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Abstract: This analysis used the backpropagation Levenberg-Marquardt technique coupled through
neural networks (BPLMT-NN). The magnetohydrodynamic (MHD) viscous nanofluid flow due to the
rotating disk (MHD-VNRD) through the slip effect was investigated. In the existence of a velocity
slip condition, this communication investigated the boundary coating flow of viscous nanofluid under
MHD conditions. The flow was produced by a disk that was revolving. A fluid effects electricity under
the effect of a magnetic field that is transverse. The magnetic field that is generated is neglected when
the magnetic Reynolds number is low. The properties of Brownian and thermophoresis motion were
demonstrated using a nanofluid simulation. Hypotheses about the boundary coating and low magnetic
Reynolds number were made while formulating the problem. To transform nonlinear partial
differential equations into a scheme of ordinary differential equations, the similarity transformation
was utilized. On the profiles of velocity, temperature, and concentration, a data set for the suggested
(BPLMT-NN) was created for the impacts of several important parameters and was illustrated via the
explicit Runge-Kutta technique. Using the (BPLMT-NN) testing, training, and validation approach,
the estimated result of various situations was endorsed, and the suggested model was evaluated for
fitness. After that, the proposed (BPLMT-NN) was validated using mean square error (MSE),
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regression analysis, and histogram investigations. The novelty of the proposed BPLMT-NN technique
has various applications, such as disease diagnosis, robotic control systems, ecosystem evaluation, etc.
We conducted analyses of some statistical data like gradient, performance, and epoch of the proposed
fluid model. Based on closeness, as well as recommended and reference results, the suggested
approach has made a distinction with precision level varying from 107%° to 10771 .

Keywords: nanoparticles; magnetic field,;
Levenberg-Marquard technique
Mathematics Subject Classification: 34G20, 35R11

rotating disk; velocity slip; neural network;

Nomenclature
MHD Magnetohydrodynamic D, ”[Frlrllzn_qcl)i)horetic diffusion coefficient
Q Angular velocity [ms™1] L Velocity slip constant [ms~1]
B Magnetic  field  strength T Temperatures of the surface
0 [ Nm A—1] w
(u,v,w) Velocity components [ms™1] T Temperatures for away from the surface
(r,¢,2) Cylindrical coordinates [m] Cy Concentration at the surface
v Kinematic viscosity [m2s~1] c, Concentration for away from the
surface
Dynamic viscosity Similarity variable
H [kgm~1s™1] U]
Pr Density of base fluid [kgm™3] | M Magnetic parameter
o Electrical conductivity [Sm™1] |y Velocity slip parameter
T Temperature of fluid [K] Pr Prandtl number
Thermal diffusivity of fluid Brownian motion parameter
a 2 1 Nb
[m”s™7]
K Thermal conductivity of Nt Thermophoresis parameter
fluid [Wm™1K™1]
(pc)s Heat capacity of fluid [JK 1] Le Lewis number
(pc) Heat capacity of Re Local rotational Reynolds number
P nanoparticles [JK 1] r
D Brownian diffusion £ Dimensionless velocities
B coefficient [m?s~1]
C Concentration g Dimensionless velocities
ANN Artificial neural networks ) Concentration distribution
MSE Mean square error 0 Temperature field
BPLMT Backpropagatiog Levenberg
Marquardt technique

1. Introduction

Neural networks are widely utilized, having applications in enterprise planning, financial
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operations, trading, product maintenance and business analytics. Neural networks are also widely used
in corporate applications such as marketing exploration and forecasting, risk assessment, and fraud
detection. Backpropagation is a popular learning process in input multilayer neural networks. This
approach has lately been employed by researchers to investigate mass and heat transfer characteristics, as
well as non-Newtonian fluid flow systems. In 1974 Paul Werbos was the foremost person to design the
backpropagation technique. This method was revived and improved upon by Rumelhart and Parker [1]
after Paul Werbos’s discovery. An artificial neural network (ANN) is an innovative new artificial
intelligence method. ANNs can exploit a variety of disciplines throughout the learning development
depending on the data that flows through the network, whether it initiates from inside or outside of it.
To enhance the multilayer perceptron (MLP) network’s performance, an ANN uses the back
propagation technique for simultaneous training. It is the most widely used, easy-to-learn, and
successful model for complex multilayer networks. A unique convergent consistency technique for
ANN:Ss is the Levenberg-Marquardt technique (LMT), which provides a numerical solution to a range
of fluid flow issues. Various researchers have lately utilized this technique to analyze non-Newtonian
fluid flow systems and their properties related to mass and heat transfer. In their study, Ajed et al. [2]
suggested using neural network design to inspect the heat transfer and MHD in a two-phase paradigm
of nanofluid flow when thermal energy exists. Over a stretched sheet, Shoaib et al. [3] examined the
numerical analysis for rotational MHD nanofluid flow hybrids with heat radiation using neural
networks. Utilizing the back-propagated neural networks with Levenberg-Marquard system
(BNN-LMS), Khan et al. [4] investigated the heat transfer across two porous parallel surfaces of stable
nanofluids utilizing thermophoresis and Brownian effects. Using a backpropagation
Levenberg-Marquardt, Sabir et al. [5] studied methods of computational intelligence to clarify the
Emden-Fowler paradigm’s third-order nonlinear scheme. Shafiq et al. [6] explored the modeling of
Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with an artificial
neural network. Shoaib et al. [7] exercised the technique of Levenberg—Marquardt back propagation
with neural networks (TLMB-NN) and a stochastic numerical approach via ANNs to study the
consequences of heat transfer on Maxwell flow of nanofluid above a vertical moving surface with MHD.
Intelligent networks were utilized by Ajed et al. [8] to study MHD flow of fluid in a thermally stratified
medium across coaxial extensible spinning disks. Sindhu et al. [9] investigated the reliability study of
generalized exponential distribution based on inverse power law using an artificial neural network
with Bayesian regularization.

To compare the performance of different neural network models for robustness verification, we
need to consider various factors such as the type of verification, the size and complexity of the network,
and the robustness metric used [10].

Types of verification:

1) Point-wise verification

i1) Partition-based verification
Alternative neural network models:

1) Deep neural networks (DNN5s)

i1) Convolutional neural networks (CNNs)

Performance comparison:

Efficiency: Partition-based verification can be more efficient than point-wise verification,
especially for large networks.

Accuracy: The accuracy of robustness verification depends on the robustness metric used and the
quality of the partitioning in partition-based verification.

Scalability: DNNs and CNNs can be computationally expensive to verify, especially for large
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networks. Partition-based verification can help improve scalability.

Researchers are working harder than ever in applied physics and engineering to improve and
understand the valuable properties of nanomaterials. The past few years have seen a surge in interest in
nanofluids [11,12]. The extreme heat conductivity of microfluids sets them apart from ordinary fluids.
The enhancement in thermal conductivity of nanofluids has overtaken the restricted transfer of heat
performance of conventional fluids currently in use as an extremely important phenomenon. Researchers
are drawn to the exciting and crucial analysis of nanofluids because of the potential uses, for instance
safer surgery, electrical gadgets, cancer therapy and nuclear reactors may boost heat transfer resources
for a better cooling method, Nayak et al. [13]. Choi and Eastman et al. [14] seemed to be the initial
researchers to report the dispersion of nanoparticles in a base fluid in 1995. Sheikholeslami et al. [15]
studied the features of nanofluids, such as viscosity, conductivity, and thermal property, which have a
substantial influence on heat transfer rates. There is now a large body of work on the mixed convection
nanofluid flow stagnation points. Syam et al. [16] investigated the dynamics of Fe;Os—water, Cu—water,
and Ag—water nanofluids in the context of steady, two-dimensional, incompressible laminar
magnetohydrodynamic (MHD) boundary layer flow. Makinde et al. [17] explored the influence of the
magnetic field and buoyancy pressure at a conduction-heated medium on the stagnation point flows.
Metals, carbides, oxides, and carbon nanotubes are often discovered to include nanoparticles. In the
fields of biomedicine, computer microprocessors, nuclear reactor cooling, and industry, nanofluids are
broadly exploited to enhance the heat transfer [18,19]. Syam et al. [20] investigated the slip flow
dynamics involving Al>O3 and Fe3;O4 nanoparticles within a horizontal channel embedded with porous
media. Nadeem et al. [21] investigated a unique kind of nanofluid; they found that the nanoparticles
could have been tabular or rod-shaped.

The flow caused by disk rotation is currently of much curiosity because of its extensive range of
uses in engineering and aeronautical science branches, for example, medical apparatus, thermal
power-producing systems, rotating equipment, computer-storing tools, gas turbine blades, crystal
growth methods, etc. Von Karman [22] pioneered the flow caused by a revolving disk. His well-known
work has been explored by many scholars throughout the world through varied approaches.
Turkyilmazoglu and Senel [23] investigated a combined impact of heat and mass transfer phenomena
in the rotating flow of a viscous fluid over a permeable disk. They analyzed the numerical outcomes of
the flow problem. Rashidi et al. [24] investigated the MHD viscous fluid flow via a spinning disk with
various parameters. In this research, they also looked at how entropy creation affected the flow of the
problem under consideration. Turkyilmazoglu [25] presented on the flow of a revolving disk while
taking nanoparticle impacts into consideration. Hatami et al. [26] investigated the laminar,
incompressible viscous nanoliquid flow produced by revolving and compressing disks. They
performed the study using the smallest squares approach. Mustafa et al. [27] have studied the flow
caused by a linear extending disk in the existence of nanoparticles. They came to the conclusion that a
major factor in lowering the thickness of the boundary coating is the uniform stretching of the disk.
Sheikholeslami et al. [28] reported the numerical solutions for the nanofluid flow issue affected by an
angled spinning disk.

Currently, increased heat transmission rates are required by industrial production processes. The
appropriate heat transfer rates required by industry are not being fulfilled by the traditional heat
transfer technologies. The main focus of contemporary scientists working on this topic is the
development of methods for improving heat transmission. Enhancement methods may be broadly
divided into two groups: Active as well as passive procedures. While active methods need external
forces like magnetic and electric fields, passive techniques just require certain fluid extracts, thermal
packing, geometries, etc. Enhancing the thermal execution of common liquids, including water, oil,
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and ethylene-glycol combinations is the main goal of fluid additives [29]. Numerous researchers have
documented how solid-liquid mixtures significantly increase heat transmission. Various problems
have been identified as the reason why this combination was not suitable for improving thermal
performance, including clogging, abrasion, and increased pressure loss.

There has been a lot of importance in the analysis of MHD boundary coating flow and heat
transfer in recent years because of its applications in engineering and technology. Initially,
astrophysical and geophysical problems were resolved with MHDs. Among its many applications
were in silk drift separation, drug delivery, biomedicine, optical modulators, magnetic cell separation,
optical grids, and optical switches, and nonlinear optical materials. MHDs are concerned with the flow of
an electrically behaving fluid in a magnetic field, which has the power to regulate system flow and heat
transfer. In 1974 the MHD boundary coating flow of an electrically affecting fluid in the existence of a
constant transverse magnetic field was investigated by Pavlov et al. [30]. Gupta and Chakrabarti et al. [31]
built on this work by observing MHD flow and heat transfer in 1979. When a magnetic field was
introduced, Hayat et al. [32] observed the MHD flow of Sisko nanofluid and hypothesized that the
bidirectional stretching of the surface was the cause of the flow production. Heysiattalab et al. [33]
inspected the anisotropic action of magnetic nanofluids throughout film-wise condensing across a
vertical plate with a constant variable-directional magnetic field. Hayat et al. [34] investigate the MHD
three-dimensional nanofluid flow via a nonlinear stretching surface that had been convectively heated.
Hayat et al. [35] investigated the stratified flow of a thixotropic nanofluid in the presence of magnetic
field effects. Malvandi et al. [36] investigated the thermal properties of hydromagnetic nanofluid flow
in a vertical micro annular tube. Hayat et al. [37] have presented an analytical approach for the
three-dimensional Oldroyd-B nanofluid flow with heat generation and preoccupation. Examining the
mean hydrodynamic drag (MHD) of a viscous nanoliquid as a result of a spinning disk is the main
objective of this study. Interactions between nanoparticles cause Brownian motion and thermophoretic
phenomena. We applied the velocity slip scenario instead of the no-slip requirement. Very often,
velocity slip may occur between the moving surface and the fluid when the liquid in question is
particulate, as is the case with rarefied gas, suspensions, mixes, and so on. In these cases, the slip
condition, which is defined by Navier’s equation, determines the proper boundary condition.

Investigator employ a pattern of numerical and semi-numerical methods to solve problems when
getting a precise analytical resolve may be challenging. Methodologies include spectral relaxation [38],
the HAM method [39], the Galerkin finite element method [40], the Keller box method [41], and many
others. Evolutionary approximation approaches have been employed in stochastic numerical computing
algorithms linked to neural networks to identify the solutions/outcomes of differential equations for both
linear and nonlinear cases, showing separate evaluations for different parameters. Thermodynamics [42],
magnetohydrodynamics [43,44], COVID-19 models [45,46], nanotechnology [47], mosquito dispersal
models [48], flow model of micro polar nanofluid flow [49], Emden Fowler systems [50,51], nonlinear
corneal shape models [52] and atomic physics [53] are among the methodologies that are used.

By analyzing the effects of all alterations or physical measurements on profiles of velocity,
concentration, and temperature, and exploiting numerical and graphical studies, these compelling
characteristics encourage researchers to exploit a reputable and precise Al algorithm-based numerical
computational framework for numerical investigation of the MHD nanofluid mathematical model.
MATLAB and Mathematica both were operated to improve numerical performance.

The innovation contributions of the present study for backpropagation networks for the
magnetohydrodynamic nanofluid flow due to the rotating disk (MHD-VNRD) model are highlighted
as follows.
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> The numerical computation has been designed through the neural networks with the
backpropogation Levenberg-Marquardt scheme (BPLMT-NN) for the comparative study of
the impact of magnetohydrodynamic nanofluid flow over a rotating disk (MHD-VNRD) with
slip effects.

> The governing mathematical model of the impact of magnetohydrodynamic nanofluid flow
over a rotating disk (MHD-VNRD) with slip effects represented with nonlinear PDEs is
reduced to a nonlinear system of ODEs by the competency of similarity adjustments.

> Reference data of designed networks is constructed effectively for variants of MHD-VNRD
demonstrating the scenarios for the velocity slip parameter, parameter of Brownian motion,
magnetic field parameter, Prandtle number, thermophoresis parameter, and Lewis number by
applying the RK4 method.

> Mathematica software is used to compute the dataset for designed BPLMT-NN for the
variation of the velocity slip parameter, the parameter of Brownian motion, magnetic field
parameter, Prandtle number, thermophoresis parameter, and Lewis number.

> MATLAB software is used to interpret the solution and the absolute error analysis plots of
MHD-VNRD.

> The training, testing, and validation-based process block structure of BPLMT-NN exploited
to calculate the approximate solutions of MHD-VNRD and comparative study validate the
consistent accuracy.

> The worthy performance of the designed network was additionally established by the learning
curve on MSE-based fitness, histograms, and regression metrics.

The study has been organized as follows:

The purpose and implications of the MHD-VNRD paradigm are discussed in Section 2. The
solution methodology and the impact of the suggested BPLMT-NN on many MHD-VNRD
alternatives are covered in Section 3. The findings evaluation is covered in Section 4, and some last
thoughts and suggestions for future study are contained in Section 5.

2. Mathematical interpretation and evaluation of flow

We study the steady-state MHD boundary coating flow caused by a rotating disk under the
condition of velocity slip, resulting in an incompressible viscous nanofluid with z = 0, and the disk
rotating with an angular velocity Q, which is constant. When a homogeneous magnetic field of
intensity B, is employed in a certain direction, a viscous fluid conducts electricity (see Figure 1). Also,
the electric field and Hall current are not taken into consideration. A low magnetic Reynolds number
has no bearing on the generated magnetic field. Aspects of heat transfer and mass are studied when
Brownian motion and thermophoresis are present. The directions of escalating (7, ¢, z) correspond to
the velocity components (u, v, w). According to [25,28], the following boundary coating expressions

control the current flow state:
Gu u o (1)
or r Oz ’

ou v ou lou u 0w 0u, Blo
U———+W—=V(——— S+ +—5)— u, (2)
or r 0z ror r- or oz P
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ov uv ov 1ov v v v oB;
U—t+t—F+W—=(———F+—5+t—)V——V, (3)

or r oz ror r- or 0Oz P
or oz or* ror 0z8 ) “)

or or (1or &T &T) (po),|(dToC orT éC orY (orY D,
U—+w—=a|—+—+— |+ ——t—— |Dy || — | | =—| |=— | (5)
or oz ror or oz (pc) |\ or or 0z oz or 0z ) |To
ocC  oC 1oC o*°C o°C) D,(oT 10T o°T
U—+w—=D,| ——+—+— |+ =L S +——+—|. (6)
or oz ror or oz I \or ror oz
The related boundary conditions are
u:La—u, v=Qr+L@, w=0,T=T,6 C=C, asz—0,
oz 0z . (7)

u—>0, v>0, 757, C—>C,6 as z—>o©

Figure 1. The MHD-VNRD flow geometry.

Where p represents the dynamic viscosity, pr denotes the density of base fluid, v (= pi) the
f
k

(pc)f
fluid, T is the temperature, k represents the thermal conductivity of fluid, (p.), is the effective

heat capacity of nanoparticles, (p.)s is the heat capacity of fluid, Dg is the coefficient of the
Brownian diffusion, Dy denotes the coefficient of the thermophoretic diffusion, € is the
concentration, L is the velocity slip constant, C,, shows the concentration at the surface C
represents the concentration far from the surface T,, shows the temperature at the surface, and T,
represents the temperature far from the surface.

kinematic viscosity, o is the electrical conductivity, a = denotes the thermal diffusivity of

AIMS Mathematics Volume 10, Issue 5, 10387-10412.
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The subsequent dimensionless variables are now introduced:[54]

v=rQg (), u=rQyf (), w=-2Qv)"” 1 (),

C-C T-T 20 (8)
— 0 , 9 — oo’ — LmaN12 )
#(17) c_cC. () r_r " =)z

Now Eq (1) is fulfilled and Egs (2)—(7) become to the subsequent structures:

21" +2ff = (f ) -M*f +g* =0, )

28 +2g f-2fg-M?g=0, (10)

0 +Pr(NbO$ + 6 + Nt6*) =0, (11)
« Nt . ,

¢ +W0 +PI'L€f¢ =0. (12)

The converted boundary conditions are defined as:

[=0, f'=1/"(0), g'=1+yg"(0), O=1, ¢=1 atn=0,

g=0, f'=0, ¢=0,0=0 at n—> . (13)

Here y denotes the parameter of velocity slip, M is the magnetic parameter, the Prandtl number is
represented by Pr, Nt is the thermophoresis parameter, Le is the Lewis number, and Nb is the
parameter of the Brownian motion. All the parameters are expressed as follows:

2
C _
M =B g 22 P (oL
pQ 1% (o), Ty

(14)

Le=2 pr=¥ ny=P (C=C)
D, a (pc), v

The non-dimensional kind of skin friction coefficients and local Nusselt and Sherwood values can be
found as

Re,)>C, = £(0),
| (15)
(Re,)>C, = g(0).

3. Methodology and evaluation

In Figure 2, the proposed BPLMT-NN is displayed within a neural network. Using ‘nftool’, a
method for fitting a neural network in MATLAB, the suggested BPLMT-NN is achieved.
Levenberg-Marquardt backpropagation is utilized to find the weight of neural networks.

The suggested BPLMT-NN approach is shown in Figure 3, while Figure 4 shows a single flow
diagram that illustrates the whole study process. Using ‘nftool’, six different MHD-VNRD model
variants are analyzed; BPLMT-NN provides the correct solution.

AIMS Mathematics Volume 10, Issue 5, 10387-10412.
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Figure 2. The MHD-VNRD model’s neural network architecture.

Net Activation
Function function

Figure 3. The structure of a particular neuron type.
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Figure 4. The workflow method for BPLMT-NN that is applied for the MHD-VNRD model.

Figures 5—8 show how the BPLMT-NN affects the MHD-VNRD model for Scenarios 1-6. The
error histogram, fitting, and MSE performance diagrams for each of the six Case 4 scenarios
M,y,Le,Nb,Nt,and Pr are displayed in Figures 5(i) and 5(ii). Figures 6(i) and 6(ii) show the state
transitions and regression analysis for all of the four MHD-VNRD model cases. Table 1 display
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illustration of four separate cases and all six MHD-VNRD model scenarios, while Tables 2 and 3
display the convergence achieved parameters for Case 4 of Scenarios 1-6 in the form of executed
period, performance duration, backpropagation, MSE, execution, and sequential complicated gauges.

Table 1. Illustration of four separate cases and all six MHD-VNRD model scenarios.

Case Physical quantities are present in interest-based scenarios

M y Le Nb Nt Pr
Cl 0.0 0.2 1.0 0.5 0.2 1.2
C2 0.4 0.2 1.0 0.5 0.2 1.2
C3 0.7 0.2 1.0 0.5 0.2 1.2
C4 1.0 0.2 1.0 0.5 0.2 1.2
Cl 0.2 0.2 1.0 0.5 0.2 1.2
C2 0.2 0.4 1.0 0.5 0.2 1.2
C3 0.2 0.6 1.0 0.5 0.2 1.2
C4 0.2 0.8 1.0 0.5 0.2 1.2
Cl 0.2 0.2 0.8 0.5 0.2 1.2
C2 0.2 0.2 1.1 0.5 0.2 1.2
C3 0.2 0.2 1.4 0.5 0.2 1.2
C4 0.2 0.2 1.7 0.5 0.2 1.2
Cl 0.2 0.2 1.0 0.3 0.2 1.2
C2 0.2 0.2 1.0 0.6 0.2 1.2
C3 0.2 0.2 1.0 0.9 0.2 1.2
C4 0.2 0.2 1.0 1.2 0.2 1.2
Cl 0.2 0.2 1.0 0.5 0.0 1.2
C2 0.2 0.2 1.0 0.5 0.3 1.2
C3 0.2 0.2 1.0 0.5 0.6 1.2
C4 0.2 0.2 1.0 0.5 1.0 1.2
Cl 0.2 0.2 1.0 0.5 0.2 0.7
C2 0.2 0.2 1.0 0.5 0.2 1.0
C3 0.2 0.2 1.0 0.5 0.2 1.3
C4 0.2 0.2 1.0 0.5 0.2 1.6

The MSE evolutions, training, and validation convergences for Scenarios 1-6 of the
MHD-VNRD model are shown in Subfigures 5(i) and 5(ii) with regard to testing procedures. The
suggested approach performs more accurately and efficiently when the MSE value is lower. With
MSE close to 1.24 X 1071%,2.61 x 1071°,1.93 x 10799,2.58 x 10719,7.09 x 1071% and 3.16 X
10711, the greatest network performance is achieved.

The produced results of six distinct scenarios with a step size of 0.01 and inputs ranging from 0
to 5 are examined in Figures 5(1)-5(ii) to illustrate the effectiveness of the MHD-VNRD model. By
connecting the obtained results to explicit Runge-Kutta technique reference numerical results and
related results, the error dynamics plot is validated. The error histograms in Figures 5(1)-5(ii) are just
one part of the study. The MHD-VNRD model’s error dynamics and results for Case 4 of different
situations are also looked at for all input points. It was found that the suggested BPLMT-NN has a
maximum error of less than 1.85 X 1071° 5.08 x 1071°, 2.00 x 107%°, 2.76 x 10719, 8.53 x
1071% and 1.66 x 107° for Case 4 of the figures 1to 6 scenarios of the design model. For point 4 of
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the Figures 1 to 6 various scenarios of MHD-VNRD, the error bin average value relative to the zero
line has error near —3.3 X 107%, 1.01 X 107°%%, —7.6 x 107%, 4.53 x 107°¢, —7.42 x 1079,
and —2.2 X 1079 _ In relation to the values of the Levenberg-Marquardt gradient and step size of
Mu, the following values are strongly related: [1.00 x 107%8, 1.00 x 10798, 1.00 x 10798,
1.00 X 10798, 1.00 x 107%8,and 1.00 x 107%8%] and [9.97 x 1078, 9.96 x 107%8, 9.99 x
107°%, 9.99 x 107°8,9.96 x 107° , and 9.97 x 107°%] are displayed in Subfigures 6(i) and 6(ii).
BPLMT-NN is competent, dependable, and convergent, as demonstrated by the outcomes and
graphical depictions for the MHD-VNRD model in Case 4. Corelation analyses are frequently used
to classify data in regression analysis. The correlation R values exhibit a consistent proximity to one,
indicating optimality for testing, training, and validation in certain modeling scenarios. This indicates
the MHD-VNRD model resolution of the BPLMT-NN. Furthermore, as in 4 of the several
MHD-VNRD model Scenarios 1-6, the corresponding numerical values in Tables 2 and 3 show that
the MSE performance for the recommended BPLMT-NN is close to 10711, Tables 2 and 3’s
numerical results demonstrate how well the BPLMT-NN executes the MHD-VNRD model.

Table 2. Consequences of the BPLMT-NN for the MHD-VNRD model for Scenarios 1-3.

Mean Square Error
Scenario|Case Execution | Gradient Mu  |Epoch|Time
Training Validation Testing
1 1.64700 1.90753 1.68195 1.65 9.96 1.0 41 03
x 10710 x 10710 x 10710 x 10710 | x 10798 | x 10798
3.16411 3.70464 3.23186 3.16 9.96 1.0
2 _ _ _ _ _ _ 808 | 06
x 10710 x 10710 x 10710 x 10710 | x 10798 | x 10798
S1
3 2.10645 1.81508 2.16156 2.11 9.96 1.0 334 | 02
x 10711 x 10711 x 10711 x 10711 | x107%8 | x 1079
1.24179 1.85570 1.29493 1.24 9.97 1.0
4 446 | 03
x 10710 x 10710 x 10710 x 10710 | x 10798 | x 10798
! 1.83756 2.87199 1.73325 1.64 9.99 1.0 397 | 03
x 10710 x 10710 x 10710 x 10710 | x 10798 | x 10798
) 1.68052 1.98824 1.684.88 1.68 9.99 1.0 746 | 05
- x 10710 x 10710 x 10710 x 10710 | x 10798 | x 10798
3 1.78484 3.71330 1.77313 1.78 9.96 1.0 382 | 02
x 1011 x 1011 x 10711 x 10711 | x10798 | x 1079°
4 2.61293 2.87381 5.08270 2.61 9.96 1.0 731 | o5
x 10710 x 10710 x 10710 x 10710 | x 10798 | x 10798
! 1.59733 1.57392 3.00322 1.60 9.92 1.0 329 | 02
x 10799 x 10799 x 10799 x 1079 | x107%8 | x 10798
) 1.47057 1.48823 1.50023 1.47 9.98 1.0 393 | 03
- x 10799 x 10799 x 10799 x 1079 | x107%8 | x 10798
3 1.82443 1.96767 2.30347 1.82 9.96 1.0 447 | 03
x 10799 x 10799 x 10799 x 1079 | x107%8 | x 10798
1.92974 2.00536 1.91311 1.93 9.99 1.0
4 B B B _ _ _ 405 | 03
x 10799 x 10799 x 10799 x 1079 | x107% | x 10798
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Table 3. Consequences of the BPLMT-NN for the MHD-VNRD model for Scenarios 4—6.

MSE
Scenario|Case Execution Gradient Mu Epoch |Time
Training Validation Testing
| 1.86338 2.13947 2.14676 1.86 x 10°1°| 9.98 1.0 421 | 03
x 10710 x 10710 x 10710 x 10708 x 10708
2 1.53546 1.65814 1.54422 1.54 x 10~*°| 1.00 1.0 425 | 03
x 10710 x 10710 x 10710 x 10797 x 10708
S4
3 1.87084 1.86256 1.95960 1.87 x 1071°| 996 1.0 444 | 03
x 10710 x 10710 x 10710 x 10708 x 10708
4 2.57696 2.75791 2.38404 2.58 x 1071°| 9.99 1.0 480 | 03
x 10710 x 10710 x 10710 x 10708 x 10708
1 5.51350 7.16027 8.37695 5.51 x 1071° 996 1.0 354 | 02
x 10710 x 10710 x 10710 x 10708 x 10708
2 4.63292 1.79700 8.90578 4.63x 10719 995 1.0 453 | 03
x 10710 x 10709 x 10710 x 10708 x 10708
S5
3 6.73531 7.60358 7.12512 6.74 x 1071°| 9.99 1.0 361 | 03
x 10710 x 10710 x 10710 x 10708 x 10708
4 7.09104 7.79336 8.53258 7.09 x 1071°| 996 1.0 354 | 03
x 10710 x 10710 x 10710 x 10708 x 10708
1 1.96004 5.08381 1.56826 1.96 x 10711} 9.99 1.0 x 107°%° 289 | 02
x 10711 x 10711 x 10711 x 10708
2 1.78326 2.93967 2.06403 1.78 x 1071°| 9.95 1.0 401 | 03
x 10710 x 10710 x 10710 x 10708 x 10708
S6
3 1.75126 1.96179 2.09772 1.75 x 1071°| 9,98 1.0 482 | 04
x 10710 x 10710 x 10710 x 10708 x 10708
4 3.16448 2.88223 3.17947 3.16 x 10~1t| 9.97 1.0 350 | 03
x 10711 x 10711 x 10711 x 10708 x 10708
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Figure 6(ii). Proposed BPLMT-NN state transition and regression efficiency to solve the
MHD-VNRD model for Scenarios 46 of Case 4.

For the temperature profile 8(n)), concentration ¢(11), and radial and tangential velocities f'(n)
and g(m), the BPLMT-NN effects are confirmed. They are shown in Figures 7(i) and 7(i1),
respectively, for each of the six MHD-VNRD framework scenarios. Subfigures 7(i)(a,b,c) illustrate
the impact of velocity profiles f'(n), g(n), and temperature profiles 6(n) on the fluctuation of Lewis
number Le, magnetic parameter M, and velocity slip parameter y for the MHD-VNRD model in
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Scenarios 1-3. The impact of magnetic parameter M on the velocity profile f'(n) is seen in Figure 7(i)(a).
For increasing values of the magnetic parameter, there is a reduction in both the velocity profile and
the thickness of the momentum boundary layer. Higher values of the velocity slip parameter y result
in a lower velocity profile g(n) and a thinner momentum boundary layer, as seen in Figure 7(i)(b).
This shows how a higher Lewis number Le results in a thinner concentration layer and a lower
concentration profile ¢(n). In light of this, the temperature profile 6(n) and concentration ¢(n) for
Scenarios 4-6 in the MHD-VNRD model are represented by different values in Subfigures 7(ii)(a,b,c),
for the Brownian motion parameter Nb, thermophoresis parameter Nt, and Prandtl number Pr,
respectively. The effect of the parameter Nb for Brownian motion on the temperature profile 6(n) is seen
in Figure 7(ii)(a). When the bigger values of the Brownian motion parameter are taken into
consideration, it is found that an improvement occurs in the temperature profile. Greater temperature
and thermal boundary layer thickness are produced by larger Brownian motion parameters, which
also have lesser viscous forces and greater Brownian diffusion coefficients. The impact of the
thermophoresis parameter Nt on the concentration profile ¢(n) is seen in Figure 7(ii)(b).
Concentration profile and matching concentration layer thickness both grow in relation to the values
of the thermophoresis parameters in this case. To make matters worse, increasing the thermophoretic
force makes things worse by physically trying to stimulate the migration of nanoparticles in the
opposite direction as the temperature gradient, which means that the concentration gradient is larger
and the concentration profiles are less uniform. As seen in Figure 7(ii)(c), a decreased temperature
profile 6(n) is caused by the Prandtl number Pr. It demonstrates that a decreasing temperature profile
0(n) and decreasing thermal boundary layer thickness are caused by a growing Prandtl number Pr.
The Prandtl number is physically dependent on the diffusivity of heat. A lower thermal diffusivity is
correlated with larger Prandtl numbers. The temperature profile and corresponding thickness of the
thermal boundary layer decrease as a result of this reduced thermal diffusivity.
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(a) Influence of M on f"(n) (b) Influence of ¥ on g(n) (c) Influence of Le on ¢(n)

Figure 7(i). Evaluation of suggested numerical consequences with recommended
BLMS-ANNSs Scenarios 1-3 of the MHD-VNRD model.
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Figure 7(ii). Evaluation of suggestion numerical consequences with recommended
BLMS-ANNSs for Scenarios 4—6 of the MHD-VNRD model.
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Figure 8(i). Suggested BPLMT-NN evaluation includes findings of absolute error
analysis of the reference set of data for the MHD-VNRD model in Scenarios 1-3.

AIMS Mathematics

Volume 10, Issue 5, 10387-10412.




10407

ooy Ne=00
-0 Nt=03

> Nt=06
- Nt=10

0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45

(a)AE of Nb on 6(n) (b) AE of Nt on ¢(n) (c)AE of Pr on 6(n)

Figure 8(ii). Suggested BPLMT-NN evaluation includes findings of absolute error
analysis of the reference set of data for the MHD-VNRD model in Scenarios 4—6.

4. Conclusions

The magnetohydrodynamic investigation of the boundary layer flow of a viscous nanofluid due to
the rotation of a disk under velocity slip conditions is carried out. Properties of heat transfer and mass
are investigated when thermophoresis and Brownian motion are present. The backpropagation
Levenberg-Marquardt approach combined with neural networks (BPLMT-NN) yields numerical
solutions. The important facts of the current study are stated as follow:

X/
L X4

X/
L X4

Higher magnetic parameter values decrease velocity distributions, while temperature and
concentration distributions exhibit the reverse tendency.

The backpropagation Levenberg-Marquardt technique with neural networks (BPLMT-NN) has
been used to examine the solution of a mathematical model that displays the slip effect with
modifications of certain situations or scenarios.

By using relevant connected variables, a mathematical flow could be translated into a structure
of nonlinear ODEs, which can be represented by PDEs.

The explicit Runge-Kutta technique has been utilized to produce the dataset for the
(MHD-VNRD) model.

The deviations from several physical data, including the chemical reaction factor, velocity slip
parameter, Prandtl number, magnetic field, thermophoresis, and Brownian motion and
parameters, were included.

Both of the velocity’s components decrease as the velocity slip parameter increases.

The distributions of concentration and temperature improve as the thermophoresis parameter
increases.

A number of variants of the MHD-VNRD reference data set are altered utilizing the
BPLMT-NN for training, testing, and validation, using 80%, 10%, and 10% of the data set,
respectively.
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% The scheme’s brilliance receives a 1072 to 1071 grade for both reference and suggested
results.
¢ The functionality that has been explained is bolstered by both numerical and graphical depictions
of regression dynamics, mean square errors, and convergence error-histogram graphs.
Future applications of the BPLMT-NN concept and its most recent improved versions might be in
fluid dynamics problems [55-56] and a variety of computer network propagation models [57-58].

Author contributions

Yousef Jawarneh: Conceptualization, writing-review and editing, project administration; Samia
Noor: Visualization, writing-review and editing, data curation, funding; Ajed Akbar: Data curation,
project administration; Rafaqat Ali Khan: Resources, validation; Ahmad Shafee: Software,
investigation, resources. All authors have read and agreed to the published version of the manuscript.

Use of Generative-Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate
Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. KFU251494].

Contflict of interest
The authors declare that they have no conflicts of interest.

References

1. D. B. Parker, A comparison of algorithms for neuron-like cells, AIP Conf. Proc., 151 (1986),
327-332. https://doi.org/10.1063/1.36233

2. A. Akbar, H. Ullah, M. A. Z. Raja, K. S. Nisar, S. Islam, M. Shoaib, A design of neural networks to
study MHD and heat transfer in two phase model of nano-fluid flow in the presence of thermal
radiation, Wave. Random Complex, 2022, 1-24. https://doi.org/10.1080/17455030.2022.2152905

3. M. Shoaib, M. A. Z. Raja, M. T. Sabir, S. Islam, Z. Shah, P. Kumam, et al., Numerical
investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching
sheet, Sci. Rep., 10 (2020), 1-15. https://doi.org/10.1038/s41598-020-75254-8

4. R. A.Khan, H. Ullah, M. A. Z. Raja, M. A. R. Khan, S. Islam, M. Shoaib, Heat transfer between
two porous parallel plates of steady nanofluids with Brownian and Thermophoretic effects: A new
stochastic numerical approach, Int. Commun. Heat Mass Transf., 126 (2021), 105436.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105436

5. Z. Sabir, M. A. Z. Raja, J. L. Guirao, M. Shoaib, Integrated intelligent computing with
neuro-swarming solver for multi-singular fourth-order nonlinear Emden—Fowler equation,
Comput. Appl. Math., 39 (2020), 1-18. https://doi.org/10.1007/s40314-020-01330-4

AIMS Mathematics Volume 10, Issue 5, 10387-10412.



10409

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Shafiq, A. B. Colak, T. N. Sindhu, Modeling of Soret and Dufour’s convective heat transfer in
nanofluid flow through a moving needle with artificial neural network, Arab. J. Sci. Eng., 48
(2023), 2807-2820. https://doi.org/10.1007/s13369-022-06945-9

M. Shoaib, R. A. Khan, H. Ullah, K. S. Nisar, M. A. Z. Raja, S. Islam, et al., Heat transfer impacts
on maxwell nanofluid flow over a vertical moving surface with MHD using stochastic numerical
technique via artificial neural networks, Coatings, 11 (2021), 1483.
https://doi.org/10.3390/coatings11121483

A. Akbar, H. Ullah, M. A. Z. Raja, S. Islam, K. S. Nisar, M. Shoaib, Intelligent networks for
MHD fluid flow in a thermally stratified medium between coaxial stretchable rotating disks,
Wave. Random Complex, 2023, 1-22. https://doi.org/10.1080/17455030.2023.2193852

T. N. Sindhu, A. B. Colak, S. A. Lone, A. Shafig, Reliability study of generalized exponential
distribution based on inverse power law using artificial neural network with Bayesian regularization,
Qual. Reliab. Eng. Int., 39 (2023), 2398-2421. https://doi.org/10.1016/j.triboint.2023.108544

R. Lin, Q. Zhou, X. Nan, T. Hu, A parallel optimization method for robustness verification of
deep neural networks, Mathematics, 12 (2024), 1884. https://doi.org/10.3390/math12121884

D. D. Ganji, M. Azimi, Application of DTM on MHD Jeffery Hamel problem with nanoparticle,
UPB Sci. Bull. Ser. A, 75 (2013), 223-230.

F. Garoosi, G. Bagheri, M. M. Rashidi, Two phase simulation of natural convection and mixed
convection of the nanofluid in square cavity, Powder Technol., 275 (2015), 239-256.
https://doi.org/10.1016/j.powtec.2015.02.013

M. K. Nayak, N. S. Akbar, V. S. Pandey, Z. H. Khan, D. Tripathi, 3D free convective MHD flow
of nanofluid over permeable linear stretching sheet with thermal radiation, Powder Technol.,
315 (2017), 205-215. https://doi.org/10.1016/j.powtec.2017.04.017

S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles,
ANL/MSD/CP-84938; CONF-951135-29, Argonne National Laboratory, IL, 1995.

M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al,Os—water nanofluid
considering thermal radiation: A numerical study, /nt. J. Heat Mass Tran., 96 (2016), 513-524.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059

M. M. Syam, M. Alkhedher, M. 1. Syam, Thermal and hydrodynamic analysis of MHD
nanofluid flow over a permeable stretching surface in porous media: Comparative study of
Fe3O4, Cu, and Ag nanofluids, Int. J  Thermofluids, 26 (2025), 101055.
https://doi.org/10.1016/].1j£t.2025.101055

O. D. Makinde, W. A. Khan, Z. H. Khan, Buoyancy effects on MHD stagnation point flow and
heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat
Mass Tran., 62 (2013), 526-533. https://doi.org/10.1016/j.ijjheatmasstransfer.2013.03.049

M. M. Bhatti, M. M. Rashidi, Numerical simulation of entropy generation on MHD nanofluid
towards a stagnation point flow over a stretching surface, Int. J. Appl. Comput. Math., 3 (2017),
2275-2289. https://doi.org/10.1007/s40819-016-0193-4

W. Ibrahim, B. Shankar, M. M. Nandeppanavar, MHD stagnation point flow and heat transfer
due to nanofluid towards stretching sheet, Int. J. Heat Mass Tran., 56 (2013), 1-9.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.034

M. M. Syam, M. L. Syam, Investigation of slip flow dynamics involving AlbO3 and Fe3O4
nanoparticles within a horizontal channel embedded with porous media, /nt. J. Thermofluids, 24
(2024), 100934. https://doi.org/10.1016/].1j£t.2024.100934

AIMS Mathematics Volume 10, Issue 5, 10387-10412.



10410

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

S. Nadeem, S. Ahmad, N. Muhammad, Computational study of Falkner-Skan problem for a
static and moving wedge, Sensors Actuat. B-Chem., 263 (2018), 69-76.
https://doi.org/10.1016/j.snb.2018.02.039

T. Von Karman, Uber laminare and turbulente Reibung, Z. Angew. Math. Mech., 1 (1921),
233-252. https://doi.org/10.1002/zamm.19210010401

M. Turkyilmazoglu, P. Senel, Heat and mass transfer of the flow due to a rotating rough and porous
disk, Int. J. Therm. Sci., 63 (2013), 146—158. https://doi.org/10.1016/j.ijthermalsci.2012.07.013

M. M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip
flow over a rotating porous disk with variable properties, Int. J. Heat Mass Tran., 70 (2014)
892-917. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.058

M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94
(2014), 139-146. https://doi.org/10.1016/j.compfluid.2014.02.009

K. Sharma, N. Vijay, F. Mabood, 1. A. Badruddin, Numerical simulation of heat and mass transfer in
magnetic nanofluid flow by a rotating disk with variable fluid properties, Int. Commun. Heat Mass
Tran., 133 (2022), 105977. https://doi.org/10.1016/j.icheatmasstransfer.2022.105977

M. Mustafa, J. A. Khan, T. Hayat, A. Alsaedi, On Bodewadt flow and heat transfer of nanofluids
over a stretching stationary disk, J = Mol Lig., 211 (2015) 119-125.
https://doi.org/10.1016/j.molliq.2015.06.065

M. Sheikholeslami, M. Hatami, D. D. Ganji, Numerical investigation of nanofluid spraying on an
inclined rotating disk for cooling process, J. Mol Lig., 211 (2015) 577-583.
https://doi.org/10.1016/;.molliq.2015.07.006

J. C. Maxwell, 4 treatise on electricity and magnetism, 2Eds., Clarendon Press, Oxford, UK, 1873.
K. B. Pavlov, Magnetohydrodynamic flow of an incompressible viscous fluid caused by
deformation of a plane surface, Magn. Gidrodin., 4 (1974), 146—-147.

A. Chakrabarti, A. S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Q.
Appl. Math., 37 (1979) 73-78. Available from:
https://www.ams.org/journals/qam/1979-37-01/S0033-569X-1979-99636-6/S0033-569X-1979-
99636-6.pdf.

T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, On three-dimensional boundary layer flow
of Sisko nanofluid with magnetic field effects, Adv. Powder Technol., 27 (2016) 504-512.
https://doi.org/10.1016/j.apt.2016.02.002

S. Heysiattalab, A. Malvandi, D. D. Ganji, Anisotropic behavior of magnetic nanofluids (MNFs)
at filmwise condensation over a vertical plate in presence of a uniform variable-directional
magnetic field, J. Mol. Lig., 219 (2016), 875-882. https://doi.org/10.1016/j.molliq.2016.04.004
T. Hayat, A. Aziz, T. Muhammad, A. Alsaedi, On magnetohydrodynamic three-dimensional flow
of nanofluid over a convectively heated nonlinear stretching surface, Int. J. Heat Mass Tran., 100
(2016), 566—572. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.113

T. Hayat, M. Waqas, M. 1. Khan, A. Alsaedi, Analysis of thixotropic nanomaterial in a doubly
stratified medium considering magnetic field effects, Int. J. Heat Mass Tran., 102 (2016)
1123—-1129. https://doi.org/10.1016/].ijheatmasstransfer.2016.06.090

A. Malvandi, A. Ghasemi, D. D. Ganji, Thermal performance analysis of hydromagnetic
AlOs-water nanofluid flows inside a concentric microannulus considering nanoparticle migration
and asymmetric heating, Int. J. Therm. Sci., 109 (2016), 10-22.
https://doi.org/10.1016/j.ijthermalsci.2016.05.023

AIMS Mathematics Volume 10, Issue 5, 10387-10412.



10411

37.

38.

39.

41.

42.

43.

45.

47.

48.

49.

50.

T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, An analytical solution for
magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat
generation/absorption, Int. J. Therm. Sci., 111 (2017), 274-288.
https://doi.org/10.1016/j.ijthermalsci.2016.08.009

S. S. Motsa, P. G. Dlamini, M. Khumalo, Spectral relaxation method and spectral
quasilinearization method for solving unsteady boundary layer flow problems, Adv. Math. Phys.,
2014, 1-12. https://doi.org/10.1155/2014/341964

S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147
(2004), 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7

J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J.
Comput. Appl. Math., 241 (2013), 103—115. https://doi.org/10.1016/j.cam.2012.10.003

N. M. Sarif, M. Z. Salleh, R. Nazar, Numerical solution of flow and heat transfer over a stretching
sheet with Newtonian heating using the Keller box method, Procedia Eng., 53 (2013), 542-554.
https://doi.org/10.1016/j.proeng.2013.02.070

H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, Intelligent computing for the
dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection
for hydrogen possessions, [Int. J. Hydrogen Energ., 46 (2021), 4947-4980.
https://doi.org/10.1016/j.ijhydene.2020.11.097

Z. Shah, M. A. Z. Raja, Y. M. Chu, W. A. Khan, S. Z. Abbas, M. Shoaib, et al., Computational
intelligence of Levenberg-Marquardt backpropagation neural networks to study the dynamics of
expanding/contracting cylinder for Cross magneto-nanofluid flow model, Phys. Scr., 96 (2021),
055219. https://doi.org/ 10.1088/1402-4896/abe068

M. Awais, M. A. Z. Raja, S. E. Awan, M. Shoaib, H. M. Ali, Heat and mass transfer phenomenon for
the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force
and heat source/sink, Alex. Eng. J., 60 (2021), 1355—-1363. https://doi.org/10.1016/}.a€j.2020.10.056

M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sanchez, A stochastic intelligent
computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19
dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.3390/sym12101628

T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with
Levenberg—Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic
model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1-35.
https://doi.org/10.1140/epjp/s13360-020-00910-x

A. Ali, S. U. Ilyas, S. Garg, M. Alsaady, K. Magsood, R. Nasir, et al., Dynamic viscosity of Titania
nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and
predictions from empirical correlation and artificial neural network, Int. Commun. Heat Mass
Transfer, 118 (2020), 104882. https://doi.org/10.1016/j.icheatmasstransfer.2020.104882

M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli, M. Shoaib, A stochastic computational intelligent
solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur.
Phys. J. Plus, 135 (2020), 1-23. https://doi.org/10.1140/epjp/s13360-020-00557-8

I. Jadoon, A. Ahmed, A. Rehman, M. Shoaib, M. A. Z. Raja, Integrated meta-heuristics finite
difference method for the dynamics of nonlinear unipolar electro hydrodynamic pump flow
model, Appl. Soft Comput., 97 (2020), 106791. https://doi.org/10.1016/j.as0c.2020.106791

S. E. Awan, M. A. Z. Raja, F. Gul, Z. A. Khan, A. Mehmood, M. Shoaib, Numerical computing
paradigm for investigation of micropolar nanofluid flow between parallel plates system with
impact of electrical MHD and Hall current, Arab. J. Sci. Eng., 46 (2021), 645-662.
https://doi.org/10.1007/s13369-020-04736-8

AIMS Mathematics Volume 10, Issue 5, 10387-10412.



10412

S1.

52.

53.

54.

35.

56.

57.

38.

\% 1

Z. Sabir, M. Umar, J. L. Guirao, M. Shoaib, M. A. Z. Raja, Integrated intelligent computing
paradigm for nonlinear multi-singular third-order Emden—Fowler equation, Neural Comput.
Appl., 33 (2021), 3417-3436. https://doi.org/10.1007/s00521-020-05187-w

I. Ahmad, M. A. Z. Raja, H. Ramos, M. Bilal, M. Shoaib, Integrated neuro-evolution-based
computing solver for dynamics of nonlinear corneal shape model numerically, Neural Comput.
Appl., 33 (2021), 5753-5769. https://doi.org/10.1007/s00521-020-05355-y

F. Faisal, M. Shoaib, M. A. Z. Raja, A new heuristic computational solver for nonlinear singular
Thomas—Fermi system using evolutionary optimized cubic splines, Eur. Phys. J. Plus, 135
(2020), 1-29. https://doi.org/10.1140/epjp/s13360-019-00066-3

T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, On magnetohydrodynamic flow of
nanofluid due to a rotating disk with slip effect: A numerical study, Comput. Method. App!.
Mech. Eng., 315 (2017), 467-477. https://doi.org/10.1016/j.cma.2016.11.002

M. Awais, S. E. Awan, M. A. Z. Raja, M. Shoaib, Effects of gyro-tactic organisms in
bio-convective nano-material with heat immersion, stratification, and viscous dissipation, Arab.
J. Sci. Eng., 46 (2021), 5907-5920. https://doi.org/10.1007/s13369-020-05070-9

M. Sheikholeslami, M. B. Gerdroodbary, R. Moradi, A. Shafee, Z. Li, Application of neural network
for estimation of heat transfer treatment of Al:Os-H2O nanofluid through a channel, Comput.
Methods Appl. Mech. Eng., 344 (2019), 1-12. https://doi.org/10.1016/j.cma.2018.09.025

Z. Sabir, D. Baleanu, M. Shoaib, M. A. Z. Raja, Design of stochastic numerical solver for the
solution of singular three-point second-order boundary value problems, Neural Comput. Appl.,
33 (2021), 2427-2443. https://doi.org/10.1007/s00521-020-05143-8

Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A novel design of fractional Meyer wavelet
neural networks with application to the nonlinear singular fractional Lane-Emden systems, Alex.
Eng. J., 60 (2021), 2641-2659. https://doi.org/10.1016/j.a¢j.2021.01.004

© 2025 the Author(s), licensee AIMS Press. This is an open access
s AIMS Press article distributed under the terms of the Creative Commons

X l 5 Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 5, 10387-10412.





