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Abstract: This study sought to examine the behavior of thermoelastic microbeams supported by a 

viscoelastic Pasternak foundation via the Moore–Gibson–Thompson heat conduction equation within 

the framework of Klein–Gordon nonlocality, a novel approach for analyzing heat transfer in elastic 

materials. This model facilitates a more precise comprehension of the thermoelastic vibrations in 

microbeams. We wanted to examine the impact of foundation characteristics and thermal relaxation 

durations on the vibration frequency and stability of the microbeam. The Laplace transform technique 

was used. A graphic representation of the computed temperature, bending displacement, and moment 

is shown. The results provide significant insights into the design and enhancement of microbeams in 

advanced engineering applications, including microelectromechanical systems and nanoscale 

structures, where temperature effects and foundational interactions are critical. Furthermore, the 

fluctuation of waves is somewhat reduced in the examined model. 
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1. Introduction 

In recent years, microbeams have grown to be vital because of their widespread use in technology, 
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communication systems, electromechanical measuring devices, and magnetometers. Resonators—

which can be generally manufactured from single-crystal silicon cloth via semiconductor production 

techniques—are used as elements of radio frequency filters for the detection of charge, force, pressure, 

and acceleration at center frequencies in the order of megahertz or even gigahertz. Many interesting 

papers have been published in this area of research [1–3]; several researchers have researched 

microbeams in mechanical, aeronautical, and nuclear engineering [4–6]. The differential quadrature 

approach was used to examine finite Euler–Bernoulli beam transverse vibration frequencies on 

parameter viscoelastic foundations [7,8]. 

The significance of research on beams resting on two-parameter elastic foundations cannot be 

overstated. Previous studies [9,10] that examined the behavior and diverse characteristics of such 

beams are of utmost importance to design and related fields. They provide crucial insights to several 

engineering sectors, particularly in the dynamic behavior analysis of beams situated on 

thermoviscoelastic foundations. In [11], the authors explored the features of a foundational model that 

incorporated a standard technique for bending beams on an elastic base alongside the two-parameter 

viscoelastic foundation, further underscoring the significance of this research. Similarly, Pradhan and 

Murmu [12] highlighted the effects of adhesive foundations on the deflection patterns of mechanical 

systems and precise mechanics. 

The thermoelasticity theory is a mixture of elasticity and heat conduction theories. A thermal 

constitutive equation is employed by the classical coupled theory of thermoelasticity [13] in addition 

to its mechanical constitutive equation for the stress tensor. Some studies have been conducted on 

these generalized theories, such as the L–S theory developed by Lord and Shulman [14], the G–L 

theory presented by Green and Lindsay [15], and the G–N theory provided by Green and Naghdi [16]. 

The theory of classical dynamical thermoelasticity (CTE) was examined by Biot and Willis [17]. 

Furthermore, Tzou [18] introduced a novel dual-phase-lag (DPL) model that allows lag durations that 

simulate the temperature gradient and heat flow by including a new establishing component in 

Fourier's equation. Green and Naghdi [19,20] generated a generalized thermoelastic model. Three 

theories have been defined as a consequence: the first generation (GN-I) was supplied by Green and 

Naghdi, who went on to establish the second generation (GN-II) and the third generation (GN-III). 

The number of studies devoted to Moore–Gibson–Thompson theory has increased significantly 

since its creation. It has also become a fascinating topic for scientists, with multiple studies 

concentrating on model formulation. For example, in [21–23], the authors constructed the theory's 

theoretical components. Several researchers have also used this theory in practice, with various 

thermoelastic models and certain presumptions [24,25]. The problem of thermoelasticity was studied 

and numerically analyzed by Bazarra et al. [26], who used the Moore–Gibson–Thomson equation to 

describe the thermal law. Owing to the intricate nature of the model, the topic of microbeams situated 

on a two-parameter and Moore–Gibson–Thompson (MGT) model and subjected to initial thermal 

stress has not been widely studied. Nevertheless, our study delved deeply into this subject. Various 

foundation models have been examined, employing numerical and analytical approaches to conduct 

free vibration analyses of numerous structures. Consequently, incorporating thermal coupling into the 

equation offers a novel approach for addressing vibration issues in structures supported by elastic 

foundations. 

The nonlocal theory of continuum mechanics of thermoelasticity is crucial to material research. 

This study provides a complete foundation for understanding material behavior under thermal and 

mechanical loading. Nonlocal elasticity theories were established in [27,28]. Famous researchers, such 
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as Zhou et al. [29] and Song et al. [30], have used elasticity to address dynamic issues. The linear 

theory of nonlocal elasticity was used to demonstrate elastic wave dispersiveness owing to nonlocal 

factors in [31]. Recently, Singh et al. [32] examined how nonlocal factors affect harmonic wave 

propagation in elastic materials with voids. In [33,34], the nonlocal elasticity of thermoelastic 

materials was enhanced. Researchers have focused on wave propagation in nonlocal thermoelasticity, 

e.g., Biswas [35], Lata and Singh [36], and Abd-Alla et al. [37]. Jangid et al. [38] studied flat harmonic 

waves via Moore–Gibson–Thompson thermoelasticity with Klein–Gordon (KG) nonlocality to 

explore the thermal variables of thermoelastic microbeams supported by a two-parameter viscoelastic 

Pasternak foundation. The present paper develops the governing equations of Moore–Gibson–

Thompson thermoelasticity with nonlocality to explore possible effects inspired by [39,40] Klein–

Gordon-type nonlocal elasticity. 

In this work, the motivation arises from the necessity for precise and realistic modeling of 

microbeams for advanced technological applications, whereas the challenge lies in the complex 

mathematical framework needed to capture the interaction of multiple sophisticated physical 

phenomena at small scales. The Pasternak foundation analysis of a thermoelastic microbeam was 

examined using various foundation models (FMs) and the Moore-Gibson-Thompson (MGT) model 

incorporating KG nonlocality. This study followed a structured approach: Section 2 introduces the 

formulation of the problems and fundamental equations. Section 3 examines the analytical solution 

and initial and boundary conditions of thermoelastic coupling and its impact on the transient behavior 

of microbeams resting on a two-parameter viscoelastic Pasternak foundation via the Moore–Gibson–

Thompson heat conduction equation under KG nonlocal. As demonstrated in Section 4, the Laplace 

transform technique was utilized to solve the equilibrium system. Section 5 presents an analysis and 

discussion of the response of the studied field variables through various subsections. Finally, Section 

6 summarizes the most critical conclusions drawn from the study. 

2. Governing equations 

We investigate the thermoelasticity and dynamics of a thin microbeam resonator that is 

thermoelastic and has a rectangular cross-section of length 𝐿(0 ≤ 𝑥 ≤ 𝐿), width 𝑏(−
𝑏

2
≤ 𝑦 ≤

𝑏

2
), and 

beam thickness ℎ(−
ℎ

2
≤ 𝑧 ≤

ℎ

2
)  by a cross-section of area 𝐴 = ℎ𝑏 . We specify the 𝑥 -coordinate 

along the beam's axis, and the consistent 𝑦 - and z-coordinates represent the width and thickness 

behavior. With an elastic modulus 𝐸 and a Poisson's ratio of 𝑣, the beam is composed of a flexible 

material with homogenous, linear properties. A homogeneous, three-characteristic elastic soil supports 

the beam. The essential model is defined by the damping coefficient 𝜏0, the linear modulus 𝐾1, and 

the Pasternak foundation coefficient 𝐾2. 

The displacement vector's components are as follows, which were attained via the Euler–

Bernoulli beam theory (see [41–43]): 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
, 𝑣 = 0, 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡).       (1) 

The fundamental equation that results from applying Eq (1) to a one-dimensional problem is as follows: 

(1 − 𝑒0∇
2 + 𝜏2  

𝜕2

𝜕𝑡2) 𝑡𝑖𝑗 = 𝜎𝑥 = −𝐸 [
𝜕2𝑤

𝜕𝑥2
+ 𝛼𝑇𝜃].      (2) 
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where 𝑡𝑖𝑗 are stress tensor components for nonlocal elasticity of the Klein–Gordon type, 𝜎𝑥 is the 

nonlocal axial stress, 𝑒0  is the characteristic internal length scale parameter due to nonlocality in 

space, and 𝜏 is the characteristic time scale parameter due to nonlocality in time and 𝛼𝑇 = 𝛼𝑡/(1 −

2𝜈). From Eq (2), we obtain the flexure moment 𝑀 in the form 

𝑀(𝑥, 𝑡) = −𝐼𝐸 [
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇𝑀𝑇],       (3) 

where 

𝑀𝑇 =
12

ℎ3 ∫ 𝜃(𝑥, 𝑧, 𝑡)𝑧𝑑𝑧
ℎ/2

−ℎ/2
.          

The initial magnetic field 𝐻, the current density 𝐽, the beam thickness ℎ, and elastic modulus 𝐸 are 

what causes this phenomenon. For a homogeneous and electrically perfect conducting thermoelastic 

material, the Maxwell's equations may be applied as follows: 

𝐽 = ∇ × ℎ, ∇ × 𝐸 = −𝜇0
𝜕ℎ

𝜕𝑡
, 𝐸 = −𝜇0 (

𝜕𝑢

𝜕𝑡
× 𝐻)

ℎ = ∇ × (𝑢 × ℎ), ∇ ∙ ℎ = 0.
.      (4) 

According to studies by Kerr [44], the fundamental Winkler elastic model is the initial model, in which 

the vertical displacement is intended to be commensurate with the contact pressure at any given 

position. With the irrelevant contact between the beam and the ground taken into consideration, the 

interaction between the beam and the supporting foundation can only be squeezed and follows the 

Pasternak three-parameter model. 

𝑅𝑓 = 𝐾1𝑤(𝑥, 𝑡) − 𝐾2
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 ,        (5) 

where 𝑤 is the lateral deflection and where 𝑅𝑓 is the foundation response per component area. The 

crosswise response of microbeams' equation of motion may be expressed as 

𝜕2𝑀

𝜕𝑥2 − 𝑅𝑓 + 𝑓(𝑥) = 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 ,        (6) 

where the longitudinal magnetic force is included as a function of space in 𝑓(𝑥). Since 𝑓𝑧 is a body 

force and 𝑓(𝑥) is the force per length, in this case, 𝑓(𝑥) ≠ 𝑓𝑧, 𝑓(𝑥) may be expressed as 

𝑓(𝑥) = 𝐴𝑓𝑧 = 𝐴𝜇0𝐻𝑥
2 𝜕2𝑤

𝜕𝑥2
.        (7) 

By substituting Eqs (3), (5), and (8) into Eq (7), we obtain the nanobeam motion equation as 

𝜕4𝑤

𝜕𝑥4
− (

𝐾2

𝐼𝐸
+

𝐴𝜇0𝐻𝑥
2

𝐼𝐸
)

𝜕2𝑤

𝜕𝑥2
+

𝜌𝐴

𝐼𝐸

𝜕2𝑤

𝜕𝑡2
+

𝐾1

𝐼𝐸
𝑤 + 𝛼𝑇

𝜕2𝑀𝑇

𝜕𝑥2
= 0.     (8) 

The generalized form of Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality 

and heat sources is as follows [39,45]: 

𝐾 (𝐾
𝜕

𝜕𝑡
+ 𝐾∗

) (
𝜕2T

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2) = (
𝜕
2

𝜕𝑡2
+ 𝜏𝜃

𝜕
3

𝜕𝑡3
) [𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝛾 𝑇0

𝜕𝑒

𝜕𝑡
],    (9) 
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where 𝐾 is the thermal conductivity and 𝐾∗ is the conductivity rate parameter. 

The specific cases are as follows: 𝜏𝜃 ≠ 0, 𝐾 ≠ 0 𝑎𝑛𝑑 𝐾∗ ≠ 0, conventional thermoelastic 

theory (CTE) can be applied if 𝜏𝜃 = 0,𝐾∗ = 0, Lord and Shulman (LS) theory can be applied if 𝐾∗ =

0, Green-Naghdi (GN-II) theory can be applied if 𝜏𝜃 = 0, 𝐾 = 0, and the Green-Naghdi (GN-III) 

model can be applied if 𝜏𝜃 = 0. 

Replacing Eq (1) into (9), we obtain the generalized heat conduction equation in the following 

form: 

(𝐾
𝜕

𝜕𝑡
+ 𝐾∗) (

𝜕2T

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑧2
) = (

𝜕2

𝜕𝑡2 + 𝜏𝜃  
𝜕3

𝜕𝑡3) [
𝜌𝐶𝐸

𝐾

𝜕𝜃

𝜕𝑡
−

𝛾 𝑇0

𝐾
𝑧

𝜕

𝜕𝑡
(

𝜕2𝑤

𝜕𝑥2
)].   (10) 

3. Analytical solution 

The increasing temperature for a specific microbeam varies along the thickness direction in an 

irregular method [2]. That is 

𝜃(𝑥, 𝑧, 𝑡) = 𝜃(𝑥, 𝑡) sin (
𝜋𝑧

ℎ
).        (11) 

When Eq (11) is substituted into Eq (8), the motion equation (8) may be stated as follows: 

𝜕4𝑤

𝜕𝑥4 − (
𝐾2

𝐼𝐸
+

𝐴𝜇0𝐻𝑥
2

𝐼𝐸
)

𝜕2𝑤

𝜕𝑥2 +
𝜌𝐴

𝐼𝐸

𝜕2𝑤

𝜕𝑡2 +
𝐾1

𝐼𝐸
𝑤 +

24𝛼𝑇

ℎ𝜋2

𝜕2𝜃

𝜕𝑥2 = 0.     (12) 

Moreover, the flexure moment M provided by Eqs (3) and (11) is 

𝑀(𝑥, 𝑡) = −𝐼𝐸
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 −
24𝐼𝐸𝛼𝑇

ℎ𝜋2 𝜃.        (13) 

The result attained by integrating Eq (12) with respect to z across the beam thickness from −ℎ/2 to 

ℎ/2 is 

(𝐾
𝜕

𝜕𝑡
+ 𝐾∗) (

𝜕2

𝜕𝑥2
−

𝜋2

ℎ2) 𝜃 = (
𝜕2

𝜕𝑡2 + 𝜏𝜃
𝜕3

𝜕𝑡3) [
1

𝑘

𝜕𝜃

𝜕𝑡
−

𝛾 𝑇0𝜋
2ℎ

𝐾

𝜕

𝜕𝑡
(

𝜕2𝑤

𝜕𝑥2
)].   (14) 

We use the following dimensionless variables below: 

{𝑥′, 𝑧′, 𝑢′, 𝑤′} =
1

L
{𝑥, 𝑧, 𝑢, 𝑤}, 𝜃′ =

𝜃

𝑇0
, 𝑐0 = √

𝐸

𝜌

{𝑡′, 𝜏′𝜃} =
𝑐0

L
{𝑡, 𝜏𝜃}, 𝜎′

𝑥 =
𝜎𝑥

𝐸
, 𝑀′ =

𝑀

𝐴𝐿𝐸
.

.      (15) 

Then, the fundamental equations are reduced to nondimensional forms as 

𝜕4𝑤

𝜕𝑥4 − 𝐵1
𝜕2𝑤

𝜕𝑥2 + 𝐵2
𝜕2𝑤

𝜕𝑡2 + 𝐵3𝑤 = −𝐵4
𝜕2𝜃

𝜕𝑥2

(𝐾
𝜕

𝜕𝑡
+ 𝐾∗

) (
𝜕2

𝜕𝑥2 − 𝐵5)𝜃 = (
𝜕
2

𝜕𝑡2
+ 𝜏𝜃

𝜕
3

𝜕𝑡3
) [𝐵6

𝜕𝜃

𝜕𝑡
− 𝐵7

𝜕

𝜕𝑡
(
𝜕2𝑤

𝜕𝑥2)] ,
     (16) 

𝑀(𝑥, 𝑡) = −𝐴8
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 − 𝐴9𝜃.       (17) 
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Anywhere 

[
 
 
 
 
𝐴1

     
𝐴2  
𝐴3]

 
 
 
 

=

[
 
 
 
 𝐿

2 (
12𝐾2

ℎ3𝑏𝐸
+

12𝜇0𝐻𝑥
2

ℎ2𝐸
)

12𝐿2

ℎ2

12𝐿4𝐾1

𝑏ℎ3𝐸 ]
 
 
 
 

, 

[
 
 
 
 
𝐴4

  
𝐴5  
𝐴6]

 
 
 
 

=

[
 
 
 
 
 
24L𝑇0𝛼𝑇

ℎ𝜋2

𝐿2𝜋2

ℎ2

𝐿

𝑘
√

𝐸

𝜌 ]
 
 
 
 
 

 and 

[
 
 
 
 
𝐴7

  
𝐴8  
𝐴9]

 
 
 
 

=

[
 
 
 
 
 
𝛾 𝜋

2ℎ

24𝐾 
√

𝐸

𝜌

ℎ2 

12𝑏𝐿2

2h𝑇0𝛼𝑇

𝐿𝜋2 ]
 
 
 
 
 

. 

Now, we investigate the initial and boundary conditions necessary to clarify the issue. The original 

uniform conditions are expressed as 

𝜃(𝑥, 0) =
𝜕T(𝑥,0)

𝜕𝑡
= 0 = 𝑤(𝑥, 0) =

𝜕𝑤(𝑥,0)

𝜕𝑡
.       (18) 

We deliberate that the microbeam is clamped at both ends, i.e., 

𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) = 0 =
𝜕2𝑤(0,𝑡)

𝜕𝑥2 =
𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2 .       (19) 

Furthermore, we consider that slope-type heating thermally loads the microbeam, which provides 

𝜃(𝑥, 𝑡) = T0 {

0,                𝑡 ≤ 0
𝑡

𝑡0
,     0 ≤ 𝑡 ≤ 𝑡0

1,                 𝑡 > 0

,        (20) 

where 𝑇0 is a constant and 𝑡0 is a slope-type parameter. Moreover, the following connection must be 

satisfied by the temperature at the end boundary [29,30]: 

𝜕𝜃

𝜕𝑥
= 0 on 𝑥 = 𝐿.          (21) 

4. Solution of the problem in the Laplace transform domain 

The Laplace transform is defined as 

𝑔̅(𝑥, 𝑡) = ∫ 𝑔(𝑥, 𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
.        (22) 

Under homogeneous initial conditions (18) and on both sides of Eqs (16) and (17), we can obtain the 

field equations in the Laplace transform space as follows: 

d4𝑤̅

d𝑥4
− 𝐴10

d2𝑤̅

d𝑥2
+ 𝐴11𝑤̅ = −𝐴12

d2𝜃̅

d𝑥2

(
d2

d𝑥2 − 𝐴13) 𝜃̅ = −𝐴14
d2𝑤̅

d𝑥2 ,
        (23) 

𝑀̅(𝑥, 𝑠) = −𝐴15
d2𝑤̅

d𝑥2 − 𝐴16𝜃̅,         (24) 

wherever 
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[
 
 
 
 
𝐴10

  
𝐴11  
𝐴12]

 
 
 
 

=

[
 
 
 
 

𝐴1

  
𝑠2𝐴2 + 𝐴3  

𝐴4 ]
 
 
 
 

 and 

[
 
 
 
 
 
 
𝐴13

  
𝐴14  
𝐴15

  
𝐴16]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝐴5 + 𝐴6

(𝑠2+𝜏𝜃 𝑠3)

(𝐾𝑠+𝐾∗)
 

𝐴7
(𝑠2+𝜏𝜃 𝑠3)

(𝐾𝑠+𝐾∗)
 

𝐴8

 
𝐴9 ]

 
 
 
 
 
 
 

. 

When 𝜃̅ or 𝑤̅ is eliminated from Eq (23), one becomes: 

(𝐷6 − 𝐶1𝐷
4 + 𝐶2𝐷

2 − 𝐶3){𝑤̅, 𝜃̅}(𝑥) = 0,      (25) 

where 𝐶1, 𝐶2, and 𝐶3 are given in (26) 

[
 
 
 
 
 
 
𝐶1

  
𝐶2  
𝐶3

  
𝐷 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐴10 + 𝐴14 + 𝐴12𝐴14

 
𝐴10𝐴14 + 𝐴11

 
𝐴11𝐴14

 
𝑑

𝑑𝑥 ]
 
 
 
 
 
 

 .       (26) 

Equation (27) can be improved to 

(𝐷2 − 𝑚1
2)(𝐷2 − 𝑚2

2)(𝐷2 − 𝑚3
2){𝑤̅, 𝜃̅}(𝑥) = 0.    (27) 

where 𝜇𝑖
2 and 𝑖 = 1,2,3,4 are the roots of 

𝜇6 − 𝐶1𝜇
4 + 𝐶2𝜇

2 − 𝐶3 = 0.        (28) 

In the domain of the Laplace transform, the solution to Eq (28) can be described as 

{𝑤̅, 𝜃̅}(𝑥) = ∑ ({1, 𝜆𝑖}𝐴𝑖𝑒
−𝜇𝑖𝑥 + {1, 𝜆𝑖+3}𝐴𝑖+3𝑒

𝜇𝑖𝑥)3
𝑖=1 .    (29) 

When these two equations agree with Eq (24), we obtain 

𝜆𝑖 = −
𝜇𝑖

2𝐴14

𝜇𝑖
2−𝐴13

.         (30) 

Equation (29) is used to obtain the displacement regarding 

𝑢̅(𝑥) = −𝑧
𝑑𝑤̅

𝑑𝑥
= 𝑧 ∑ 𝜇𝑖(𝐴𝑖𝑒

−𝜇𝑖𝑥 − 𝐴𝑖+3𝑒
𝜇𝑖𝑥)3

𝑖=1 .     (31) 

The value for moment 𝑀̅ can be created by substituting the equations of 𝑤̅ and 𝛩̅ from Eq (29) 

into Eq (25): 

𝑀̅(𝑥) = −∑ (𝜇𝑖
2𝐴15+𝐴16𝜆𝑖)(𝐴𝑖𝑒

−𝜇𝑖𝑥 − 𝐴𝑖+3𝑒
𝜇𝑖𝑥)3

𝑖=1 .   (32) 

Additionally, the strain will be 

𝑒̅(𝑥) =
𝑑𝑢

𝑑𝑥
= −𝑧 ∑ 𝜇𝑖

2(𝐴𝑖𝑒
−𝜇𝑖𝑥 − 𝐴𝑖+3𝑒

𝜇𝑖𝑥)3
𝑖=1 .     (33) 

When the Laplace transform is used, boundary conditions (18)–(20) take the following forms: 
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𝑤̅(0, 𝑠) = 𝑤̅(𝐿, 𝑠) = 0,
𝜕2𝑤̅(0,𝑠)

𝜕𝑥2 =
𝜕2𝑤̅(𝐿,𝑠)

𝜕𝑥2 = 0,

𝜕𝜃̅(0,𝑠)

𝜕𝑥
= T0 (

1−𝑒−𝑠𝜏𝜃

𝑠2
 𝜏𝜃

) ,

𝜕𝜃̅(𝐿,𝑠)

𝜕𝑥
= 0.

          (34) 

By replacing the previous boundary conditions with Eq (29), six linear equations are formed. 

∑ (𝐴𝑖 + 𝐴𝑖+1)
3
𝑖=1 = 0,

∑ (𝐴𝑖𝑒
−𝜇𝑖𝐿 + 𝐴𝑖+1𝑒

𝜇𝑖𝐿)3
𝑖=1 = 0.

        (35) 

∑ 𝜇𝑖
2(𝐴𝑖 + 𝐴𝑖+1)

3
𝑖=1 = 0,

∑ 𝜇𝑖
2(𝐴𝑖𝑒

−𝜇𝑖𝐿 + 𝐴𝑖+1𝑒
𝜇𝑖𝐿)3

𝑖=1 = 0.
        (36) 

∑ 𝜇𝑖
 (𝜆𝑖𝐴𝑖 − 𝜆𝑖+1𝐴𝑖+1)

3
𝑖=1 = −T0 (

1−𝑒−𝑠𝜏𝜃

𝑠2
 𝜏𝜃

) .

∑ 𝜇𝑖
 (𝜆𝑖𝐴𝑖𝑒

−𝜇𝑖𝐿 − 𝜆𝑖+1𝐴𝑖+1𝑒
𝜇𝑖𝐿)3

𝑖=1 = 0.
     (37) 

The aforementioned system of linear equations (𝑖 = 1,2, … ,6)  is solved to obtain the unknown 

parameters 𝐴𝑖 . The Riemann sum approximation method is used to obtain numerical results for 

physical domain research areas. 

5. Numerical results 

This section compares the findings of the MGT with the KG model to those of the CTE, LS, GN-

II, and GN-III models. Additionally, via the theoretical analysis described in the preceding sections, 

the impacts of the distributions of temperature, displacement, deflection, and flexure moments on the 

scale parameter 𝒆𝟎 are evaluated. Our findings contrast with those of earlier studies in Figures 1–8. 

The geometrical and physical properties of the microbeam are shown below in [45]. 

𝐾(Wm−1K−1) = 156, 𝜈 = 0.22, 𝑇0 = 293K, 

𝐸(𝐺𝑃a) = 169, 𝜌(Kgm−3) = 2330, 𝛼t(K
−1) = 2.59 × 10−6, 

𝑘(m2s−1) = 9.4 × 10−5, 𝐶𝐸 (
J

kgK
) = 713. 

5.1. The effects of different models of thermoelasticity 

Numerous observations are presented in this part to computationally compare several 

thermoelastic models. This is accomplished by varying the displacement, temperature, deflection, and 

flexure moment with respect to distance 𝑟 for the models CTE, LS, GN-II, GN-III, MGT, and KG. 

Figures 1–4 show our findings. 

In Figure 1, temperature variations 𝜃  are explained by the Moore–Gibson–Thomson 

thermoelastic model MGT with KG nonlocality, the Green–Naghde models (GN-II and GN-III), the 

Lord–Shulman thermodynamic model (LS), and the classical thermodynamic model (CTE). First, 
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there is variation in magnitude across these models. All the models have greater starting temperatures 

that progressively decrease over time. Additionally, during the micropacket period, the CTE, LS, GN-

II, GN-III, MGT, and KG models show comparable distributions before converging to zero. These 

findings align with those of the research conducted by [40]. 

In Figure 2, the displacement 𝑢 against the distance 𝑟 is plotted to compare the different models. 

In the LS model, the displacement 𝑢 is equal to that of the GN-III, MGT, and KG models, whereas 

the displacement 𝑢 in the CTE and GN-II models differs from those in the GN-III, MGT, and KG 

models. Compared with those of the other generalized models, the displacement curves in the interval 

(0 ≤ 𝑟 ≤ 0.2) exhibit lower values for the CTE and GN-II models. Furthermore, we observe that the 

six models CTE, LS, GN-II, GN-III, MGT, and KG provide negative values in the interval (0.2 ≤

𝑟 ≤ 1.4)  and converge to zero. The thermoelastic model and material parameters are crucial for 

predicting the anticipated displacement. The most sensitive material was the one that exhibited the 

greatest change in response to a stimulus during the experiment. The model that best aligns with the 

experimental data is preferable for predicting material behavior. 

Figure 3 illustrates the distribution of thermoelastic vibration with deflection 𝑊 for the different 

models (CTE, LS, GN-II, GN-III, MGT, and KG). We see that the distribution of thermoelastic with 

deflection W for GN-III, MGT, and KG is larger than that of CTE, LS, and GN-II. All the models reach 

the lowest values in the interval (0 ≤ 𝑟 ≤ 0.4). Similarly, the five models CTE, LS, GN-II, GN-III, 

and MGT slowly fade inside the microbeams until they settle at zero in the interval (1.4 ≤ 𝑟 ≤ 2). 

Additionally, Figure 3 elucidates the predictions of variations in deviation (w) via various 

thermoelastic models for the same material. The material exhibiting the most incredible sensitivity 

may be discerned by juxtaposing these models with experimental outcomes for several materials. 

Figure 4 illustrates the distribution of thermoelastic vibration with the moment 𝑀  for the 

different models (CTE, LS, GN-II, GN-III, MGT, and KG). The moment 𝑀 curves in period (0 ≤

𝑟 ≤ 2) have lower values in the CTE and GN-III models than in the other generalized models, but 

have larger values in the MGT and KG models. The discrepancies in the predicted bending moments 

serve as indicators of how each model understands the interaction between mechanical and thermal 

reactions. While some models provide more stable predictions, others show substantial changes in the 

bending moment due to their assumptions regarding thermal coupling and propagation. 

 

Figure 1. Temperature 𝜃 in different models of thermoelasticity. 
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Figure 2. Displacement 𝑢 in different models of thermoelasticity. 

 

Figure 3. Deflection 𝑤 in different models of thermoelasticity. 

 

Figure 4. Moment 𝑀 in different models of thermoelasticity. 
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5.2. Effect of Pasternak foundation parameters 𝑲𝟏 and 𝑲𝟐 

This section focuses on the analytical and numerical analysis of the influence of the Pasternak 

foundation parameters 𝐾1 and 𝐾2 on the beam response. The effects of the Pasternak foundation 

parameters on the behavior of the microbeam are shown in Figures 5–8. 

Since the Pasternak foundation model better captures the continuous character of the foundation, 

it is often applied in practice. Figures 5–8 demonstrate how different parameters 𝐾1 and 𝐾2 impact 

field values such as Θ, 𝑢, 𝑤, and 𝑀. A comparative analysis was performed to validate the present 

study. The statistics reveal that the four locations are in sync. The microbeam becomes stiffer when 

supported by an elastic foundation. The basic parameters 𝐾1 and 𝐾2 strongly impact the bending 

moment 𝑀, displacement 𝑢, and deflection 𝑤. We may also conclude the following: As in [7,8,40], 

both parameters reduced deflection, increased thermal coupling, and improved microbeam structural 

integrity; structures supported by a mix of Winkler and Pasternak foundations are stiffer than those 

supported by only one. 

These cases in Figure 5 exhibit varying magnitudes, and it is evident that the starting temperature 

values are larger and progressively decrease over time in every case, with lower temperatures in 𝐾1 =

0.1, 𝐾2 = 0 . Moreover, before convergence to zero, the cases where 𝐾1 = 0, 𝐾2 = 0.05,  𝐾1 =

0.1,  𝐾2 = 0  and 𝐾1 = 0.1, 𝐾2 = 0.05  have equivalent distributions, indicating a strong effect of 

temperature 𝜃-dependent characteristics on the distributions of physical quantities. 

The displacement 𝑢  achieves its largest value in the cases where 𝐾1 = 0, 𝐾2 = 0.05,  𝐾1 =

0.1, 𝐾2 = 0 and 𝐾1 = 0.1, 𝐾2 = 0.05, as shown in Figure 6, which is different from the case where 

𝐾1 = 0.1, 𝐾2 = 0. The two cases 𝐾1 = 0, 𝐾2 = 0.05,  𝐾1 = 0.1, 𝐾2 = 0 and 𝐾1 = 0.1, 𝐾2 = 0.05 

also show comparable curves and near values; however, case 𝐾1 = 0.1, 𝐾2 = 0  is completely 

different. All three cases' curves progressively fade until they settle at zero in (1.2 < 𝑥 < 2). 

The deflection 𝑤  achieves its maximum value in the case of 𝐾1 = 0.1, 𝐾2 = 0 , as shown in 

Figure 7, diverging from 𝐾1 = 0, 𝐾2 = 0.05,  𝐾1 = 0.1, 𝐾2 = 0 and 𝐾1 = 0.1,  𝐾2 = 0.05. 

Figure 8 shows the distribution of the moment 𝑀 for several cases. The curve is lower in the 

𝐾1 = 0.1,  𝐾2 = 0 case than in the 𝐾1 = 0, 𝐾2 = 0.05,  𝐾1 = 0.1, 𝐾2 = 0 and 𝐾1 = 0.1, 𝐾2 = 0.05 

cases. 

 

Figure 5. Temperature 𝜃 with different Pasternak foundation parameters 𝑲𝟏 and 𝑲𝟐. 
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Figure 6. Displacement 𝑢 with different Pasternak foundation parameters 𝑲𝟏 and 𝑲𝟐. 

 

Figure 7. Deflection 𝑤 with different Pasternak foundation parameters 𝑲𝟏 and 𝑲𝟐. 

 

Figure 8. Moment 𝑀 with different Pasternak foundation parameters 𝑲𝟏 and 𝑲𝟐. 
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5.3. Effect scale parameter 𝒆𝟎 

In particular, the dynamics of microbeams processed via a two-parameter viscoelastic Pasternak 

foundation may be more accurately represented by including the Klein–Gordon operator in the 

theoretical analysis. This technique successfully addresses size-dependent phenomena that are usually 

disregarded by traditional local elasticity theories by considering the nonlocal length scale 𝑒0 and 

time scale τ factors. Because of the considerable influence of spatial and temporal interactions on the 

mechanical and thermal characteristics of thermoelastic materials, these advancements are crucial for 

comprehending these materials. 

By including nonlocal length scale (𝑒0) and time scale (τ) variables, the importance of nonlocal 

characteristics in thermoelastic material modeling is highlighted. Spatial nonlocality, as shown by the 

length scale 𝑒0, means that stress or strain in one location is affected by stress or strain in neighboring 

places. For the model to anticipate dimensionally dependent behaviors, such as lower stiffness or wave 

dispersion, this feature is crucial for including size effects. Particularly important for microbeams 

treated with a two-parameter viscoelastic Pasternak foundation is the influence of 𝑒0, which takes into 

account the effects of long-range forces and atomic-scale interactions. In addition, the model 

incorporates vibration effects via the parameter 𝜏 , which represents temporal nonlocality. This is 

crucial for recording how a material might cohere with its past states, which affects how it responds 

now. 

The total amount of strain and stress decreases because the spatial nonlocality parameter 𝑒0 takes 

into account the influence of neighboring stresses and strains. These size-dependent behaviors are 

introduced by this smoothing effect, which also reduces variability. These adjustments allow for a more 

precise depiction of the physical behavior of a microbeam, where interactions with respect to the 

atomic size are very important. The capacity of the material to gradually adjust to changes over time 

is reflected by the temporal nonlocality parameter τ, which allows the model to account for damping 

effects and postpone wave propagation. Given the critical role that relaxation effects play in 

determining the reactions of viscoelastic and thermoelastic materials, this aspect demands particular 

attention. The results obtained by [40,45] agree with this finding. This section aims to determine how 

the scale parameter 𝝉𝜽  affects the examined field measures. For comparison with other studies, 

findings are shown in Figures 9–12. The distribution of the physical fields has a noticeable influence 

on the scale parameter 𝑒0. 

We conclude that increasing parameters 𝐾1 and 𝐾2 increases the temperature 𝜃 values on the 

basis of the data presented in Figure 9. Additionally, the value of 𝑒0  has important effects on 

temperature over a wide range of 𝑟, i.e., (0 < 𝑟 < 0.2); increasing the value of 𝑒0 causes a decrease 

in the value of temperature 𝜃. Until crossing the r-axis, the displacement begins with positive values, 

progressively decreases, and then takes positive values until essentially approaching zero. Figure 10 

shows a graph that shows the effect of the scale parameter 𝑒0 on the sensitivity of the displacement 

𝑢  of microbeams processed via a two-parameter viscoelastic Pasternak foundation and a Moore–

Gibson–Thompson heat conduction model with KG nonlocality. All of the values of displacement 𝑢 

are convergent, according to the data displayed in this figure. Figure 11 shows that the deflection 𝑤 

starts decreasing with the scale parameter 𝑒0  in the range 0 ≤ 𝑟 ≤ 0.3  and then increases to 

maximum amplitudes in the range 0.3 ≤ 𝑟 ≤ 2 . Figure 12 shows how the moment 𝑀  presents 

several curves depending on the scale parameter 𝑒0, which ranges from 0 ≤ 𝑟 ≤ 2. 



10353 

AIMS Mathematics  Volume 10, Issue 5, 10340–10358. 

 

Figure 9. Temperature 𝜃 with different scale parameters 𝒆𝟎. 

 

Figure 10. Displacement 𝑢 with different scale parameters 𝒆𝟎. 

 

Figure 11. Deflection 𝑤 with different scale parameters 𝒆𝟎. 
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Figure 12. Moment 𝑀 with different scale parameters 𝒆𝟎. 

6. Conclusions 

This work uses the Moore–Gibson–Thompson model with KG nonlocality to analyze the 

displacement, temperature, deflection, and flexure moment of thermoelastic microbeam resonators 

under the influence of a two-parameter viscoelastic Pasternak foundation. The normalized versions of 

the governing equations were compared with those of thermoelastic models (CTE, LS, GN-II, GN-III, 

MGT, and KG) and different scale characteristics of microbeams in terms of displacement, temperature, 

deflection, and flexure moment. The important findings from this study include the following: 

• These models primarily display variations in their magnitudes, and the initial temperature 

values are relatively high, gradually decreasing over time intervals across all the models. 

• The amplitudes of displacement and deflection under all six models, namely, CTE, LS, GN-II, 

GN-III, MGT, and KG, are approximately the same. 

• Greater values are obtained under the GN-III, MGT, and KG models, but lower values are 

obtained for the moment in the GN-II, LS, and CTE models. 

• In the cases where 𝐾1 = 0,  𝐾2 = 0.05 and 𝐾1 = 0.1, 𝐾2 = 0.05, higher values are obtained 

for temperature, displacement, and moment, but in the cases where (𝐾1 = 0.1, 𝐾2 = 0), higher 

values are found for deflection. 

• The moment displays several curves depending on the scale parameter, and the temperature 

increases as two parameters, 𝐾1  and 𝐾2 , increase. The deflection and displacement values 

tend to decrease when two parameters, 𝐾1 and 𝐾2, encounter more difficulties. 

• The nonlocal Klein–Gordon parameter effects are prominent in high-frequency and short-

wavelength waves to capture factors that classical elasticity cannot account for. 

• The Moore–Gibson–Thompson model, under the effect of the nonlocal KG model, has been 

applied to general thermoelastic problems by many researchers in the field of generalized 

thermoelasticity. However, to the best of the authors' knowledge, it has not been applied to 

thermoelastic microbeams supported by a two-parameter Pasternak basis. 
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