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Abstract: Let {Z(f);t > 0} be a continuous-time supercritical branching process with immigration
(MBPI) with the offspring mean m(z). In this paper, we mainly research the lower deviation
probabilities P(Z(f) = k;) and P(0 < Z(¢) < k,) with k,/e™® — 0 as t — co. Moreover, we present the
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Cramér method to prove the large deviation of the sum of independent variables to satisfy our needs.
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1. Introduction

Consider a continuous-time Markov branching process with immigration (MBPI), denoted {Z(¢); t >
0}. This process comprises two components, including existing individuals and external immigration.
Moreover, these two components are independently and identically distributed, following the
evolutionary law determined by the branching rates {b;; j > 0,j # 1} and the immigration rates

{aj; j> 1}

{bj 200 # 1), 0<—by =Y bj<oo, (L.1)

(ljZO(j;éO), 0<—a022j¢0(1j<00,
respectively. The corresponding Q-matrix Q = {g;;; 1, j € Z.} is defined as follows:

ibj_,'+1 +aj-; lf i> O,] >,
qij = ibo ifi>0,j=i-1, (1.2)

0 otherwise.
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Hence, the process above is completely determined by the infinitesimal generating functions B(u) =
Yrobu’ and A(u) = Y7 au’ for u € [0, 1).

Throughout this paper, we assume that by = 0 and m := ¥ 2 jb; < co. By the definition of the
branching rates {b;; j > 0} and the fact that by = 0, we can deduce that m > 0, indicating that the
Markov branching process is supercritical.

If ay = 0, then Z(¢) represents a pure branching process defined by {Z°(¢); ¢ > 0}. From Athreya and
Ney [1], we know that a normalized function C(¢) exists such that W(¢) := Z°(t)/C(t) — W as t tends to
oo, where W is a nondegenerate random variable and C(z) satisfies lim,_,, C(t + 5)/C(t) = E[Z%(s)] =
e™. Moreover, we find that EW = 1 holds if and only if the Llog L-moment condition holds. If this
condition holds, W has a continuous density function w(y) on (0, o) such that the following global
limit theorem holds:

tlim P(W(t) = x) = f‘x’ w(y)dy, x> 0. (1.3)

If ap # 0, according to Li et al. [2], we see that Z(¢ + s)/Z(t) converges to €™ in probability. Note
that Z(¢) can be expressed as

A0

Z(t+s)= Y ils) + Y () = Z°(0) + Y (@), (1.4)

i=1

where {&,;(s);t > 0,i > 1} are independently and identically distributed (i.i.d.) random variables with
the same law as Z°(s) and Y(¢) is the number of particles at moment ¢ + s, being either immigrants or
offspring of immigrants in (¢, ¢ + s], which is independent of {&,;(s);i > 1} and Z(¢). Obviously, the
distribution of Y(-) is independent of .

Here, we are interested in the lower deviation probabilities P(Z(f) = k,) and P(0 < Z(t) < k;) as
k,/C(t) — 0 (t — o0), since these probabilities characterize the evolution of the population when the
population growth is below the average growth rate. Besides being of some interest in its own right,
the asymptotic behavior of these probabilities is related to large deviations.

According to previous literature, large deviations are important and has drawn widespread attention
from scholars. For the supercritical branching process, Athreya and Ney [3] considered the local
limit theorem and some related aspects. Athreya [4] discussed the decay rates of P(|Z,,1/Z, — A| >
g)(where A denotes the offspring’s mean) for a classical Galton Watson process {Z,;n > 1}. Ney and
Vidyashankar [5] considered the harmonic moments and large deviation rates in 2003. Moreover, Ney
and Vidyashankar [6] considered the local limit theory and large deviations in 2004. Fleischmann and
Wachtel [7] studied the lower deviation probabilities.

For the supercritical branching processes with immigration {X,;n > 1}, Seneta [8] and Pakes [9]
considered the supercritical Galton Watson process with immigration. Chu et al. [10] researched the
small value probabilities. Liu and Zhang [11] studied the decay rates of P(|X,./X, — 4| > &). Sun
and Zhang [12, 13] considered the convergence rates of harmonic moments and the lower deviations.
Furthermore, Li and Zhang [14] focused on the harmonic moments and large deviations for a critical
Galton Watson process with immigration.

In recent years, the continuous-time Markov branching processes have drawn widespread attention.
For example, Li et al. [15] researched the large deviation rates for Markov branching processes.
For the Markov branching process with immigration, based on Li et al. [15], Li et al. [16] studied
asymptotic properties. Inspired by [7] and [2], we deal with the asymptotic behavior of P(Z(¢) = k;)
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and P(0 < Z(t) < k;), known as global and local lower deviation probabilities under the assumption
of E[Z(1)logZ(1)] < co. Moreover, we apply the Cramér method to analyze the large deviation of the
sum of independent variables.

The rest of this paper is organized as follows. In Section 2, we state some necessary preliminaries,
apply the Cramér method to the MBPIs, and present some related estimates. In Section 3, we list the
main results. Section 4 is devoted to concrete and detailed proofs concerning the main results.

2. Preliminaries

Define P°(f) = (p?j(t);i > 1, j > 1) as the transition function of the pure branching process without
immigration {Z°(r);¢ > 0} and let FO(s,n) = X3, p(l)j(t)sj be the probability generating function of
{Z°(¢); t > 0} with the initial state Z°(0) = 1.

Let P(t) = (pij(t);i > 1, j > 1) be the transition function of the MBPI {Z(7); ¢ > 0} and G/(s,?) :=
E[s""1Z(0) = 1] = X7 pi;(t)s’ with G((s,0) = s for 0 < s < 1. Moreover, by Li et al. [16]

G((s,t) = H(s,0) - [F°(s,0], l€Z,, (2.1)
where H(s, 1) = Go(s, t). In particular, G(s, t) := G,(s,t) = H(s, 1)F°(s, t) with the initial state Z(0) = 1.
Proposition 2.1. Define the function Q(v) = 372, q v/ as the unique solution of
BW)Q'(v) + (A(v) —ay — b))Q(v) = 0, O<v<l,

subject to
Q0)=0, Q(0)=1, Q1) =00 and Q(v) < oo for 0<v <1,

where q; satisfies
(et if j=1,
T limLg pr (e G if >0,
with gy =1, q; <TE_ (1 + £2) (j 2 2).
Proof. This follows from the Kolmogorov forward equation. O

Proposition 2.2. Forany 0 < s <1 andt > 0, take

0
Res,1) = oD sy TR0 22)
(& (&
Then
Gi(s, 1) 0 ! 0¢ v/ I
0(5,1) = i) = Rs, 0@ 1)/ RGHQ ) =2 Q). 1 o 23)

where R(s) := lim,_,, R(s, t) and Q°(s) := lim,_,., Q°(s, 1).

Proof. By Liu and Zhang [11], together with the definition of G(, -), we can derive the results above.
]
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For convenience, we always assume that the following conditions (A1) — (A3) hold throughout this

paper:
(A1) by = 0;
(A2) 0 < m < oo

(A3) E[Z(1)log Z(1)] < +oc0.

On this basis, we give the main results of this paper in Section 3. First, we will introduce the Cramér
transformation, which is the most critical step in the famous Cramér method (see Petrov [17]). By this
transformation, we can obtain some important related estimates for the subsequent proofs.

For the real random variable X, let X(/) be the random variable resulting from the Cramér transform
determined by the constant 2 € R. Then X (k) satisfies the following:

E [e(h+ia)X]

E[eiaX(h)] = E[th]

, a€R, 2.4)
where E[e"¥] < .

Set the random variable X = Z(#). Following the equation (2.4) above, it can be inferred that for any
h < 0, the Cramér transformation Z(—h/e™) exists and satisfies

—h mt ;
iaZ(—h/em’)] _ Gl(e /€ +la’ t)

Ele ,
[ Gl(e_h/eml , t)

a€R. (2.5)

For the convenience of discussion, we first give the Cramér transformation of Z°(¥) and Y(¢)
separately, since the branching part Z°(f) and the pure immigration part Y(f) are independent. For
any 7 < 0 and ¢+ > 0, we define a sequence of random variables {X;(h,?);i > 1}, which are i.i.d.

according to the Cramér transform of Z°(f) determined by the constant —h/e™, i.e.,
—kh/em .
PXi(h,t) =k)y= ——P(Z°(t) = k), k> 1.
( 1( ) ) Fo(e_h/emt, t) ( ( ) )

The equation above can be rewritten as

) o ) FO(e—h/e’”’+ia t)
E[eidZ(=h/e") — preieXitiny — .

[ ] [ ] FO(e_h/e)n[ , t)

For the pure immigrant part Y (), the Cramér transform is determined by the constant —h/e™. We
can define a random variable 7 (4, ) that is independent of X;(h, ) and Y(¢). Thus, we have

—kh/e"

P(T(h, t) = k) = m

P(Y(t) = k), k> 1,

which is equivalent to

—h/e™ +ia
E[eiaT(h,l‘)] — E[eiaY(—h/e’"’)] — I_I(e—,t)
H(e <", 1)

After the transformations above, we construct a sequence of independent random variables
{Si(h,1);t > 0,1 > 1} expressed as

I
Sy(h,t) := Z Xi(h,t) + T(h,1), 1 > 1. (2.6)
i=1
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Thus
—kh/e™
Gl(e_h/emt ’ t)

Proof. 1In order to prove that S,(h,t) and Z(—h/e™,t) are identically distributed. It follows from (2.4)
and the definition of S (A, r) that

P(S (h,t) = k) = P(Z®) = KZ(©0) = 1), k > 1. 2.7)

EeiaSitht) _ poialEi Xihn+T (o)

_ ( EeiaZO(—h/e""))l . FeiaY(-h/e™)

Ee(—h/e’"’+ia)ZO(t) | Ee-h/e"+ia)Y ()

:( Ee(—h/em’)zo(l) . Ee(=h/e™Y(®)
(FO(e—h/e’"’+iu t))l H(e—h/e””+ia [)

FO(e="<" 1) H(e """ 1)
Gl(e—h/e’”’ﬂ'a’ [)
On the other hand,

(o9

EeiaSiht) _ Z eiakP(Sl(h, 1 = k).

k=0
If we compare the corresponding coeflicients of the equations above, then (2.7) is established.
Denoting the characteristic function of S ;(h, 1) as Ws(a) := E[e"5"")], then we obtain
Gl(e—h/e’”’ﬂ'a’ t)
Gile™ ", n)

By comparing (2.8) and (2.5), it can be found that S,(h, ) and Z(—h/e™, t) are identically distributed.
O

Ys(a) = (2.8)

Definition 2.1. (Concentration function, [17], p. 38) For any A > 0, the concentration function Q(X; 1)
of a random variable X is defined by the equality

OX;A) =supPx <X <x+ Q). (2.9)

Lemma 2.1. (Petrov [17], p. 38, Lemma 3) Suppose that X is a random variable with the characteristic
function ¥(t). Then for 4 > 0 and 6 > 0, we have

96\’ 1.
0(X; ) <[—| max(4, —)f [ (2)\dt. (2.10)
95 0" J_y
Lemma 2.2. For any h > 0, C(h) exists such that
supe™P(S (h,t) = k) < CWI'?, 1>1y:=1+[1/a], (2.11)
1,0
where a = —l"% and o := aGa(Z’t) o = Pu(D).
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Proof. First, if we recall Proposition 2.1, it is not difficult to find py,(¢) = glbiaor, By Lemma 2.2, we
also have o := ‘906(;"” 0. = Pu(l), and then we get o = eP1*® and thus it satisfies p,;(¢) = .
First, we prove that (2.11) holds when [ = [, = [1/a] + 1. Taking X = S,/ (h,t), A =1/2,and 0 =

in (2.10) together with (2.8), we have

T |Glg(e_h/e +ia’ t)l
o G, 1)

O(S 1 (h, 1); %) <C da, (2.12)

where C is a constant independent of 4 and 7. Note that S, (h,?) is a non-negative integer random
variable, then from (2.9), the inequality above is equivalent to

T |Glo(e—h/e”"+ia’ t)l
sup P(S;(h,t) =k) < C

da. 2.13
k>1 - Glo (e_h/emta t) ( )

Consider the denominator part of the inequality above, owing to (1.4) and the branching property,
we have

[—00

G, (e " 1) = (E[e—h<z° <’>/e’”’>])’° (E[e™ "Y1y 25 pre~hW+D] 5 (2.14)
0 2 ) .

where Wb represents the I-fold convolution of W.

The convergence above is uniform for / in a compact subset of R,. Thus for any fixed A, a positive
number f, exists such that G, (e™/*",#) > § > 0 for all t > t,, which implies inf,.o G;,(e™*", 1) > 0.
According to (2.12), a constant C(h) exists such that

sup P(S;,(h, 1) = k) < C(h) f G, (e 1)|da. (2.15)

k>1

Now we only need to prove that the right side of the inequality above is bounded.

—mt

I 1Gu (e, Dlda =( f R f T f Gy pida 2.16)

=L+ 5L+ L.

Clearly,

—mt

TE
L= f |G, (e, )| da < 2me™. (2.17)

re—mt

It follows, by (2.3), that <X50_ 1 (,(s) as t T oo, and then

olag+b1 Dt

T

I < Q,, (e~ e Hiayglaotbilo g, (2.18)

re—mt

It is easy to find that when ¢ is large enough, a constant C;(h) exists such that the integrand is
bounded. We can get I3 < me™e@*h)iC (k). Taking u = —a for I;, after a similar analysis,
[, < meMel@*bil)C, () is obatined. Then C(h) exists such that C,(h) + C,(h) < 2C5(h). Hence

I + L + I < 2ne ™ [e @i (h) + 1]. (2.19)
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By the definition of ay, by, and m, the right side of (2.19) is bounded in ¢ € (0, o). Due to (2.13), one
has

sup €"P(S(h, 1) = k) < C(h). (2.20)
1>0,k>1
When [ > [y, the result also holds as shown below. The sequence {X;(h,)};>; given by the
Cramér transformation is a sequence of independently and identically distributed random variables. Set
S %(h, 1) = Zf“zl Xi(h,t), then S %(h, 1) is also nondegenerate, since X;(h, t) is nondegenerate. According
to (98) in [7], for j > 1, Dy(h) > 0, and D,(h) > 0, we have
sup €™ P(SY (h,t) =k) <

) Di(h) _ Dy(h)
120,k21 sl vV Vil

According to Lemma 1 from Chapter III of Petrov [17], for any two independent random variables
X and Y, the inequality Q(X + Y; 1) < Q(min(X, Y); A) holds for V 4 > 0. Now, letting X = S?(h, t) and
Y =T(h,t), by (2.6), we have

(2.21)

sup e P(S,(h,1) = k) < sup €™ P(S°(h,1) = k)

1>0,k>1 >0,k>1 » . (222)
< sup € P(S[l/lo]lo(h’ 1 =k).
1>0,k>1
Taking j = [I/lp] > 1 in (2.19), the inequality (2.11) above also holds for every [ > /. O
Lemma 2.3. The constants 6 > 0 and D > 0 exists such that
1 —mt 1
e"P(Z(t) = k|Z(0) = 1) < De %l 2e™, 1> 0,k>1,1>1):=[-]+1,
o’
where « is defined as in Lemma 2.2.
Proof. 1t can be obtained from (2.7) that
P(Z(t) = kIZ(0) = ) = """ Gy(e™", OP(S ((h, 1) = k), k > 1. (2.23)

Multiplying both sides of (2.23) by ™, specifying & = 1, and using the definition of the generating
function (2.1) together with Lemma 2.2, for [ > /), we have

"™ P(Z(1) = KIZ(0) = 1) < "G (e ) supe™ P(S (1,1) = k)
t.k

mt

< MR pHE ", e 2:24)
< C()(FO(e™ " )12 eke",
where C(1) is defined in Lemma 2.2. Note that

mt_ [—00

Foe™ ¢ 1) = E[e 20" 25 E[e "] € (0, 1).

There is a constant § > 0 such that sup,., F'(e™'/*",£) < e < 1, which is proved by substituting the
inequality above into (2.24). O
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For sake of the subsequent discussions, we define the Laplace transform of the normalized random
variables V, W, and I as follows:

dv(u) = E[e™], ow):=E[e™], ¢/u):=E[e™], u>0. (2.25)

Moreover, we have ¢y (1) = ¢w(u)d;(u), since Z°(f) and Y(¢) are independent.

Proposition 2.3. (Iterative functional equations for the Laplace transform) If by = 0, then the following
functional equations hold:

dv(€e™’u) = G(dw(u),s), u=0,s>0;
dw(e"™u) = FO(w(w),s), u>0,s20; (2.26)
¢1(€™'u) = H(pw(u),s), u>0,s>0.

Proof. The conclusion can be obtained from (2.1) together with (2.25). O

Record the characteristic function as ¢, (a)¢;(a):=(E[e“"])E[e"], where ¢! (a)p;(a) is the
characteristic function of w* * i(a).

Lemma 2.4. For any x € [a, b), there are constants C > 0 and A > 0 such that
wlxix)y<cd, 1x>1. (2.27)
Proof. This follows from Lemma 5 in Athreya [4]. |

Lemma 2.5. Suppose that E[Z(1)log Z(1)] < +oo and byl +ay+m < 0. Then for0 <a <bandl > 1,

mt

I - :
lim — f G e ™ dx = w* « i(h) (2.28)

7r(:n1f

and this converges uniformly on |a, b].

Proof. This is achieved by the Fourier transform and decomposing the integral,

mt

I ot
lim — f G(e™" e ™ dx

emnt

1 -7 T e’ o .
=lim —( f + f + f YG (e e ™ dx
>0 271' —memt - T

:=H, + H, + H;.

Applying the dominated convergence theorem (see [18], Theorem 16, p. 89), we have

. 1 " —ix

H, = lim — f G1(X)(Pwip(x)'e " dx
1—o00 2]‘( -
1 (" ,
= 3 f $1(0)(Bw(x)e " dx,

T Jn

where ¢ (x) := E[e™®] and ¢y (x) := E[e™V?].
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For

mt

1 e H mt H
H; = lim — f G(e™", e ™ dx,

t—00 LT
the family of functions {€"*; & > 1} is equicontinuous with respect to x and gives

—mt —mt

FO@™" 1) =S gu(x) and HE™",0)= ¢(x)

mt

mt . .
uniformly with respect to x > n. Hence, we can examine fﬂ "G e x by replacing

F #i@@w)ye .
Notice that [e=*"| = 1 and thus

1 e™ . 1 e
o f G1(X)(Pw(x) e Mdx < — f &1(x)(Pw(x))dx
T Jx 27 m

mt

) if " G 0 (2.29)
2r J,

= L 6w, nau
2

e—mt

The last equation is obtained by substituting x = ue™.
Assume that

Gip(u), 1) = szj(t)qﬁj(u) = Q/(p(u), t)e(bllﬂlo)t,
=0

where Q(-, ) is as defined in (2.3). Then

T

1
H; < lim — Ql(¢(1/l), l)e(b'l+a°+m)’du_
t—oo LT

n.e—mr

Due to the assumption ay + bl + m < 0, it is obvious that e @**1#™! — () as t — co. Moreover, the
interval of integration is also finite. Combining this with the convergence of Q,(-, -), we have H; < co.
In the same way, we obtain H; < co. Therefore

1 ﬂ.emt

> Gi(e™*", e dx
T

_ﬂemt

converges to

ﬂ.emt

lim 1 $1(X)(pw(x)) e "dx

=00 2T ) ot

uniformly with respect to 4. Finally, since ¢w(x) and ¢,(x) are the Fourier transformation of the
probability density functions w(x) and i(x), combining these with the conclusion of Lemma 8 in Dubuc
and Seneta [19] completes the conclusion. O
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3. Main results

Throughout this paper, we suppose that the generating function B(u) is aperiodic, i.e., the greatest
common divisor of the set {i— j;i # j,b;b; > 0,i > 1,i > 1}1s 1. Assume that the sequence {k;} satisfies
k; — oo and ke™ — 0 as t — oo. Define s, := %. Then we certainly have s, < ¢ for a large enough
t.

In the subsequent discussions, we always assume that the conditions (A1) —(A3) hold. On this basis,
we give the main results of this paper.

Theorem 3.1. If we suppose that the generating function B(u) is aperiodic and the assumptions (Al) —
(A3) hold, then
P(Z(t) = k) = e"v(k/e™)(1 + o(1)),

where the sequence {k;} satisfies k; — oo and k; = o(e™) as t — 0.
Theorem 3.2. Suppose that the assumptions (A1) — (A3) hold and the generating function B(u) is

aperiodic, then
P(0 < Z(t) < k) = Fy(k:/e™)(1 + o(1)),

where the sequence {k,} are defined as in Theorem 3.1 and Fy(x) = P(V < Xx).
Depending on Lemma 2.5, it is easy to conclude the following local limit theorem.

Theorem 3.3. (Local limit theorem) Suppose that the assumptions (A1) —(A3) hold and the generating
function B(u) is aperiodic if the integer sequence {k,} satisfies k, — oo, k,/e™ — h,and h > 0 is a
constant, then

llirg e P(Z(1) = k|Z(0) = [) = w* = i(h).

4. Proofs of the main results

In this section, we present detailed proofs related to the main results.

4.1. Proof of Theorem 3.1
Proof. According to the Markov property

P(Z(t) = k) =

[Me

P(Z(s1) = DP(Z(1) = klZ(s1) = ])

=1

4.1)
P(Z(s1) = DP(Z(s2) = k|Z(0) = 1),

NgE

~
1l

1

where s, + s, = t. There is an integer N > 1 such that

P(Z(1) = k)
N-1 o0

= Z P(Z(s1) = DP(Z(s2) = k|Z(0) = ) + Z P(Z(s1) = DP(Z(s2) = k|Z(0) = ])
=1 I=N

=l (N, 1) + L(N, ).
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Next, we analyze the rate of convergence of I;(N, ) and I,(N,t). We begin with the second part
I(N, t). For a sufficiently large N such that N > [, by Lemma 2.3, there are D > 0 and § > 0 such that

e Z P(Z(s1) = DP(Z(s2) = kl|Z(0) = )
I=N

<D e MM Pz s)) = 1)
= (4.2)

<DN~'/2 Z e e P(Z(s1) = 1)
I=N
<DN'*G(e™, 5))e"/*""

<DN~'2g%1,

The last inequality holds by G(e™%; s1) = Ee 1 < 1 < Co* together with the definition of o, where
s1 does not grow when ¢ and C can be chosen appropriately.
The treatment of 1;(N, t) is given below. On the one hand, according to Lemma 2.5, for / > 1,

mt

1 e H mt ;.
lim — f G, e ™ dy = w* * i(x) 4.3)
t—o0 LTT —memt

holds uniformly on [e™, 1].

e Vs . . . .
On the other hand, if em§2 — a as s, — oo, where a > 0 is a constant, using the inversion formula

T

1 . _
P(Z(52) = y,|12(0) =) = o f G(e", sp)e” "2 du.

-

Then k, = 1 for all ¢. Setting u = v/e™*?, we have

msy

1 e i s i
e"?P(Z(s2) = k|Z(0)=1]) = . f G(e"?, s.)e™dv. “4.4)
T )
According to (4.3)—(4.4) and Lemma 2.5
lim[e™2P(Z(s,) = k|Z(0) = ) — w* % i(1)] = 0. 4.5)
t—00

Hence

=

-1
e™ > P(Z(s1) = DP(Z(s2) = k|Z(0) = )
]

I
—

. (4.6)
= ZP(Z(Sl) = Dw* = i(1)| (1 + o(1)).
=1
Thus, for any fixed N
N-1
LN, 1) = e )" P(Z(s1) = hw' s i(D[1 + o(1)]
=1 4.7

— e—msz(Z _ Z)P(Z(Sl) - l)w*l * l(l)[l + 0(1)]
=1 N
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With Lemma 2.4, there are C > 0 and A € (0, 1) such that w*’ x i(1) < CA’ for all [ > 1, and hence

e me2 ;; P(Z(s)) = Dw™ = i(1) < Ce™* ; P(Z(s)) = DA'. (4.8)

By (4.8) and the definition of G(-,-), and taking the constant 4; € (4, 1), similarly to the proof of
inequality (4.2), we have

D P@(s) = Dw (1) < CQAJANY D P(Z(s1) = DAY
I=N I=N

4.9)
< CA/ )NG4y, 51)
< Ce™Ng1,
where ¢ is a positive constant.
According to (4.1)-(4.2), (4.6), and (4.9)
P(Z(H) =k) = e-m[z P(Z(s)) = Dw™ + i(D][1 + o(1)] + O(e ™ 2N, (4.10)
I=1

If we take the equality ¢(ue™") = oy (ue™" )lqbl(uems') = G(¢(u), s1) in the form of a density
function, then for any x > 0

D UP@Z(s1) = D i(x) = v(x/em) e = vk, fe") /e, (4.11)
=1

By setting x = k,/e™* = 1 in the equality above, then (4.10) becomes

P(Z(t) = k) = e "k, /€™)[1 + o(1)] + O(e "> N~ 2g™). (4.12)
Let ¢ go to infinity first and then let N go to infinity in the equality above. The proof is completed.
O
4.2. Proof of Theorem 3.2
Proof. By the Markov property, we have
P(Z(t) < k) = Z P(Z(s1) = DP(Z(s,) < k|Z(0) = D). (4.13)

=1

According to the branching property combined with the independence between immigration and
branching, it follows that

P(Z(s3) < kJ|Z(0) = 1) = P(Z"(s5y) + Y(52) < k,|Z(0) = )
< P(Z°(s1) < k1Z(0) = DP(Y(s2) < k) (4.14)
< [P(Z%sy) < k)]
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By (1.4)
z° (Sz)

erns2

P(Z°(sy) < ki) = P(

1
)—>f w(x)dx, t— oo,
0

where w(x) is continuous in (0, o). Thus, a constant 7 € (0, 1) and a sufficiently large ¢ exist such that
P(Z°(sy) < k;) < 1. By formula (4.14) and a sufficiently large N, we have C and § > 0

D P(Z(s1) = DP(Z(s) < klZ0) = D) < > P(Z(s1) = Dyf
Y, — (4.15)
< Co'e™V,

If we assume Fy(x) = P(W < x) and F;(x) = P(I < x), then by (1.3), together with the continuity
of the distribution function

P(Z(s;) < x€"|Z(0) = I) > Fy % F1(x)
uniformly in x > 0. Hence, we have

lim sup |P(Z(s,) < k|Z(0) = 1) — *l * Fy(1)| = (4.16)

t—o00 k>1

According to (4.13), (4.15), and (4.16)

P(Z(1) < k) = 1) PZ(si) = DFyy + Fi(DI(1 + o(1) + O(*"e™™), (4.17)
=1

Moreover, by the definition of s, and the inequality F ;’;ﬁ x* Fr(1) > F ‘*{, x Fy(1/e™), there is a constant
C € [0, 1] such that

Z P(Z(s)) = DF; * Fi(1) = P(Z(s)) = DF}, x Fi(1/e™) > Co™'.
=1

Hence, (4.17) can be simplified to
P(Z(t) < k) = [Z P(Z(s)) = DF; + Fr(D][1 + o(1) + O(e™M)]. (4.18)
Integrating both sides of the density function (4.11), we have

Fy(a/e™) = Y P(Z(k) = DF}y = Fi(a). (4.19)

=1

Taking k = s; and @ = 1 in equation above and substituting this into (4.18)
P(Z(t) < k) = Fy(k,/e™)(1 + o(1) + O(e™M)). (4.20)
Letting t — oo and N — oo completes this proof. O
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4.3. Proof of Theorem 3.3
Proof. This is similar to the proofs in [20] (Theorem 7.1, p. 105)

ke — h(t — 0),

then by the inversion formula
T

P(Z(t) = k|Z(0) = 1) = %T f G(e™, e ™.

If we set u = ve™_ then

mt

1 TTe o . »
" P(Z(1) = k|Z(0) = I) = 5~ f Gee"  fye " g

27T ﬂ-elﬂl
Therefore
1 ﬂemr i mt ; mt
lim[e™ P(Z(t) = k/|Z(0) = [)] = lim 7 f G e /<" gy
f—o0 t—oo 27T -
= w* % i(h).
The proof is completed. O

5. Conclusions

In this paper, we discuss a continuous-time supercritical branching process with immigration
(MBPI). We mainly research the local lower deviation probabilities and the global lower deviation
probabilities, obtain some related results such as local limit theorem and some related estimates of the
MBPIs, which generalized the results of discrete-time branching processes to continuous-time cases.
Author contributions

Juan Wang: Conceptualization, writing—review and editing, funding acquisition; Chao Peng:
Conceptualization, writing—original draft preparation. All authors have read and approved the final
version of the manuscript for publication.

Use of Generative Al tools declaration

The authors declare that they have not used artificial intelligence (Al) tools in the creation of this
article.

Acknowledgments

This work is substantially supported by the National Natural Sciences Foundation of China
(No0.11901392).

AIMS Mathematics Volume 10, Issue 5, 10324-10339.



10338

Contflict of interest

The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

K. B. Athreya, P. E. Ney, Branching processes,  Berlin, Heidelberg: Springer, 1972.
https://doi.org/10.1007/978-3-642-65371-1

J. Li, L. Cheng, L. Li, Long time behaviour for Markovian branching-immigration systems,
Discrete Event Dyn. Syst., 31 (2021), 37-57. https://doi.org/10.1007/s10626-020-00323-z

K. B. Athreya, P. Ney, The local limit theorem and some related aspects of super-critical branching
processes, Trans. Am. Math. Soc., 152 (1970), 233-251. https://doi.org/10.1090/S0002-9947-
1970-0268971-X

K. B. Athreya, Large deviation rates for branching processes—I. Single type case, Ann. Appl.
Probab., 4 (1994), 779-790. https://doi.org/10.1214/acap/1177004971

P. E. Ney, A. N. Vidyashankar, Harmonic moments and large deviation rates for supercritical
branching processes, Ann. Appl. Probab., 13 (2003), 475-489. https://doi.org/10.2307/1193154

P. E. Ney, A. N. Vidyashankar, Local Ilimit theory and large deviations for
supercritical branching processes, Ann. Appl. Probab., 14 (2004), 1135-1166.
https://doi.org/10.1214/105051604000000242

K. Fleischmann, V. Wachtel, Lower deviation probabilities for supercritical Galton-
Watson processes, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 233-255.
https://doi.org/10.1016/j.anihpb.2006.03.001

E. Seneta, On the supercritical Galton-Watson process with immigration, Math. Biosci., 7 (1970),
9-14. https://doi.org/10.1016/0025-5564(70)90038-6

A. Pakes, On supercritical galton-watson processes allowing immigration, J. Appl. Probab., 11
(1974), 814-817. https://doi.org/10.2307/3212564

W. Chu, W. V. Li, Y. X. Ren, Small value probabilities for supercritical branching processes with
immigration, Bernoulli, 20 (2014), 377-393. https://doi.org/10.3150/12-BEJ490

J. Liu, M. Zhang, Large deviation for supercritical Galton-Watson processes with immigration,
Acta. Math. Sin., 32 (2016), 893-900. https://doi.org/10.1007/s10114-016-5437-z

Q. Sun, M. Zhang, Harmonic moments and large deviations for supercritical branching processes
with immigration, Front. Math. China, 12 (2017), 1201-1220. https://doi.org/10.1007/s11464-
017-0642-3

Q. Sun, M. Zhang, Lower deviations for supercritical branching processes with immigration, Front.
Math. China, 16 (2021), 567-594. https://doi.org/10.1007/s11464-021-0922-9

D. Li, M. Zhang, Harmonic moments and large deviations for a critical Galton-Watson processes
with immigration, Sci. China. Math., 64 (2021), 1885-1904. https://doi.org/10.1007/s11425-019-
1676-x

AIMS Mathematics Volume 10, Issue 5, 10324-10339.


https://dx.doi.org/https://doi.org/10.1007/978-3-642-65371-1
https://dx.doi.org/https://doi.org/10.1007/s10626-020-00323-z
https://dx.doi.org/https://doi.org/10.1090/S0002-9947-1970-0268971-X
https://dx.doi.org/https://doi.org/10.1090/S0002-9947-1970-0268971-X
https://dx.doi.org/https://doi.org/10.1214/aoap/1177004971
https://dx.doi.org/https://doi.org/10.2307/1193154
https://dx.doi.org/https://doi.org/10.1214/105051604000000242
https://dx.doi.org/https://doi.org/10.1016/j.anihpb.2006.03.001
https://dx.doi.org/https://doi.org/10.1016/0025-5564(70)90038-6
https://dx.doi.org/https://doi.org/10.2307/3212564
https://dx.doi.org/https://doi.org/10.3150/12-BEJ490
https://dx.doi.org/https://doi.org/10.1007/s10114-016-5437-z
https://dx.doi.org/https://doi.org/10.1007/s11464-017-0642-3
https://dx.doi.org/https://doi.org/10.1007/s11464-017-0642-3
https://dx.doi.org/https://doi.org/10.1007/s11464-021-0922-9
https://dx.doi.org/https://doi.org/10.1007/s11425-019-1676-x
https://dx.doi.org/https://doi.org/10.1007/s11425-019-1676-x

10339

15. J. Li, L. Cheng, A. G. Pakes, A. Chen, L. Li, Large deviation rates for Markov branching processes,
Anal. Appl., 18 (2020), 447-468. https://doi.org/10.1142/S0219530519500209

16.J. Li, A. Chen, A. G. Pakes, Asymptotic properties of the Markov branching process with
immigration, J. Theor. Probab., 25 (2012), 122-143. https://doi.org/10.1007/s10959-010-0301-
z

17. V. V. Petrov, Sums of independent random variables, Berlin, Heidelberg: Springer, 1975.
https://doi.org/10.1007/978-3-642-65809-9

18. H. L. Royden, Real analysis, New York: Macmillan, 1968.

19. S. Dubuc, E. Seneta, The local limit theorem for the galton-watson process, Ann. Probab., 4
(1976), 490-496. https://doi.org/10.1214/aop/1176996100

20.S. Asmussen, H. Hering, Branching processes, Boston, MA: Birkhduser, 1983.
https://doi.org/10.1007/978-1-4615-8155-0

EE ©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@ AIMS Press terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 5, 10324-10339.


https://dx.doi.org/https://doi.org/10.1142/S0219530519500209
https://dx.doi.org/https://doi.org/10.1007/s10959-010-0301-z
https://dx.doi.org/https://doi.org/10.1007/s10959-010-0301-z
https://dx.doi.org/https://doi.org/10.1007/978-3-642-65809-9
https://dx.doi.org/https://doi.org/10.1214/aop/1176996100
https://dx.doi.org/https://doi.org/10.1007/978-1-4615-8155-0
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Proofs of the main results
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

	Conclusions

