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1. Introduction

A 2-(v, k, A) design (or a 2-design in short) is a structure (P, B) consisting of a set £ of v elements
(called points) and a set B of some k-subsets (called blocks) of P, satisfying the condition that any two
points of # are contained in exactly A blocks in 8. The number of blocks containing a fixed point is
proved to be a constant and denoted by the letter ». The total number |B| of blocks is denoted by the
letter b. These v, k, A, b and r are called the parameters of a design. If

1B = (Z)

then D is called a complete design. We only consider incomplete designs in this paper. We shall also
denote a 2-design by D. A point-block pair (x, B) such that x € B is called a flag of a 2-design. We
denote by ¥ the set of all flags in a 2-design.

A permutation g of the point set # of a 2-design

D= (P,B)
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is an automorphism if g preserves the block set 8. All automorphisms of D form a group with the
natural product of permutations, which is defined as the full automorphism group of . We usually
denoted this group by Aut(9). A group G is called an automorphism group of D if G is a subgroup
of Aut(D). An automorphism group of a 2-design D is called flag-transitive on D if it acts transitively
on ¥ . Similarly, a group is point-primitive if it is primitive on the point set #, and one can define other
types of transitive actions such as block-transitive and point-transitive.

In the present paper we shall adopt usual notations in finite permutation groups, which shall be
consistent with those in [1] or [2], for example. Let G be an automorphism group of a 2-design

D = (P, B).

Commonly, we write G, as the stabilizer of the point x € # in G and write G as the block-stabilizer of
the block B € 8 in G. We always denote by Q, a set of cardinality n. Moreover, we denote by Alt(€2,)
(respectively, Sym(€2,)) the alternating group (respectively, the symmetric group) on €,,. Sometimes,
in abbreviation, we also adopt the notation Alt(n) (or even shorter, A,) and Sym(n) (or S,).

Classifying flag-transitive 2-designs is a long-term project. A very classic result on flag-transitive
finite linear spaces, namely, 2-(v, k, 1) designs, is given by Kantor [3] and a team of six [4]. Some
classifications for symmetric designs with special automorphism groups are studied in [5-7], for 2-
transitive groups and primitive groups of rank 3, respectively. Inspecting flag-transitive 2-designs with
their block size a small number is also an important research direction. A 2-design with block size 2 has
trivial structure, having the block set all the 2-subsets of points, and a block-transitive automorphism
group of such a design is 2-homogeneous. Reductions for flag-transitive 2-designs with block sizes
3 and 4 are tackled in [8]. Then, flag-transitive 2-designs with block size 5 were studied by the first
author and Zhou in [9]. They reduced such flag-transitive automorphism groups to point-primitive of
affine type and almost simple type and gave a classification on the case that the groups have a sporadic
simple socle.

The well-known Classification of Finite Simple Groups states that a finite non-abelian simple
group is isomorphic to one of the groups in the following four types: (1) alternating groups; (2)
classical simple groups; (3) exceptional simple groups of Lie type; and (4) sporadic simple groups.
Since the authors in [9] have dealt with flag-transitive 2-designs with block size 5 in terms of sporadic
simple groups. As a continuation of this classification project, in the current paper we will classify
such 2-designs admitting a flag-transitive almost simple automorphism group whose socle is a simple
alternating group. A complete classification is given in the following Theorem 1.1, as the main result
of the paper.

Theorem 1.1. Let D be a 2-(v,5, 1) design, and let G be an almost simple, flag-transitive, point-
primitive automorphism group of D with alternating socle Alt(n) (n > 5). Then one of the following
holds:

(1) D is a unique 2-(10, 5, 8) design with G = Alt(6) or M.

(2) D is a unique 2-(10, 5, 16) design with G = Sym(6), PGL,(9), or PI'L,(9).
(3) D is a unique 2-(21,5,12) design with G = Alt(7) or Sym(7).

(4) D is a unique 2-(15,5,4) design with G = Alt(7).
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(5) D is a unique 2-(15, 5, 12) design with G = Alt(7).
(6) D is a unique 2-(15, 5, 16) design with G = Alt(8).

Further, all the groups G are 2-transitive on P, except the group G in (3), which acts on P with rank 3
and with the two suborbits of length 10.

Remark 1.1. It is an important fact that for a fixed parameter set (v, k, 1), there could be many non-
isomorphic designs with such parameters. In fact, for Theorem 1.1 (1), (2), and (4), check [10, Section
II. 1.3] and we can see that there are more than 135922, 108, and 896 non-isomorphic designs with

v, k, 1) =(10,5,8),(10,5,16) and (15,5,4),

respectively. However, under the condition that the design admits a flag-transitive automorphism group
with the socle a simple alternating group, there is only one design with each above parameter set.

Combining the above main theorem with the results in [9], we have the following immediate
corollary.

Corollary 1. If G is a flag-transitive automorphism group of a 2-(v,5, A) design. Then G is point-
primitive of affine type or almost simple type with socle a simple group of Lie type, or is one of the
cases listed in Theorem 1.1 and [9, Theorem 2].

According to the result, we see that the remaining work of classifying flag-transitive 2-(v, 5, 1)
designs is on the affine groups and almost simple groups with socle a simple group of Lie type. Hence,
we have the following problem, which needs further study.

Problem. Classify 2-(v,5, 1) designs admitting a flag-transitive, point-primitive automorphism group
whose socle is an elementary abelian group or a simple group of Lie type.

In the following, we will first collect some useful preliminary results in Section 2 and then prove
Theorem 1.1 in Section 3.

2. Preliminary results

Before we start the proof of the main result, we first present some necessary preliminary results
concerning 2-designs and their automorphisms.

The following facts about the parameters of a 2-design are well known and play a key role in the
proof.

Lemma 2.1. [11, Section 2.1] The parameters of a 2-(v, k, A) design satisfy the following:
(1) rtk—1)=A(v - 1),
(2) bk = vr;
B)b=vandr >k;
4) 2 > Av.

The following lemma concerns the non-trivial subdegrees of a flag-transitive group G on a 2-design
PD. Note that a subdegree of G is the length of a non-trivial orbit of a point-stabilizer G, where x € P.
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Lemma 2.2. [12, Lemma 1] If G is a group acting flag-transitively on a 2-design, and d is a non-trivial
subdegree of G, then r | Ad.

In particular, for 2-designs with k = 5, by Lemma 2.1 (1) and Lemma 2.2, we have the following
immediate corollary.

Lemma 2.3. If G is a group acting flag-transitively on a 2-(v,5, 1) design, then for each non-trivial
subdegree d of G, we have v — 1 | 4d.

The following lemma is the simplified version of the classification of maximal subgroups of finite
alternating groups and symmetric groups. More details shall be found in [13], where the authors
particularly investigated the maximality of primitive groups, including the groups of affine type, almost
simple type, diagonal type, and product action type.

Lemma 2.4. [13, Theorem] Let G be an alternating group Alt(n) or a symmetric group Sym(n) on a
set Q. If M is a maximal subgroup of G with

M # Alt(n),

then one of the following holds:

(1)
M = (Sym(s) X Sym(t)) N G

acts intransitively on Q,, where
n=s+t,

both s and t are positive integer, and s # t;
(2)
M = (Sym(s) ¢ Sym(r)) NG

acts transitively and imprimitively on €, where
n = st,

both s and t are positive integer;
(3) M acts primitively on £,.

Suppose that G is a flag-transitive group of automorphisms of a 2-design . From Lemma 2.1 (4)
we easily obtain

IG| < |G,
by
Gy
r =
|GxB|
and
_la
G’

where (x, B) is a flag of D. A subgroup H of a group G satisfying

Gl < |HP
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is called large in G. Hence flag-transitive groups of a 2-design have large stabilizers. The following
lemma for large maximal subgroups of alternating groups and symmetric groups is significant in the
proof.

Lemma 2.5. [14, Theorem 2 and Proposition 6.1] Let G be an alternating group Alt(n) or a symmetric
group Sym(n) (n > 5). If H is a large subgroup and is maximal in G acting primitively on ,, then
(G, H) is one of the following:

(1) (G, H) = (Sym(n), Alt(n));

(2) G = Alt(n) and (G, H) is one of the following: (Alt(5), Do), (Alt(6), PSL,(5)),
(Alt(7), PSL,(7)), (Alt(8), AGL5(2)), (Alt(9), 32.SL,(3)), (Alt(9), PTL,(8)),
(Alt(10), M), (Alt(11),Myy), (Alt(12), M), (Alt(13), PSL3(3)), (Alt(15), Ag),
(Alt(16), AGL4(2)), (Alt(24), Myy);

(3) G = Sym(n) and (G,H) is one of the following: (Sym(5), AGL,(5)), (Sym(6), PGL,(5)),
(Sym(7), AGL,(7)), (Sym(8), PGL2(7)), (Sym(9), AGL,(3)), (Sym(10), PI'L»(9)),
(Sym(12), PGL,(11)).

3. Proof of the main theorem

In this section we prove Theorem 1.1. Throughout the section, we always assume that G is an
almost simple group with a socle an alternating group Alt(n) with n > 5. Such almost simple groups
are known explicitly. It is well known that if n # 6, then G is Alt(n) or Sym(n). If n = 6, then
G = Alt(6), Sym(6), Mo, PGL,(9), or PI'L,(9). We first deal with the latter three exceptional cases,
My, PGL,(9), and PI'L,(9), in Section 3.2.

In the second step, we study the cases

G = Alt(n)

and
G = Sym(n)

in Sections 3.3-3.5. Since G acts primitively on # of the designs, the point-stabilizer G, for x € P
is a maximal subgroup of G. We note that G has two transitive actions, respectively on £ and Q,.
According to Lemma 2.4, the groups G, are divided into three different types with explicit structures
according to their actions on €,: intransitive action, imprimitive action, and primitive action. Our
strategy of proving the non-existence of or constructing such designs is connecting the action of G on
the point set # of the design and the action of G on the Q,. That is the action of G on the coset space
of the corresponding maximal subgroups. We shall apply the known degrees and subdegrees in these
actions and combine them with the parameter conditions to help us achieve the result. We handle these
three types of maximal subgroups in Sections 3.3-3.5, respectively.

3.1. A procedure of constructing designs

We mention a method (or a procedure) of using the algebraic computer system MaGma [15] to rule
out or construct designs with relatively small parameters (v, k, 1). The procedure contains the following
steps:
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Step 1. Output the group G acting on a set P by its coset action on the corresponding maximal
subgroup.

Step 2. Check if G has a subgroup of order |G|. Denote by J such a subgroup as a candidate for
the block stabilizer G.

Step 3. Find the orbits of J with length k. Denote such an orbit by O as a candidate for a block B.
Step 4. Apply the command IsDesign() to check if the incidence structure

D = P,0°%
forms a 2-design, where
0° := {0%|g € G).

Step 5. For the 2-designs with the same parameters (v, k, A1), apply the command IsIsomorphic()
to check if they are isomorphic to each other.

This procedure will then be applied to rule out designs and construct designs with known parameters
(v, k, 1) obtained in the proof of the main theorem.

3.2. The exceptional groups in the case n = 6

In this section we shall first assume that G has a socle Alt(6), but G is neither Alt(6) nor Sym(6).
That is, G = Mo, PGL,(9), or PI'L,(9).

Lemma 3.1. Let G be one of Myo, PGL,(9), and PI'L,(9), and act flag-transitively on a 2-(v,5, 1)
design D = (P, B). Let x € P and B € B. Then one of the following holds:

(1) D is a unique 2-(10, 5, 8) design with

G=My, G, =275:Qs, and Gg =75 : Zy;
(2) D is a unique 2-(10, 5, 16) design with

G = PGLy(9), G, =75 :Z, and Gg = D,

or with
G =PI'L,(9), G, = Z32 1 (Z3.2,), and Gp =275 : Z4.

Further, in these cases, G acts 2-transitively on P.

Proof. The maximal subgroups of My, PGL,(9) and PI'L,(9) have explicit structures, which could be
checked in [16], for example. We see that M, has large maximal subgroups AGL,(5), Zg: Qs and
Zs: Z»; PGL,(9) has large maximal subgroups D5, Z32: Zg and D4; and PI'L,(9) has large maximal
subgroups Zo: Zy, Z32: (Z3.Zp) and Zg.(Z, X Z,). We will investigate all these cases by the basic
properties of parameters in Lemma 2.1 and the elimination procedure presented in Section 3.1.

First we let

G = My,.
If the point-stabilizer G, is AGL(5), then G is 2-transitive on $, with
|G| 720
= = — =36.
"T16d T 20
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By the flag-transitivity, we have r | |G,|, and so r € {5, 10, 20}. None of these satisfies that

rtk—1) 4r
/l = =
v—1 v—1
(Lemma 2.1 (1)) is an integer. If
G, =25 Qs
then Gl
V= =10 and 4r =94.
Gl
As
ged(4,9) =1,

we have 9 | r. Note that r | |G,|. So r € {9, 18,36,72}. We indeed obtain 4 admissible parameter sets
v, k, 1) : (10,5,4),(10,5,8),(10,5, 16), and (10,5, 32).

For each of these parameters set, the possible order of the block stabilizer is 40, 20, 10, or 5,

respectively. Implemented in Magma, we find that there is one subgroup of order 20 (up to conjugacy)

such that it has two orbits of length 5, generating two 2-(10, 5, 8) designs, admitting G = M as their

automorphism group. We then check they are isomorphic to each other by Step 5 in Section 3.1.
Similarly, we can apply the same argument for

G = PGL,(9)

(as it has the same orders of large maximal subgroups as M), and then we see that if

G, = Z32 YA

and G
Vv = =10,

G.|

then there is exactly one subgroup of order 10 (up to conjugacy) such that it has two orbits of length 5,
generating two isomorphic 2-(10, 5, 16) designs.
At last, for
G = PI'L,(9),

we can easily rule out the two possible cases in terms of the point-stabilizer isomorphic to Zy: Z4 or
Zs - (Z, X Z,), by the basic equation

1= rtk—1) _ 4r
v—1 yv—1
and
bk = vr = 5b.
If

G, =75 (Zs - Zp),
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then we obtain 4 admissible parameter sets
v, k, ) :(10,5,4),(10,5,8), (10,5, 16), and (10, 5, 32).

We find that there is exactly one subgroup of order 10 (up to conjugacy) in G, such that it has two
orbits of length 5 generating two isomorphic 2-(10, 5, 16) designs. We also check that this 2-(10, 5, 16)
design is also isomorphic to the design arising from

G = PGL,(9).

Further, we notice that
PGL,(9) < PT'L,(9) < Sym(10)

is 2-transitive, see for example [10, Table 9.6.2]. O

In the following, we always suppose that
G = Alt(n)

or Sym(n) (satisfying n > 5 by the simplicity of Alt(n)) in Sections 3.3-3.5. For convenience, we make
the following hypothesis:

Hypothesis 1. Suppose that
D=(P,8B)

be a 2-(v,5, A) design, and suppose that
G = Alt(n)

or Sym(n), acting as a flag-transitive automorphism group of D, where n > 5.

3.3. The action of G on L, is intransitive

In this section, we study the case that the action of G, on €, is intransitive. One design is obtained
in this case.

Lemma 3.2. Suppose that Hypothesis 1 holds. If x € P and G, is intransitive on €),, then D is a
unique 2-(21,5, 12) design with

G = Al(7), G, = (Sym(2) x Sym(5)) N Alt(7),

and
Gp = Dyo;
or with
G = Sym(7), G, = Sym(2) x Sym(5),
and

Gp = Day.

Further, G acts on P with rank 3, and the two suborbits have length 10.
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Proof. By Lemma 2.4 (1), the structure of G, is
(Sym(s) X Sym(t)) N G

where

n=s+t,

s and ¢ are both positive integers, and s # ¢. This is the largest subgroup of G leaving a set of cardinality
s (or 1) invariant. We assume that s < 7 (equivalently, s < 7), without loss of generality. Since G is
flag-transitive, it is easily shown that G, cannot fix two points in #. In fact, this can also be deduced
from the maximality of G, and that G is not a group of prime order. Further, since G, is the largest
group stabilizing a unique subset of cardinality s in €,, and G acts transitively on all the s-subsets of
Q,, (denoted by fo}) by its multiple transitivity (at least (n —2)-fold), this allows us to identify the point
set P as QY. In addition, the action of G acting on % is equivalent to the action of G acting on Qb
Now, D has
[
y =
s

points. Further, one could see, for example, [17, Lemma 3.2] for subdegrees of G in this action: That

is, the subdegrees are
if\s—i

where i = 0, 1,---, 5. The rank of G in this action is equal to s + 1. If s = 1, then G acts on P in its
natural action, and P is a complete design, which is not under our consideration. We then separate the
subsequent proof into the following two cases.

Case 1. Assume that s = 2. Then

nin—1)
==
Pick two subdegrees
dy =2(n-2)
and
dy = (n—2)2(n—3).

According to Lemma 2.3, we get that @ — 1 divides both 8(n — 2) and 2(n — 2)(n — 3). It follows
thatn =7, and so v = 21. By Lemma 2.1, one finds

r=54 and b =21A.

Since r divides |G|, 4 is a divisor of 48. Hence, we then get all the admissible parameters triples (4, b, r).
They are

(1,21,5),(2,42,10), (3,63, 15), (4, 84, 20), (6, 126, 30), (8, 168, 40)
(12,252, 60), (16, 336, 80), (24, 504, 120), (48, 1008, 240)
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for
G = Sym(7),

and all these are admissible for
G = Alt(7)

except
(4,b,r) =(16,336,80) and (48, 1008, 240).

Now, by the elimination procedure presented in Section 3.1, we obtain a unique 2-(21, 5, 12) design
with flag-transitive groups Alt(7) and Sym(7), and
GB = DlO or D20,

respectively. Further, G has rank 3 on #, with the two suborbits of length 10.
Case 2. Assume that s > 3. Then
n=s+t>7.
Pick
de-y1 = s(n—s).

By Lemma 2.3, we obtain v — 1 | 4s(n — s5). We notice a fact that

5! 1 2 3 s

v_(n)_n(n—l)---(n—s+1)_g n-1 n-2 n-(s-1
s .

Since s > 3, we have

n n—1 n-2 1_n(n—l)(n—2)_

-1l>- — — - 1.
e T R 6
Note that
nn—1)n-2) )
—  ~ —1>n
6
for n > 9. Moreover, it is easily known that
nn
ds(n—s)<4-= = <n’
s(n—s) < > 2_n

We have

v—12> —1>n*>4s(n—-s)

nn—1)(n-2)
6

for n > 9, which contradicts v — 1 | 4s(n — s). Hence, n is either 7 or 8. If n = 7, then s =3 and r = 4,

and so
1 ! 1=34
v—1= -1=
3

and

4s(n — s) =48,
which contradicts

v—1|4s(n - s).
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Ifn=28,thens=3andr =5, and so

8
—1=(.]-1=55
=1(y

and
4s(n—s) =

which is again impossible. O

3.4. The action of G, on Q,, is transitive and imprimitive

In the following, according to Lemma 2.4 (2), we tackle the case that the point stabilizer G, is
imprimitive on ,. We find that there are two admissible designs and determine the corresponding
automorphism groups.

Lemma 3.3. Suppose that Hypothesis 1 holds. If x € P and the point-stabilizer G, is imprimitive on
Q,, then one of the following holds:

(1) Dis aunique 2-(10, 5, 8) design with G = Alt(6), G, = (Sym(3):Sym(2))NAIlt(6), and Gg = D,
(2) D is a unique 2-(10, 5, 16) design with G = Sym(6), G, = Sym(3) : Sym(2), and Gg = Dy.

Further, in these two cases, G acts 2-transitively on P.

Proof. Suppose that
G, = (Sym(s) : Sym(t)) N G,

acting as the largest imprimitive group on €2, (in the natural action of G). Then €, has a point-partition
L={I',T%-- T4}
with |[';] = s and n = st, which is invariant under the action of G,. It is obvious that
G, = Gs.

According to the analysis in [18, Section 3], the group G, has only one invariant non-trivial point-
partition of €3,. Denote by P, the set of all the partitions of €3, into 7 parts, each of length s. Then it
will be straightforward to verify that the action of G on % is equivalent to the action of G on P, (in
the natural induced action of G on £,). Hence, we can identify # with P(, and identify the action of
G on P with the action of G on Pg)n. Thus,

v=|Pg |,

which could be calculated directly, or equals - i ‘ as G acts transitively on P, . Then, we have

w9 3;)§;):(ts—l)((t—l)s—l)”.(?)s—l)(2s—l)

TG wi—1)---2 s—1\ s—1 s—1N\s=1/
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If s = 2, see, for example, [19, Section 3.2], and we know that there exist suborbits of G (acting on the
coset space of G, in G) with degree
.t
dj=72 _1( )
‘ J

where j =2,---,t. For s > 3, there exist subdegrees

where j =2,--- ,t.
Case 1. Assume that s = 2. Then it would be straightforward to see that

y= Q= 1)t =3) - 3-1.

Since
n=st>9,
we have 7 > 3. Pick subdegree
dy :=t(t—1).
By Lemma 2.3, we have
v—1[4t(t-1).
If t > 4, then
v—1>4tt-1),
which is a contradiction. If ¢ = 3, then
v—1=14
does not divide
41(t — 1) = 24,

a contradiction.
Case 2. Assume that s > 3. Pick subdegree

s2t(t— 1).

d2 = >

By Lemma 2.3, we have v — 1 | 25?#(t — 1). It is not hard to see that

ts—1\ (@s—1D)(ts=2)---(ts—(s—1)) o sl
s—1) (s—=D(s—2)---3-2-1 '
This implies
v> = 1) 3 s = (s
So
) <v—1<258%1 - 1).
If t > 3, then

(@t — 1)t =21 <242
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Only
(s,1) =(3,3)

is possible. Now
(st)! 9!
= = =280
VS T B3

and
2521t — 1) = 108,

which contradicts v — 1 | 2s%#(t — 1). Thus, ¢ = 2. Now

27l <y —1|25%1 - 1) = 45°.

We obtain
3<s<0.
We tackle these cases one by one:
Subcase 1. If s = 3, then
(2s)! 6!

e s zam o

and
45% = 36.

This case satisfies v — 1 | 4s. Implemented by Macma, we indeed find a unique 2-(10, 5, 8) design
admitting a flag-transitive group Alt(6) and a unique 2-(10, 5, 16) design admitting a flag-transitive
group Sym(6). Both of the block stabilizers are

Gp = Dy.

We also notice that
Alt(6) < Sym(6) < Sym(10)

is 2-transitive (see [10, Table 9.62]).

Subcase 2. If s = 4, then
2s)!

VTG

and
45> = 64.

This does not satisfy v — 1 | 452,
Subcase 3. If s = 5, then v = 126, and 4s% = 100. We have

v—1>4s%,
a contradiction. If s = 6, then v = 462, and 45> = 144. We have
v—1>4s,

a contradiction. If s = 7, then v = 1716, and 45> = 196. If s = 8, then v = 6435, and 45> = 256. If
s =9, then v = 24310, and 45> = 324. For all cases with s > 5, we have

v—1>4s,

a contradiction to v — 1 | 4s°. o
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3.5. The action of G, on Q,, is primitive

In this final section, we deal with the case of Lemma 2.4 (3), that is, G, is a primitive group on £,
in the natural action of G. We obtain three different designs, as listed in the lemma below.

Lemma 3.4. Suppose that Hypothesis 1 holds. If x € P and the point-stabilizer G, of G acts primitively
on Q,, then we obtain the following:

(1) D is a unique 2-(15,5,4) design with G = Alt(7), G, = PSL3(2) = PSL,(7), and Gz = Alt(5);
(2) D is a unique 2-(15, 5, 12) design with G = Alt(7), G, = PSL3(2) = PSL,(7), and Gg = Zs: Z4;
(3) D is a unique 2-(15,5, 16) design with G = Alt(8), G, = AGL3(2), and Gg = Sym(5).

Further, in these three cases, G acts 2-transitively on P.

Proof. Since a flag-transitive group of automorphisms has large point-stabilizer, the group G and the
possible point-stabilizer G, are listed in Lemma 2.5. In the meantime, the possible number of points

v =[P

equals % By the five steps of the procedure of elimination and construction given in Section 3.1, and

with the implementation in MaGMa, we see that only the two cases
(G,G,) = (Alu(7),PSL(2,7))
and (Alt(8), AGL(3,2)) yield flag-transitive 2-designs with k = 5. For
(G,G,) = (Alu(7),PSL(2,7)),
we obtain two designs with parameters
v, k, 1) = (15,5,4) and (15,5,12),

and the block stabilizers are
Gp = Alt(5)

and
GB = 75 . 2y,

respectively. For
(G, G,) = (Alt(8), AGL(3, 2)),

we obtain a unique design with parameters

(v, k, 4) = (15,5, 16),

with
Gp = Sym(5).
Further, we note that
G = Al(7)
and Alt(8) are 2-transitive on P (see [10, Table 9.62]). O
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10322

Proof of Theorem 1.1. In Lemmas 3.1-3.4, we inspect the three different types of maximal subgroups
of G, as listed in Lemma 2.4. Further, by Step 5 in Section 3.1, we check that the 2-(10, 5, 8) designs
in Lemmas 3.1 and 3.3 are isomorphic. Besides, the 2-(10, 5, 16) designs in Lemmas 3.1 and 3.3 are
also isomorphic. Therefore, there are a total of six different 2-designs with block size 5, admitting
flag-transitive groups whose socle is a simple alternating group. O

4. Conclusions

In Section 3, we prove the main result of this paper: give a complete classification of 2-designs
with block size 5, admitting a flag-transitive automorphism group Alt(n), Sym(n), Mo, PGL,(9), or
PI'L,(9). We think that the techniques and methods used in the proof of the current paper might also
be useful in the study of 2-designs satisfying other conditions, even in other objects such as transitive
graphs.
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