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Abstract: This paper introduces a modified least squares twin support vector machine (LSTSVM)
designed to enhance classification accuracy and robustness in the presence of outliers and noisy
datasets. Building on the traditional twin SVM (TWSVM) and LSTSVM frameworks, we propose
replacing the L2-norm of error variables with the L1-norm to mitigate the influence of extreme values
and improve sparsity in the solution. To address the computational challenges of large-scale datasets,
we employ the alternating direction method of multipliers (ADMM) to efficiently decompose the
optimization problem into smaller subproblems, ensuring scalability and reduced computational costs.
Acceleration steps with a guard condition are also integrated to speed up convergence. Experimental
evaluations demonstrate the proposed method’s superior performance in terms of computational
efficiency and classification accuracy compared to TWSVM and traditional LSTSVM, making it a
promising solution for real-world applications in classification tasks involving noisy or imbalanced
data.
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1. Introduction

Support vector machines (SVMs) are robust computational tools for supervised learning, commonly
employed in classification and regression tasks. With foundations in statistical learning theory and
Bayesian principles, SVMs aim to identify an optimal separating hyperplane that maximizes the margin
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between positive and negative examples [1]. This approach has proven effective in diverse applications
such as particle identification, face recognition, text categorization, and bioinformatics.

Expanding on the conventional SVM framework, Mangasarian and Wild [2] introduced the
generalized eigenvalue proximal support vector machine (GEPSVM), which addresses binary
classification by identifying two distinct hyperplanes, one for each category. The closest hyperplane is
assigned to data points based on proximity, transforming the problem into a generalized eigenvalue
formulation. The solutions are obtained using eigenvectors associated with the smallest eigenvalues.

To further enhance classification efficiency, Jayadeva et al. [3] proposed the twin support vector
machine (TWSVM), which also constructs two non-parallel hyperplanes. Unlike GEPSVM, TWSVM
involves solving two smaller quadratic programming problems (QPPs) instead of a single large-scale
QPP. This design reduces computational complexity, as shown in experimental evaluations that
demonstrate TWSVM’s superior performance over GEPSVM and standard SVMs on datasets from
the University of California, Irvine (UCI) machine learning repository [4].

Focusing on computational simplicity and scalability, Kumar and Gopal [5] developed the least
squares twin support vector machine (LSTSVM) as an extension of TWSVM [6]. LSTSVM
reformulates the primal QPPs of TWSVM using least squares principles, replacing inequality
constraints with equality constraints. Consequently, the optimization reduces to solving two systems
of linear equations, bypassing the need for external optimizers. This approach effectively
accommodates nonlinear kernels while maintaining computational efficiency. Empirical comparisons
across various UCI and artificial datasets confirm LSTSVM’s faster training time and competitive
classification accuracy relative to TWSVM and traditional LSTSVM.

Despite these advantages, traditional LSTSVM minimizes the L2-norm of error variables, making
it sensitive to outliers. This sensitivity can degrade classification accuracy, especially in noisy or
imbalanced datasets. To address this, several enhancements have been proposed to improve the
robustness of LSTSVM and related models. Furthermore, the standard LSTSVM reduces the
coefficients of irrelevant features without eliminating any of them entirely. As a result, if the dataset
contains many irrelevant features, using the standard LSTSVM may lead to a complex model with
numerous included features since none of the irrelevant coefficients are reduced to zero.

Gao et al. [7] introduced the L1-norm least squares twin support vector machine, which replaces
the L2-norm with the L1-norm in the objective function to promote robustness and handle outliers
effectively. This reformulation also promotes sparsity and feature suppression. By converting the
constrained problem into an unconstrained convex quadratic form, they solve it efficiently using a
generalized Newton method.

Yan et al. [8] proposed the L1-norm-based least squares twin bounded support vector machine,
replacing all conventional L2-norms with L1-norms to reduce outlier influence. The optimization
problems are addressed through an iterative reweighting technique.

Wang et al. [9] introduced the robust capped L1-norm twin support vector machine with privileged
information, which incorporates the learning using privileged information framework. The capped
L1-norm enhances robustness, while upper and lower bound constraints on both main and privileged
features control noise sensitivity. An alternating minimization approach is used to solve the
optimization problems.

In a related line of work, the robust capped L1-norm projection twin support vector machine
(CPTSVM) was proposed to improve the outlier resistance of PTSVM models by Yang et al. [10]. By
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replacing the squared L2-norm with the capped L1-norm, the CPTSVM formulation increases
classifier robustness in the presence of noise and outliers. Though the resulting problems are
non-convex and non-smooth, an iterative algorithm with proven convergence is employed to solve
them. Experiments on artificial and benchmark datasets demonstrate the model’s robustness and
effectiveness.

These related works inform the design of our proposed method, which integrates L1-norm
regularization into the LSTSVM framework and leverages the alternating direction method of
multipliers (ADMM) [11–13] for scalable optimization. In contrast to prior methods, our approach
introduces acceleration mechanisms and guard conditions to ensure both robustness and fast
convergence on large and noisy datasets.

2. Preliminaries

This section briefly reviews the fundamental concepts of TWSVM, LSTSVM, ADMM, and the
Lasso technique.

2.1. Twin support vector machine (TWSVM)

TWSVM is a classification technique developed to reduce the computational burden of traditional
SVM. Instead of finding a single hyperplane to separate two classes, TWSVM constructs two non-
parallel hyperplanes. Each hyperplane is positioned closer to one class while maintaining the maximum
possible distance from the other. Given a dataset D with m1 and m2 training points labeled +1 and −1,
respectively, in Rn, the data points for class +1 are represented by matrix A ∈ Rm1×n, while matrix
B ∈ Rm2×n represents class −1. The linear TWSVM is defined by:

xT w1 + b1 = 0

and
xT w2 + b2 = 0,

where w1,w2 ∈ R
n are normal vectors, and b1, b2 ∈ R are bias terms. These hyperplanes are obtained

by solving two separate optimization problems, each associated with one class:

min
w1,b1,ξ2

1
2
∥Aw1 + e1b1∥

2
2 + c1eT

2 ξ2

s.t. − (Bw1 + e2b1) + ξ2 ≥ e2,

ξ2 ≥ 0,

(2.1)

and

min
w2,b2,ξ1

1
2
∥Bw2 + e2b2∥

2
2 + c2eT

1 ξ1

s.t. (Aw2 + e1b2) + ξ1 ≥ e1,

ξ1 ≥ 0,

(2.2)

where c1, c2 > 0 are parameters, ξ1 ∈ Rm1 , ξ2 ∈ Rm2 are slack vectors, and e1 and e2 are vectors of ones
of appropriate dimensions.
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Using the Lagrangian dual method on (2.1) and (2.2), and introducing the Lagrange multipliers
α ∈ Rm2 and β ∈ Rm1 , the resulting Wolfe dual formulations are:

max
α

eT
2α −

1
2
αTG

(
HT H

)−1
GTα

s.t. 0 ≤ α ≤ c1,
(2.3)

where
G =

[
B e2

]
and

H =
[
A e1

]
.

And
max
β

eT
1 β −

1
2
βT P

(
QT Q

)−1
PTβ

s.t. 0 ≤ β ≤ c2,
(2.4)

where
P =

[
A e1

]
and

Q =
[
B e2

]
.

Solving (2.3) and (2.4) yields the two non-parallel hyperplanes:

u = −
(
HT H

)−1
GTα, where u =

[
w1 b1

]T
,

v =
(
QT Q

)−1
PTβ, where v =

[
w2 b2

]T
.

(2.5)

In comparison to SVM, the QPP in TWSVM has fewer parameters than that of SVM since (2.3)
and (2.4) each involve only m1 and m2 parameters, unlike SVM’s QPP, which depends on m1 + m2

parameters.
In cases involving nonlinear data, the kernel functions are introduced, allowing the two hyperplanes

of TWSVM in the kernel space to be represented as follows:

K
(
xT ,CT

)
u1 + b1 = 0 and K

(
xT ,CT

)
u2 + b2 = 0, (2.6)

where K is a properly selected kernel,
C =

[
A B

]T

and u1, u2 ∈ R
n. The nonlinear TWSVM optimization problem can be expressed:

min
w1,b1,ξ2

1
2
∥K

(
A,CT

)
u1 + e1b1∥

2
2 + c1eT

2 ξ2

s.t. −
(
K

(
B,CT

)
u1 + e2b1

)
+ ξ2 ≥ e2,

ξ2 ≥ 0,

(2.7)

and
min

w2,b2,ξ1

1
2
∥K

(
B,CT

)
u2 + e2b2∥

2
2 + c2eT

1 ξ1

s.t.
(
K

(
A,CT

)
u2 + e1b2

)
+ ξ1 ≥ e1,

ξ1 ≥ 0.

(2.8)
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To compute the hyperplanes for nonlinear TWSVM, the dual forms of (2.7) and (2.8) are derived
and solved to obtain the hyperplanes in (2.6). However, solving nonlinear TWSVM involves handling
two QPPs and requires inverting two matrices of sizes (m1 × m1) and (m2 × m2), which becomes
computationally demanding for large datasets. This adds computational complexity compared to the
linear case.

2.2. Least squares twin support vector machine (LSTSVM)

The LSTSVM is a binary classification technique that creates two non-parallel hyperplanes, which
is proposed by Kumar and Gopal. LSTSVM addresses two modified primal QPPs from TWSVM,
applying a least squares approach in which inequality constraints are replaced by equalities in (2.1)
and (2.2) as:

min
w1,b1,ξ2

1
2
∥Aw1 + e1b1∥

2
2 +

c1

2
ξT

2 ξ2

s.t. − (Bw1 + e2b1) + ξ2 = e2,
(2.9)

and
min

w2,b2,ξ1

1
2
∥Bw2 + e2b2∥

2
2 +

c2

2
ξT

1 ξ1

s.t. (Aw2 + e1b2) + ξ1 = e1,
(2.10)

where c1, c2 are the regularization parameters and ξ1, ξ2 are slack variables.
In (2.9), the QPP incorporates the L2-norm of the slack variable ξ2 with a weight of c1

2 rather than
the L1-norm weighted by c1 as used in (2.1). This change renders the constraint ξ2 ≥ 0 unnecessary.
As a result, solving (2.9) reduces to solving a system of linear equations. By substituting the equality
constraints directly into the objective function, the problem is rewritten as:

min
w1,b1

1
2
∥Aw1 + e1b1∥

2
2 +

c1

2
∥Bw1 + e2b1 + e2∥

2
2 . (2.11)

Setting the gradient of (2.11) with respect to w1 and b1 to zero yields a closed-form solution for
QPP (2.9): [

w1

b1

]
= −

(
FT F +

1
c1

ET E
)−1

FT e2, (2.12)

where
E =

[
A e1

]
and

F =
[
B e2

]
.

Similarly, solving for the second hyperplane (2.10) gives:[
w2

b2

]
=

(
ET E +

1
c2

FT F
)−1

ET e1. (2.13)

Therefore, the two nonparallel hyperplanes of LSTSVM can be obtained by inverting two matrices
of dimension (n+1)× (n+1), where n is the number of features, which is significantly smaller than the
total number of training samples. This makes LSTSVM more computationally efficient than TWSVM
while also improving generalization. The nonlinear case follows the same approach, replacing linear
terms with kernel functions.
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2.3. Alternating direction method of multipliers (ADMM)

ADMM was first introduced by Glowinski and Marroco [11] and Gabay and Mercier [12]. ADMM
is an iterative optimization algorithm designed to decompose complex problems into manageable
subproblems, which are then solved alternately. This approach ensures computational efficiency and
makes ADMM particularly suitable for distributed and large-scale problems. ADMM solves
optimization problems of the form:

min
x,z

f (x) + g(z)

s.t. Ax + Bz = c,
(2.14)

where f and g are convex functions, and A, B, and c are given matrices/vectors. Since (2.14) is a
constrained minimization problem, we can write the related augmented Lagrangian:

Lρ(x, z, y) = f (x) + g(z) + yT (Ax + Bz − c) +
ρ

2
∥Ax + Bz − c∥22 .

ADMM operates through a sequence of iterations

x(k+1) := argmin
x

Lρ(x, z(k), y(k)), (2.15)

z(k+1) := argmin
z

Lρ(x(k+1), z, y(k)), (2.16)

y(k+1) := y(k) + ρ(Ax(k+1) + Bz(k+1) − c), (2.17)

where ρ > 0 is the Lagrangian dual variable, which is also called the penalty parameter. The
algorithm involves three key steps. First, an x-minimization step optimizes x using the augmented
Lagrangian function Lρ while keeping z and the dual variable y fixed. Next, a z-minimization step
updates z similarly. Finally, the dual variable y is updated using a step size proportional to the
augmented Lagrangian parameter ρ.

The Lasso. Lasso regularization, which utilizes the L1-norm, is an optimization and machine
learning approach designed to reduce overfitting and promote sparsity in model parameters and is
often solved using the ADMM because ADMM is well-suited for convex optimization problems with
separable objective functions and constraints. The corresponding Lasso formulation is expressed as:

min
β

1
2
∥Xβ − y∥22 + τ ∥β∥1 , (2.18)

where y ∈ Rn, X ∈ Rn×p, and τ > 0 is a scalar regularization parameter that controls the strength of the
penalty.

ADMM introduces an auxiliary variable z to separate the least squares and L1 penalty terms:

min
β,z

1
2
∥Xβ − y∥22 + τ ∥z∥1

s.t. β − z = 0.
(2.19)

ADMM solves this using the augmented Lagrangian:

Lρ(β, z, u) =
1
2
∥Xβ − y∥22 + τ ∥z∥1 +

ρ

2
∥β − z + u∥22 ,

where u is the scaled dual variable and ρ > 0 is the penalty parameter controlling convergence. ADMM
then alternates between updating β, z, and u:
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(1) Update β (least squares step):

β(k+1) =
(
XT X + ρI

)−1 (
XT y + ρ

(
z(k) − u(k)

))
, (2.20)

where
(
XT X + ρI

)
is always invertible, since ρ > 0.

(2) Update z (soft-thresholding step):

z(k+1) = S τ/ρ
(
β(k+1) + u(k)

)
, (2.21)

where S τ/ρ is the soft-thresholding operator, which recall is defined as:

S ε(ν) =


ν − ε, if ν > ε,
0, if − ε ≤ ν ≤ ε,
ν + ε, if ν < −ε.

(3) Update u (dual variable update):

u(k+1) = u(k) + ρ(β(k+1) − z(k+1)). (2.22)

3. Research methodology

Lasso LSTSVM by ADMM. Building on the foundational concepts discussed earlier, this section
presents the formulation for solving LSTSVM with L1-norm regularization, also known as the Lasso
technique, using the ADMM framework. ADMM is chosen over traditional optimization techniques
due to its strong scalability and its ability to decompose complex objectives—particularly those
involving non-smooth terms like the L1-norm—into simpler subproblems. This makes it especially
effective for high-dimensional, large-scale datasets.

Linear case. In this work, we replace the L2-norm of the penalty term in LSTSVM (2.9) and (2.10)
with the L1-norm, allowing the problem to be reformulated in a manner similar to the Lasso technique.
This modification promotes sparsity in the slack variables and enables the use of ADMM to decompose
the problem into simpler subproblems, improving computational efficiency. The modified optimization
problems are formulated as follows:

min
w1,b1,ξ2

1
2
∥Aw1 + e1b1∥

2
2 +

c1

2
∥ξ2∥1

s.t. −(Bw1 + e2b1) + ξ2 = e2,
(3.1)

and
min

w2,b2,ξ1

1
2
∥Bw2 + e2b2∥

2
2 +

c2

2
∥ξ1∥1

s.t. (Aw2 + e1b2) + ξ1 = e1,
(3.2)

where c1, c2 are given positive parameters.
To facilitate efficient computation, we reformulate the problems using auxiliary variables:

min
x1,ξ2

1
2
∥Fx1∥

2
2 + τ1 ∥ξ2∥1

s.t. −Ex1 + ξ2 = e2,
(3.3)
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and

min
x2,ξ1

1
2
∥Ex2∥

2
2 + τ2 ∥ξ1∥1

s.t Fx2 + ξ1 = e1,
(3.4)

where

F =
[
A e1

]
, E =

[
B e2

]
, x1 =

[
w1 b1

]T
,

and

x2 =
[
w2 b2

]T
.

The augmented Lagrangian for the first reformulated problem (e.g., for x1 and ξ2) is given by:

Lρ(x1, ξ2, y1) =
1
2
∥Fx1∥

2
2 + τ1 ∥ξ2∥1 + yT

1 (Ex1 − ξ2 + e2)

+
ρ

2
∥Ex1 − ξ2 + e2∥

2
2 ,

(3.5)

where ρ > 0 serves as a penalty parameter and y1 is the dual variable. The ADMM update rules for
solving this problem are as follows:

(1) x1-update: Solve for x(k+1)
1 :

x(k+1)
1 = argmin

x1

Lρ(x1, ξ
(k)
2 , y

(k)
1 ),

resulting in:

x(k+1)
1 =

(
FT F + ρET E

)−1 [
ET

(
ρξ(k)

2 − ρe2 − y(k)
1

)]
.

(2) ξ2-update: Solve for ξ(k+1)
2 :

ξ(k+1)
2 = argmin

ξ2

Lρ(x(k+1)
1 , ξ2, y

(k)
1 ),

which simplifies to the soft-thresholding operation:

ξ(k+1)
2 = S τ1/ρ

Ex(k+1)
1 + e2 +

y(k)
1

ρ

 ,
where S τ1/ρ(·) is the soft-thresholding operator.

(3) Dual variable update: Update the dual variable y1:

y(k+1)
1 = y(k)

1 + ρ
(
Ex(k+1)

1 − ξ(k+1)
2 + e2

)
.

The iterative steps for solving the problem using ADMM are summarized in Algorithm 1:
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Algorithm 1 ADMM for solving Lasso LSTSVM 1st plane.
% initialize ξ2, y1

ξ(0)
2 ← ξ̄2

y(0)
1 ← ȳ1

for k = 0, 1, 2, . . . do
x(k+1)

1 =
(
FT F + ρET E

)−1 [
ET

(
ρξ(k)

2 − ρe2 − y(k)
1

)]
ξ(k+1)

2 = S τ1/ρ

Ex(k+1)
1 + e2 +

y(k)
1

ρ


y(k+1)

1 = y(k)
1 + ρ

(
Ex(k+1)

1 − ξ(k+1)
2 + e2

)
end for

Similarly, the second reformulated problem can be solved using the same concepts as the first
problem, as previously demonstrated. The iterative steps for updating x2, ξ1, and y2 are summarized in
Algorithm 2:

Algorithm 2 ADMM for solving Lasso LSTSVM 2nd plane.
% initialize ξ1, y2

ξ(0)
1 ← ξ̄1

y(0)
2 ← ȳ2

for k = 0, 1, 2, . . . do
x(k+1)

2 =
(
ET E + ρFT F

)−1 [
−FT

(
ρξ(k)

1 − ρe1 + y(k)
2

)]
ξ(k+1)

1 = S τ2/ρ

−Fx(k+1)
2 + e1 −

y(k)
2

ρ


y(k+1)

2 = y(k)
2 + ρ

(
Fx(k+1)

2 + ξ(k+1)
1 − e1

)
end for

Nonlinear case. In real-world scenarios, the linear kernel method is not always applicable, as
large-scale datasets often exhibit higher complexity. Therefore, we extend the algorithm to nonlinear
Lasso LSTSVM using kernel techniques [14]. We modify the optimization problems (3.1) and (3.2) as
follows:

min
w1,b1,ξ2

1
2
∥K(A, X)w̃1 + e1b1∥

2
2 +

c1

2
∥ξ2∥1

s.t. −(K(B, X)w̃1 + e2b1) + ξ2 = e2,
(3.6)

and

min
w2,b2,ξ1

1
2
∥K(B, X)w̃2 + e2b2∥

2
2 +

c2

2
∥ξ1∥1

s.t. (K(A, X)w̃2 + e1b2) + ξ1 = e1.
(3.7)

Where
K(x, y) = ϕ(x)Tϕ(y)
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is a kernel for any x and y, where function ϕ maps data points x from Rn to Rm(n < m).
The model can be reformulated as the following:

min
x1,ξ2

1
2
∥Gx1∥

2
2 + τ1 ∥ξ2∥1

s.t. −Hx1 + ξ2 = e2,
(3.8)

and

min
x2,ξ1

1
2
∥Hx2∥

2
2 + τ2 ∥ξ1∥1

s.t Gx2 + ξ1 = e1,
(3.9)

where

G =
[
K(A, X) e1

]
, H =

[
K(B, X) e2

]
, x1 =

[
w̃1 b1

]T
,

and

x2 =
[
w̃2 b2

]T
.

The solution is similar to the linear kernel case: construct the augmented Lagrange function and
follow the ADMM framework to update x, ξ and dual variables y.

As for complexity, solving the linear system contributes O(n3). Our proximal operator is simple.
Its complexity is O(n). If k iterations are required, the total complexity is O(k · (n3 + n)). For convex
problems, k scales as O(1/ϵ), so the total complexity becomes O

(
n3

ϵ

)
. The criteria that ensures that our

ADMM converges are the feasibility of the primal and dual. It is important to have feasibility in both
primal and the dual (Lagrangian variables).

Accelerated Lasso LSTSVM with guard condition. In this work, we employ an accelerated ADMM
framework [15] designed to ensure a consistent reduction in the combined residual γ by introducing
a guard condition. This condition regulates the acceleration process, allowing it to proceed when met
and reverting to the standard ADMM iteration otherwise. This adaptive mechanism prevents potential
instability or divergence that might arise from direct acceleration.

Let u denote the target vector we aim to compute. The approximation of u at the k−th iteration
is represented by u(k). For clarity, ū(k) represents the approximation of u computed using the standard
ADMM method, while û(k) denotes the vector derived from an acceleration strategy applied to the
ADMM process. In an acceleration step, the next iteration û(k+1) is calculated by combining current
and previous approximations of ū, often as follows:

û(k) = ū(k) + α(k)(ū(k) − ū(k−1)), (3.10)

where α(k) is an adaptive parameter governing the acceleration. The proposed accelerated ADMM
method, incorporating the guard condition, is formally outlined in Algorithm 3.
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Algorithm 3 Accelerated Lasso LSTSVM with guard condition.
% initialize ξ2, y1

ξ(0)
2 ← ξ̃2

y(0)
1 ← ỹ1

for k = 0, 1, 2, . . . do

x(k+1)
1 =

(
FT F + ρET E

)−1 [
ET

(
ρξ(k)

2 − ρe2 − y(k)
1

)]
;

ξ̄(k+1)
2 = S τ1/ρ

Ex(k+1)
1 + e2 +

y(k)
1

ρ


ȳ(k+1)

1 = y(k)
1 + ρ

(
Ex(k+1)

1 − ξ̄(k+1)
2 + e2

)
% Begin of acceleration steps
ξ̂(k+1)

2 = ξ̄(k+1)
2 + α(k)

1

(
ξ̄(k+1)

2 − ξ̄(k)
2

)
ŷ(k+1)

1 = ȳ(k+1)
1 + α(k)

1

(
ȳ(k+1)

1 − ȳ(k)
1

)
% End of acceleration steps

γ(k+1) = ρ−1
∥∥∥ŷ(k+1)

1 − ŷ(k)
1

∥∥∥2

2
+ ρ

∥∥∥ξ̂(k+1)
2 − ξ̂(k)

2

∥∥∥2

2

% Begin of guard condition
if γ(k+1) < γ(0)ηk+1 then
ξ(k+1)

2 = ξ̂(k+1)
2

y(k+1)
1 = ŷ(k+1)

1

else
ξ(k+1)

2 = ξ̄(k+1)
2

y(k+1)
1 = ȳ(k+1)

1

γ(k+1) = ρ−1
∥∥∥y(k+1)

1 − y(k)
1

∥∥∥2

2
+ ρ

∥∥∥ξ(k+1)
2 − ξ(k)

2

∥∥∥2

2

end if
% End of guard condition

end for

In our algorithm, the guard condition is designed to monitor the progress of the accelerated
ADMM updates and decide whether to accept the acceleration or revert to standard ADMM updates.
To make this decision robust and effective, we adopt the parameter selection strategy proposed
in [15]. Specifically, the threshold parameter η ∈ (0, 1) is used to determine whether the accelerated
update yields sufficient improvement in the combined residual. If the reduction is less than a factor of
η, the algorithm rejects the acceleration step and reverts to the previous iterate.

In this work, we set η = 0.85, following the empirical recommendation in [15]. This choice reflects
a balanced trade-off between acceleration and stability. Additionally, the momentum parameter α(k)

is used to control the acceleration step size. Following the stationary acceleration approach proposed
in [15], we fix

α(k) = α
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for all iterations, rather than using a dynamically updated rule. This simplification reduces
computational overhead and avoids potential oscillations caused by increasing momentum.

In particular, [15] provides a convergence proof under the condition that

α < 1/3,

ensuring the stability of the accelerated scheme. Based on this, we select a fixed value of α within this
bound, e.g.,

α = 0.2

to maintain theoretical convergence guarantees while benefiting from the improved convergence speed
that acceleration offers.

This approach achieves faster convergence by leveraging the vectors computed from standard
ADMM iterations as a reference for acceleration steps. Notably, selecting appropriate parameters for
the guard condition is crucial to optimizing the method’s overall efficiency.

4. Results and discussion

This section presents a comparative study evaluating the effectiveness of the accelerated Lasso
LSTSVM using ADMM with both linear and nonlinear kernels. We assess the classification accuracy
and computational efficiency of the standard LSTSVM, Lasso LSTSVM, and its accelerated variant.

For experiments with linear kernels, we utilize datasets from the UCI machine learning
repository [4], including ionosphere, breast cancer, Pima Indians, dry bean, satellite, predict students’
dropout and academic success (PSDA), and QSAR biodegradation. For nonlinear classification, we
employ EEG eye state and magic telescope (also from the UCI repository), along with the moon
dataset—a synthetic dataset from Kaggle [16]—and the electricity dataset [17], a real-world dataset
obtained from OpenML.

All datasets are designed for binary or multi-class classification tasks and span diverse domains such
as medicine, physics, and social sciences. Their varying characteristics in terms of sample size, feature
dimension, and complexity provide a robust foundation for evaluating the generalization performance
of the proposed models across different scenarios.

As illustrated in Figure 1, a synthetic dataset was constructed to evaluate model performance on
linearly separable data. The dataset consists of 500 samples with 2 features and 2 classes. Orange
points represent Class 1, while blue points represent Class 2. To simulate challenging conditions, we
introduced outliers by mislabeling 10% of the data—an intentionally high proportion, considering that
outliers typically account for less than 5% of real-world datasets.

We then evaluated the models by splitting the dataset into 80% training and 20% testing data. The
results show that Lasso LSTSVM achieved an accuracy of 94%, compared to 92% from the standard
LSTSVM. This highlights the Lasso model’s robustness to label noise and its ability to generalize
better in the presence of significant outlier contamination.
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Figure 1. A synthetic data set with outlier which led to misclassification.

The classification results are influenced by the selection of penalty parameters, which are set to
specific values for linear and nonlinear kernels to ensure a fair comparison. For nonlinear classifiers,
the Gaussian RBF kernel is utilized, with the kernel function defined as

K(xi, x j) = exp(−
∥∥∥xi − x j

∥∥∥ /2σ2),

with the kernel parameter σ = 1 due to its well-established capability to model complex, nonlinear
relationships in high-dimensional feature spaces. It is a widely used choice in kernel-based learning
methods because it introduces locality and smoothness in decision boundaries, which is beneficial for
datasets with intricate structures, such as EEG eye state and magic telescope.

In our experiments, we fixed the kernel parameter to σ = 1 for consistency and to avoid additional
hyperparameter tuning that could overshadow the performance comparison between models. However,
we acknowledge that the performance of RBF-based models is sensitive to the choice ofσ.A very small
σ may lead to overfitting by capturing noise, while a large σ can oversmooth decision boundaries and
underfit the data. The experiment results are summarized in Tables 1–4, where m and n indicate the
number of training samples and feature dimensions, respectively.

The datasets used in this study exhibit varying degrees of outlier presence. Based on the interquartile
range (IQR) method [18], most datasets were found to contain a moderate to high number of outliers.
Notably, the Pima Indians and QSAR datasets have a particularly high concentration of outliers. For
Pima Indians, this is primarily due to missing or implausible values treated as real numbers—features
such as insulin, BMI, skin thickness, and blood pressure often contain zeros, which are physiologically
impossible and act as placeholders for missing data but are not properly handled in the raw dataset.
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The QSAR dataset, on the other hand, naturally includes outliers due to its chemical diversity, high
dimensionality, and non-normal feature distributions.

Table 1 compares the classification accuracy of the standard LSTSVM and the Lasso LSTSVM
using a 10-fold cross-validation approach. Results show that Lasso LSTSVM outperforms the
standard LSTSVM on datasets such as ionosphere, Pima Indians, PSDA, and QSAR, all of which
contain relatively high levels of outliers. In contrast, for datasets like breast cancer, dry bean, and
satellite, which exhibit fewer outliers, the performance gap between the models is narrower.

Table 1. Accuracy ± std (%) comparisons of two algorithms using linear kernel.
Dataset (m × n) Standard LSTSVM Lasso LSTSVM
Ionosphere
(351 × 33)

80.00 ± 4.67 90.91 ± 5.70

Breast cancer
(558 × 5)

92.47 ± 2.04 91.58 ± 2.55

Pima indians
(768 × 8)

76.71 ± 6.27 85.53 ± 6.27

Dry Bean
(5573 × 16)

97.78 ± 0.53 97.76 ± 0.68

Satellite
(5100 × 36)

99.27 ± 0.32 99.18 ± 0.34

PSDA
(3630 × 36)

90.77 ± 1.50 91.19 ± 1.24

QSAR
(1055 × 42)

86.13 ± 4.69 87.94 ± 3.05

As shown in Table 2, aside from the moon dataset, which is synthetic and generated from Kaggle,
the remaining three datasets (EEG eye state, magic telescope, and electricity) contain a considerable
number of outliers. Interestingly, the standard LSTSVM performs better than the Lasso LSTSVM on
the Moon dataset, while Lasso LSTSVM shows higher accuracy for EEG eye state and magic telescope.
However, there are cases—such as the electricity dataset—where the standard LSTSVM still performs
better despite the presence of outliers. This can be attributed to the nature of the outliers in this dataset,
which result from natural fluctuations rather than sensor errors or data entry mistakes. In such cases,
the L2-norm of the standard LSTSVM may better capture the underlying data structure, whereas the
L1-norm regularization of Lasso LSTSVM might overly penalize these variations, potentially missing
broader trends.

Tables 3 and 4 compare the computational time between the Lasso LSTSVM and the Accelerated
Lasso LSTSVM models. The results clearly demonstrate that, for both linear and Gaussian RBF
kernels, the accelerated Lasso LSTSVM significantly reduces computation time while maintaining
classification accuracy comparable to that of the standard Lasso LSTSVM. This highlights the
effectiveness of the proposed acceleration strategy, particularly for large-scale or high-dimensional
datasets where computational efficiency is critical.
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Table 2. Accuracy ± std (%) comparisons of two algorithms using Gaussian kernel.
Dataset (m × n) Standard LSTSVM Lasso LSTSVM
Moon
(200 × 3)

97.50 ± 4.86 95.50 ± 6.43

EEG eye state
(14979 × 14)

84.61 ± 0.77 85.10 ± 0.76

Magic telescope
(19020 × 10)

76.82 ± 0.61 77.08 ± 0.62

Electricity
(45312 × 6)

75.89 ± 0.62 73.08 ± 0.81

Table 3. Performance comparisons of two algorithms using linear kernel.
Dataset (m × n) Lasso LSTSVM Accelerated Lasso LSTSVM

Acc + std(%)
time (Sec.)

Acc + std(%)
time (Sec.)

Ionosphere
(351 × 33)

90.91 ± 5.70
1.12

85.71 ± 5.33
0.84

Breast cancer
(558 × 5)

91.58 ± 2.55
4.32

91.22 ± 2.46
4.50

Pima indians
(768 × 8)

85.53 ± 6.27
4.93

85.53 ± 6.26
4.42

Dry Bean
(5573 × 16)

97.76 ± 0.68
10.49

97.54 ± 0.54
6.80

Satellite
(5100 × 36)

99.18 ± 0.34
37.49

99.31 ± 0.35
7.25

PSDA
(3630 × 36)

91.19 ± 1.24
9.83

91.74 ± 1.44
3.95

QSAR
(1055 × 42)

87.94 ± 3.05
4.37

86.96 ± 3.93
2.50

Table 4. Performance comparisons of two algorithms using Gaussian kernel.

Dataset (m × n) Lasso LSTSVM Accelerated Lasso LSTSVM

Acc + std(%)
time (Sec.)

Acc + std(%)
time (Sec.)

Moon
(200 × 3)

95.50 ± 6.43
1.91

96.00 ± 6.58
1.82

EEG eye state
(14979 × 14)

85.10 ± 0.76
141.26

85.69 ± 0.62
117.74

Magic telescope
(19020 × 10)

77.08 ± 0.62
116.39

77.18 ± 0.75
80.15

Electricity
(45312 × 6)

73.08 ± 0.81
65.76

72.86 ± 0.96
84.96
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It is widely understood that in regression, ridge regression is used when many predictors or
independent variables may be relevant, particularly in multicollinear contexts. In contrast, Lasso
regression is employed when we suspect that only a few predictors are significant, allowing for
effective feature selection. However, ridge regularization is more sensitive to outliers because it
minimizes squared errors, which can lead to biased coefficients that are heavily influenced by those
outliers. This principle applies to both the standard LSTSVM models and the Lasso LSTSVM
models. Consequently, existing LSTSVM models are likely more sensitive to outliers than the Lasso
LSTSVM models.

However, in some instances, the standard LSTSVM models outperformed the Lasso LSTSVM.
This may be due to the standard LSTSVM’s ability to handle a larger number of relevant predictors
or independent variables more effectively. The standard LSTSVM shrinks the coefficients of irrelevant
features without eliminating any coefficients entirely. As a result, if the dataset contains many irrelevant
features, using the standard LSTSVM may lead to a complex model with numerous included features
since none of the irrelevant coefficients are reduced to zero. In contrast, the standard LSTSVM might
perform better than the Lasso LSTSVM when the dataset includes relevant independent variables, as
shown in some of ours examples.

5. Conclusions

This research presents a comparative analysis between three classification models: the standard
LSTSVM, the Lasso LSTSVM, and the proposed accelerated Lasso LSTSVM, using the ADMM
framework. The study compares the accuracy of the standard LSTSVM with Lasso LSTSVM and
compares the computational time between Lasso LSTSVM and Accelerated Lasso LSTSVM. The
inclusion of L1-norm regularization helps make the model more robust to outliers, enabling it to adapt
well to datasets with a high number of outliers. Additionally, the acceleration step in the ADMM
process helps reduce computation time without compromising classification accuracy.

Experimental results on several benchmark datasets, both linear and nonlinear, show that the
proposed model outperforms the standard LSTSVM in terms of accuracy. Although there are cases
where the standard LSTSVM achieves better accuracy than the Lasso type, this can be attributed to
various factors revealed through analysis. However, there remains potential for improvement in
computational efficiency, particularly for large-scale datasets. The accelerated model effectively
reduces the number of iterations and training time compared to the non-accelerated version.
Furthermore, the guard condition applied with the acceleration step ensures the algorithm’s stability
and guarantees reliable results. This study demonstrates that combining robustness to outliers with
ADMM tuning and acceleration steps produces an efficient model that is well-suited for real-world
data applications. Future research could extend this work by developing adaptive acceleration
techniques and investigating theoretical convergence guarantees to achieve even faster and more
reliable algorithms for practical use.
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