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Abstract: This study sought to examine the behavior of thermoelastic microbeams supported by a
viscoelastic Pasternak foundation via the Moore—Gibson—Thompson heat conduction equation within
the framework of Klein—Gordon nonlocality, a novel approach for analyzing heat transfer in elastic
materials. This model facilitates a more precise comprehension of the thermoelastic vibrations in
microbeams. We wanted to examine the impact of foundation characteristics and thermal relaxation
durations on the vibration frequency and stability of the microbeam. The Laplace transform technique
was used. A graphic representation of the computed temperature, bending displacement, and moment
is shown. The results provide significant insights into the design and enhancement of microbeams in
advanced engineering applications, including microelectromechanical systems and nanoscale
structures, where temperature effects and foundational interactions are critical. Furthermore, the
fluctuation of waves is somewhat reduced in the examined model.
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1. Introduction

In recent years, microbeams have grown to be vital because of their widespread use in technology,
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communication systems, electromechanical measuring devices, and magnetometers. Resonators—
which can be generally manufactured from single-crystal silicon cloth via semiconductor production
techniques—are used as elements of radio frequency filters for the detection of charge, force, pressure,
and acceleration at center frequencies in the order of megahertz or even gigahertz. Many interesting
papers have been published in this area of research [1-3]; several researchers have researched
microbeams in mechanical, aeronautical, and nuclear engineering [4-6]. The differential quadrature
approach was used to examine finite Euler—Bernoulli beam transverse vibration frequencies on
parameter viscoelastic foundations [7,8].

The significance of research on beams resting on two-parameter elastic foundations cannot be
overstated. Previous studies [9,10] that examined the behavior and diverse characteristics of such
beams are of utmost importance to design and related fields. They provide crucial insights to several
engineering sectors, particularly in the dynamic behavior analysis of beams situated on
thermoviscoelastic foundations. In [11], the authors explored the features of a foundational model that
incorporated a standard technique for bending beams on an elastic base alongside the two-parameter
viscoelastic foundation, further underscoring the significance of this research. Similarly, Pradhan and
Murmu [12] highlighted the effects of adhesive foundations on the deflection patterns of mechanical
systems and precise mechanics.

The thermoelasticity theory is a mixture of elasticity and heat conduction theories. A thermal
constitutive equation is employed by the classical coupled theory of thermoelasticity [13] in addition
to its mechanical constitutive equation for the stress tensor. Some studies have been conducted on
these generalized theories, such as the L-S theory developed by Lord and Shulman [14], the G-L
theory presented by Green and Lindsay [15], and the G—N theory provided by Green and Naghdi [16].
The theory of classical dynamical thermoelasticity (CTE) was examined by Biot and Willis [17].
Furthermore, Tzou [18] introduced a novel dual-phase-lag (DPL) model that allows lag durations that
simulate the temperature gradient and heat flow by including a new establishing component in
Fourier's equation. Green and Naghdi [19,20] generated a generalized thermoelastic model. Three
theories have been defined as a consequence: the first generation (GN-I) was supplied by Green and
Naghdi, who went on to establish the second generation (GN-II) and the third generation (GN-111).

The number of studies devoted to Moore—Gibson—Thompson theory has increased significantly
since its creation. It has also become a fascinating topic for scientists, with multiple studies
concentrating on model formulation. For example, in [21-23], the authors constructed the theory's
theoretical components. Several researchers have also used this theory in practice, with various
thermoelastic models and certain presumptions [24,25]. The problem of thermoelasticity was studied
and numerically analyzed by Bazarra et al. [26], who used the Moore—-Gibson—-Thomson equation to
describe the thermal law. Owing to the intricate nature of the model, the topic of microbeams situated
on a two-parameter and Moore-Gibson—-Thompson (MGT) model and subjected to initial thermal
stress has not been widely studied. Nevertheless, our study delved deeply into this subject. Various
foundation models have been examined, employing numerical and analytical approaches to conduct
free vibration analyses of numerous structures. Consequently, incorporating thermal coupling into the
equation offers a novel approach for addressing vibration issues in structures supported by elastic
foundations.

The nonlocal theory of continuum mechanics of thermoelasticity is crucial to material research.
This study provides a complete foundation for understanding material behavior under thermal and
mechanical loading. Nonlocal elasticity theories were established in [27,28]. Famous researchers, such
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as Zhou et al. [29] and Song et al. [30], have used elasticity to address dynamic issues. The linear
theory of nonlocal elasticity was used to demonstrate elastic wave dispersiveness owing to nonlocal
factors in [31]. Recently, Singh et al. [32] examined how nonlocal factors affect harmonic wave
propagation in elastic materials with voids. In [33,34], the nonlocal elasticity of thermoelastic
materials was enhanced. Researchers have focused on wave propagation in nonlocal thermoelasticity,
e.g., Biswas [35], Lata and Singh [36], and Abd-Alla et al. [37]. Jangid et al. [38] studied flat harmonic
waves via Moore-Gibson-Thompson thermoelasticity with Klein—-Gordon (KG) nonlocality to
explore the thermal variables of thermoelastic microbeams supported by a two-parameter viscoelastic
Pasternak foundation. The present paper develops the governing equations of Moore—Gibson—
Thompson thermoelasticity with nonlocality to explore possible effects inspired by [39,40] Klein—
Gordon-type nonlocal elasticity.

In this work, the motivation arises from the necessity for precise and realistic modeling of
microbeams for advanced technological applications, whereas the challenge lies in the complex
mathematical framework needed to capture the interaction of multiple sophisticated physical
phenomena at small scales. The Pasternak foundation analysis of a thermoelastic microbeam was
examined using various foundation models (FMs) and the Moore-Gibson-Thompson (MGT) model
incorporating KG nonlocality. This study followed a structured approach: Section 2 introduces the
formulation of the problems and fundamental equations. Section 3 examines the analytical solution
and initial and boundary conditions of thermoelastic coupling and its impact on the transient behavior
of microbeams resting on a two-parameter viscoelastic Pasternak foundation via the Moore—Gibson—
Thompson heat conduction equation under KG nonlocal. As demonstrated in Section 4, the Laplace
transform technique was utilized to solve the equilibrium system. Section 5 presents an analysis and
discussion of the response of the studied field variables through various subsections. Finally, Section
6 summarizes the most critical conclusions drawn from the study.

2. Governing equations

We investigate the thermoelasticity and dynamics of a thin microbeam resonator that is
. . . b b
thermoelastic and has a rectangular cross-section of length L(0 < x < L), width b(—; <y< 5)’ and

beam thickness h(—% <z< %) by a cross-section of area A = hb. We specify the x-coordinate

along the beam's axis, and the consistent y- and z-coordinates represent the width and thickness
behavior. With an elastic modulus E and a Poisson's ratio of v, the beam is composed of a flexible
material with homogenous, linear properties. A homogeneous, three-characteristic elastic soil supports
the beam. The essential model is defined by the damping coefficient 7, the linear modulus K;, and
the Pasternak foundation coefficient K.

The displacement vector's components are as follows, which were attained via the Euler—
Bernoulli beam theory (see [41-43]):

ow

U=-—z_—-,v= 0, w(x,y,zt) = w(x,t). (1)

The fundamental equation that results from applying Eq (1) to a one-dimensional problem is as follows:

a2 a*w
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where t;; are stress tensor components for nonlocal elasticity of the Klein—Gordon type, oy is the
nonlocal axial stress, ey is the characteristic internal length scale parameter due to nonlocality in
space, and T is the characteristic time scale parameter due to nonlocality in time and ar = a;/(1 —
2v). From Eq (2), we obtain the flexure moment M in the form

M@w_—m[ S+ arMy), 3)
where
My = % _hf{jz 0(x,z,t)zdz.

The initial magnetic field H, the current density J, the beam thickness h, and elastic modulus E are
what causes this phenomenon. For a homogeneous and electrically perfect conducting thermoelastic
material, the Maxwell's equations may be applied as follows:

]=Vxh,VxE=—yog—’t‘,E=—yo( xH) @
h=Vx((uxh), V-h=0.

According to studies by Kerr [44], the fundamental Winkler elastic model is the initial model, in which

the vertical displacement is intended to be commensurate with the contact pressure at any given

position. With the irrelevant contact between the beam and the ground taken into consideration, the

interaction between the beam and the supporting foundation can only be squeezed and follows the

Pasternak three-parameter model.

2
Ry = Kyw(x, t) — K, &0,

)

where w is the lateral deflection and where Ry is the foundation response per component area. The
crosswise response of microbeams' equation of motion may be expressed as

R

pA t2 , (6)

where the longitudinal magnetic force is included as a function of space in f(x). Since f, is a body
force and f(x) is the force per length, in this case, f(x) # f,, f(x) may be expressed as

2%w

@) = Af, = ApoH2 22, ()

By substituting Egs (3), (5), and (8) into Eq (7), we obtain the nanobeam motion equation as

dx*

0w (ﬁ AuoH,%) *w | pAdPw | K, 9°Mrt

IE IE ) ax? ' IE ot? + Wt ar oxz 0. (®)

The generalized form of Moore—Gibson-Thompson thermoelasticity with Klein—-Gordon nonlocality
and heat sources is as follows [39,45]:

(K +K )(sz + sz) - (atz + 7 at3) [pCE ot YTy at] ©)
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where K is the thermal conductivity and K* is the conductivity rate parameter.

The specific cases are as follows: 74 # 0, K # 0 and K* # 0, conventional thermoelastic
theory (CTE) can be applied if 7o = 0, K* = 0, Lord and Shulman (LS) theory can be applied if K* =
0, Green-Naghdi (GN-I11) theory can be applied if 7o =0, K = 0, and the Green-Naghdi (GN-111)
model can be applied if 74 = 0.

Replacing Eq (1) into (9), we obtain the generalized heat conduction equation in the following
form:

(k5 1) (G +52) = G+ o o) [ - 25 (5] (10)
3. Analytical solution

The increasing temperature for a specific microbeam varies along the thickness direction in an
irregular method [2]. That is

0(x,z,t) = 6(x,t)sin (%) (12)

When Eq (11) is substituted into Eq (8), the motion equation (8) may be stated as follows:

o*w K ApoH2\ 02w Ad*w K 24ar 0%6
__(_2+M)_ paodw By T2% _ 0 (12)
dx* IE IE dx2 IE 9t2 IE hm? 0x2

Moreover, the flexure moment M provided by Eqgs (3) and (11) is

2°w(x,t) 24lEar
- > 0.
hm

M(x,t) = —IE (13)

The result attained by integrating Eq (12) with respect to z across the beam thickness from —h/2 to
h/2 is

O k) (E_mY o= (24 g, 222 vT_o”Z’li(az—W)]
(K3t+K)(0x2_h2>6_(at2+Teat3)[kat_ kot \a2 /I (14)

We use the following dimensionless variables below:

9
{x',z',u',w'} = %{x,z,u, w} 0’ = = G = |-
0 P (15)

79} =2t 70), o'k =2, M =1L

Then, the fundamental equations are reduced to nondimensional forms as

2w 2w 2w 226
o Biga tBegn tBsw =B (16)
d «\ [ 92 9° a° a0 a (92w
(K5t K)(G=—8s5)0 = (WJF Tﬁﬁ) 1B 52— B3 (53)]
2
M(x,t) = —Ag 2D — Agh. (17)
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Anywhere
24LT,
Ay 12 (121<2 4 12u0H,%) A, _02“T ym2h
h3bE ' hZE hm” 24K
L*m
_ 1212 _ d _
Ay |~ h2 c|As| T n? and 1 4g| = 12bL2
12L*Kq L |E 2hT
- —_ odr
A3 l bh3E J A6 kAlp A9 l F J

Now, we investigate the initial and boundary conditions necessary to clarify the issue. The original
uniform conditions are expressed as

6(x,0) = 22 = 0 = w(x,0) = =0 (18)

We deliberate that the microbeam is clamped at both ends, i.e.,

9%w(0,t) _ 92w(L,t)
axz2  9xz

w(0,t) =w(L,t)=0=

(19)

Furthermore, we consider that slope-type heating thermally loads the microbeam, which provides

0 t<0
0(x,t) =T, ti 0<t<t, (20)
1 £>0

where T, isa constant and t, is a slope-type parameter. Moreover, the following connection must be
satisfied by the temperature at the end boundary [29,30]:

26
a—Oonx—L. (21)

4. Solution of the problem in the Laplace transform domain
The Laplace transform is defined as
glx, t) = fooog(x, t)e stdt. (22)

Under homogeneous initial conditions (18) and on both sides of Egs (16) and (17), we can obtain the
field equations in the Laplace transform space as follows:

d4_ d?w dzo
Alod > +A 1W = A12 dx?
dZ— (23)
(dx2 A13) =~ dx2’
dazw
M(x S) == _A15 F - A169 (24)

wherever
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A I (s?+7g s3)7
Ago Ay ; Aot de (Ko kD
A, (s%+1g s%)
— _ VAT~
Ay | = [s%4; + A5 | and = (Ks+K™)
Ars )
8
-A16— A9
When 8 or w is eliminated from Eq (23), one becomes:
(D6 - ClD4 + C2D2 - C3){W, 9_}(96) = O, (25)
where C;, C,,and C; are given in (26)
Cy1 [A1o + A1a + A12A14]
c, AjpA14 +Agq
= , 26
Cs Ai1A14 ( )
d
pl | =
Equation (27) can be improved to
(D? —m$)(D? —m3)(D? — m$)H{w, 6} (x) = 0. (27)
where ,ul-z and i = 1,2,3,4 are the roots of
ué — Ciu* + Cou* — C3 = 0. (28)
In the domain of the Laplace transform, the solution to Eq (28) can be described as
W, 03(0) = T, ({1, A A ™% + {1, A3} Ais 5eH). (29)
When these two equations agree with Eq (24), we obtain
24
Equation (29) is used to obtain the displacement regarding
_ dw s .
u(x) = —Zﬁ =z X7oq 1 (Age™H* — Ay zeti), (31)

The value for moment M can be created by substituting the equations of w and @ from Eq (29)
into Eq (25):

M(x) = — X1 (4} A1s+Ar64) (Aje ™M — A ze%). (32)
Additionally, the strain will be

_ au s .

e(x) = = = —z XL, uf (Aie ™ — Ay zeh™). (33)
When the Laplace transform is used, boundary conditions (18)—(20) take the following forms:
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w(0,s) =w(L,s) =0,

92w (0,s) _ 9?w(Ls) _ 0

_6x2 0x? ! (34)

06(0,s) 1-e~5%0
ax =T0( 521y )'

a0(Ls) _

ax

0.

By replacing the previous boundary conditions with Eq (29), six linear equations are formed.

i3=1(Ai + Ai+1) =0,

35
i1 (Aje™Ml + Ay etit) = 0, )
=1 (A; + A1) =0, (36)
i1 1 (Aje™Hl + A etit) = 0.
1— —S‘L'e
i i (LA — A1 Air) = _TO( sj g ) (37)

A e HE — 2 1A eHil) = 0.

The aforementioned system of linear equations (i = 1,2,...,6) is solved to obtain the unknown
parameters A;. The Riemann sum approximation method is used to obtain numerical results for
physical domain research areas.

5. Numerical results

This section compares the findings of the MGT with the KG model to those of the CTE, LS, GN-
I, and GN-I1I models. Additionally, via the theoretical analysis described in the preceding sections,
the impacts of the distributions of temperature, displacement, deflection, and flexure moments on the
scale parameter e, are evaluated. Our findings contrast with those of earlier studies in Figures 1-8.
The geometrical and physical properties of the microbeam are shown below in [45].

KWm™K 1) =156, v=0.22, T,=293K,
E(GPa) =169, p(Kgm™3) = 2330, a(K™1) =2.59 x 1076,

k(m?s™1) =9.4x 1075, (k;—K) = 713.

5.1. The effects of different models of thermoelasticity

Numerous observations are presented in this part to computationally compare several
thermoelastic models. This is accomplished by varying the displacement, temperature, deflection, and
flexure moment with respect to distance r for the models CTE, LS, GN-II, GN-III, MGT, and KG.
Figures 1-4 show our findings.

In Figure 1, temperature variations 6 are explained by the Moore—Gibson—Thomson
thermoelastic model MGT with KG nonlocality, the Green—Naghde models (GN-II and GN-III), the
Lord—Shulman thermodynamic model (LS), and the classical thermodynamic model (CTE). First,
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there is variation in magnitude across these models. All the models have greater starting temperatures
that progressively decrease over time. Additionally, during the micropacket period, the CTE, LS, GN-
II, GN-III, MGT, and KG models show comparable distributions before converging to zero. These
findings align with those of the research conducted by [40].

In Figure 2, the displacement u against the distance r is plotted to compare the different models.
In the LS model, the displacement u is equal to that of the GN-III, MGT, and KG models, whereas
the displacement u in the CTE and GN-II models differs from those in the GN-III, MGT, and KG
models. Compared with those of the other generalized models, the displacement curves in the interval
(0 < r < 0.2) exhibit lower values for the CTE and GN-II models. Furthermore, we observe that the
six models CTE, LS, GN-II, GN-III, MGT, and KG provide negative values in the interval (0.2 <
r < 1.4) and converge to zero. The thermoelastic model and material parameters are crucial for
predicting the anticipated displacement. The most sensitive material was the one that exhibited the
greatest change in response to a stimulus during the experiment. The model that best aligns with the
experimental data is preferable for predicting material behavior.

Figure 3 illustrates the distribution of thermoelastic vibration with deflection W for the different
models (CTE, LS, GN-II, GN-III, MGT, and KG). We see that the distribution of thermoelastic with
deflection W for GN-III, MGT, and K@ is larger than that of CTE, LS, and GN-II. All the models reach
the lowest values in the interval (0 < r < 0.4). Similarly, the five models CTE, LS, GN-II, GN-III,
and MGT slowly fade inside the microbeams until they settle at zero in the interval (1.4 <r < 2).
Additionally, Figure 3 elucidates the predictions of variations in deviation (w) via various
thermoelastic models for the same material. The material exhibiting the most incredible sensitivity
may be discerned by juxtaposing these models with experimental outcomes for several materials.

Figure 4 illustrates the distribution of thermoelastic vibration with the moment M for the
different models (CTE, LS, GN-II, GN-III, MGT, and KG). The moment M curves in period (0 <
r < 2) have lower values in the CTE and GN-III models than in the other generalized models, but
have larger values in the MGT and KG models. The discrepancies in the predicted bending moments
serve as indicators of how each model understands the interaction between mechanical and thermal
reactions. While some models provide more stable predictions, others show substantial changes in the
bending moment due to their assumptions regarding thermal coupling and propagation.

CTE LS -
—— GNII GNIII ——
—— MGT kG

Figure 1. Temperature 6 in different models of thermoelasticity.
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u
0.0025
0.002 4
CTE LS
—— GNII GNIII ——
00015 - —— MGT K6

0.001 1

0.0005 -

-0.0005

Figure 2. Displacement u in different models of thermoelasticity.

-0.0005

-0.001

-0.0015

CTE LS -
= GNII GNII ——
—— MGT k6

-0.0025

Figure 3. Deflection w in different models of thermoelasticity.

2 CTE LS
—— GNII GNII ——
—— MGT KG

Figure 4. Moment M in different models of thermoelasticity.
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5.2. Effect of Pasternak foundation parameters K; and K,

This section focuses on the analytical and numerical analysis of the influence of the Pasternak
foundation parameters K; and K, on the beam response. The effects of the Pasternak foundation
parameters on the behavior of the microbeam are shown in Figures 5-8.

Since the Pasternak foundation model better captures the continuous character of the foundation,
it is often applied in practice. Figures 5—8 demonstrate how different parameters K; and K, impact
field values such as ®, u, w, and M. A comparative analysis was performed to validate the present
study. The statistics reveal that the four locations are in sync. The microbeam becomes stiffer when
supported by an elastic foundation. The basic parameters K; and K, strongly impact the bending
moment M, displacement u, and deflection w. We may also conclude the following: As in [7,8,40],
both parameters reduced deflection, increased thermal coupling, and improved microbeam structural
integrity; structures supported by a mix of Winkler and Pasternak foundations are stiffer than those
supported by only one.

These cases in Figure 5 exhibit varying magnitudes, and it is evident that the starting temperature
values are larger and progressively decrease over time in every case, with lower temperatures in K; =
0.1, K, = 0. Moreover, before convergence to zero, the cases where K; =0, K, = 0.05, K; =
0.1, K; =0 and K; = 0.1, K, = 0.05 have equivalent distributions, indicating a strong effect of
temperature 6-dependent characteristics on the distributions of physical quantities.

The displacement u achieves its largest value in the cases where K; =0, K, = 0.05, K; =
0.1,K, =0 and K; = 0.1, K, = 0.05, as shown in Figure 6, which is different from the case where
K; = 0.1, K, = 0. Thetwo cases K; =0, K, =0.05, K; =0.1, K, =0 and K; = 0.1, K, = 0.05
also show comparable curves and near values; however, case K; = 0.1, K, = 0 is completely
different. All three cases' curves progressively fade until they settle at zero in (1.2 < x < 2).

The deflection w achieves its maximum value in the case of K; = 0.1,K, = 0, as shown in
Figure 7, diverging from K; = 0, K, = 0.05, K; = 0.1,K, =0 and K; = 0.1, K, = 0.05.

Figure 8 shows the distribution of the moment M for several cases. The curve is lower in the
K; = 0.1, K, = 0 case than inthe K; =0, K, = 0.05, K; =0.1,K, =0 and K; = 0.1, K, = 0.05
cases.

—K, =01, K, =0
——K, =0, K,=005
—— K, =01, K, =005

Figure S. Temperature 6 with different Pasternak foundation parameters K; and K.

AIMS Mathematics Volume 10, Issue 5, 10340-10358.
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0.0025

0.002

0.0015

0.001

0.0005

-0.0005

-0.001

-0.0015

—K, =01,
—K =0,
— K =01,

Kz =0
K, = 0.05

/).)*—-—0.1- 0.6 0.8

Figure 6. Displacement u with different Pasternak foundation parameters K; and K,.

—K, =01, K, =0

— K =0,

K> = 0.05

—— K, =0.1, K, =005

Figure 7. Deflection w with different Pasternak foundation parameters K; and K.

K, = 0.1
— K, =0
K, = 0.1

Figure 8. Moment M with different Pasternak foundation parameters K; and K,.
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5.3. Effect scale parameter e

In particular, the dynamics of microbeams processed via a two-parameter viscoelastic Pasternak
foundation may be more accurately represented by including the Klein—Gordon operator in the
theoretical analysis. This technique successfully addresses size-dependent phenomena that are usually
disregarded by traditional local elasticity theories by considering the nonlocal length scale e, and
time scale 1 factors. Because of the considerable influence of spatial and temporal interactions on the
mechanical and thermal characteristics of thermoelastic materials, these advancements are crucial for
comprehending these materials.

By including nonlocal length scale (ey) and time scale (1) variables, the importance of nonlocal
characteristics in thermoelastic material modeling is highlighted. Spatial nonlocality, as shown by the
length scale e,, means that stress or strain in one location is affected by stress or strain in neighboring
places. For the model to anticipate dimensionally dependent behaviors, such as lower stiffness or wave
dispersion, this feature is crucial for including size effects. Particularly important for microbeams
treated with a two-parameter viscoelastic Pasternak foundation is the influence of e, which takes into
account the effects of long-range forces and atomic-scale interactions. In addition, the model
incorporates vibration effects via the parameter 7, which represents temporal nonlocality. This is
crucial for recording how a material might cohere with its past states, which affects how it responds
now.

The total amount of strain and stress decreases because the spatial nonlocality parameter e, takes
into account the influence of neighboring stresses and strains. These size-dependent behaviors are
introduced by this smoothing effect, which also reduces variability. These adjustments allow for a more
precise depiction of the physical behavior of a microbeam, where interactions with respect to the
atomic size are very important. The capacity of the material to gradually adjust to changes over time
is reflected by the temporal nonlocality parameter t, which allows the model to account for damping
effects and postpone wave propagation. Given the critical role that relaxation effects play in
determining the reactions of viscoelastic and thermoelastic materials, this aspect demands particular
attention. The results obtained by [40,45] agree with this finding. This section aims to determine how
the scale parameter 7, affects the examined field measures. For comparison with other studies,
findings are shown in Figures 9—-12. The distribution of the physical fields has a noticeable influence
on the scale parameter e,.

We conclude that increasing parameters K; and K, increases the temperature 6 values on the
basis of the data presented in Figure 9. Additionally, the value of e, has important effects on
temperature over a wide range of r,1i.e.,, (0 < r < 0.2); increasing the value of e, causes a decrease
in the value of temperature 6. Until crossing the r-axis, the displacement begins with positive values,
progressively decreases, and then takes positive values until essentially approaching zero. Figure 10
shows a graph that shows the effect of the scale parameter e, on the sensitivity of the displacement
u of microbeams processed via a two-parameter viscoelastic Pasternak foundation and a Moore—
Gibson—Thompson heat conduction model with KG nonlocality. All of the values of displacement u
are convergent, according to the data displayed in this figure. Figure 11 shows that the deflection w
starts decreasing with the scale parameter e, in the range 0 <r < 0.3 and then increases to
maximum amplitudes in the range 0.3 <7 < 2. Figure 12 shows how the moment M presents
several curves depending on the scale parameter e, which ranges from 0 < r < 2.

AIMS Mathematics Volume 10, Issue 5, 10340-10358.
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e = 0.001
e = 0.002
eo = 0.003 ———
eo = 0.004
eo = 0.005
e = 0.006

Figure 9. Temperature 6 with different scale parameters e,.

0.003

-0.0015

0.0025 -

0.002

0.0015 -

0.001

0.0005 -

ey = 0.001
eq = 0.002
eo = 0.003
eo = 0.004
eo = 0.005
e, = 0.006

-0.0005

-0.001 1
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Figure 12. Moment M with different scale parameters ey.
6. Conclusions

This work uses the Moore—Gibson—-Thompson model with KG nonlocality to analyze the
displacement, temperature, deflection, and flexure moment of thermoelastic microbeam resonators
under the influence of a two-parameter viscoelastic Pasternak foundation. The normalized versions of
the governing equations were compared with those of thermoelastic models (CTE, LS, GN-II, GN-III,
MGT, and KG) and different scale characteristics of microbeams in terms of displacement, temperature,
deflection, and flexure moment. The important findings from this study include the following:

e These models primarily display variations in their magnitudes, and the initial temperature
values are relatively high, gradually decreasing over time intervals across all the models.

e  The amplitudes of displacement and deflection under all six models, namely, CTE, LS, GN-II,
GN-III, MGT, and KG, are approximately the same.

e  QGreater values are obtained under the GN-III, MGT, and KG models, but lower values are
obtained for the moment in the GN-II, LS, and CTE models.

e Inthe cases where K; =0, K, = 0.05 and K; = 0.1, K, = 0.05, higher values are obtained
for temperature, displacement, and moment, but in the cases where (K; = 0.1, K, = 0), higher
values are found for deflection.

e The moment displays several curves depending on the scale parameter, and the temperature
increases as two parameters, K; and K,, increase. The deflection and displacement values
tend to decrease when two parameters, K; and K, encounter more difficulties.

e The nonlocal Klein—Gordon parameter effects are prominent in high-frequency and short-
wavelength waves to capture factors that classical elasticity cannot account for.

e  The Moore-Gibson—Thompson model, under the effect of the nonlocal KG model, has been
applied to general thermoelastic problems by many researchers in the field of generalized
thermoelasticity. However, to the best of the authors' knowledge, it has not been applied to
thermoelastic microbeams supported by a two-parameter Pasternak basis.
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