s anon I ill zan o a0y Wil o oy

j=—00
-1 -1
X ”/\/j”(yn OwnOyy |I/\/j||(qu(-)(We12(~))

“Xi”(ulz(')(wflz(')) “/\/i”(L‘ll(')(w'll(')))/

J
< C )" (= DlbllsaolCull e oy laill o g

j=—00

)
)”)(j||(qu<')(qu<-)))/ “)(j”(qu(-)(qu(-)))/

IA

J
C Z 217 D7D — )byl aao il oo g n 1aill o g

i=—00

J
<C Z 205t E=D (= )1y | saolI1ill o gy n il e ez

j=—00

J
b1, H: (L1, 82) - x jllLao ooy < CllEt gaoa guanon 12l gazos pa0 254 i=D (i) 1by | garow(Bi) M w(B;)™®
( ) ( )

j=—0c0
X ”,\/i”Lq](-)(qu(-))||,\/i||qu(-)(qu(-))

:] 2 no33+no. i . . ”( 1 ( ])b )XB “L ©) ¥
Lo b b i 7.4 (Wq( ))
<— C”é1||B‘11(')v‘11(qu('))||42||342('>v‘12 (W‘IZ(')) (n X ])(] l)

i=—00

1 Ps
X w(B;)" W(B:) il aro gy oy | ill L2000y

D B: | Lo ey

! ”(l: 1 (b 1 )h )XB ||Lq(~) :
no33+no. i—7)/ =+ . i i (Wq())
S C”é || Rq1 (). q1() ”42” 42 (). q2() § 2( 7 X ])( l)
= BN 1 (w21 ) 16 B 2 (wi2®)) .] W(BZ)V”X [” (~)(W (.))

i=—00

1 1
X w(B) ' W(B;) " w(B) 2| ill L g o I ill L2 a0y

J
<l e allposguney ), 277 7D = Db lemmons iy

[=—00
A+
X W(B)" 2 il L gy Wil o200 -

1

Under the stipulated conditions o)

be reformulated as follows:

=L 4+ L _TandA=v+ A + 1+, the norm expression can
() q0) n n

z
n

1 J I S _T
Iill Loy wary = w(Bi) @ = w(B;) 10" 20 = ||yl La10pm ) IXill Lo gy W(Bi) 7 .
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The preceding inequality may be reformulated into an equivalent yet structurally refined expression, as
follows:

161, He](15 £2) - X jllaoaery < Cllbillesmonors oo I8l oo gar o 1021l o2z oz

J
X ) 2D By il

j=—00
< C”bl||CBM0‘1<‘)»V(w‘1<'>)||éV1||Bq1~11(th(‘))||{2||qu~12(qu<'>)
1 W(Bi)/T

D ill a0 e
w(B))*

”,\/ '”Lq(-)( 4q())
! v |L\/‘/'||L‘l(‘)(w‘l(‘))

J
% Z 2(n033+m744)(i—j)w( B))

|=—00

< ClIb1llearosorr wanlldill gn o g 182l 2ot g o)

j
X Z 2sstoutotnli=)y,( B j)z”/vj”LtI(«)(wq(‘)).

[=—00

The preceding inequality admits a further refinement into a more succinct and structurally elucidative
formulation, expressed as follows:

J
i
1161, He)(1, £l gooauary < Cllbillesmom o 181l gnoa gun0) 121l oo gy Z 2touros =),

|=—00

By invoking the constraint 1 > —(033 + 044 + 0°), one secures the subsequent fundamental bound:

(b1, H 141> 2l georau0y < CllbillcamowranllEill gaon gy l&2ll gz guaaer)-

In an analogous manner, a straightforward adaptation of the preceding argument yields the
corresponding estimate:

(b2, H:1(£1, 2l georau0y < Cllballeamomrraacnlidill gaoa gy 182l gro guaaer)-

Theorem 4.2. Consider q,(-) and q,(-), elements of the class B(R"), satisfying the constraints
enunciated in conditions (2.1) and (2.2) as expounded in Proposition 2.9. The variable exponent q(-)
is prescribed through the relation:

1 1 1 T

- = - - — -

9¢) @) @) n

Let the parameter A be given as A = v + 41 + A, + 7, and suppose that the inequality 1 < noy; +
noy, —no — * is satisfied, where the constants 011, 02, and o are those appearing in inequalities (2.4)
and (2.5). Under these assumptions, the following inequality holds:

b, H1(L1, ) gaoraguaery < ClE il panors a0y 102l aaorts a0y [1B1 | e BAIOIO (0000

where b = (by, b,) and b € CBM O,
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Proof. By invoking Holder’s inequality, one deduces the following bound:

1
(b1, H21(G1, £)(x) - x j(0)] < j;n\B ngl@)§2@)(bl(x) — bi(yD))ldyidys - x j(x)

R}l \B/

1
= f \ f\ |y|2n_T |§1 (y)gl(.y)(bl(x) - (bl)B[ + (bl)B,' - bl(}’l))|d)’1dy2 Xj(x)
R"\B; JR"\B;

1
< f f ——I11 ML O(D1(x) = (b1)p)ldy1dys - x j(x)
R"\Bj JR"\B; |y|

1
" f f —— MGG = Bs)ldyidy: - x ()
R"\B; JR"\B, [yl

=I+1I

1
I = f f s—IE MLM(B1(x) = (b1)p)ldy1dys - x j(x)
R"\B; JR"\B, Iyl
1
Il = f f 515 NEOB1 (1) — (b1)p)ldyidys - x j(x)
R™\B; JR"\B, [yl
I <C Z 2_i(2n_T)”{1[”Lq1(')(an('))||§2i||L‘?2(')(w’72(’))
i=j+1

X |L\/i||(L‘11<‘)(w‘il('))/”Xi“(L‘iz(')(w‘iz(')))/(bl(xl) = (bD)g) - xj(X).

(o8]
—i(2n—
lza0 oy < € Z 27 T)||{1il|L‘11(‘)(w‘71(‘))||§2i||L‘12(')(w‘12('))
i=j+1

X ”/Yill(L‘Il(’)(wa(‘)))’|L\/i||(Lq2(‘)(w‘72(‘)))’”(bl(-xl) = (bD)B) - X (Ol a0 )

—i(2n—
<C ) 2 NlmogamopliEaleoganoy
i=j+1
X il ony Il W1 saroll s (4.4)

Now,

1
Il = f f I OMLW)D1(1) — (b1)p)ldyrdys - x j(x)
r\B; Jrn; D

—i(2n—
<C Z 27Nl o n 101 (1) = (D)8, * Xill n© gy 12l Lz guanen D ill a0 uantoyy = X (20
i=j+1
By invoking Lemma 2.17, one establishes the ensuing bound:
—i(2n—
| oo ooy < € Z 27 T)||§1,-||qu(-)(wq1(.))||(b1(yl) = (bD)B) - Xill ooy 182ill a0 guaner)
i=j+1
X Will za26 uazony Il Lo gpacry
—i(2n—
<C Z 2 en T)||§1i||y1|<')(wa<’))||bl||BMO|b(i||(L‘11(‘>(w‘11('>))'||§2i||L‘12(‘>(w‘12('>)”Xi”(L‘H(')(w‘H(')))'”Xj”L‘f(‘)(Wq('))‘

i=j+1
4.5
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By synthesizing the implications of Eqs (4.4) and (4.5), one arrives at the following estimate:

* —i(2n—
||[b1,HT](§1,§2)(x) '/\/j”L‘i(')(w‘i(‘)) <C Z 2 G T)l|§1i|lL‘11(‘)(wa(‘))”bl||BM0|I/\/ill(L‘il(‘)(W‘il(‘>))’

i=j+1

X il 26 quaron I il a2 a2y 1D 1 gy -

Subsequently, by invoking inequality (3.2) in conjunction with Lemma 2.15, one derives:

[DI[b1, H71(S15 £2)(%) - xjll e uaery < C Z 1D:1llBmollS1ill oo w1621l 20 a2y

i=j+1
X |li ”ZJ«)(Wq(-))”X jlqu(‘>(w61('))
= (b)) a0
Dy 8.1 a0 )

> b
eqr . e (j=i) (b1
< Cllgillgnoa g l&all grooria gpaner)

i=j+1
W(Bi)/Tl 1 W(Bi)/Tz 1
220 (B2 (B YR
W(Bj)zl W( ]) W(Bj)’b W( ])
”/\/illL‘Il(')(wa(')) ”Xi”qu(-)(qu(-))

”Xj”LqZ(‘)(qu(‘))

[oe]
o b1 = (B1)p)llzogua
< Cllillo 0 ol gty Y 27707 '
o e wW(B:)” I Bl ooy

”Xj”qu(')(qu('))

”Xj”L‘il(')(wa(')) |IXj||qu<~)(qu(~>)

i=j+1
w(B)" w(B;)"
X w(B;) ———w(B))" ———w(B,)"
w( )w(Bj)/TlW( ) w(Bj)/TzW( )
||/\/i||L41<‘>(Wf/1<‘>) ”Xi”LqQ(-)(qu(-))

Il on o an ) I 1l 020 gz

”/Yj”L’il(')(wa(')) ”Xj”LqZ(‘)(qu(‘))

N o l(o1 = (D1)p )| a0y
< Cliillgnom gunon 182l graoraa gazery Z 2"70D

W(Bi)v | I/\/Bi | |Lq(-)(wq(-))

i=j+1
w(B;)” , w(B)" w(B)"
X w(B)) — w(B )/T] 5 (Bj)z2
w(B;)” w(B )t w(B;)"
||Xi||Lf11<‘>(W41<~>) ”X ||Lq2( I(wi20))

”/\/j”]ﬂl()(wa()) ”/Yj”qu(‘)(qu(‘))

”Xj”L‘II(')(w‘u()) “XJ”qu(-)(qu(-))

< Cl |§1 ||Bq1 [OX] (Wil (-)) | |§2 | |qu(-) %5) (qu(-)) | |b1 ||CBM0q(~>,V(Wq(A))

/Tl+/TQ+V
B))
% 2(110' no 11 —no2)(j—i) W( B ++v
Z w(B) w(B;)

i=j+1
X AWl 1o o) D il 2420 200y -

Here, we utilize the identity ﬁ = ﬁ + $ — I, along with the relationship 1 = v+ 4 + L + £, to
express the following equivalence:

“Xj"Lq(-)(wq(-)) = “/Yj”L‘II(')(W‘II('))|I/le|L‘12(')(w‘12('))w(Bj)_H.
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Consequently, we deduce the inequality:

(D1, Hi]((h £)(x) '/\/jHL‘I(')(w‘I(‘)) < C||§1||Bql<-)ﬂl (wfu(-))||§2||Bt/z(->-ﬂz(wllz(->)||b1||CBM04<‘>~V(W'1<‘>) Z 2o mnTn=ne )G

i=j+1

v+ i+ 2+
7

w Bi V+/11+/TQ
X( ( )) w(B D 1o ey

w(B;)

< C”{l”B‘II('MI (wfll('))||§2||qu('>ﬂz(qu('>)”bl”CBMO‘J(‘W(W‘”‘))

% Z z(no—_no—”_no—zz_/H%)(j_i)w(Bj)ZlI/Yj”L‘l(‘)(w‘/(‘))

i=j+1

* — — —A+I)(j—i
||[b1’ HT](gl’ 52)(x)||l?q(-)ﬂ(w<1(-)) S C”gl”B‘Il('),M (wq](-))||§2||qu(-),12(qu(-))”b1 ||CBM0q(A)_V(Wq(.)) Z 2(}10’ no1—nop—A+y, ) l)_
i=j+1

By invoking the condition 1 < noy; + no; — no- — +, we obtain the requisite conclusion:

b1, H1(Z15 £2) || gaerageaery < ClE garoa guanon 121l gozo 2 g 1P1 | Brroser v s -

In a similar vein, we may swiftly approximate the ensuing result:
b2, H71(Z15 £2) (|| gaorageaery < ClE garoa g 12l gz gparon 1B2ll e Brrosor ar) -

5. Conclusions

This treatise furnishes substantial advancements in the analytical exploration of bilinear fractional
Hardy operators within the framework of weighted central Morrey spaces endowed with variable
exponents. The findings herein elucidate profound insights into the boundedness characteristics of
commutators linked to H. (or H;) in conjunction with the weighted A-central BMO function, thereby
enriching the theoretical landscape of such operators.
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