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Abstract: Atanassov recently proposed a new circular intuitionistic fuzzy set (CIFS) as an extension
of intuitionistic fuzzy sets to express uncertain information by a circle with centered membership, non-
membership, and radius r. Circular intuitionistic fuzzy sets can express uncertain information more
flexibly than the intuitionistic fuzzy set. In this paper, we first propose a new method for calculating
the radius r of CIFSs by ordinary least squares (OLS). We introduce some notions, such as modules
of the circular intuitionistic fuzzy set and the cosine of the included angle between membership and
non-membership vectors of the circular intuitionistic fuzzy set. Then, we define a new bidirectional
projection measure of circular intuitionistic fuzzy sets, which takes into account the difference between
different CIFSs in terms of membership degree and non-membership degree and radius r. The proposed
bidirectional projection measures show superiority compared with some recent research works through
numerical examples. Finally, the method is applied to a multi-attribute decision-making problem with
group expert decision-making to prove the effectiveness and accuracy of the method.
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1. Introduction

Multi-attribute group decision-making (MAGDM) [1–3] is an important area of decision-making
research. For example, Xu et al. [1] used the interval-valued intuitionistic fuzzy set to deal with the
group attribute decision-making problem. Akram et al. [2, 3] applied the Pythagorean fuzzy set and
the VIKOR method to the group multi-attribute decision-making problem. Liu et al. [4] applied the
fuzzy linguistic term set to the group multi-attribute decision-making problem. The multi-attribute
group decision-making process is typically divided into three steps: collecting experts’ views on the
different attributes of the alternatives, aggregating expert opinions, and selecting the best alternative.
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In the decision-making processes involving experts, the decision information about alternatives is
usually uncertain or fuzzy due to the increasing complexity of the socio-economic environment and
the inherent fuzziness in human cognition. In 1965, an American computer and cybernetics expert,
Zadeh, proposed the concept of fuzzy sets [5] to solve fuzzy phenomena; ordinary fuzzy sets use a
single value for membership. However, many researchers think that single-valued fuzzy sets make it
challenging to represent fuzzy information accurately. Thus, many extended fuzzy sets have been
proposed. For example, the interval fuzzy set [6] proposed by Guinness involves the replacement of
membership from exact values to interval values. Atanassov introduced the concept of intuitionistic
fuzzy sets (IFS) [7] in 1986, which considers both membership and non-membership for fuzzy sets.
Non-membership represents fuzziness from the opposite side of things. Intuitionistic fuzzy sets can
be more flexible than ordinary fuzzy sets to represent the fuzziness of information. Subsequently,
intuitionistic fuzzy set theory has been used in various fields of research [8–10], such as in the fields
of decision analysis, pattern recognition, clustering analysis, etc. For example, Demir [8] applied it in
the multi-attribute decision-making (MADM), specifically for the security management of smart
cities. Moslem [9] also applied it in the MADM model. Zeng et al. [10] applied the intuitionistic
fuzzy sets to the pattern recognition problem. Kuo et al. [11] applied intuitionistic fuzzy sets for
clustering analysis. It is Rahman [12] and Iqbal who applied intuitionistic fuzzy sets to the selection
and optimization problem of railway systems.

However, to ensure the accuracy of the decision, it is often necessary to have several experts
working together to provide a decision evaluation. Experts often struggle to give precise and
consistent membership degree and non-membership degree in practical applications of intuitionistic
fuzzy sets. In 1999, Atanassov extended the intuitionistic fuzzy set to an interval-valued intuitionistic
fuzzy set (IVIFS) [13], which extension of membership degree and non-membership degree with
exact values to interval values. The theoretical study of applying intuitionistic fuzzy sets and
interval-valued intuitionistic fuzzy sets to MADM problems has produced many results, and the main
research focuses on score functions, distance measures, similarity measures, etc. Chen et al. [14] first
proposed a score function on intuitionistic fuzzy numbers. Sahin et al. [15] proposed a new score
function based on considering the hesitancy degree of interval-valued intuitionistic fuzzy sets for
IVIFS. Kumar [16] converts IVIFVs into connection numbers (CNs), and develops a score function
for ranking CNs. A large number of research results [17–19] have been presented on the distance
between intuitionistic fuzzy sets. Szmidt and Kacprzyk [17] analogized vectors using the three
parameters of the membership degree, non-membership degree, and hesitation degree of intuitionistic
fuzzy sets, and proposed a distance formula for intuitionistic fuzzy sets. Zhang et al. [18] proposed a
new distance measure for intuitionistic fuzzy sets, which significantly overcomes the problem of
information loss. A similarity measure [19] is defined by using the weighted average distance
between the intuitionistic fuzzy set and the two most fuzzy sets.

In addition to the aforementioned extensions of intuitionistic fuzzy sets, when the sum of
membership degree and non-membership degree exceeds 1 in practical problems, the intuitionistic
fuzzy sets will become inapplicable. To address this issue, Yager [20] proposed Pythagorean fuzzy
sets, which makes the sum of the squares of the membership degree and the non-membership degree
less than 1. It expands the value range of the membership degree and non-membership degree in the
intuitionistic fuzzy set, and can provide decision-makers with a broader space for information
expression. Subsequently, Yager extended the Pythagorean fuzzy set to the q-rung orthopair fuzzy
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set [21], this extension ensures that the sum of the q-th powers of the membership degree and the
non-membership degree is less than 1. Considering that human opinions about a certain thing are not
limited to simply “yes” or “no” , but also include “abstention” and “rejection”, Mahmood et al. [22]
proposed the concept of spherical fuzzy sets. It allows the sum of the membership degree,
non-membership degree, and hesitation degree to be greater than 1. Based on the above extended
fuzzy sets, a great many relevant MADM and pattern recognition methods have also been developed.
Sarfraz [23] proposed a new aggregation operator based on the interval-valued Pythagorean fuzzy set
to address the priority ranking problem in MADM issues. Akram et al. [2] combined the Pythagorean
fuzzy set and the rough set and proposed new AHP and TOPSIS decision-making methods. Asif
et al. [24] proposed new operators, such as the Pythagorean fuzzy Hamacher interactive weighted
averaging by using the Hamacher t-norm, and applied them to MADM problems. Liu et al. [25]
proposed the q-rung orthopair fuzzy weighted averaging operator and the q-rung orthopair fuzzy
weighted geometric operator to address the decision information. Pethaperumal et al. [26] proposed a
new distance measure for q-rung orthopair MFSs, and they applied it to decision-making problems.
Radovanovic et al. [27] introduced a hybrid multi-criteria decision-making (MCDM) model
combining spherical fuzzy AHP and Grey MARCOS methods. The above extensions of fuzzy sets
and intuitionistic fuzzy sets are all aimed at expressing the uncertainty and fuzziness in human
information more accurately.

Then, since the projection measure can take into account not only the distance, but also the included
angle between the evaluated objects, it is a very suitable method for dealing with decision problems.
Xu et al. [28] introduce the concepts of intuitionistic fuzzy numbers in terms of modulus, angle of
entrapment, projective measure, etc. Zeng et al. [29] used the projection measure of intuitionistic fuzzy
numbers in the determination of expert weight information in decision problems. Zheng et al. [30]
proposed the concept of bidirectional projection to compute the projection measure.

Although extended intuitionistic fuzzy sets have more flexibility than intuitionistic fuzzy sets in
expressing uncertain information, using a fixed value to represent the membership degree and
non-membership degree lacks accuracy. Atanasov recently proposed a new extension of intuitionistic
fuzzy sets called circular intuitionistic fuzzy sets (CIFS) [31]. CIFS fits the fuzziness and uncertainty
of information to a circle in geometry, which has membership degree and non-membership degrees,
and also uncertainty by adding a parameter radius. To some extent, CIFS retains the fuzziness and
uncertainty of the evaluation information while maintaining its accuracy. Distance measures and
similarity measures are very important to study in practical decision-making applications, existing
distance measures, and similarity measures for intuitionistic fuzzy sets cannot be directly used for
CIFS. Atanasov himself proposed four distances [32] on CIFS, based on the classical Euclidean and
Hamming distances, among others, and the distance is calculated by employing parameters such as
the radius r of membership and non-membership degrees. However, the specific meaning and origin
of the distance formula has not been explained. Kahraman et al. [33, 34] transformed the CIFS into
ordinary intuitionistic fuzzy set through the radius for calculation in decision-making problems. This
will lead to the loss of some original decision-making information and cause deviations in the
calculation of decision-making results. Xu et al. [35] defined a new circular intuitionistic fuzzy sets
distance through the underlying relationships among the membership degree, non-membership
degree, hesitation degree, and radius in CIFS. Subsequently, many extended fuzzy sets based on
circular intuitionistic fuzzy sets have also been proposed. Khan et al. [36] proposed the circular
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Pythagorean fuzzy set, and then generalized it to the new disc Pythagorean fuzzy set. They also gave
the corresponding addition, subtraction, multiplication, and division operation rules, as well as the
distance formula. Ashraf et al. [37] introduced the circular spherical fuzzy set and disc spherical
fuzzy set, and established the ELECTRE method using the circular spherical fuzzy set. At the same
time, circular intuitionistic fuzzy sets also have many applications in scoring methods [38] and pattern
recognition [39]. It demonstrates the huge development potential of circular fuzzy sets.

Most of the existing methods only consider the distance and ignore the angle between different
circular intuitionistic fuzzy sets when calculating the differences between them. In this paper, a new
bidirectional projection measures of circular intuitionistic fuzzy sets will be given. Considering the
differences in distance and angle between different CIFSs, the projection similarity is defined. When
calculating the circular parameter r in CIFS, the method of taking the maximum value of different
expert evaluations is used. When the value given by one of the experts is significantly different from
that of the other experts, it will influence the value of r to a great extent. Therefore, in this paper, the
calculation of the r parameter is improved by using the least squares method to fit the value of r.

The rest of the paper is organized as follows. The Section 2 briefly introduces some concepts of
circular intuitionistic fuzzy sets and puts forward a new method for calculating the parameter r.
Section 3 describes in detail the proposed bidirectional projection measurement method. In Section 4,
an MADM method is established based on the proposed bidirectional projection measurement.
Section 5 provides a computational example and makes a comparison with other methods. Finally,
conclusions are given in Section 7.

2. Preliminaries of circular intuitionistic fuzzy sets

This part introduces the basic concepts of circular intuitionistic fuzzy sets and proposes a new
method for calculating the parameter r.

Definition 1. [31] Let X be a given fixed universe. A CIFS C in X is an object of the form:

C = {⟨x, µC(x), vC(x); r| x ∈ X} , (2.1)

where the functions
µC : X → [0, 1], vC : X → [0, 1]

denote the membership degree and non-membership degree of C, respectively, and for any x ∈ X, there
is

r : X → |0,
√

2|

a circle around each element, and
0 ≤ µC(x) + vC(x) ≤ 1

holds. Further,
πC(x) = 1 − µC(x) − vC(x)

is called the hesitancy degree of element x in circular intuitionistic fuzzy set C.

CIFS can be regarded as an extension of IFS. In geometry, IFS can be represented by a point, while
CIFS can be represented by a circle with the center at µC(x), vC(x) and a radius of r. The ways in which
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CIFS and IFS express decision-maker information are different. Different experts may give different
evaluations of the same decision problem. We need to synthesize the various opinions given by different
experts. The following definition gives how to generate the corresponding circular intuitionistic fuzzy
set when there is a set of intuitionistic fuzzy pairs.

Definition 2. [31] A CIFS C in a fixed universe X, for xi ∈ X, and a set of intuitionistic fuzzy pairs
have the form

{〈
mi,1, ni,1

〉
,
〈
mi,2, ni,2

〉
, . . .
}
. Then, we calculate the circular fuzzy set as follows:

⟨µC (xi) , vC (xi)⟩ =
〈∑ki

j=1 mi, j

ki
,

∑ki
j=1 ni, j

ki

〉
, (2.2)

where ki denotes the number of decision makers. Let

ri = max
1≤ j≤ki

∣∣∣∣∣∣∣
√(
µC (xi) − mi, j

)2
+
(
vC (xi) − ni, j

)2∣∣∣∣∣∣∣ , (2.3)

where the radius of the C is obtained through the maximum Euclidean distance.

In Definition 2, the approach of calculating parameter r for Eq (2.3) by means of the maximum
Euclidean distance is vulnerable to the influence of a few extremely incorrect decision makers. For
example, four decision makers provide evaluation data {⟨0.4, 0.5⟩ , ⟨0.5, 0.4⟩ , ⟨0.4, 0.4⟩ , ⟨1, 0⟩} .
Obviously, the fourth expert provided evaluation information that is significantly different from that of
the other three experts,when calculating the parameter r, efforts should be made to minimize the
influence of the fourth expert on the calculation. However, in practice, and thus, when calculating the
parameter r using the maximum Euclidean distance, the information provided by the fourth expert is
utilized to obtain r. This value of r exhibits an excessive disparity compared to the information from
the evaluations of the other three experts.

Therefore, this paper proposes a method for obtaining the parameter of CIFS using the ordinary
least squares

li j =

√(
µC (xi) − mi, j

)2
+
(
vC (xi) − ni, j

)2
, (2.4)

min F(ri) =
ki∑

j=1

f 2
j (ri) =

ki∑
j=1

(
l2
i j − r2

i

)
. (2.5)

When the objective function reaches its minimum value, it means that, at this moment, the sum of the
distances between the parameter r and all the original intuitionistic fuzzy pairs is the closest, and the
parameter r preserves the information of the original intuitionistic fuzzy pairs to the greatest extent.
However, when calculating the parameter r using the maximum value method, it may be significantly
affected by extreme values, and the overall original values may be neglected.

The objective function is differentiated with respect to the variable ri. When the derivative is equal
to zero, the minimum value is obtained when

dF (ri)
dri

= 4kir3
i − 4 ×

 ki∑
j=1

l2
i j

 × ri = 0,
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kir2
i =

 ki∑
j=1

l2
i j

 , (2.6)

ri =

√√√√√√ ki∑
j=1

l2
i j

ki
, (2.7)

and we will redefine the calculation method of the parameter r of the CIFS below.

Definition 3. A CIFS C in a fixed universe X, for xi ∈ X, and a set of intuitionistic fuzzy pairs have the
form

{〈
mi,1, ni,1

〉
,
〈
mi,2, ni,2

〉
, . . .
}
. Then we calculate the circular fuzzy set as follows:

⟨µC (xi) , vC (xi)⟩ =
〈∑ki

j=1 mi, j

ki
,

∑ki
j=1 ni, j

ki

〉
, (2.8)

where ki denotes the number of decision makers. Let

ri =

√√√√√√ ki∑
j=1

l2
i j

ki
. (2.9)

As illustrated in Figure 1, we can see that there are five possible shapes of the circle in the circular
intuitionistic fuzzy set. Several circles have incomplete points because the values of membership
degree and non-membership degree need to satisfy certain relationships in practical applications. We
give the following Definition 4.

Figure 1. CIFS geometrical representation [31].

Definition 4. [31] Let C be a circular intuitionistic fuzzy set, and

L∗ = {⟨a, b⟩ | a, b ∈ [0, 1]&a + b ≤ 1},
C = {⟨x, µC(x), vC(x); r| x ∈ X} = {⟨x,Or (µC(x), vC(x))⟩ | x ∈ X} ,

where Or represents a function with a radius of r and a center at (µC(x), vC(x)),

Or (µC(x), vC(x)) =

 ⟨a, b⟩ | a, b ∈ [0.1]√
(µC(x) − a)2 + (vC(x) − b)2

≤ r

 ∩ L∗
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=


⟨a, b⟩ | a, b ∈ [0.1]√

(µC(x) − a)2 + (vC(x) − b)2
≤ r

a + b ≤ 1

 .
The following presents some basic operations of circular fuzzy sets that will be used in this paper.

Definition 5. [35] Let

C1 =
{〈

x, µC1(x), vC1(x); r
∣∣∣ x ∈ X

}
,

C2 =
{〈

x, µC2(x), vC2(x); r
∣∣∣ x ∈ X

}
be two circular intuitionistic fuzzy sets. Then,

C1 ⊗C2 =

{
x, µC1(x) ∗ µC2(x), vC1(x) + vC2(x) − vC1(x) ∗ vC2(x);

r1 + r2

2

}
. (2.10)

Definition 6. [40] Let

C = {⟨x, µC(x), vC(x); r| x ∈ X}

be a circular intuitionistic fuzzy set. We define c = (uc, vc; r) as a circular intuitionistic fuzzy value, and
a score function S c and an accuracy function Hc of the circular intuitionistic fuzzy value are defined
as follows:

S c(cr) =
(
uc − vc −

√
2r
)
/3, (2.11)

Hc(cr) = uc + vc, (2.12)

where Hc(cr) ∈ [0, 1].

Considering that the larger the value of r for an circular intuitionistic fuzzy value, the more negative
influence it should have on the score of circular intuitionistic fuzzy value. Therefore, we subtract the
parameter r when defining the scoring function.

Definition 7. [40]
Let

c1 =
(
uc1 , vc1 ; r

)
and

c2 =
(
uc2 , vc2; r

)
be two CIFVs, and the ranking rules are defined as follows:

1) If S c (c1) ≻ S c (c2), then c1 ≻ c2;

2) If S c (c1) = S c (c2) and Hc (c1) ≻ Hc (c2), then c1 ≻ c2;

3) If S c (c1) = S c (c2) and Hc (c1) = Hc (c2), then c1 = c2.
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3. Bidirectional projection measures of circular intuitionistic fuzzy set

For any variable x in the universe X, the circular intuitionistic fuzzy set can be regarded as a vector.
When using distance to measure the similarity between two different circular intuitionistic fuzzy sets,
the influence of the angle between vectors is not taken into account, and when considering the similarity
between different circular intuitionistic fuzzy sets in this paper, both the included angle and the distance
are taken into account. Currently, there is relatively little research on the projection model of two
circular intuitionistic fuzzy sets. Therefore, this paper proposes a bidirectional projection measures of
circular intuitionistic fuzzy sets.

3.1. Some existing projection models

Definition 8. [28] Let
α = (µα, να)

and
β =
(
µβ, νβ

)
be two IFNs;

πα = 1 − µα − να,

and then
|α| =

√
µ2
α + ν

2
α + π

2
α, (3.1)

|α| is called the module of α. It is the same for |β|.

α · β = µαµβ + νανβ + παπβ (3.2)

is called the inner product of α and β.

Projβ(α) =
µαµβ + νανβ + παπβ√
µ2
β + ν

2
β + π

2
β

(3.3)

is called the projection of α on β.

Definition 9. [28] Let X be a finite universe,

X = {x1, x2, . . . , xn} ,

and A and B be two IFSs in X. Then,

ProjB A =

∑n
i=1

(
µαiµβi + vαivβi + παiπβi

)
√∑n

i=1 µ
2
βi
+ v2
βi
+ π2

βi

(3.4)

is called the projection of A on B, and (µαi , vαi) denotes the i-th intuitionistic fuzzy number in A, where

παi = 1 − µαi − vαi .
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As shown in Figure 2, the greater the projection value, the closer the intuitionistic fuzzy sets A and B
are to each other. However, extensive research has revealed that, in certain cases, the above-mentioned
method is unreasonable in determining the proximity between IFS A and B. For example, let A, B, and
C be three intuitionistic fuzzy sets,

A = B =
([
µα1 , να1

]
,
[
µα2 , να2

]
, ...,
[
µαn , ναn

])
,

C =
([

2µc1 , 2νc1

]
,
[
2µc2 , 2νc2

]
, ...,
[
2µcn , 2νcn

])
,

we calculated and obtained

ProjB A =

√√
n∑

i=1

µ2
αi
+ v2
αi
+ π2

αi

and

ProjB C = 2

√√
n∑

i=1

µ2
αi
+ v2
αi
+ π2

αi
.

In fact, A is closer to B than C, however, the value of ProjB C is larger than ProjB A.

Figure 2. The projection of A on B.

In another case as shown in Figure 3, the projection value

ProjB A = ProjB C,

makes it impossible to distinguish which intuitionistic fuzzy set is closer to B.

Figure 3. Illustration of the situation where the projection values are equal.

Hence, in order to overcome the shortcoming of the above projection model, a bidirectional
projection measure has been proposed for interval numbers.
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Definition 10. [41] Let
a =
([

al
1, a

u
1

]
,
[
al

2, a
u
2

]
, . . . ,

[
al

n, a
u
n

])
and

b =
([

bl
1, b

u
1

⌉
,
[
bl

2, b
u
2

]
, . . . ,

⌈
bl

n, b
u
n

⌉)
be two interval vectors. Then,

∥a∥ =

√√ n∑
j=1

(
al

j

)2
+
(
au

j

)2
(3.5)

is called the module of a. It is the same for ∥b∥.

a · b =
n∑

j=1

(
al

jb
l
j + au

jb
u
j

)
(3.6)

is called the inner product of a and b.

BProjb a =
1

1 +
∣∣∣∣ a·b∥a∥ − a·b

∥b∥

∣∣∣∣ (3.7)

is called the bidirectional projection between a and b.

The bidirectional projection measure includes both the distance and the angle between vectors a and
b, as well as the bidirectional projection magnitude. Determine the proximity of a and b by projecting
a and b onto each other. We find that when a = b, the projection value

BProjb a = 1,

and for any two interval vectors a and b, the bidirectional projection measure

BProjb a = BProja b

satisfies the symmetry of the similarity measure. However, it also has some drawbacks. For example,
for the interval vectors

a = ([1, 0]), b = ([0, 1]), and ∥a∥ = ∥b∥,

but the angle difference is large. Obviously,

BProjb a = 1,

but it is unreasonable.

3.2. The bidirectional projection measure

In this paper, the bidirectional projection measure is extended to circular intuitionistic fuzzy sets.
Since the membership and non-membership degrees of circular intuitionistic fuzzy sets are represented
by a circle, we extend the modulus, projection values, etc., of circular intuitionistic fuzzy sets to interval
values. Next, the bidirectional projection measure of circular intuitionistic fuzzy sets is presented as
follows.
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Definition 11. Let
X = {x1, x2, . . . , xn}

be a given universe,
C1 =

{〈
x, µc1(x), vc1(x); r1

∣∣∣ x ∈ X
}

and
C2 =

{〈
x, µc2(x), vc2(x); r2

∣∣∣ x ∈ X
}

are two CIFSs on X. Then,

∥C1∥ =


√√

n∑
i=1

µc1 (xi)2 + vc1 (xi)2
−

n∑
i=1

r1 (xi),

√√
n∑

i=1

µc1 (xi)2 + vc1 (xi)2 +

n∑
i=1

r1 (xi)


=
[∥∥∥Cl

1

∥∥∥ , ∥∥∥Cu
1

∥∥∥] (3.8)

is called the module of C1, and ∥C1∥ is an interval number. The same is true with ∥C2∥. r1 (xi) denotes
r in the CIFS C1 corresponding to xi, and

cos(C1,C2) =
∑n

i=1
[
µc1 (xi) µc2 (xi) + vc1 (xi) vc2 (xi)

]√∑n
i=1 µc1 (xi)2 + vc1 (xi)2

√∑n
i=1 µc2 (xi)2 + vc2 (xi)2

(3.9)

is called the cosine of the included angle between C1 and C2.

Definition 12. Let
X = {x1, x2, . . . , xn}

be a given universe, and
C1 =

{〈
x, µc1(x), vc1(x); r1

∣∣∣ x ∈ X
}

and
C2 =

{〈
x, µc2(x), vc2(x); r2

∣∣∣ x ∈ X
}

are two CIFSs on X. Then,

ProjC1
C2 = ∥C2∥ • cos (C1,C2)

=
[∥∥∥Cl

2

∥∥∥ cos(C1,C2),
∥∥∥Cu

2

∥∥∥ cos(C1,C2)
]

=
[
projC1

Cl
2, projC1

Cu
2

]
(3.10)

is called the projection of CIFS C2 on the CIFS C1, and ProjC1
C2 is an interval number.

Definition 13. Let
X = {x1, x2, . . . , xn}

be a given universe, and
C1 =

{〈
x, µc1(x), vc1(x); r1

∣∣∣ x ∈ X
}

and
C2 =

{〈
x, µc2(x), vc2(x); r2

∣∣∣ x ∈ X
}
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be two circular intuitionistic fuzzy sets on X. Then,

BProj (C1,C2) =
1

1 +
∣∣∣ProjC1

C2 − ∥C1∥
∣∣∣ + ∣∣∣ProjC2

C1 − ∥C2∥
∣∣∣ (3.11)

is called the bidirectional projection measure between C1 and C2, where

∣∣∣ProjC1
C2 − ∥C1∥

∣∣∣ = ∣∣∣projC1
Cl

2 −
∥∥∥Cl

1

∥∥∥∣∣∣ + ∣∣∣projC1
Cu

2 −
∥∥∥Cu

1

∥∥∥∣∣∣
2

and ∣∣∣ProjC2
C1 − ∥C2∥

∣∣∣ = ∣∣∣projC2
Cl

1 −
∥∥∥Cl

2

∥∥∥∣∣∣ + ∣∣∣projC2
Cu

1 −
∥∥∥Cu

2

∥∥∥∣∣∣
2

.

Elements in the circular intuitionistic fuzzy set are represented by a circle. Their projection values,
referring to the projection of ordinary vectors, are interval-valued, as shown in Figure 4.

( )cu x

( )cv x

2C

1C

1 2proj l

C C

1 2projC
uC

Figure 4. The Projection value of circular intuitionistic fuzzy set.

The bidirectional projection measure takes into account not only the distance between different
circular intuitionistic fuzzy sets, but also the angle between them. The bidirectional projection
measure satisfies the following theorems. It can be seen that when the modulus length of the circular
intuitionistic fuzzy set is larger, it indicates that the relationship between membership and
non-membership is more explicit, and we obtain more information. While the magnitude of the angle
reflects the proportional relationship between the membership degree and the non-membership
degree, these factors will undoubtedly affect the similarity between different circular fuzzy sets.

Theorem 1. Let C1 and C2 be two circular intuitionistic fuzzy sets on the universe

X = {x1, x2, . . . , xn}

and BProj(C1,C2) be the bidirectional projection measure on the CIFS. BProj(C1,C2) satisfies the
following three properties:

a) 0 ≤ BProj (C1,C2) ≤ 1.
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b) BProj (C1,C2) = BProj (C2,C1).

c) BProj (C1,C2) = 1 if and only if C1 = C2.

Proof. a) The conclusion clearly holds as obtained through Eq (3.11).

b) Through Eq (3.11), Theorem 1 b) clearly holds as well.

c) When
C1 = C2,

∣∣∣ProjC1
C2 − ∥C1∥

∣∣∣ = 0,
∣∣∣ProjC2

C1 − ∥C2∥
∣∣∣ = 0,

substituting into Eq (3.11), we can obtain that

BProj (C1,C2) = 1.

The converse also holds.
□

3.3. Example and comparison analysis

In order to demonstrate the rationality of calculating the parameter r of the circular fuzzy set using
the least squares method and the rationality of the bidirectional projection measure based on the
circular fuzzy set. First, an example is given to compare the integrity of different fuzzy sets in
representing human fuzzy information. Another example is provided to compare the superiority of the
bidirectional projection similarity method based on circular intuitionistic fuzzy sets over other
measurement methods.

Example 1. Suppose a company wants to evaluate the work capabilities of two employees.
Corresponding fuzzy membership functions are established. The greater the membership degree and
the smaller the non-membership degree, the stronger the work capability is indicated. The universe

X = {x1, x2}

represents two employees, and four experts conduct evaluations on them and provide the corresponding
membership degrees and non-membership degrees,

{x1 :< 0.2, 0.2 >, < 0.6, 0.1 >, < 0.6, 0.2 >, < 0.8, 0.1 >} .

The evaluation information of the second employee is

{x2 :< 0.55, 0.2 >, < 0.5, 0.1 >, < 0.6, 0.2 >, < 0.55, 0.1 >} ,

respectively using the intuitionistic fuzzy set, the interval-valued intuitionistic fuzzy set, the circular
fuzzy set with parameter r calculated in [31], and the circular fuzzy set with parameter r calculated by
the least squares method to represent the evaluation information.

By observing Table 1, we can find that when using intuitionistic fuzzy sets to represent the decision-
making information of the two employees, it is completely consistent.
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Table 1. Representation of evaluation information in fuzzy sets.
x1 x2

IFS [7] ⟨x1, 0.55, 0.15⟩ ⟨x2, 0.55, 0.15⟩
IVIFS [13] ⟨x1, [0.2, 0.8], [0.1, 0.2]⟩ ⟨x2, [0.5, 0.6], [0.1, 0.2]⟩
CIFS [31] ⟨x1, 0.55, 0.15; 0.3536⟩ ⟨x2, 0.55, 0.15; 0.0707⟩
CIFS(OLS) ⟨x1, 0.55, 0.15; 0.2236⟩ ⟨x2, 0.55, 0.15; 0.0612⟩

However, it is obvious that the evaluation information provided by the four experts is completely
inconsistent. The evaluation information interval for the first employee is relatively large, while the
evaluation interval for the second employee is more concentrated. Although the IVIFS makes a
distinction in terms of numerical values, we find that the evaluation intervals of the two employees
differ significantly, and in fact the actual gap is not that large. The CIFS retains as much information
as possible from all the original evaluations. The method of calculating the parameter r in [31] is
vulnerable to the influence of extreme evaluation information. However, choosing the least squares
method can effectively avoid this problem.

Example 2. Utilize the existing distances and measures of circular fuzzy sets, as well as the
bidirectional projection similarity proposed in this paper, to compare the distances between different
circular fuzzy sets. The results are shown in Table 2.

Table 2. Comparison of distance measures between CIFSs.
1 2 3 4 5

A ⟨x, 0.1, 0.1; 0⟩ ⟨x, 0.1, 0.1; 0⟩ ⟨x, 0.3, 0.4; 0.1⟩ ⟨x, 0.1, 0.1; 0.2⟩ ⟨x, 0.1, 0.1; 0.5⟩
B

〈
x, 3

10

√
2 + 0.1, 0.1; 0

〉
⟨x, 0.4, 0.4; 0.2⟩ ⟨x, 0.4, 0.3; 0.1⟩ ⟨x, 0.3, 0.4; 0.1⟩ ⟨x, 0.3, 0.4; 0.1⟩

E2(A, B) [32] 0.2207 0.2207 0.05 0.1628 0.2689
BProjB A [41] 0.7550 0.7021 1 0.7380 0.7380
BProj (A, B) 0.6328 0.5608 0.9615 0.5836 0.5568

(1) By comparing the circular fuzzy sets of the first group and the second group, we find that the

membership degree in
〈
x, 3

10

√
2 + 0.1, 0.1; 0

〉
is larger than that in ⟨x, 0.3, 0.4; 0.1⟩, and the

non-membership degree in
〈
x, 3

10

√
2 + 0.1, 0.1; 0

〉
is smaller than that in ⟨x, 0.3, 0.4; 0.1⟩,so〈

x, 3
10

√
2 + 0.1, 0.1; 0

〉
should be greater than ⟨x, 0.3, 0.4; 0.1⟩. However, the distances calculated

by using the Euclidean distance in [32] are equal. It is not reasonable. It can be seen that the
bidirectional projection measure proposed in this paper can effectively distinguish them.

(2) By observing the circular fuzzy sets in the third group, it can be found that when A and B are
completely different, the similarity calculated using the method in [41] is 1, indicating complete
similarity, which does not conform to the actual situation. However, the similarity calculated by
using the bidirectional projection similarity proposed in this paper is 0.9615, which is in line with
the actual situation.

(3) By observing the circular intuitionistic fuzzy sets in the fourth and fifth groups, it can be found that
only the parameter r of A is different. Through the results, it is found that the parameter r will
affect the distance and similarity between circular fuzzy sets, which demonstrates the effectiveness
of CIFS compared with intuitionistic fuzzy sets and extended intuitionistic fuzzy sets.
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While the aforementioned example does not encompass all possible cases of circular intuitionistic
fuzzy sets, it is representative of a subset of such sets. It can be observed that some existing measures
for distinguishing different circular intuitionistic fuzzy sets exhibit certain limitations. The
bidirectional projection measure proposed in this paper fully considers the effects of angle and
distance on the similarity of circular intuitionistic fuzzy sets, and it is found to be more reasonable
than some of the existing methods by example.

4. Application of bidirectional projection measure in group decision making

In this section, for a group multi-attribute decision-making (GMADM) problem, this paper proposes
a GMADM method based on the bidirectional projection measure of circular intuitionistic fuzzy sets.
The basic procedure of the proposed method is illustrated in the following Figure 5. The detailed basic
steps of the proposed method are as follows:

Determine group multi-attribute decision problem

Determine the alternative and the decision criteria

( ) .ij
n m

D d


=

Construct the decision matrix Obtain the weight matrix 

( )
1

.j n
W w


=

Construct the weighted decision matrix ( )w

w ij
n m

D d


=

Getting the ideal solution from the alternatives

Calculate the bi-directional projection similarity of 
alternatives to the ideal solution and rank the alternatives

Figure 5. Proposed methodology for MAGDM using CIFS and bidirectional projection.

Step 1. For MADM problem, first, the set of alternatives

A = {A1, A2, . . . , Am}

is determined for the problem. The set of decision criteria are

C = {C1,C2, . . . . . . ,Cn} ,

and the weight vector of the criterion is

W = {w1,w2, . . . . . . ,wn} .
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DMs represent a group of experts in various fields, denoted by DM1,DM2, . . . ,DMk.

Step 2. First, the evaluation linguistic of each expert for each criterion of all alternatives was
collected, and then the evaluation linguistic was transformed into corresponding intuitionistic fuzzy
pairs according to Table 3.

Table 3. Linguistic value intuitionistic fuzzy number conversion.
Linguistic terms IFNs for alternatives
Certainly High Value-(CHV) ⟨0.9, 0.1⟩
Very High Value-(VHV) ⟨0.8, 0.15⟩
High Value-(HV) ⟨0.7, 0.25⟩
Above Average Value-(AAV) ⟨0.6, 0.35⟩
Average Value-(AV) ⟨0.5, 0.45⟩
Under Average Value-(UAV) ⟨0.4, 0.55⟩
Low Value-(LV) ⟨0.3, 0.65⟩
Very Low Value-(VLV) ⟨0.2, 0.75⟩
Certainly Low Value-(CLV) ⟨0.1, 0.9⟩

Table 3 presents the transformation relationship between human language evaluation values and
intuitionistic fuzzy numbers, and transforms the evaluation languages of experts into intuitionistic
fuzzy numbers. Here, we obtain k matrices

D̃k =
(
d̃i jk

)
n×m
,

where
d̃i jk =

(
mi jk, ni jk

)
,

and d̃i jk represents the performance evaluation of the i-th alternative on the j-th criterion by the k-th
expert.

Step 3. Use Eq (2.3) to aggregate intuitionistic fuzzy pairs of the same alternative with the same
criterion in k matrices

D̃k =
(
d̃i jk

)
n×m

to get the corresponding intuitionistic fuzzy numbers
〈
µi j, vi j

〉
. Then, the corresponding r length is

calculated using Eq (2.7), and, subsequently, a matrix

D̃ =
(
d̃i j

)
n×m

is obtained, where
d̃i j =

(
µi j, vi j; ri j

)
is a circular intuitionistic fuzzy number representing the evaluation value of the j-th criterion for the
i-th alternative.

Step 4. The weight information of each attribute value is also evaluated through the linguistic
values provided by experts, such as “very important” and “unimportant”, and so on. The linguistic
weight information of different criteria is quantified into the corresponding intuitionistic fuzzy numbers
based on Table 4. Then, the r-length is calculated using Eq (2.7). We obtain the corresponding weight
information matrix

W =
(
w j

)
1×n
,
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where
w j =

(
u j, v j; r j

)
represents the weight of the j-th criterion.

Table 4. Weighted information intuitionistic fuzzy number transformation.
Linguistic terms IFNs for criteria
Certainly high importance-(CHI) ⟨0.9, 0.1⟩
Very high importance-(VHI) ⟨0.8, 0.15⟩
High importance-(HI) ⟨0.7, 0.25⟩
Above average importance-(AAI) ⟨0.6, 0.35⟩
Average importance-(AI) ⟨0.5, 0.45⟩
Under average importance-(UAI) ⟨0.4, 0.55⟩
Low importance-(LI) ⟨0.3, 0.65⟩
Very low importance-(VLI) ⟨0.2, 0.75⟩
Certainly low importance-(CLI) ⟨0.1, 0.9⟩

Step 5. Construct a weighted decision matrix

D̃w =
(
d̃w

i j

)
n×m
,

where (
d̃w

i j

)
n×m
= d̃i j ⊗ w j

is calculated by Eq (2.8).

Step 6. Identifying an ideal solution

Y =
{
y1, y2, . . . .., yn

}
,

we categorize the n criteria into two types: one type is the cost criteria N1, and the other type is the
benefit criteria N2.

Y =
{〈(

max
1≤≤≤n

gi j | j ∈ N1

)
,
(

min
1≤i≤m

gi j | j ∈ N2

)〉
| j = 1, 2, . . . n

}
=
{
y1, y2, . . . .., yn

}
.

Use the method in Definition 7 to compare the ordinal relations of circular intuitionistic fuzzy sets.

Step 7. Calculate Bproj (Ai,Y), and rank the alternatives based on the value.

5. Example analysis

5.1. Illustrative example

The supplier selection example from [33] was chosen for calculations to test the effectiveness of the
new approach. The example presented is a fast-moving consumer goods supplier selection problem.
The detailed steps of the proposed algorithm are illustrated as follows:

Step 1. First, the set of alternative suppliers for the fast-moving consumer goods (FMCG) is
determined, comprising four candidates. There are four alternatives (A1, A2, A3, and A4). They
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respectively represent four suppliers. Based on the literature review and expert opinions, seven
decision criteria ({C1,C2, . . . ,C7}) were determined for the fast-moving consumer goods (FMCG)
supplier selection problem. These seven criteria, are respectively, price, quality, performance,
delivery, flexibility, relationship closeness, and reputation. A panel of experts was established to
evaluate the problem, consisting of five experts, namely DM1–DM5.

Step 2. Based on the linguistic evaluation values provided in Table 3, the 5 experts evaluated the 7
criteria for the four suppliers, resulting in Table 5. Then, according to Table 3, the linguistic values are
transformed into the corresponding intuitionistic fuzzy pairs, resulting in Table 6.

Table 5. Evaluations of alternative suppliers by experts.
Criteria DMs A1 A2 A3 A4

C1

DM1 AAV UAV HV LV
DM2 HV LV VHV VLV
DM3 HV UAV AAV LV
DM4 AAV AV AAV LV
DM5 AV UAV HV VLV

C2

DM1 AV AAV VHV LV
DM2 AAV AV HV UAV
DM3 UAV HV AAV UAV
DM4 AV AAV AV AV
DM5 UAV AV AAV AV

C3

DM1 AV HV AV LV
DM2 AAV AV AV UAV
DM3 AAV AV AAV UAV
DM4 UAV AAV AAV AV
DM5 AV AAV AV AV

C4

DM1 HV LV VHV AV
DM2 HV VLV VHV AV
DM3 AAV VLV HV AAV
DM4 AV LV HV UAV
DM5 AV LV AAV AV

C5

DM1 LV AV AV UAV
DM2 UAV AV AV UAV
DM3 UAV UAV AAV AV
DM4 AV AAV AAV AAV
DM5 LV AAV AV AV

C6

DM1 HV AAV AAV AAV
DM2 HV AAV HV AAV
DM3 VHV AV HV AV
DM4 HV AV AAV AAV
DM5 AAV AAV HV AAV

C7

DM1 AV AV HV VHV
DM2 UAV AV HV VHV
DM3 UAV AAV VHV HV
DM4 AV HV AAV HV
DM5 AV HV HV HV
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Table 6. Transformed decision matrix with IFNs.
Criteria DMs A1 A2 A3 A4

C1

DM1 (0.6, 0.35) (0.4, 0.55) (0.7, 0.25) (0.3, 0.65)
DM2 (0.7, 0.25) (0.3, 0.65) (0.8, 0.15) (0.2, 0.75)
DM3 (0.7, 0.25) (0.4, 0.55) (0.6, 0.35) (0.3, 0.65)
DM4 (0.6, 0.35) (0.5, 0.45) (0.6, 0.35) (0.3, 0.65)
DM5 (0.5, 0.45) (0.4, 0.55) (0.7, 0.25) (0.2, 0.75)

C2

DM1 (0.5, 0.45) (0.6, 0.35) (0.8, 0.15) (0.3, 0.65)
DM2 (0.6, 0.35) (0.5, 0.45) (0.7, 0.25) (0.4, 0.55)
DM3 (0.4, 0.55) (0.7, 0.25) (0.6, 0.35) (0.4, 0.55)
DM4 (0.5, 0.45) (0.6, 0.35) (0.5, 0.45) (0.5, 0.45)
DM5 (0.4, 0.55) (0.5, 0.45) (0.6, 0.35) (0.5, 0.45)

C3

DM1 (0.5, 0.45) (0.7, 0.25) (0.5, 0.45) (0.3, 0.65)
DM2 (0.6, 0.35) (0.5, 0.45) (0.5, 0.45) (0.4, 0.55)
DM3 (0.6, 0.35) (0.5, 0.45) (0.6, 0.35) (0.4, 0.55)
DM4 (0.4, 0.55) (0.6, 0.35) (0.6, 0.35) (0.5, 0.45)
DM5 (0.5, 0.45) (0.6, 0.35) (0.5, 0.45) (0.5, 0.45)

C4

DM1 (0.7, 0.25) (0.3, 0.65) (0.8, 0.15) (0.5, 0.45)
DM2 (0.7, 0.25) (0.4, 0.55) (0.8, 0.15) (0.5, 0.45)
DM3 (0.6, 0.35) (0.3, 0.65) (0.7, 0.25) (0.6, 0.35)
DM4 (0.5, 0.45) (0.3, 0.65) (0.7, 0.25) (0.4, 0.55)
DM5 (0.5, 0.45) (0.3, 0.65) (0.6, 0.35) (0.5, 0.45)

C5

DM1 (0.3, 0.65) (0.5, 0.45) (0.5, 0.45) (0.4, 0.55)
DM2 (0.4, 0.55) (0.5, 0.45) (0.5, 0.45) (0.4, 0.55)
DM3 (0.4, 0.55) (0.4, 0.55) (0.6, 0.35) (0.5, 0.45)
DM4 (0.5, 0.45) (0.6, 0.35) (0.6, 0.35) (0.6, 0.35)
DM5 (0.3, 0.65) (0.6, 0.35) (0.5, 0.45) (0.5, 0.45)

C6

DM1 (0.7, 0.25) (0.6, 0.35) (0.6, 0.35) (0.6, 0.35)
DM2 (0.7, 0.25) (0.6, 0.35) (0.7, 0.25) (0.6, 0.35)
DM3 (0.8, 0.15) (0.5, 0.45) (0.7, 0.25) (0.5, 0.45)
DM4 (0.7, 0.25) (0.5, 0.45) (0.6, 0.35) (0.6, 0.35)
DM5 (0.6, 0.35) (0.6, 0.35) (0.7, 0.25) (0.6, 0.35)

C7

DM1 (0.5, 0.45) (0.5, 0.45) (0.7, 0.25) (0.8, 0.15)
DM2 (0.4, 0.55) (0.5, 0.45) (0.7, 0.25) (0.8, 0.15)
DM3 (0.4, 0.55) (0.6, 0.35) (0.8, 0.15) (0.7, 0.25)
DM4 (0.5, 0.45) (0.7, 0.25) (0.6, 0.35) (0.7, 0.25)
DM5 (0.5, 0.45) (0.7, 0.25) (0.7, 0.25) (0.7, 0.25)

Step 3. According to Eqs (2.3) and (2.7), the 5 matrices D̃k are aggregated to obtain the circular
intuitionistic fuzzy set decision matrix

D̃ =
(
d̃i j

)
7×3
,

as shown in Table 7.
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Table 7. Circular intuitionistic fuzzy decision matrix.
A1 A2 A3 A4

C1 (0.62;0.33;0.1058) (0.4;0.55;0.0894) (0.68;0.27;0.1058) (0.26;0.69;0.0693)
C2 (0.48;0.47;0.1058) (0.58;0.37;0.1058) (0.64;0.31;0.1442) (0.42;0.53;0.1058)
C3 (0.52;0.43;0.1058) (0.58;0.37;0.1058) (0.54;0.41;0.0693) (0.42;0.53;0.1058)
C4 (0.6;0.35;0.1265) (0.26;0.69;0.0566) (0.72;0.23;0.1058) (0.5;0.45;0.0894)
C5 (0.38;0.57;0.1058) (0.52;0.43;0.1058) (0.54;0.41;0.0693) (0.48;0.47;0.1058)
C6 (0.7;0.25;0.0894) (0.56;0.39;0.0693) (0.666;0.29;0.0693) (0.58;0.37;0.0566)
C7 (0.46;0.49;0.0693) (0.6;0.35;0.1265) (0.7;0.25;0.0894) (0.74;0.21;0.0693)

Step 4. Based on the weight information of the criteria provided by the decision-makers, Table 8 is
obtained. Based on the transformation relationship of linguistic values into intuitionistic fuzzy
numbers provided in Table 4, an intuitionistic fuzzy set weight information matrix is obtained. Then,
by applying Eq (2.7), the radius r of the circular intuitionistic fuzzy set is calculated to derive the
weight information matrix of the circular intuitionistic fuzzy set (Table 9).

Table 8. Weight information matrix.
Criterion DM1 DM2 DM3 DM4 DM5 Type
C1 AAI AI AI AAI AI Cost
C2 VHI CHI CHI VHI CHI Benefit
C3 HI VHI HI HI VHI Benefit
C4 VHI VHI HI HI VHI Benefit
C5 HI HI VHI VHI HI Benefit
C6 AAI HI AAI AI HI Benefit
C7 AAI AAI AI AAI AI Benefit

Table 9. Circular intuitionistic fuzzy sets criteria weight information matrix.
Criteria Criteria weight
C1 (0.537, 0.412; 0.0693)
C2 (0.859, 0.120; 0.0548)
C3 (0.738, 0.211; 0.0693)
C4 (0.758, 0.192; 0.0693)
C5 (0.738, 0.211; 0.0693)
C6 (0.615, 0.334; 0.1058)
C7 (0.558, 0.392; 0.0693)

Step 5. Obtain the weighted decision matrix (Table 10) using Eq (2.8).

Table 10. Weighted decision matrix.
Criteria A1 A2 A3 A4
C1 (0.33, 0.61; 0.09) (0.21, 0.74; 0.08) (0.37, 0.57; 0.09) (0.14, 0.82; 0.07)
C2 (0.41, 0.53; 0.08) (0.50, 0.45; 0.08) (0.55, 0.39; 0.1) (0.36, 0.59; 0.08)
C3 (0.38, 0.55; 0.09) (0.43, 0.50; 0.09) (0.40, 0.53; 0.07) (0.31, 0.63; 0.09)
C4 (0.45, 0.47; 0.10) (0.20, 0.75; 0.06) (0.55, 0.38; 0.09) (0.38, 0.56; 0.08)
C5 (0.28, 0.66; 0.09) (0.38, 0.55; 0.09) (0.40, 0.53; 0.07) (0.35, 0.58; 0.09)
C6 (0.43, 0.50; 0.10) (0.34, 0.59; 0.09) (0.41, 0.53; 0.09) (0.36, 0.58; 0.08)
C7 (0.26, 0.69; 0.07) (0.33, 0.60; 0.10) (0.39, 0.54; 0.08) (0.41, 0.52; 0.07)

Step 6. Determining the ideal solution Y (Table 11).
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Table 11. Ideal solution.
Criteria Value
C1 (0.14, 0.82; 0.07)
C2 (0.55, 0.39; 0.1)
C3 (0.43, 0.50; 0.09)
C4 (0.55, 0.38; 0.09)
C5 (0.40, 0.53; 0.07)
C6 (0.43, 0.50; 0.10)
C7 (0.41, 0.52; 0.07)

Step 7. Calculate the bidirectional projection similarity of each alternative to the ideal solution
(Table 12).

Table 12. Bidirectional projection similarity of each alternative to the ideal solution.
A1 A2 A3 A4

Bproj (Ai,Y) 0.8884 0.8572 0.8993 0.8814
Rank 2 4 1 3

The ranking of the alternative options is as follows:

A3 ≻ A1 ≻ A4 ≻ A2.

5.2. Comparative analysis

In [33], the calculated results are:

A3 ≻ A4 ≻ A2 ≻ A1,

and we found that the optimal selection results are consistent with those of this paper, but the
comparison results between the first and fourth options differ. Observing the weighted decision matrix
in Table 10, we can see that A1 has 4 criteria superior to A4, while the other criteria where A4 is better
have only a small margin. It can be inferred that A1 should be superior to A4. At the same time, we use
the intuitionistic fuzzy set projection method in [28] to compute the results for comparison (Table 13).

Table 13. Comparison of methods and rankings.
Reference Method Ranking
Xu and Hu [28] IF PROJECTION A3 ≻ A2 ≻ A1 ≻ A4,

Kahraman and Alkan [33] C-IF TOPSIS A3 ≻ A4 ≻ A2 ≻ A1,

Proposed method Bidirectional projection measures for CIFS A3 ≻ A1 ≻ A4 ≻ A2,

The optimal choice for all three methods is A3, indicating the effectiveness of the method proposed
in this paper. Furthermore, through the previous analysis, it can be concluded that A1 should be superior
to A2 and A4, which also demonstrates the rationality and accuracy of the method proposed in this paper.

6. Managerial implications

This paper pioneers a method of using the geometric projection approach in CIFS to calculate the
similarity, providing research ideas for the subsequent calculation of the similarity of related extended
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circular fuzzy sets. Additionally, relevant decision-making methods are presented, offering a new
model for GMADM problems.

7. Conclusions

Circular intuitionistic fuzzy sets have a stronger capability to express the uncertainty in expert
evaluations compared to intuitionistic fuzzy sets. This paper proposes a novel method for calculating
the parameter r of CIFS, and applies it to the definition of bidirectional projection measure for CIFS.
We introduces a new method for calculating the similarity between circular intuitionistic fuzzy sets
and demonstrates its rationality and correctness through examples. The new bidirectional projection
measure method not only considers the distance between CIFS, but also takes into account the angles
between them. The new bidirectional projection measure method fills the gap in the research of
projection measures within the field of circular intuitionistic fuzzy sets. There are still some
shortcomings in the research presented in this paper. There has been no further detailed discussion on
various relationships between different circles, such as tangency, intersection, and inclusion, and the
relationship between these relationships and the similarity among them. This can serve as a future
research direction. Moreover, when using the operation operators between circular intuitionistic fuzzy
sets, there has been no further comparison of their rationality. This can also be considered as a future
research direction.

In further research, this method can be further extended to other types of decision-making data,
such as Pythagorean fuzzy sets, spherical fuzzy sets, and so on, consider the process of incorporating
parameter r into other extended fuzzy sets. This method can be applied to more complex decision-
making problems. And, we may consider whether it can be applied to more problems, such as pattern
recognition, risk assessment, and other issues.
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29. S. Zeng, T. Baležentis, J. Chen, G. Luo, A projection method for multiple attribute group
decision making with intuitionistic fuzzy information, Informatica, 24 (2013), 485–503.
https://doi.org/10.15388/informatica.2013.407

30. J. Zeng, Y. M. Wang, K. Zhang, J. Q. Gao, L. H. Yang, A heterogeneous multi-attribute case
retrieval method for emergency decision making based on bidirectional projection and TODIM,
Expert Syst. Appl., 203 (2022), 117382. https://doi.org/10.1016/j.eswa.2022.117382

31. K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986.
https://doi.org/10.3233/JIFS-189072

32. K. T. Atanassov, E. Marinov, Four distances for circular intuitionistic fuzzy sets, Mathematics, 9
(2021), 1121. https://doi.org/10.3390/math9101121

33. C. Kahraman, N. Alkan, Circular intuitionistic fuzzy TOPSIS method with vague membership
functions: supplier selection application context, Notes Intuit. Fuzzy Sets, 27 (2021), 24–52.
https://doi.org/10.7546/nifs.2021.27.1.24-52

34. N. Alkan, C. Kahraman, Circular intuitionistic fuzzy TOPSIS method: pandemic hospital location
selection, J. Intell. Fuzzy Syst., 42 (2022), 295–316. https://doi.org/10.3233/JIFS-219193

35. C. Xu, Y. Wen, New measure of circular intuitionistic fuzzy sets and its application in decision
making, AIMS Math., 8 (2023), 24053–24074. https://doi.org/10.3934/math.20231226

AIMS Mathematics Volume 10, Issue 5, 10283–10307.

https://dx.doi.org/https://doi.org/10.1109/TFUZZ.2013.2278989
https://dx.doi.org/https://doi.org/10.1109/TFUZZ.2016.2604005
https://dx.doi.org/https://doi.org/10.1007/s00521-018-3521-2
https://dx.doi.org/https://doi.org/10.31181/sems21202422g
https://dx.doi.org/https://doi.org/10.31181/sor2120258
https://dx.doi.org/https://doi.org/10.1002/int.21927
https://dx.doi.org/https://doi.org/10.56578/josa020105
https://dx.doi.org/https://doi.org/10.31181/sdmap21202518
https://dx.doi.org/https://doi.org/10.1142/S0219622010003816
https://dx.doi.org/https://doi.org/10.15388/informatica.2013.407
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117382
https://dx.doi.org/https://doi.org/10.3233/JIFS-189072
https://dx.doi.org/https://doi.org/10.3390/math9101121
https://dx.doi.org/https://doi.org/10.7546/nifs.2021.27.1.24-52
https://dx.doi.org/https://doi.org/10.3233/JIFS-219193
https://dx.doi.org/https://doi.org/10.3934/math.20231226


10307

36. M. J. Khan, J. C. R. Alcantud, P. Kumam, N. A. Alreshidi, Expanding Pythagorean fuzzy sets
with distinctive radii: disc Pythagorean fuzzy sets, Complex Intell. Syst., 9 (2023), 7037–7054.
https://doi.org/10.1007/s40747-023-01062-y

37. S. Ashraf, M. S. Chohan, S. Ahmad, M. S. Hameed, F. Khan, Decision aid algorithm for kidney
transplants under disc spherical fuzzy sets with distinctive radii information, IEEE Access, 11
(2023), 122029–122044. https://doi.org/10.1109/ACCESS.2023.3327830

38. T. Y. Chen, A circular intuitionistic fuzzy assignment model with a parameterized scoring
rule for multiple criteria assessment methodology, Adv. Eng. Inf., 61 (2024), 102479.
https://doi.org/10.1016/j.aei.2024.102479

39. J. C. Wang, T. Y. Chen, A compromise decision-support technique with an augmented scoring
function within circular intuitionistic fuzzy settings, Eng. Appl. Artif. Intell., 128 (2024), 107359.
https://doi.org/10.1016/j.engappai.2023.107359
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