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1. Introduction

Consider a continuous-time Markov branching process with immigration (MBPI), denoted {Z(t); t ≥
0}. This process comprises two components, including existing individuals and external immigration.
Moreover, these two components are independently and identically distributed, following the
evolutionary law determined by the branching rates {b j; j ≥ 0, j , 1} and the immigration rates
{a j; j ≥ 1}

b j ≥ 0( j , 1), 0 < −b1 =
∑

j,1 b j < ∞,

a j ≥ 0( j , 0), 0 < −a0 =
∑

j,0 a j < ∞,
(1.1)

respectively. The corresponding Q-matrix Q = {qi j; i, j ∈ Z+} is defined as follows:

qi j :=


ib j−i+1 + a j−i i f i ≥ 0, j ≥ i,

ib0 i f i ≥ 0, j = i − 1,
0 otherwise.

(1.2)
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Hence, the process above is completely determined by the infinitesimal generating functions B(u) =∑∞
j=0 b ju j and A(u) =

∑∞
j=0 a ju j for u ∈ [0, 1).

Throughout this paper, we assume that b0 = 0 and m :=
∑∞

j=0 jb j < ∞. By the definition of the
branching rates {b j; j ≥ 0} and the fact that b0 = 0, we can deduce that m > 0, indicating that the
Markov branching process is supercritical.

If a0 = 0, then Z(t) represents a pure branching process defined by {Z0(t); t ≥ 0}. From Athreya and
Ney [1], we know that a normalized function C(t) exists such that W(t) := Z0(t)/C(t)→ W as t tends to
∞, where W is a nondegenerate random variable and C(t) satisfies limt→∞C(t + s)/C(t) = E[Z0(s)] =
ems. Moreover, we find that EW = 1 holds if and only if the L log L-moment condition holds. If this
condition holds, W has a continuous density function w(y) on (0,∞) such that the following global
limit theorem holds:

lim
t→∞

P
(
W(t) ≥ x

)
=

∫ ∞

x
w(y)dy, x > 0. (1.3)

If a0 , 0, according to Li et al. [2], we see that Z(t + s)/Z(t) converges to ems in probability. Note
that Z(t) can be expressed as

Z(t + s) =
Z(t)∑
i=1

ξt,i(s) + Y(t) := Z0(t) + Y(t), (1.4)

where {ξt,i(s); t ≥ 0, i ≥ 1} are independently and identically distributed (i.i.d.) random variables with
the same law as Z0(s) and Y(t) is the number of particles at moment t + s, being either immigrants or
offspring of immigrants in (t, t + s], which is independent of {ξt,i(s); i ≥ 1} and Z(t). Obviously, the
distribution of Y(·) is independent of t.

Here, we are interested in the lower deviation probabilities P(Z(t) = kt) and P(0 ≤ Z(t) ≤ kt) as
kt/C(t) → 0 (t → ∞), since these probabilities characterize the evolution of the population when the
population growth is below the average growth rate. Besides being of some interest in its own right,
the asymptotic behavior of these probabilities is related to large deviations.

According to previous literature, large deviations are important and has drawn widespread attention
from scholars. For the supercritical branching process, Athreya and Ney [3] considered the local
limit theorem and some related aspects. Athreya [4] discussed the decay rates of P(|Zn+1/Zn − λ| >

ε)(where λ denotes the offspring’s mean) for a classical Galton Watson process {Zn; n ≥ 1}. Ney and
Vidyashankar [5] considered the harmonic moments and large deviation rates in 2003. Moreover, Ney
and Vidyashankar [6] considered the local limit theory and large deviations in 2004. Fleischmann and
Wachtel [7] studied the lower deviation probabilities.

For the supercritical branching processes with immigration {Xn; n ≥ 1}, Seneta [8] and Pakes [9]
considered the supercritical Galton Watson process with immigration. Chu et al. [10] researched the
small value probabilities. Liu and Zhang [11] studied the decay rates of P(|Xn+1/Xn − λ| > ε). Sun
and Zhang [12, 13] considered the convergence rates of harmonic moments and the lower deviations.
Furthermore, Li and Zhang [14] focused on the harmonic moments and large deviations for a critical
Galton Watson process with immigration.

In recent years, the continuous-time Markov branching processes have drawn widespread attention.
For example, Li et al. [15] researched the large deviation rates for Markov branching processes.
For the Markov branching process with immigration, based on Li et al. [15], Li et al. [16] studied
asymptotic properties. Inspired by [7] and [2], we deal with the asymptotic behavior of P(Z(t) = kt)
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and P(0 ≤ Z(t) ≤ kt), known as global and local lower deviation probabilities under the assumption
of E[Z(1)logZ(1)] < ∞. Moreover, we apply the Cramér method to analyze the large deviation of the
sum of independent variables.

The rest of this paper is organized as follows. In Section 2, we state some necessary preliminaries,
apply the Cramér method to the MBPIs, and present some related estimates. In Section 3, we list the
main results. Section 4 is devoted to concrete and detailed proofs concerning the main results.

2. Preliminaries

Define P0(t) = (p0
i j(t); i ≥ 1, j ≥ 1) as the transition function of the pure branching process without

immigration {Z0(t); t ≥ 0} and let F0(s, t) =
∑∞

j=0 p0
1 j(t)s j be the probability generating function of

{Z0(t); t ≥ 0} with the initial state Z0(0) = 1.
Let P(t) = (pi j(t); i ≥ 1, j ≥ 1) be the transition function of the MBPI {Z(t); t ≥ 0} and Gl(s, t) :=

E[sZ(t)|Z(0) = l] =
∑∞

j=0 pl j(t)s j with Gl(s, 0) = sl for 0 ≤ s < 1. Moreover, by Li et al. [16]

Gl(s, t) = H(s, t) · [F0(s, t)]l, l ∈ Z+, (2.1)

where H(s, t) = G0(s, t). In particular, G(s, t) := G1(s, t) = H(s, t)F0(s, t) with the initial state Z(0) = 1.

Proposition 2.1. Define the function Q(v) =
∑∞

j=1 q jv j as the unique solution of

B(v)Q′(v) + (A(v) − a0 − b1)Q(v) = 0, 0 ⩽ v < 1,

subject to
Q(0) = 0, Q′(0) = 1, Q(1) = ∞ and Q(v) < ∞ f or 0 ⩽ v < 1,

where q j satisfies

q j :=

p11(t)e−(b1+a0)t i f j = 1,
limt→∞ p1 j(t)e−(b1+a0)t i f j ≥ 2,

with q1 = 1, q j ⩽ Π
j−1
k=1(1 + a0

kb1
) ( j ≥ 2).

Proof. This follows from the Kolmogorov forward equation. □

Proposition 2.2. For any 0 ≤ s < 1 and t > 0, take

R(s, t) :=
H(s, t)

ea0t , Q0
l (s, t) :=

F0(s, t)
eb1lt . (2.2)

Then

Ql(s, t) :=
Gl(s, t)
e(a0+b1l)t = R(s, t)(Q0(s, t))l ↗ R(s)(Q0(s))l =: Ql(s), t → ∞, (2.3)

where R(s) := limt→∞ R(s, t) and Q0(s) := limt→∞ Q0(s, t).

Proof. By Liu and Zhang [11], together with the definition of G(·, ·), we can derive the results above.
□
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For convenience, we always assume that the following conditions (A1) − (A3) hold throughout this
paper:

(A1) b0 = 0;
(A2) 0 < m < ∞;
(A3) E[Z(1) log Z(1)] < +∞.
On this basis, we give the main results of this paper in Section 3. First, we will introduce the Cramér

transformation, which is the most critical step in the famous Cramér method (see Petrov [17]). By this
transformation, we can obtain some important related estimates for the subsequent proofs.

For the real random variable X, let X(h) be the random variable resulting from the Cramér transform
determined by the constant h ∈ R. Then X(h) satisfies the following:

E[eiaX(h)] =
E[e(h+ia)X]

E[ehX]
, a ∈ R, (2.4)

where E[ehX] < ∞.
Set the random variable X = Z(t). Following the equation (2.4) above, it can be inferred that for any

h ≤ 0, the Cramér transformation Z(−h/emt) exists and satisfies

E[eiaZ(−h/emt)] =
Gl(e−h/emt+ia, t)
Gl(e−h/emt , t)

, a ∈ R. (2.5)

For the convenience of discussion, we first give the Cramér transformation of Z0(t) and Y(t)
separately, since the branching part Z0(t) and the pure immigration part Y(t) are independent. For
any h ≤ 0 and t ≥ 0, we define a sequence of random variables {Xi(h, t); i ≥ 1}, which are i.i.d.
according to the Cramér transform of Z0(t) determined by the constant −h/emt, i.e.,

P(X1(h, t) = k) =
e−kh/emt

F0(e−h/emt , t)
P(Z0(t) = k), k ≥ 1.

The equation above can be rewritten as

E[eiaZ0(−h/emt)] = E[eiaX1(h,t)] =
F0(e−h/emt+ia, t)
F0(e−h/emt , t)

.

For the pure immigrant part Y(t), the Cramér transform is determined by the constant −h/emt. We
can define a random variable T (h, t) that is independent of Xi(h, t) and Y(t). Thus, we have

P(T (h, t) = k) =
e−kh/emt

H(e−h/emt , t)
P(Y(t) = k), k ≥ 1,

which is equivalent to

E[eiaT (h,t)] = E[eiaY(−h/emt)] =
H(e−h/emt+ia, t)
H(e−h/emt , t)

.

After the transformations above, we construct a sequence of independent random variables
{S l(h, t); t ≥ 0, l ≥ 1} expressed as

S l(h, t) :=
l∑

i=1

Xi(h, t) + T (h, t), l ≥ 1. (2.6)
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Thus

P(S l(h, t) = k) =
e−kh/emt

Gl(e−h/emt , t)
P(Z(t) = k|Z(0) = l), k ≥ 1. (2.7)

Proof. In order to prove that S l(h, t) and Z(−h/emt, t) are identically distributed. It follows from (2.4)
and the definition of S l(h, t) that

EeiaS l(h,t) = Eeia[
∑l

i=1 Xi(h,t)+T (h,t)]

=
(
EeiaZ0(−h/emt)

)l
· EeiaY(−h/emt)

=
(Ee(−h/emt+ia)Z0(t)

Ee(−h/emt)Z0(t)

)l
·

Ee(−h/emt+ia)Y(t)

Ee(−h/emt)Y(t)

=

(
F0(e−h/emt+ia, t)
F0(e−h/emt , t)

)l

·
H(e−h/emt+ia, t)
H(e−h/emt , t)

=
Gl(e−h/emt+ia, t)
Gl(e−h/emt , t)

.

On the other hand,

EeiaS l(h,t) =

∞∑
k=0

eiakP(S l(h, t) = k).

If we compare the corresponding coefficients of the equations above, then (2.7) is established.
Denoting the characteristic function of S l(h, t) as ΨS (a) := E[eiaS l(h,t)], then we obtain

ΨS (a) =
Gl(e−h/emt+ia, t)
Gl(e−h/emt , t)

. (2.8)

By comparing (2.8) and (2.5), it can be found that S l(h, t) and Z(−h/emt, t) are identically distributed.
□

Definition 2.1. (Concentration function, [17], p. 38) For any λ ≥ 0, the concentration function Q(X; λ)
of a random variable X is defined by the equality

Q(X; λ) := sup
x

P(x ≤ X ≤ x + λ). (2.9)

Lemma 2.1. (Petrov [17], p. 38, Lemma 3) Suppose that X is a random variable with the characteristic
function ψ(t). Then for λ ≥ 0 and θ > 0, we have

Q(X; λ) ≤
(
96
95

)2

max(λ,
1
θ

)
∫ θ

−θ

|ψ(t)|dt. (2.10)

Lemma 2.2. For any h ≥ 0, C(h) exists such that

sup
t,k≥0

emtP(S l(h, t) = k) ≤ C(h)l−1/2, l ≥ l0 := 1 + [1/α], (2.11)

where α = − logσ
m and σ := ∂G(u,t)

∂u

∣∣∣
(0,1)
= p11(1).
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Proof. First, if we recall Proposition 2.1, it is not difficult to find p11(t) = e(b1+a0)t. By Lemma 2.2, we
also have σ := ∂G(u,t)

∂u

∣∣∣
(0,1)
= p11(1), and then we get σ = eb1+a0 and thus it satisfies p11(t) = σt.

First, we prove that (2.11) holds when l = l0 = [1/α] + 1. Taking X = S l0(h, t), λ = 1/2, and θ = π
in (2.10) together with (2.8), we have

Q(S l0(h, t);
1
2

) ≤ C
∫ π

−π

|Gl0(e
−h/emt+ia, t)|

Gl0(e−h/emt , t)
da, (2.12)

where C is a constant independent of h and t. Note that S l0(h, t) is a non-negative integer random
variable, then from (2.9), the inequality above is equivalent to

sup
k≥1

P(S l0(h, t) = k) ≤ C
∫ π

−π

|Gl0(e
−h/emt+ia, t)|

Gl0(e−h/emt , t)
da. (2.13)

Consider the denominator part of the inequality above, owing to (1.4) and the branching property,
we have

Gl0(e
−h/emt

, t) =
(
E[e−h(Z0(t)/emt)]

)l0
(E[e−h(Y(t)/emt)])

t→∞
−→ E[e−h(W∗l0+I)] > 0, (2.14)

where W∗l0 represents the l-fold convolution of W.
The convergence above is uniform for h in a compact subset of R+. Thus for any fixed h, a positive

number t0 exists such that Gl0(e
−h/emt

, t) > δ > 0 for all t ≥ t0, which implies inft>0 Gl0(e
−h/emt

, t) > 0.
According to (2.12), a constant C(h) exists such that

sup
k≥1

P(S l0(h, t) = k) ≤ C(h)
∫ π

−π

|Gl0(e
−h/emt+ia, t)|da. (2.15)

Now we only need to prove that the right side of the inequality above is bounded.∫ π

−π

|Gl0(e
−h/emt+ia, t)|da =(

∫ −πe−mt

−π

+

∫ πe−mt

−πe−mt
+

∫ π

πe−mt
)|Gl0(e

−h/emt+ia, t)|da

:=I1 + I2 + I3.

(2.16)

Clearly,

I2 =

∫ πe−mt

−πe−mt

∣∣∣Gl0(e
−h/emt+ia, t)

∣∣∣ da ≤ 2πe−mt. (2.17)

It follows, by (2.3), that Gl(s,t)
e(a0+b1l)t ↑ Ql(s) as t ↑ ∞, and then

I3 ≤

∫ π

πe−mt
Ql0(e

−h/emt+ia)e(a0+b1l0)tda. (2.18)

It is easy to find that when t is large enough, a constant C1(h) exists such that the integrand is
bounded. We can get I3 ≤ πe−mte(a0+b1l0)tC1(h). Taking u = −a for I1, after a similar analysis,
I1 ≤ πe−mte(a0+b1l0)tC2(h) is obatined. Then C3(h) exists such that C1(h) +C2(h) ≤ 2C3(h). Hence

I1 + I2 + I3 ≤ 2πe−mt[e(a0+b1l0)tC3(h) + 1]. (2.19)
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By the definition of a0, b1, and m, the right side of (2.19) is bounded in t ∈ (0,∞). Due to (2.13), one
has

sup
t≥0,k≥1

emtP(S l(h, t) = k) ≤ C(h). (2.20)

When l > l0, the result also holds as shown below. The sequence {Xi(h, t)}i≥1 given by the
Cramér transformation is a sequence of independently and identically distributed random variables. Set
S 0

l0
(h, t) :=

∑l0
i=1 Xi(h, t), then S 0

l0
(h, t) is also nondegenerate, since Xi(h, t) is nondegenerate. According

to (98) in [7], for j ≥ 1, D1(h) > 0, and D2(h) > 0, we have

sup
t≥0,k≥1

emtP(S 0
jl0(h, t) = k) ≤

D1(h)
√

j
=

D2(h)√
jl0

. (2.21)

According to Lemma 1 from Chapter III of Petrov [17], for any two independent random variables
X and Y , the inequality Q(X +Y; λ) ≤ Q(min(X,Y); λ) holds for ∀ λ > 0. Now, letting X = S 0

l (h, t) and
Y = T (h, t), by (2.6), we have

sup
t≥0,k≥1

emtP(S l(h, t) = k) ≤ sup
t≥0,k≥1

emtP(S 0
l (h, t) = k)

≤ sup
t≥0,k≥1

emtP(S 0
[l/l0]l0(h, t) = k).

(2.22)

Taking j = [l/l0] ≥ 1 in (2.19), the inequality (2.11) above also holds for every l > l0. □

Lemma 2.3. The constants δ > 0 and D > 0 exists such that

emtP(Z(t) = k|Z(0) = l) ≤ De−δll−
1
2 eke−mt

, t > 0, k ≥ 1, l ≥ l0 := [
1
α

] + 1,

where α is defined as in Lemma 2.2.

Proof. It can be obtained from (2.7) that

P(Z(t) = k|Z(0) = l) = ekh/emt
Gl(e−h/emt

, t)P(S l(h, t) = k), k ≥ 1. (2.23)

Multiplying both sides of (2.23) by emt, specifying h = 1, and using the definition of the generating
function (2.1) together with Lemma 2.2, for l ≥ l0, we have

emtP(Z(t) = k|Z(0) = l) ≤ ekh/emt
Gl(e−1/emt

, t) sup
t,k

emtP(S l(1, t) = k)

≤ ek/emt
[F0

l (e−1/emt
, t)H(e−1/emt

, t)]C(1)l−
1
2

≤ C(1)(F0(e−1/emt
, t))ll−

1
2 ek/emt

,

(2.24)

where C(1) is defined in Lemma 2.2. Note that

F0(e−1/emt
, t) = E[e−Z0(t)/emt

]
t→∞
−→ E[e−W] ∈ (0, 1).

There is a constant δ > 0 such that supt>0 F0(e−1/emt
, t) ≤ e−δ < 1, which is proved by substituting the

inequality above into (2.24). □
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For sake of the subsequent discussions, we define the Laplace transform of the normalized random
variables V , W, and I as follows:

ϕV(u) := E[e−uV], ϕW(u) := E[e−uW], ϕI(u) := E[e−uI], u ≥ 0. (2.25)

Moreover, we have ϕV(u) = ϕW(u)ϕI(u), since Z0(t) and Y(t) are independent.

Proposition 2.3. (Iterative functional equations for the Laplace transform) If b0 = 0, then the following
functional equations hold:

ϕV(emsu) = G(ϕW(u), s), u ≥ 0, s ≥ 0;
ϕW(emsu) = F0(ϕW(u), s), u ≥ 0, s ≥ 0;
ϕI(emsu) = H(ϕW(u), s), u ≥ 0, s ≥ 0.

(2.26)

Proof. The conclusion can be obtained from (2.1) together with (2.25). □

Record the characteristic function as ϕl
W(a)ϕI(a):=(E[eiaW])lE[eiaI], where ϕl

W(a)ϕI(a) is the
characteristic function of w∗l ∗ i(a).

Lemma 2.4. For any x ∈ [a, b], there are constants C > 0 and λ > 0 such that

w∗l ∗ i(x) ≤ Cλl, l ≥ 1. (2.27)

Proof. This follows from Lemma 5 in Athreya [4]. □

Lemma 2.5. Suppose that E[Z(1) log Z(1)] < +∞ and b1l + a0 +m < 0. Then for 0 < a < b and l ≥ 1,

lim
t→∞

1
2π

∫ πemt

−πemt
Gl(eix/emt

, t)e−ixhdx = w∗l ∗ i(h) (2.28)

and this converges uniformly on [a, b].

Proof. This is achieved by the Fourier transform and decomposing the integral,

lim
t→∞

1
2π

∫ πemt

−πemt
Gl(eix/emt

, t)e−ixhdx

= lim
t→∞

1
2π

(
∫ −π

−πemt
+

∫ π

−π

+

∫ πemt

π

)Gl(eix/emt
, t)e−ixhdx

:=H1 + H2 + H3.

Applying the dominated convergence theorem (see [18], Theorem 16, p. 89), we have

H2 = lim
t→∞

1
2π

∫ π

−π

ϕI(t)(x)(ϕW(t)(x))le−ixhdx

=
1

2π

∫ π

−π

ϕI(x)(ϕW(x))le−ixhdx,

where ϕI(t)(x) := E[eixI(t)] and ϕW(t)(x) := E[eixW(t)].
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For

H3 = lim
t→∞

1
2π

∫ πemt

π

Gl(eix/emt
, t)e−ixhdx,

the family of functions {eixξ; ξ ≥ 1} is equicontinuous with respect to x and gives

F0(eixe−mt
, t)

t→∞
−→ ϕW(x) and H(eixe−mt

, t)
t→∞
−→ ϕI(x)

uniformly with respect to x ≥ π. Hence, we can examine
∫ πemt

π
Gl(eix/emt

)e−ixhdx by replacing∫ πemt

π
ϕI(x)(ϕW(x))le−ixhdx.

Notice that |e−ixh| = 1 and thus

1
2π

∫ πemt

π

ϕI(x)(ϕW(x))le−ixhdx ≤
1

2π

∫ πemt

π

ϕI(x)(ϕW(x))ldx

=
1

2π

∫ πemt

π

Gl(ϕ(xe−mt), t)dx

=
1

2π

∫ π

πe−mt
emtGl(ϕ(u), t)du.

(2.29)

The last equation is obtained by substituting x = uemt.
Assume that

Gl(ϕ(u), t) =
∞∑
j=0

pl j(t)ϕ j(u) = Ql(ϕ(u), t)e(b1l+a0)t,

where Ql(·, ·) is as defined in (2.3). Then

H3 ≤ lim
t→∞

1
2π

∫ π

πe−mt
Ql(ϕ(u), t)e(b1l+a0+m)tdu.

Due to the assumption a0 + b1l + m < 0, it is obvious that e(a0+b1l+m)t → 0 as t → ∞. Moreover, the
interval of integration is also finite. Combining this with the convergence of Ql(·, ·), we have H3 < ∞.
In the same way, we obtain H1 < ∞. Therefore

1
2π

∫ πemt

−πemt
Gl(eix/emt

, t)e−ixhdx

converges to

lim
t→∞

1
2π

∫ πemt

−πemt
ϕI(x)(ϕW(x))le−ixhdx

uniformly with respect to h. Finally, since ϕW(x) and ϕI(x) are the Fourier transformation of the
probability density functions w(x) and i(x), combining these with the conclusion of Lemma 8 in Dubuc
and Seneta [19] completes the conclusion. □
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3. Main results

Throughout this paper, we suppose that the generating function B(u) is aperiodic, i.e., the greatest
common divisor of the set {i− j; i , j, bib j > 0, i ⩾ 1, i ⩾ 1} is 1. Assume that the sequence {kt} satisfies
kt → ∞ and kte−mt → 0 as t → ∞. Define s2 := log kt

m . Then we certainly have s2 < t for a large enough
t.

In the subsequent discussions, we always assume that the conditions (A1)−(A3) hold. On this basis,
we give the main results of this paper.

Theorem 3.1. If we suppose that the generating function B(u) is aperiodic and the assumptions (A1)−
(A3) hold, then

P(Z(t) = kt) = e−mtv(kt/emt)(1 + o(1)),

where the sequence {kt} satisfies kt → ∞ and kt = o(emt) as t → ∞.

Theorem 3.2. Suppose that the assumptions (A1) − (A3) hold and the generating function B(u) is
aperiodic, then

P(0 ≤ Z(t) ≤ kt) = FV(kt/emt)(1 + o(1)),

where the sequence {kt} are defined as in Theorem 3.1 and FV(x) = P(V ≤ x).

Depending on Lemma 2.5, it is easy to conclude the following local limit theorem.

Theorem 3.3. (Local limit theorem) Suppose that the assumptions (A1)−(A3) hold and the generating
function B(u) is aperiodic if the integer sequence {kt} satisfies kt → ∞, kt/emt → h, and h > 0 is a
constant, then

lim
t→∞

emtP(Z(t) = kt|Z(0) = l) = w∗l ∗ i(h).

4. Proofs of the main results

In this section, we present detailed proofs related to the main results.

4.1. Proof of Theorem 3.1

Proof. According to the Markov property

P(Z(t) = kt) =
∞∑

l=1

P(Z(s1) = l)P(Z(t) = kt|Z(s1) = l)

=

∞∑
l=1

P(Z(s1) = l)P(Z(s2) = kt|Z(0) = l),

(4.1)

where s1 + s2 = t. There is an integer N > 1 such that

P(Z(t) = kt)

=

N−1∑
l=1

P(Z(s1) = l)P(Z(s2) = kt|Z(0) = l) +
∞∑

l=N

P(Z(s1) = l)P(Z(s2) = kt|Z(0) = l)

:=I1(N, t) + I2(N, t).
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Next, we analyze the rate of convergence of I1(N, t) and I2(N, t). We begin with the second part
I2(N, t). For a sufficiently large N such that N ≥ l0, by Lemma 2.3, there are D > 0 and δ > 0 such that

ems2

∞∑
l=N

P(Z(s1) = l)P(Z(s2) = kt|Z(0) = l)

≤D
∞∑

l=N

e−δll−1/2ekt/ems2 P(Z(s1) = l)

≤DN−1/2
∞∑

l=N

e−δlekt/ems2 P(Z(s1) = l)

≤DN−1/2G(e−δ, s1)ekt/ems2

≤DN−1/2σs1 .

(4.2)

The last inequality holds by G(e−δ; s1) = Ee−Z(s1)δ < 1 ≤ Cσs1 together with the definition of σ, where
s1 does not grow when t and C can be chosen appropriately.

The treatment of I1(N, t) is given below. On the one hand, according to Lemma 2.5, for l ≥ 1,

lim
t→∞

1
2π

∫ πemt

−πemt
Gl(eiy/emt

, t)e−iyxdy = w∗l ∗ i(x) (4.3)

holds uniformly on [e−m, 1].
On the other hand, if ys2

ems2 → a as s2 → ∞, where a > 0 is a constant, using the inversion formula

P(Z(s2) = ys2 |Z(0) = l) =
1

2π

∫ π

−π

Gl(eiu, s2)e−iuys2 du.

Then kt = 1 for all t. Setting u = v/ems2 , we have

ems2 P(Z(s2) = kt|Z(0) = l) =
1

2π

∫ πems2

−πems2

Gl(eiv/ems2
, s2)e−ivdv. (4.4)

According to (4.3)–(4.4) and Lemma 2.5

lim
t→∞

[ems2 P(Z(s2) = kt|Z(0) = l) − w∗l ∗ i(1)] = 0. (4.5)

Hence

ems2

N−1∑
l=1

P(Z(s1) = l)P(Z(s2) = kt|Z(0) = l)

=

N−1∑
l=1

P(Z(s1) = l)w∗l ∗ i(1)

 (1 + o(1)).

(4.6)

Thus, for any fixed N

I1(N, t) = e−ms2

N−1∑
l=1

P(Z(s1) = l)w∗l ∗ i(1)[1 + o(1)]

= e−ms2(
∞∑

l=1

−

∞∑
N

)P(Z(s1) = l)w∗l ∗ i(1)[1 + o(1)].

(4.7)
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With Lemma 2.4, there are C > 0 and λ ∈ (0, 1) such that w∗l ∗ i(1) ≤ Cλl for all l > 1, and hence

e−ms2

∞∑
l=N

P(Z(s1) = l)w∗l ∗ i(1) ≤ Ce−ms2

∞∑
l=N

P(Z(s1) = l)λl. (4.8)

By (4.8) and the definition of G(·, ·), and taking the constant λ1 ∈ (λ, 1), similarly to the proof of
inequality (4.2), we have

∞∑
l=N

P(Z(s1) = l)w∗l ∗ i(1) ≤ C(λ/λ1)N
∞∑

l=N

P(Z(s1) = l)λl
1

≤ C(λ/λ1)NG(λ1, s1)
≤ Ce−δNσs1 ,

(4.9)

where δ is a positive constant.
According to (4.1)–(4.2), (4.6), and (4.9)

P(Z(t) = kt) = e−ms2[
∞∑

l=1

P(Z(s1) = l)w∗l ∗ i(1)][1 + o(1)] + O(e−ms2 N−1/2σs1). (4.10)

If we take the equality ϕ(uems1) = ϕW(uems1)lϕI(uems1) = G(ϕ(u), s1) in the form of a density
function, then for any x ≥ 0

∞∑
l=1

P(Z(s1) = l)w∗l ∗ i(x) = v(x/ems1)/ems1 = v(xkt/emt)/em(t−s2). (4.11)

By setting x = kt/ems2 = 1 in the equality above, then (4.10) becomes

P(Z(t) = kt) = e−mtv(kt/emt)[1 + o(1)] + O(e−ms2 N−1/2σs1). (4.12)

Let t go to infinity first and then let N go to infinity in the equality above. The proof is completed.
□

4.2. Proof of Theorem 3.2

Proof. By the Markov property, we have

P(Z(t) ≤ kt) =
∞∑

l=1

P(Z(s1) = l)P(Z(s2) ≤ kt|Z(0) = l). (4.13)

According to the branching property combined with the independence between immigration and
branching, it follows that

P(Z(s2) ≤ kt|Z(0) = l) = P(Z0(s2) + Y(s2) ≤ kt|Z(0) = l)
≤ P(Z0(s2) ≤ kt|Z(0) = l)P(Y(s2) ≤ kt)
≤ [P(Z0(s2) ≤ kt)]l.

(4.14)
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By (1.4)

P(Z0(s2) ≤ kt) = P(
Z0(s2)
ems2

≤ 1)→
∫ 1

0
w(x)dx, t → ∞,

where w(x) is continuous in (0,∞). Thus, a constant η ∈ (0, 1) and a sufficiently large t exist such that
P(Z0(s2) ≤ kt) ≤ η. By formula (4.14) and a sufficiently large N, we have C and δ > 0

∞∑
l=N

P(Z(s1) = l)P(Z(s2) ≤ kt|Z(0) = l) ≤
∞∑

l=N

P(Z(s1) = l)ηl

≤ Cσs1e−δN .

(4.15)

If we assume FW(x) = P(W ≤ x) and FI(x) = P(I ≤ x), then by (1.3), together with the continuity
of the distribution function

P(Z(s2) ≤ xems2 |Z(0) = l)→ F∗lW ∗ FI(x)

uniformly in x > 0. Hence, we have

lim
t→∞

sup
k≥1
|P(Z(s2) ≤ kt|Z(0) = l) − F∗lW ∗ FI(1)| = 0. (4.16)

According to (4.13), (4.15), and (4.16)

P(Z(t) ≤ kt) = [
∞∑

l=1

P(Z(s1) = l)F∗lW ∗ FI(1)](1 + o(1)) + O(σs1e−δN). (4.17)

Moreover, by the definition of s2 and the inequality F∗lW ∗ FI(1) ≥ F∗lW ∗ FI(1/em), there is a constant
C ∈ [0, 1] such that

∞∑
l=1

P(Z(s1) = l)F∗lW ∗ FI(1) ≥ P(Z(s1) = 1)F∗lW ∗ FI(1/em) ≥ Cσs1 .

Hence, (4.17) can be simplified to

P(Z(t) ≤ kt) = [
∞∑

l=1

P(Z(s1) = l)F∗lW ∗ FI(1)][1 + o(1) + O(e−δN)]. (4.18)

Integrating both sides of the density function (4.11), we have

FV(a/emk) =
∞∑

l=1

P(Z(k) = l)F∗lW ∗ FI(a). (4.19)

Taking k = s1 and a = 1 in equation above and substituting this into (4.18)

P(Z(t) ≤ kt) = FV(kt/emt)(1 + o(1) + O(e−δN)). (4.20)

Letting t → ∞ and N → ∞ completes this proof. □
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4.3. Proof of Theorem 3.3

Proof. This is similar to the proofs in [20] (Theorem 7.1, p. 105)

kte−mt → h(t → ∞),

then by the inversion formula

P(Z(t) = kt|Z(0) = l) =
1

2π

∫ π

−π

Gl(eiu, t)e−iuktdu.

If we set u = ve−mt, then

emtP(Z(t) = kt|Z(0) = l) =
1

2π

∫ πemt

−πemt
Gl(eiv/emt

, t)e−ivkt/emt
dv.

Therefore

lim
t→∞

[emtP(Z(t) = kt|Z(0) = l)] = lim
t→∞

1
2π

∫ πemt

−πemt
Gl(eiv/emt

, t)e−ivkt/emt
dv

= w∗l ∗ i(h).

The proof is completed. □

5. Conclusions

In this paper, we discuss a continuous-time supercritical branching process with immigration
(MBPI). We mainly research the local lower deviation probabilities and the global lower deviation
probabilities, obtain some related results such as local limit theorem and some related estimates of the
MBPIs, which generalized the results of discrete-time branching processes to continuous-time cases.
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