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Abstract: This analysis used the backpropagation Levenberg-Marquardt technique coupled through 
neural networks (BPLMT-NN). The magnetohydrodynamic (MHD) viscous nanofluid flow due to the 
rotating disk (MHD-VNRD) through the slip effect was investigated. In the existence of a velocity 
slip condition, this communication investigated the boundary coating flow of viscous nanofluid under 
MHD conditions. The flow was produced by a disk that was revolving. A fluid effects electricity under 
the effect of a magnetic field that is transverse. The magnetic field that is generated is neglected when 
the magnetic Reynolds number is low. The properties of Brownian and thermophoresis motion were 
demonstrated using a nanofluid simulation. Hypotheses about the boundary coating and low magnetic 
Reynolds number were made while formulating the problem. To transform nonlinear partial 
differential equations into a scheme of ordinary differential equations, the similarity transformation 
was utilized. On the profiles of velocity, temperature, and concentration, a data set for the suggested 
(BPLMT-NN) was created for the impacts of several important parameters and was illustrated via the 
explicit Runge-Kutta technique. Using the (BPLMT-NN) testing, training, and validation approach, 
the estimated result of various situations was endorsed, and the suggested model was evaluated for 
fitness. After that, the proposed (BPLMT-NN) was validated using mean square error (MSE), 
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regression analysis, and histogram investigations. The novelty of the proposed BPLMT-NN technique 
has various applications, such as disease diagnosis, robotic control systems, ecosystem evaluation, etc. 
We conducted analyses of some statistical data like gradient, performance, and epoch of the proposed 
fluid model. Based on closeness, as well as recommended and reference results, the suggested 
approach has made a distinction with precision level varying from 10ି଴ଽ to 10ିଵ . 

Keywords: nanoparticles; magnetic field; rotating disk; velocity slip; neural network; 
Levenberg-Marquard technique 
Mathematics Subject Classification: 34G20, 35R11 
 

Nomenclature  

MHD Magnetohydrodynamic 𝐷்  
Thermophoretic diffusion coefficient 
[𝑚ଶ𝑠ିଵ] 

Ω  Angular velocity [𝑚𝑠ିଵ] 𝐿  Velocity slip constant [𝑚𝑠ିଵ] 

𝐵଴  
Magnetic field strength 
[𝑁𝑚𝐴ିଵ] 

𝑇௪  
Temperatures of the surface 

(𝑢, 𝑣, 𝑤)  Velocity components [𝑚𝑠ିଵ] 𝑇ஶ  Temperatures for away from the surface 
(𝑟, 𝜙, 𝑧)  Cylindrical coordinates [𝑚] 𝐶௪  Concentration at the surface 

𝑣  Kinematic viscosity [𝑚ଶ𝑠ିଵ] 𝐶௪  
Concentration for away from the 
surface 

𝜇  
Dynamic viscosity 
[𝑘𝑔𝑚ିଵ𝑠ିଵ] 

𝜂  
Similarity variable 

𝜌௙  Density of base fluid [𝑘𝑔 𝑚ିଷ] 𝑀  Magnetic parameter 
𝜎  Electrical conductivity [𝑆𝑚ିଵ] 𝛾  Velocity slip parameter 
𝑇  Temperature of fluid [𝐾] 𝑃𝑟  Prandtl number 

𝛼  
Thermal diffusivity of fluid 
[𝑚ଶ𝑠ିଵ] 

𝑁𝑏  
Brownian motion parameter 

𝑘  
Thermal conductivity of 
fluid [𝑊𝑚ିଵ𝐾ିଵ] 

𝑁𝑡  
Thermophoresis parameter 

(𝜌𝑐)௙  Heat capacity of fluid [𝐽𝐾ିଵ] 𝐿𝑒  Lewis number 

(𝜌𝑐)௣  Heat capacity of 
nanoparticles [𝐽𝐾ିଵ] 

𝑅𝑒௥  
Local rotational Reynolds number 

𝐷஻  
Brownian diffusion 
coefficient [𝑚ଶ𝑠ିଵ] 

𝑓′  
Dimensionless velocities 

𝐶  Concentration 𝑔  Dimensionless velocities 
ANN Artificial neural networks 𝜙  Concentration distribution 
MSE Mean square error 𝜃  Temperature field 

BPLMT 
Backpropagation Levenberg 
Marquardt technique 

 
 

1. Introduction  

Neural networks are widely utilized, having applications in enterprise planning, financial 
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operations, trading, product maintenance and business analytics. Neural networks are also widely used 
in corporate applications such as marketing exploration and forecasting, risk assessment, and fraud 
detection. Backpropagation is a popular learning process in input multilayer neural networks. This 
approach has lately been employed by researchers to investigate mass and heat transfer characteristics, as 
well as non-Newtonian fluid flow systems. In 1974 Paul Werbos was the foremost person to design the 
backpropagation technique. This method was revived and improved upon by Rumelhart and Parker [1] 
after Paul Werbos’s discovery. An artificial neural network (ANN) is an innovative new artificial 
intelligence method. ANNs can exploit a variety of disciplines throughout the learning development 
depending on the data that flows through the network, whether it initiates from inside or outside of it. 
To enhance the multilayer perceptron (MLP) network’s performance, an ANN uses the back 
propagation technique for simultaneous training. It is the most widely used, easy-to-learn, and 
successful model for complex multilayer networks. A unique convergent consistency technique for 
ANNs is the Levenberg-Marquardt technique (LMT), which provides a numerical solution to a range 
of fluid flow issues. Various researchers have lately utilized this technique to analyze non-Newtonian 
fluid flow systems and their properties related to mass and heat transfer. In their study, Ajed et al. [2] 
suggested using neural network design to inspect the heat transfer and MHD in a two-phase paradigm 
of nanofluid flow when thermal energy exists. Over a stretched sheet, Shoaib et al. [3] examined the 
numerical analysis for rotational MHD nanofluid flow hybrids with heat radiation using neural 
networks. Utilizing the back-propagated neural networks with Levenberg-Marquard system 
(BNN-LMS), Khan et al. [4] investigated the heat transfer across two porous parallel surfaces of stable 
nanofluids utilizing thermophoresis and Brownian effects. Using a backpropagation 
Levenberg-Marquardt, Sabir et al. [5] studied methods of computational intelligence to clarify the 
Emden-Fowler paradigm’s third-order nonlinear scheme. Shafiq et al. [6] explored the modeling of 
Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with an artificial 
neural network. Shoaib et al. [7] exercised the technique of Levenberg–Marquardt back propagation 
with neural networks (TLMB-NN) and a stochastic numerical approach via ANNs to study the 
consequences of heat transfer on Maxwell flow of nanofluid above a vertical moving surface with MHD. 
Intelligent networks were utilized by Ajed et al. [8] to study MHD flow of fluid in a thermally stratified 
medium across coaxial extensible spinning disks. Sindhu et al. [9] investigated the reliability study of 
generalized exponential distribution based on inverse power law using an artificial neural network 
with Bayesian regularization. 

To compare the performance of different neural network models for robustness verification, we 
need to consider various factors such as the type of verification, the size and complexity of the network, 
and the robustness metric used [10]. 
Types of verification: 

i) Point-wise verification 
ii) Partition-based verification 

Alternative neural network models: 
i) Deep neural networks (DNNs) 
ii) Convolutional neural networks (CNNs)  

Performance comparison: 
Efficiency: Partition-based verification can be more efficient than point-wise verification, 

especially for large networks. 
Accuracy: The accuracy of robustness verification depends on the robustness metric used and the 

quality of the partitioning in partition-based verification. 
Scalability: DNNs and CNNs can be computationally expensive to verify, especially for large 
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networks. Partition-based verification can help improve scalability. 
Researchers are working harder than ever in applied physics and engineering to improve and 

understand the valuable properties of nanomaterials. The past few years have seen a surge in interest in 
nanofluids [11,12]. The extreme heat conductivity of microfluids sets them apart from ordinary fluids. 
The enhancement in thermal conductivity of nanofluids has overtaken the restricted transfer of heat 
performance of conventional fluids currently in use as an extremely important phenomenon. Researchers 
are drawn to the exciting and crucial analysis of nanofluids because of the potential uses, for instance 
safer surgery, electrical gadgets, cancer therapy and nuclear reactors may boost heat transfer resources 
for a better cooling method, Nayak et al. [13]. Choi and Eastman et al. [14] seemed to be the initial 
researchers to report the dispersion of nanoparticles in a base fluid in 1995. Sheikholeslami et al. [15] 
studied the features of nanofluids, such as viscosity, conductivity, and thermal property, which have a 
substantial influence on heat transfer rates. There is now a large body of work on the mixed convection 
nanofluid flow stagnation points. Syam et al. [16] investigated the dynamics of Fe3O4–water, Cu–water, 
and Ag–water nanofluids in the context of steady, two-dimensional, incompressible laminar 
magnetohydrodynamic (MHD) boundary layer flow. Makinde et al. [17] explored the influence of the 
magnetic field and buoyancy pressure at a conduction-heated medium on the stagnation point flows. 
Metals, carbides, oxides, and carbon nanotubes are often discovered to include nanoparticles. In the 
fields of biomedicine, computer microprocessors, nuclear reactor cooling, and industry, nanofluids are 
broadly exploited to enhance the heat transfer [18,19]. Syam et al. [20] investigated the slip flow 
dynamics involving Al2O3 and Fe3O4 nanoparticles within a horizontal channel embedded with porous 
media. Nadeem et al. [21] investigated a unique kind of nanofluid; they found that the nanoparticles 
could have been tabular or rod-shaped. 

The flow caused by disk rotation is currently of much curiosity because of its extensive range of 
uses in engineering and aeronautical science branches, for example, medical apparatus, thermal 
power-producing systems, rotating equipment, computer-storing tools, gas turbine blades, crystal 
growth methods, etc. Von Karman [22] pioneered the flow caused by a revolving disk. His well-known 
work has been explored by many scholars throughout the world through varied approaches. 
Turkyilmazoglu and Senel [23] investigated a combined impact of heat and mass transfer phenomena 
in the rotating flow of a viscous fluid over a permeable disk. They analyzed the numerical outcomes of 
the flow problem. Rashidi et al. [24] investigated the MHD viscous fluid flow via a spinning disk with 
various parameters. In this research, they also looked at how entropy creation affected the flow of the 
problem under consideration. Turkyilmazoglu [25] presented on the flow of a revolving disk while 
taking nanoparticle impacts into consideration. Hatami et al. [26] investigated the laminar, 
incompressible viscous nanoliquid flow produced by revolving and compressing disks. They 
performed the study using the smallest squares approach. Mustafa et al. [27] have studied the flow 
caused by a linear extending disk in the existence of nanoparticles. They came to the conclusion that a 
major factor in lowering the thickness of the boundary coating is the uniform stretching of the disk. 
Sheikholeslami et al. [28] reported the numerical solutions for the nanofluid flow issue affected by an 
angled spinning disk.  

Currently, increased heat transmission rates are required by industrial production processes. The 
appropriate heat transfer rates required by industry are not being fulfilled by the traditional heat 
transfer technologies. The main focus of contemporary scientists working on this topic is the 
development of methods for improving heat transmission. Enhancement methods may be broadly 
divided into two groups: Active as well as passive procedures. While active methods need external 
forces like magnetic and electric fields, passive techniques just require certain fluid extracts, thermal 
packing, geometries, etc. Enhancing the thermal execution of common liquids, including water, oil, 
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and ethylene-glycol combinations is the main goal of fluid additives [29]. Numerous researchers have 
documented how solid-liquid mixtures significantly increase heat transmission. Various problems 
have been identified as the reason why this combination was not suitable for improving thermal 
performance, including clogging, abrasion, and increased pressure loss. 

There has been a lot of importance in the analysis of MHD boundary coating flow and heat 
transfer in recent years because of its applications in engineering and technology. Initially, 
astrophysical and geophysical problems were resolved with MHDs. Among its many applications 
were in silk drift separation, drug delivery, biomedicine, optical modulators, magnetic cell separation, 
optical grids, and optical switches, and nonlinear optical materials. MHDs are concerned with the flow of 
an electrically behaving fluid in a magnetic field, which has the power to regulate system flow and heat 
transfer. In 1974 the MHD boundary coating flow of an electrically affecting fluid in the existence of a 
constant transverse magnetic field was investigated by Pavlov et al. [30]. Gupta and Chakrabarti et al. [31] 
built on this work by observing MHD flow and heat transfer in 1979. When a magnetic field was 
introduced, Hayat et al. [32] observed the MHD flow of Sisko nanofluid and hypothesized that the 
bidirectional stretching of the surface was the cause of the flow production. Heysiattalab et al. [33] 
inspected the anisotropic action of magnetic nanofluids throughout film-wise condensing across a 
vertical plate with a constant variable-directional magnetic field. Hayat et al. [34] investigate the MHD 
three-dimensional nanofluid flow via a nonlinear stretching surface that had been convectively heated. 
Hayat et al. [35] investigated the stratified flow of a thixotropic nanofluid in the presence of magnetic 
field effects. Malvandi et al. [36] investigated the thermal properties of hydromagnetic nanofluid flow 
in a vertical micro annular tube. Hayat et al. [37] have presented an analytical approach for the 
three-dimensional Oldroyd-B nanofluid flow with heat generation and preoccupation. Examining the 
mean hydrodynamic drag (MHD) of a viscous nanoliquid as a result of a spinning disk is the main 
objective of this study. Interactions between nanoparticles cause Brownian motion and thermophoretic 
phenomena. We applied the velocity slip scenario instead of the no-slip requirement. Very often, 
velocity slip may occur between the moving surface and the fluid when the liquid in question is 
particulate, as is the case with rarefied gas, suspensions, mixes, and so on. In these cases, the slip 
condition, which is defined by Navier’s equation, determines the proper boundary condition. 

Investigator employ a pattern of numerical and semi-numerical methods to solve problems when 
getting a precise analytical resolve may be challenging. Methodologies include spectral relaxation [38], 
the HAM method [39], the Galerkin finite element method [40], the Keller box method [41], and many 
others. Evolutionary approximation approaches have been employed in stochastic numerical computing 
algorithms linked to neural networks to identify the solutions/outcomes of differential equations for both 
linear and nonlinear cases, showing separate evaluations for different parameters. Thermodynamics [42], 
magnetohydrodynamics [43,44], COVID-19 models [45,46], nanotechnology [47], mosquito dispersal 
models [48], flow model of micro polar nanofluid flow [49], Emden Fowler systems [50,51], nonlinear 
corneal shape models [52] and atomic physics [53] are among the methodologies that are used. 

By analyzing the effects of all alterations or physical measurements on profiles of velocity, 
concentration, and temperature, and exploiting numerical and graphical studies, these compelling 
characteristics encourage researchers to exploit a reputable and precise AI algorithm-based numerical 
computational framework for numerical investigation of the MHD nanofluid mathematical model. 
MATLAB and Mathematica both were operated to improve numerical performance.  

The innovation contributions of the present study for backpropagation networks for the 
magnetohydrodynamic nanofluid flow due to the rotating disk (MHD-VNRD) model are highlighted 
as follows. 
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 The numerical computation has been designed through the neural networks with the 
backpropogation Levenberg-Marquardt scheme (BPLMT-NN) for the comparative study of 
the impact of magnetohydrodynamic nanofluid flow over a rotating disk (MHD-VNRD) with 
slip effects. 

 The governing mathematical model of the impact of magnetohydrodynamic nanofluid flow 
over a rotating disk (MHD-VNRD) with slip effects represented with nonlinear PDEs is 
reduced to a nonlinear system of ODEs by the competency of similarity adjustments. 

 Reference data of designed networks is constructed effectively for variants of MHD-VNRD 
demonstrating the scenarios for the velocity slip parameter, parameter of Brownian motion, 
magnetic field parameter, Prandtle number, thermophoresis parameter, and Lewis number by 
applying the RK4 method. 

 Mathematica software is used to compute the dataset for designed BPLMT-NN for the 
variation of the velocity slip parameter, the parameter of Brownian motion, magnetic field 
parameter, Prandtle number, thermophoresis parameter, and Lewis number. 

 MATLAB software is used to interpret the solution and the absolute error analysis plots of 
MHD-VNRD. 

 The training, testing, and validation-based process block structure of BPLMT-NN exploited 
to calculate the approximate solutions of MHD-VNRD and comparative study validate the 
consistent accuracy.  

 The worthy performance of the designed network was additionally established by the learning 
curve on MSE-based fitness, histograms, and regression metrics. 

The study has been organized as follows:  
The purpose and implications of the MHD-VNRD paradigm are discussed in Section 2. The 

solution methodology and the impact of the suggested BPLMT-NN on many MHD-VNRD 
alternatives are covered in Section 3. The findings evaluation is covered in Section 4, and some last 
thoughts and suggestions for future study are contained in Section 5. 

2. Mathematical interpretation and evaluation of flow 

We study the steady-state MHD boundary coating flow caused by a rotating disk under the 
condition of velocity slip, resulting in an incompressible viscous nanofluid with 𝑧 = 0, and the disk 
rotating with an angular velocity Ω, which is constant. When a homogeneous magnetic field of 
intensity 𝐵଴ is employed in a certain direction, a viscous fluid conducts electricity (see Figure 1). Also, 
the electric field and Hall current are not taken into consideration. A low magnetic Reynolds number 
has no bearing on the generated magnetic field. Aspects of heat transfer and mass are studied when 
Brownian motion and thermophoresis are present. The directions of escalating (𝑟, 𝜑, 𝑧) correspond to 
the velocity components (𝑢, 𝑣, 𝑤). According to [25,28], the following boundary coating expressions 
control the current flow state:  

 0,
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Figure 1. The MHD-VNRD flow geometry. 

Where 𝜇 represents the dynamic viscosity, 𝜌௙  denotes the density of base fluid, 𝜈 (=
ఓ

ఘ೑
) the 

kinematic viscosity, 𝜎 is the electrical conductivity, 𝛼 =
௞

(ఘ೎)೑
 denotes the thermal diffusivity of 

fluid,  𝑇 is the temperature, 𝑘 represents the thermal conductivity of fluid, (𝜌௖)௣ is the effective 
heat capacity of nanoparticles, (𝜌௖)௙ is the heat capacity of fluid, 𝐷஻ is the coefficient of the 
Brownian diffusion, 𝐷்  denotes the coefficient of the thermophoretic diffusion,  𝐶  is the 
concentration, 𝐿 is the velocity slip constant, 𝐶௪  shows the concentration at the surface 𝐶ஶ  
represents the concentration far from the surface 𝑇௪ shows the temperature at the surface, and 𝑇ஶ 
represents the temperature far from the surface. 
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The subsequent dimensionless variables are now introduced:[54] 
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Now Eq (1) is fulfilled and Eqs (2)–(7) become to the subsequent structures: 
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Here 𝛾 denotes the parameter of velocity slip, 𝑀 is the magnetic parameter, the Prandtl number is 
represented by 𝑃𝑟, 𝑁𝑡 is the thermophoresis parameter, 𝐿𝑒 is the Lewis number, and 𝑁𝑏 is the 
parameter of the Brownian motion. All the parameters are expressed as follows: 
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The non-dimensional kind of skin friction coefficients and local Nusselt and Sherwood values can be 
found as 

1 ''2

1 '2

(Re ) (0),

(Re ) (0).

r f

r g

C f

C g




 (15) 

3. Methodology and evaluation 

In Figure 2, the proposed BPLMT-NN is displayed within a neural network. Using ‘nftool’, a 
method for fitting a neural network in MATLAB, the suggested BPLMT-NN is achieved. 
Levenberg-Marquardt backpropagation is utilized to find the weight of neural networks.  

The suggested BPLMT-NN approach is shown in Figure 3, while Figure 4 shows a single flow 
diagram that illustrates the whole study process. Using ‘nftool’, six different MHD-VNRD model 
variants are analyzed; BPLMT-NN provides the correct solution.  
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Figure 2. The MHD-VNRD model’s neural network architecture. 
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The Magneto-hydrodynamics viscous nanofluid flow due 
to a rotating disk (MHD-VNRD) with slip effect 

The flow is generated due to a rotating disk. Fluid is 

electrically conducted subject to transverse magnetic 

field. 

System of ODEs of the MHD-VNRD model

Dataset created by explicit Runge-Kutta method  for six variations of six different scenarios 
in Mathematica environment, then shifted to Matlab for further analysis through 

backpropagation Levenberg-Marquardt scheme with Neural Network
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Figure 4. The workflow method for BPLMT-NN that is applied for the MHD-VNRD model. 

Figures 5–8 show how the BPLMT-NN affects the MHD-VNRD model for Scenarios 1–6. The 
error histogram, fitting, and MSE performance diagrams for each of the six Case 4 scenarios 
𝑀, 𝛾, 𝐿𝑒, 𝑁𝑏, 𝑁𝑡, and 𝑃𝑟 are displayed in Figures 5(i) and 5(ii). Figures 6(i) and 6(ii) show the state 
transitions and regression analysis for all of the four MHD-VNRD model cases. Table 1 display 
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illustration of four separate cases and all six MHD-VNRD model scenarios, while Tables 2 and 3 
display the convergence achieved parameters for Case 4 of Scenarios 1–6 in the form of executed 
period, performance duration, backpropagation, MSE, execution, and sequential complicated gauges. 

Table 1. Illustration of four separate cases and all six MHD-VNRD model scenarios. 

Case 
Physical quantities are present in interest-based scenarios 

𝑀 𝛾 Le 𝑁𝑏 𝑁𝑡 𝑃𝑟 

C1 0.0 0.2 1.0 0.5 0.2 1.2 

C2 0.4 0.2 1.0 0.5 0.2 1.2 

C3 0.7 0.2 1.0 0.5 0.2 1.2 

C4 1.0 0.2 1.0 0.5 0.2 1.2 

C1 0.2 0.2 1.0 0.5 0.2 1.2 

C2 0.2 0.4 1.0 0.5 0.2 1.2 

C3 0.2 0.6 1.0 0.5 0.2 1.2 

C4 0.2 0.8 1.0 0.5 0.2 1.2 

C1 0.2 0.2 0.8 0.5 0.2 1.2 

C2 0.2 0.2 1.1 0.5 0.2 1.2 

C3 0.2 0.2 1.4 0.5 0.2 1.2 

C4 0.2 0.2 1.7 0.5 0.2 1.2 

C1 0.2 0.2 1.0 0.3 0.2 1.2 

C2 0.2 0.2 1.0 0.6 0.2 1.2 

C3 0.2 0.2 1.0 0.9 0.2 1.2 

C4 0.2 0.2 1.0 1.2 0.2 1.2 

C1 0.2 0.2 1.0 0.5 0.0 1.2 

C2 0.2 0.2 1.0 0.5 0.3 1.2 

C3 0.2 0.2 1.0 0.5 0.6 1.2 

C4 0.2 0.2 1.0 0.5 1.0 1.2 

C1 0.2 0.2 1.0 0.5 0.2 0.7 

C2 0.2 0.2 1.0 0.5 0.2 1.0 

C3 0.2 0.2 1.0 0.5 0.2 1.3 

C4 0.2 0.2 1.0 0.5 0.2 1.6 

The MSE evolutions, training, and validation convergences for Scenarios 1–6 of the 
MHD-VNRD model are shown in Subfigures 5(i) and 5(ii) with regard to testing procedures. The 
suggested approach performs more accurately and efficiently when the MSE value is lower. With 
MSE close to 1.24 × 10ିଵ଴, 2.61 × 10ିଵ଴, 1.93 × 10ି଴ଽ, 2.58 × 10ିଵ଴, 7.09 × 10ିଵ଴, and 3.16 ×

10ିଵଵ, the greatest network performance is achieved.  
The produced results of six distinct scenarios with a step size of 0.01 and inputs ranging from 0 

to 5 are examined in Figures 5(i)–5(ii) to illustrate the effectiveness of the MHD-VNRD model. By 
connecting the obtained results to explicit Runge-Kutta technique reference numerical results and 
related results, the error dynamics plot is validated. The error histograms in Figures 5(i)–5(ii) are just 
one part of the study. The MHD-VNRD model’s error dynamics and results for Case 4 of different 
situations are also looked at for all input points. It was found that the suggested BPLMT-NN has a 
maximum error of less than 1.85 × 10ିଵ଴, 5.08 × 10ିଵ଴, 2.00 × 10ି଴ଽ, 2.76 × 10ିଵ଴, 8.53 ×

10ିଵ଴ and 1.66 × 10ି଴ହ for Case 4 of the figures 1to 6 scenarios of the design model. For point 4 of 
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the Figures 1 to 6 various scenarios of MHD-VNRD, the error bin average value relative to the zero 
line has error near −3.3 × 10ି଴଺, 1.01 × 10ି଴ହ, −7.6 × 10ି଴଺, 4.53 × 10ି଴଺, −7.42 × 10ି଴଺, 
and −2.2 × 10ି଴଺ . In relation to the values of the Levenberg-Marquardt gradient and step size of 
Mu, the following values are strongly related: [1.00 × 10ି଴଼, 1.00 × 10ି଴଼, 1.00 × 10ି଴଼,

1.00 × 10ି଴଼,    1.00 × 10ି଴଼, and  1.00 × 10ି଴଼ହ]  and [9.97 × 10ି଴଼, 9.96 × 10ି଴଼, 9.99 ×

10ି଴ , 9.99 × 10ି଴଼, 9.96 × 10ି଴ , and 9.97 × 10ି଴଼] are displayed in Subfigures 6(i) and 6(ii). 
BPLMT-NN is competent, dependable, and convergent, as demonstrated by the outcomes and 
graphical depictions for the MHD-VNRD model in Case 4. Corelation analyses are frequently used 
to classify data in regression analysis. The correlation R values exhibit a consistent proximity to one, 
indicating optimality for testing, training, and validation in certain modeling scenarios. This indicates 
the MHD-VNRD model resolution of the BPLMT-NN. Furthermore, as in 4 of the several 
MHD-VNRD model Scenarios 1–6, the corresponding numerical values in Tables 2 and 3 show that 
the MSE performance for the recommended BPLMT-NN is close to 10ିଵଵ. Tables 2 and 3’s 
numerical results demonstrate how well the BPLMT-NN executes the MHD-VNRD model.  

Table 2. Consequences of the BPLMT-NN for the MHD-VNRD model for Scenarios 1–3.  

Scenario Case 
Mean Square Error 

Execution Gradient Mu Epoch Time 
Training Validation Testing 

S1 

1 
1.64700

× 10ିଵ଴ 

1.90753

× 10ିଵ଴ 

1.68195

× 10ିଵ଴ 

1.65

× 10ିଵ଴ 

9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 
41 03 

2 
3.16411

× 10ିଵ଴ 

3.70464

× 10ିଵ଴ 

3.23186

× 10ିଵ଴ 

3.16

× 10ିଵ଴ 

9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 
808 06 

3 
2.10645

× 10ିଵଵ 

1.81508

× 10ିଵଵ 

2.16156

× 10ିଵଵ 

2.11

× 10ିଵଵ 

9.96

× 10ି଴଼ 

1.0

× 10ି଴ଽ 
334 02 

4 
1.24179

× 10ିଵ଴ 

1.85570

× 10ିଵ଴ 

1.29493

× 10ିଵ଴ 

1.24

× 10ିଵ଴ 

9.97

× 10ି଴଼ 

1.0

× 10ି଴଼ 
446 03 

S2 

1 
1.83756

× 10ିଵ଴ 

2.87199

× 10ିଵ଴ 

1.73325

× 10ିଵ଴ 

1.64

× 10ିଵ଴ 

9.99

× 10ି଴଼ 

1.0

× 10ି଴଼ 
397 03 

2 
1.68052

× 10ିଵ଴ 

1.98824

× 10ିଵ଴ 

1.68488

× 10ିଵ଴ 

1.68

× 10ିଵ଴ 

9.99

× 10ି଴଼ 

1.0

× 10ି଴଼ 
746 05 

3 
1.78484

× 10ିଵଵ 

3.71330

× 10ିଵଵ 

1.77313

× 10ିଵଵ 

1.78

× 10ିଵଵ 

9.96

× 10ି଴଼ 

1.0

× 10ି଴ଽ 
382 02 

4 
2.61293

× 10ିଵ଴ 

2.87381

× 10ିଵ଴ 

5.08270

× 10ିଵ଴ 

2.61

× 10ିଵ଴ 

9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 
731 05 

S3 

1 
1.59733

× 10ି଴ଽ 

1.57392

× 10ି଴ଽ 

3.00322

× 10ି଴ଽ 

1.60

× 10ି଴ଽ 

9.92

× 10ି଴଼ 

1.0

× 10ି଴଼ 
329 02 

2 
1.47057

× 10ି଴ଽ 

1.48823

× 10ି଴ଽ 

1.50023

× 10ି଴ଽ 

1.47

× 10ି଴ଽ 

9.98

× 10ି଴଼ 

1.0

× 10ି଴଼ 
393 03 

3 
1.82443

× 10ି଴ଽ 

1.96767

× 10ି଴ଽ 

2.30347

× 10ି଴ଽ 

1.82

× 10ି଴ଽ 

9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 
447 03 

4 
1.92974

× 10ି଴ଽ 

2.00536

× 10ି଴ଽ 

1.91311

× 10ି଴ଽ 

1.93

× 10ି଴ଽ 

9.99

× 10ି଴଼ 

1.0

× 10ି଴଼ 
405 03 
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Table 3. Consequences of the BPLMT-NN for the MHD-VNRD model for Scenarios 4–6. 

Scenario Case 
MSE 

Execution Gradient Mu Epoch Time 
Training  Validation  Testing  

S4 

1 
1.86338

× 10ିଵ଴ 

2.13947

× 10ିଵ଴ 

2.14676

× 10ିଵ଴ 

1.86 × 10ିଵ଴ 9.98

× 10ି଴଼ 

1.0

× 10ି଴଼ 

421 03 

2 1.53546

× 10ିଵ଴ 

1.65814

× 10ିଵ଴ 

1.54422

× 10ିଵ଴ 

1.54 × 10ିଵ଴ 1.00

× 10ି଴଻ 

1.0

× 10ି଴଼ 

425 03 

3 1.87084

× 10ିଵ଴ 

1.86256

× 10ିଵ଴ 

1.95960

× 10ିଵ଴ 

1.87 × 10ିଵ଴ 9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 

444 03 

4 2.57696

× 10ିଵ଴ 

2.75791

× 10ିଵ଴ 

2.38404

× 10ିଵ଴ 

2.58 × 10ିଵ଴ 9.99

× 10ି଴଼ 

1.0

× 10ି଴଼ 

480 03 

S5 

1 5.51350

× 10ିଵ଴ 

7.16027

× 10ିଵ଴ 

8.37695

× 10ିଵ଴ 

5.51 × 10ିଵ଴ 9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 

354 02 

2 4.63292

× 10ିଵ଴ 

1.79700

× 10ି଴ଽ 

8.90578

× 10ିଵ଴ 

4.63 × 10ିଵ଴ 9.95

× 10ି଴଼ 

1.0

× 10ି଴଼ 

453 03 

3 6.73531

× 10ିଵ଴ 

7.60358

× 10ିଵ଴ 

7.12512

× 10ିଵ଴ 

6.74 × 10ିଵ଴ 9.99

× 10ି଴଼ 

1.0

× 10ି଴଼ 

361 03 

4 7.09104

× 10ିଵ଴ 

7.79336

× 10ିଵ଴ 

8.53258

× 10ିଵ଴ 

7.09 × 10ିଵ଴ 9.96

× 10ି଴଼ 

1.0

× 10ି଴଼ 

354 03 

S6 

1 1.96004

× 10ିଵଵ 

5.08381

× 10ିଵଵ 

1.56826

× 10ିଵଵ 

1.96 × 10ିଵଵ 9.99

× 10ି଴଼ 

1.0 × 10ି଴ଽ 289 02 

2 1.78326

× 10ିଵ଴ 

2.93967

× 10ିଵ଴ 

2.06403

× 10ିଵ଴ 

1.78 × 10ିଵ଴ 9.95

× 10ି଴଼ 

1.0

× 10ି଴଼ 

401 03 

3 1.75126

× 10ିଵ଴ 

1.96179

× 10ିଵ଴ 

2.09772

× 10ିଵ଴ 

1.75 × 10ିଵ଴ 9.98

× 10ି଴଼ 

1.0

× 10ି଴଼ 

482 04 

4 3.16448

× 10ିଵଵ 

2.88223

× 10ିଵଵ 

3.17947

× 10ିଵଵ 

3.16 × 10ିଵଵ 9.97

× 10ି଴଼ 

1.0

× 10ି଴଼ 

350 03 
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(a) Effects of the error histogram, fitness, and MSE performance for Scenario S1, Case C4. 

   

(b) Effects of the error histogram, fitness, and MSE performance for Scenario S2, Case C4. 

   

(c) Effects of the error histogram, fitness, and MSE performance for Scenario S3, Case C4. 

Figure 5(i). Suggested BPLMT-NN error histogram, performance, and fitness solutions 
for solving Case 4 of Scenarios 1–3 in the MHD-VNRD model.  
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(a) Effects of the error histogram, fitness, and MSE performance for Scenario S4, Case C4. 

 

(b) Effects of the error histogram, fitness, and MSE performance for Scenario S5, Case C4. 

   

(c) Effects of the error histogram, fitness, and MSE performance for Scenario S6, Case C4. 

Figure 5(ii). Suggested BPLMT-NN error histogram, performance, and fitness solutions 
for solving Case 4 of Scenarios 4–6 in the MHD-VNRD model. 
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(a) State transition and regression analysis results for S1 of C4. 

  
(b) State transition and regression analysis results for S2 of C4. 
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(c) State transition and regression analysis results for S3 of C4. 

Figure 6(i). Proposed BPLMT-NN state transition and regression efficiency to solve the 
MHD-VNRD model for Scenarios 1–3 of Case 4. 

  

(a) State transition and regression analysis results for S4 of C4. 
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(b) State transition and regression analysis results for S5 of C4. 

  
(c) State transition and regression analysis results for S6 of C4. 

Figure 6(ii). Proposed BPLMT-NN state transition and regression efficiency to solve the 
MHD-VNRD model for Scenarios 4–6 of Case 4. 

For the temperature profile 𝜃(𝜂)), concentration ϕ(η), and radial and tangential velocities fˊ(η) 
and g(η), the BPLMT-NN effects are confirmed. They are shown in Figures 7(i) and 7(ii), 
respectively, for each of the six MHD-VNRD framework scenarios. Subfigures 7(i)(a,b,c) illustrate 
the impact of velocity profiles fˊ(η), g(η), and temperature profiles θ(η) on the fluctuation of Lewis 
number Le, magnetic parameter M, and velocity slip parameter γ for the MHD-VNRD model in 
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Scenarios 1–3. The impact of magnetic parameter M on the velocity profile fˊ(η) is seen in Figure 7(i)(a). 
For increasing values of the magnetic parameter, there is a reduction in both the velocity profile and 
the thickness of the momentum boundary layer. Higher values of the velocity slip parameter γ result 
in a lower velocity profile g(η) and a thinner momentum boundary layer, as seen in Figure 7(i)(b). 
This shows how a higher Lewis number Le results in a thinner concentration layer and a lower 
concentration profile ϕ(η). In light of this, the temperature profile 𝜃(𝜂) and concentration ϕ(η) for 
Scenarios 4–6 in the MHD-VNRD model are represented by different values in Subfigures 7(ii)(a,b,c), 
for the Brownian motion parameter Nb, thermophoresis parameter Nt, and Prandtl number Pr, 
respectively. The effect of the parameter Nb for Brownian motion on the temperature profile θ(η) is seen 
in Figure 7(ii)(a). When the bigger values of the Brownian motion parameter are taken into 
consideration, it is found that an improvement occurs in the temperature profile. Greater temperature 
and thermal boundary layer thickness are produced by larger Brownian motion parameters, which 
also have lesser viscous forces and greater Brownian diffusion coefficients. The impact of the 
thermophoresis parameter Nt on the concentration profile ϕ(η) is seen in Figure 7(ii)(b). 
Concentration profile and matching concentration layer thickness both grow in relation to the values 
of the thermophoresis parameters in this case. To make matters worse, increasing the thermophoretic 
force makes things worse by physically trying to stimulate the migration of nanoparticles in the 
opposite direction as the temperature gradient, which means that the concentration gradient is larger 
and the concentration profiles are less uniform. As seen in Figure 7(ii)(c), a decreased temperature 
profile θ(η) is caused by the Prandtl number Pr. It demonstrates that a decreasing temperature profile 
θ(η) and decreasing thermal boundary layer thickness are caused by a growing Prandtl number Pr. 
The Prandtl number is physically dependent on the diffusivity of heat. A lower thermal diffusivity is 
correlated with larger Prandtl numbers. The temperature profile and corresponding thickness of the 
thermal boundary layer decrease as a result of this reduced thermal diffusivity. 

   

(a) Influence of 𝑀 on 𝑓ˊ(𝜂) (b) Influence of 𝛾 on 𝑔(𝜂) (c) Influence of 𝐿𝑒 on 𝜙(𝜂) 

Figure 7(i). Evaluation of suggested numerical consequences with recommended 
BLMS-ANNs Scenarios 1–3 of the MHD-VNRD model. 
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(a) Influence of 𝑁𝑏 on 𝜃(𝜂) (b) Influence of 𝑁𝑡 on 𝜙(𝜂) (c) Influence of 𝑃𝑟 on 𝜃(𝜂) 

Figure 7(ii). Evaluation of suggestion numerical consequences with recommended 
BLMS-ANNs for Scenarios 4–6 of the MHD-VNRD model. 

   

(a) AE of 𝑀 on 𝑓ˊ(𝜂) (b) AE of 𝛾 on 𝑔(𝜂) (c) AE of L𝑒 on 𝜙(𝜂) 

Figure 8(i). Suggested BPLMT-NN evaluation includes findings of absolute error 
analysis of the reference set of data for the MHD-VNRD model in Scenarios 1–3. 
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(a) AE of 𝑁𝑏 on 𝜃(𝜂) (b) AE of 𝑁𝑡 on 𝜙(𝜂) (c) AE of 𝑃𝑟 on 𝜃(𝜂) 

Figure 8(ii). Suggested BPLMT-NN evaluation includes findings of absolute error 
analysis of the reference set of data for the MHD-VNRD model in Scenarios 4–6. 

4. Conclusions 

The magnetohydrodynamic investigation of the boundary layer flow of a viscous nanofluid due to 
the rotation of a disk under velocity slip conditions is carried out. Properties of heat transfer and mass 
are investigated when thermophoresis and Brownian motion are present. The backpropagation 
Levenberg-Marquardt approach combined with neural networks (BPLMT-NN) yields numerical 
solutions. The important facts of the current study are stated as follow: 
 Higher magnetic parameter values decrease velocity distributions, while temperature and 

concentration distributions exhibit the reverse tendency. 
 The backpropagation Levenberg-Marquardt technique with neural networks (BPLMT-NN) has 

been used to examine the solution of a mathematical model that displays the slip effect with 
modifications of certain situations or scenarios. 

 By using relevant connected variables, a mathematical flow could be translated into a structure 
of nonlinear ODEs, which can be represented by PDEs. 

 The explicit Runge-Kutta technique has been utilized to produce the dataset for the 
(MHD-VNRD) model. 

 The deviations from several physical data, including the chemical reaction factor, velocity slip 
parameter, Prandtl number, magnetic field, thermophoresis, and Brownian motion and 
parameters, were included. 

 Both of the velocity’s components decrease as the velocity slip parameter increases. 
 The distributions of concentration and temperature improve as the thermophoresis parameter 

increases. 
 A number of variants of the MHD-VNRD reference data set are altered utilizing the 

BPLMT-NN for training, testing, and validation, using 80%, 10%, and 10% of the data set, 
respectively. 
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 The scheme’s brilliance receives a 10ିଽ to 10ିଵଵ grade for both reference and suggested 
results. 

 The functionality that has been explained is bolstered by both numerical and graphical depictions 
of regression dynamics, mean square errors, and convergence error-histogram graphs. 

Future applications of the BPLMT-NN concept and its most recent improved versions might be in 
fluid dynamics problems [55–56] and a variety of computer network propagation models [57–58]. 
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