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1. Introduction

The theory of submanifolds has evolved naturally from the classical study of curves and surfaces
in Euclidean space, employing the tools of differential calculus. The extensive applications of
extrinsic and intrinsic Riemannian invariants of some sub-manifold, span across various scientific
disciplines, particularly within the realm of general relativity. The main motivation for such a study
lies in establishing the relationships between these invariants.

In the work [1], Chen demonstrated an inequality that involves these invariants for sub-manifolds
within Riemannian space forms. Building upon Nash’s theorem, researchers have derived geometric
constraints, known as intrinsic and extrinsic invariants, for warped products in diverse space forms
(see [2–4]). Of particular interest is Chen’s first invariant, a significant intrinsic measure in our
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inequality, which was defined in [2].

δMm(x) = τ(TxMm) − inf{K(π) : π ⊂ TxMm, x ∈ Mm, dim π = 2}, (1.1)

where K(π) is the sectional curvature of the plane section π, τ(TxMm) is the scalar curvature of TxMm.
Bishop and O’Neill [5] introduced the warped product of Riemannian manifolds to generate a broad

class of complete manifolds characterized by negative curvature.
In [6], Chen and Dillen introduced the notion of multiply warped product manifolds and

sub-manifolds as follows: Let M1, . . . ,Mk be Riemannian manifolds and let

M = M1 × · · · × Mk

be the Cartesian product of M1, . . . ,Mk. For each i, denote by

πi : M → Mi,

the canonical projection of M onto Mi. When there is no confusion, we identify Mi with a horizontal
lift of Mi in M via πi. If

f2, . . . , fk : M1 → R
+

are positive real-valued functions, then

g(L1, L2) := g(π1∗L1, π1∗L2) +
k∑

i=2

( fi ◦ π1)2 g(πi∗L1, πi∗L2)

defines a Riemannian metric g on M, called a multiply warped product metric, for any vector fields
L1, L2 on M and πi∗ denotes the push tangential map. The product manifold M endowed with this
metric is denoted by

M1 × f2 M2 × · · · × fk Mk.

In this case, the warping functions f2, . . . , fk are nonconstant functions on M1. It is clear that if all
f1, . . . , fk are constant except one function f j such that 2 ≤ j ≤ n, then M is a single warped product
manifold. Also, if any two functions are not constant and all others are constant, then multiply warped
product reduces to bi-warped product, which we discuss in this paper. Multiply warped products play
crucial roles in both physics and differential geometry, particularly in the realm of relativity theory.
Standard spacetime models such as Robertson-Walker and Schwarzschild are examples of warped
products. Furthermore, elementary models describing the regions around stars and black holes often
align with the warped product framework [7]. Additionally, many solutions to Einstein’s field equations
find expression in terms of warped products. [8].

In a study by [9], an enhanced form of the initial Chen inequality for Legendrian sub-manifolds
within Sasakian space forms was introduced. Furthermore, the authors in [10] presented the first Chen
inequality for general warped product sub-manifolds in a Riemannian space form. Similarly, in [11],
Alghamdi et al. established a comparable inequality for warped product Legendrian sub-manifolds
within Kenmotsu space forms. Additionally, in [12], Li et al. set forth a similar inequality for warped
product sub-manifolds within Qm

ϵ × R. Some applications of inequalities in other fields can be found
on [13].

Building upon the research mentioned above, this paper introduces the first Chen inequality for
bi-warped product sub-manifolds within Riemannian space forms. Additionally, we delve into the
examination of the equality case and provide insights into the applications of these inequalities within
the context of this study.
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2. Preliminaries

In this section, we present the foundational mathematical framework required to establish the first
Chen inequality for bi-warped product sub-manifolds in Riemannian space forms.

Consider the n-dimensional sub-manifold Nn of a Riemannian manifold (Mm, g) of dimension m.
Let ∇̄ denote the Levi-Civita connection on Mm, and let ∇ be the induced connection on Nn. The Gauss
and Weingarten formulas, which connect the geometry of the sub-manifold to that of the ambient
manifold, are given as follows:

∇̄L1 L2 = ∇L1 L2 + h(L1, L2) (2.1)

and

∇̄L1υ = −AV L1 + ∇
⊥
L1
υ, (2.2)

where L1, L2 ∈ T Nn, υ ∈ T⊥Nn, and h,∇⊥, Aυ denotes the second fundamental form, normal
connection, and the shape operator, respectively.

The well-known equation of Gauss is given by

R(L1, L2, L3, L4) = R̄(L1, L2, L3, L4) + g(h(L1, L4), h(L2, L3)) − g(h(L1, L3), h(L2, L4)), (2.3)

for any L1, L2, L3, L4 ∈ Γ(T Mm), where R̄ and R are the curvature tensors of Mm and Nn, respectively.
If we select two linearly independent tangent vectors L1, L2 ∈ T M, the sectional curvature of the 2-
plane π spanned by L1 and L2 can be expressed in terms of the Riemannian curvature tensor R̄ as
follows:

K̄(π) = K̄(L1 ∧ L2) =
g(R̄(L1, L2)L2, L1)

g(L1, L1)g(L2, L2) − (g(L1, L2))2 . (2.4)

If the 2-plane π is spanned by orthogonal unit vectors L1 and L2 from the tangent space TxMm, where
x ∈ Mm, the previous definition can be expressed as:

K̄(π) = K̄Mm(L1 ∧ L2) = g(R̄(L1, L2)L2, L1). (2.5)

It is important to note that the sectional curvature is independent of the choice of orthonormal basis for
π and fully characterizes the Riemannian curvature tensor R̄. Furthermore, if K̄(π) is constant for all
planes π in TxMm and for all points x ∈ Mm, specifically

K̄(π) = c,

we refer to Mm(c) as a real space form.
Here, then we have:

R̄(L1, L2)L3 = c(g(L2, L3)L1 − g(L1, L3)L2), (2.6)

for any L1, L2, L3 ∈ Γ(T Mm(c)).
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Scalar curvature for Mm is defined in terms of the sectional curvature as:

τ̄(TxMm) =
∑

1≤i< j≤m

K̄i j

=⇒ 2τ̄(TxMn) =
∑

1≤i, j≤m

K̄i j.
(2.7)

An interesting invariant for some manifold is the Chen’s first invariant, which is defined as:

δ̄Mm(x) = τ̄(TxMm) − inf{K̄(π) : π ⊂ TxMm, x ∈ Mm, dim π = 2}. (2.8)

Whenever we consider the above geometric objects such as the sectional curvature, scalar curvature,
Chen’s first invariant, etc., for the sub-manifold Nn, we simply denote them as K, τ and δ, respectively.

In particular, the scalar curvature τ(x) of Nn at x is identical with the scalar curvature of the tangent
space TxNn of Nn at x, that is,

τ(x) = τ(TxNn).

Bi-warped product manifolds are special classes of manifolds. Let us consider,

Nn = N1 × f1 N2 × f2 N3

as the bi-warped product sub-manifold of the Riemannian space form Mm(c). We choose an
orthonormal basis

{κ1, · · · , κn1 , κn1+1, · · · , κn1+n2 , κn1+n2+1, · · · , κn}

of TxNn, where
{κ1, · · · , κn1}, {κn1+1, · · · , κn1+n2}, {κn1+n2+1, · · · , κn}

are orthonormal bases of N1,N2, and N3, respectively. Let {κn+2, · · · , κm} be an orthonormal basis of
T⊥x Nn.

The coefficients of the second fundamental form h of Nn with respect to the above local frame are
denoted as

hr
i j = g(h(κi, κ j), κr), (2.9)

where i, j ∈ {1, · · · , n} and r ∈ {n + 1, · · · ,m}. The mean curvature vector H is defined with respect to
the same local frame above, as

H =
1
n

n∑
i=1

h(κi, κi). (2.10)

We say that Nn is a minimal sub-manifold of Mm if H vanishes identically.
If f is a smooth function on Mm, then its gradient ∇ f and Laplacian ∆ f are defined as

g(∇ f , X) = X f ,

∆ f =
m∑

i=1

((∇κiκi) f − κiκi f ).
(2.11)
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So from Eqs (2.3), (2.4), and (2.9), we get

K(κi ∧ κ j) = K̄(κi ∧ κ j) +
m∑

r=n+1

(g(hr
iiκr, hr

j jκr) − g(hr
i jκr, hr

i jκr))

=⇒ K(κi ∧ κ j) = K̄(κi ∧ κ j) +
m∑

r=n+1

(hr
iih

r
j j − (hr

i j)
2),

(2.12)

where K̄(κi∧κ j) denotes the sectional curvature of the 2-plane spanned by κi and κ j at x in the ambient
manifold Mm(c).

Taking the summation over the orthonormal frame of the tangent space of Nn in (2.12), we have

2τ(TxNn) = 2τ̄(TxNn) + n2||H||2 − ||h||2. (2.13)

The sectional curvature and warping functions are related by the following formulas [14]:

(i)
∑n1

a=1

∑n1+n2
A=n1+1 KaA =

n2∆ f3
f3

;

(ii)
∑n1

a=1

∑n
b=n1+n2+1 Kab =

n3∆ f4
f4

;

(iii)
∑n1+n2

A=n1+1

∑n
b=n1+n2+1 KAb = −

n2n3
f3 f4

g3(∇ f3,∇ f4).

So, we have

τ(TxNn) =
∑

1≤i< j≤n

Ki j

=

n1∑
a=1

n1+n2∑
A=n1+1

KaA +

n1∑
a=1

n∑
b=n1+n2+1

Kab +

n1+n2∑
A=n1+1

n∑
b=n1+n2+1

KAb

+
∑

1≤a<a‘≤n1

Kaa‘ +
∑

n1+1≤A<A‘≤n1+n2

KAA‘ +
∑

n1+n2+1≤b<b‘≤n

Kbb‘

=⇒ τ(TxNn) =
n2∆

1 f1

f1
+

n3∆
1 f2

f2
− n2n3g(∇1(ln f1),∇1(ln f2))

+ τ(TxN1) + τ(TxN2) + τ(TxN3).

(2.14)

The following lemma will also be needed to prove our main result.

Lemma 2.1. [10] Let α1, α2, · · · , αn, β be (n + 1)(n ≥ 2) real numbers such that

(
∑n

i=1 αi)2 = (n − 1)(
∑n

i=1 α
2
i + β),

then 2α1α2 ≥ β, with equality holds if, and only if,

α1 + α2 = α3 = · · · = αn.

3. First chen inequality for bi-warped product sub-manifolds of a Riemannian space forms

Theorem 3.1. Let
ϕ : Nn = N1 × f1 N2 × f2 N3 → Mm(c)
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be an isometric immersion of a bi-warped product sub-manifold Nn into a Riemannian space form
Mm(c). Then, for each point x ∈ Nn and each plane section

πi ⊂ TxNni
i , ni = dim Ni ≥ 2

for i = 1, 2, 3, we have:
(1) If π1 ⊂ TxN1, then

δN1
n1 ≤

n2

2
||H||2 −

n2∆ f1

f1
−

n3∆ f2

f2
+ n2n3g(∇(ln f1),∇(ln f2))

+
n1

2
(n1 + 2n2 + 2n3 − 1)c + n2n3c − c.

(2) If π2 ⊂ TxN2, then

δN2
n2 ≤

n2

2
||H||2 −

n2∆ f1

f1
−

n3∆ f2

f2
+ n2n3g(∇(ln f1),∇(ln f2))

+
n2

2
(n2 + 2n1 + 2n3 − 1)c + n1n3c − c.

(3) If π3 ⊂ TxN3, then

δN3
n3 ≤

n2

2
||H||2 −

n2∆ f1

f1
−

n3∆ f2

f2
+ n2n3g(∇(ln f1),∇(ln f2))

+
n3

2
(n3 + 2n1 + 2n2 − 1)c + n1n2c − c.

the equality holds at x ∈ Nn if, and only if, there exist an orthonormal basis {κ1, · · · , κn} of TxNn and
an orthonormal basis {κn+1, · · · , κn} of T⊥x Nn such that:

(a) π1 = span{κ1.κ2}, π2 = span{κn1+1,κn1+2}, π3 = span{κn1+n2+1,n1+n2+2}.

(b) The shape operator takes the following forms, where Om×n, denoting the zero matrix of order m×n:
[i] If π1 ⊂ TxN1, then for r = n + 1, we have

Aκn+1 =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

µ1 hn+1
12 0 · · · 01n1

hn+1
21 µ2 0 · · · 02n1

0 0 µ · · ·
...

...
...

...
. . .

...

0(n1)(1) · · · · · · · · · µ


,



hn+1
(n1+1)(n1+1) · · · · · · hn+1

(n1+1)(n1+n2)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n1+n2)(n1+1) · · · hn+1

(n1+n2)(n1+n2)


,



hn+1
(n1+n2+1)(n1+n2+1) · · · · · · hn+1

(n1+n2+1)(n)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n)(n1+n2+1) · · · hn+1

(n)(n)


,

where
µ = µ1 + µ2 = hn+1

11 + hn+1
22 .

AIMS Mathematics Volume 10, Issue 4, 9917–9932.



9923

Also, for r ∈ {n + 2, · · · ,m},

Aκr =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II) and BLOCK(III) are given, respectively, as

hr
11 hr

12 0 · · · 01n1

hr
21 −hr

11 0 · · · 02n1

0 0 033 · · ·
...

...
...

...
. . .

...

0(n1)(1) · · · · · · · · · 0n1n1


,



hr
(n1+1)(n1+1) · · · · · · hr

(n1+1)(n1+n2)
... · · ·

...
... · · ·

...
... · · ·

...

h(n1+n2)(n1+1)cr · · · hr
(n1+n2)(n1+n2)


,



hr
(n1+n2+1)(n1+n2+1) · · · · · · hr

(n1+n2+1)(n)
... · · ·

...
... · · ·

...
... · · ·

...

hr
(n)(n1+n2+1) · · · hr

(n)(n)


.

[ii] If π2 ⊂ TxN2, then for r = n + 1, we have

Aκn+1 =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

hn+1
11 · · · · · · hn+1

(1)(n1)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n1)(1) · · · hn+1

(n1)(n1)


,



µ1 hn+1
(n1+1)(n1+2) 0 · · · 0(n1+1)(n1+n2)

hn+1
(n1+2)(n1+1) µ2 0 · · · 0(n1+2)(n1+n2)

0 0 µ · · ·
...

...
...

...
. . .

...

0(n1+n2)(n1+1) · · · · · · · · · µ


,



hn+1
(n1+n2+1)(n1+n2+1) · · · · · · hn+1

(n1+n2+1)(n)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n)(n1+n2+1) · · · hn+1

(n)(n)


,

where
µ = µ1 + µ2 = hn+1

(n1+1)(n1+1) + hn+1
(n1+2)(n1+2).

Also for r ∈ {n + 2, · · · ,m},

Aκr =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as

hr
11 · · · · · · hr

(1)(n1)
... · · ·

...
... · · ·

...
... · · ·

...

hr
(n1)(1) · · · hr

(n1)(n1)


,



hr
(n1+1)(n1+1) hr

(n1+1)(n1+2) 0 · · · 0(n1+1)(n1+n2)

hr
(n1+2)(n1+1) −hr

(n1+1)(n1+1) 0 · · · 0(n1+2)(n1+n2)

0 0 0(n1+3)(n1+3) · · ·
...

...
...

...
. . .

...

0(n1+n2)(n1+1) · · · · · · · · · 0(n1+n2)(n1+n2)


,



hr
(n1+n2+1)(n1+n2+1) · · · · · · hr

(n1+n2+1)(n)
... · · ·

...
... · · ·

...
... · · ·

...

hr
(n)(n1+n2+1) · · · hr

(n)(n)


.

[iii] If π3 ⊂ TxN3, then for r = n + 1, we have

Aκn+1 =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
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where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

hn+1
11 · · · · · · hn+1

(1)(n1)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n1)(1) · · · hn+1

(n1)(n1)


,



hn+1
(n1+1)(n1+1) · · · · · · hn+1

(n1+1)(n1+n2)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n1+n2)(n1+1) · · · hn+1

(n1+n2)(n1+n2)


,



µ1 hn+1
(n1+n2+1)(n1+n2+2) 0 · · · 0(n1+n2+1)(n)

hn+1
(n1+n2+2)(n1+n2+1) µ2 0 · · · 0(n1+n2+2)(n)

0 0 µ · · ·
...

...
...

...
. . .

...

0(n)(n1+n2+1) · · · · · · · · · µ


,

where
µ = µ1 + µ2 = hn+1

(n1+n2+1)(n1+n2+1) + hn+1
(n1+n2+2)(n1+n2+2).

For r ∈ {n + 2, · · · ,m},

Aκr =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as

hr
11 · · · · · · hr

(1)(n1)
... · · ·

...
... · · ·

...
... · · ·

...

hr
(n1)(1) · · · hr

(n1)(n1)


,



hr
(n1+1)(n1+1) · · · · · · hr

(n1+1)(n1+n2)
... · · ·

...
... · · ·

...
... · · ·

...

h(n1+n2)(n1+1)cr · · · hr
(n1+n2)(n1+n2)


,



hr
(n1+n2+1)(n1+n2+1) hr

(n1+n2+1)(n1+n2+2) 0 · · · 0(n1+n2+1)(n)

hr
(n1+n2+2)(n1+n2+1) −hr

(n1+n2+1)(n1+n2+1) 0 · · · 0(n1+n2+2)(n)

0 0 0(n1+n2+3)(n1+n2+3) · · ·
...

...
...

...
. . .

...

0(n)(n1+n2+1) · · · · · · · · · 0nn


.

(4) If equality of (i) or (ii) or (iii) holds, then

N1 × f1 N2 × f2 N3

is mixed totally geodesic in Mm(c). Moreover,

N1 × f1 N2 × f2 N3

is both D1,D2, and D3-minimal. Thus,

N1 × f1 N2 × f2 N3

is a minimal bi-warped product sub-manifold of Mm(c).

Proof. For simplicity we are providing the complete proof of (1). The other two parts viz., (2) and (3)
can be proved in a similar way together with the equality cases.

We start our proof by considering a point x ∈ Nn and let π1 ⊂ TxN1 be a 2-plane. We choose an
orthonormal basis

{κ1, · · · , κn1 , κn1+1, · · · , κn1+n2 , κn1+n2+1, · · · , κn}

of TxNn, where
{κ1, · · · , κn1}, {κn1+1, · · · , κn1+n2}, {κn1+n2+1, · · · , κn}

are orthonormal bases of N1,N2, and N3, respectively, and {κn+1, · · · , κm} is an orthonormal basis of
T⊥x Nn. First, put

π1 = span{κ1, κ2}
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such that the normal vector κn+1 is in the direction of the mean curvature vector H. We have from (2.3)
and (2.6)

n2||H||2 = 2τ(TxMn) + ||h||2 − n(n − 1)c,

which gives

(
n1∑

a=1

hn+1
aa )2 =2τ(TxMn) + ||h||2 − n(n − 1)c − (

n1+n2∑
A=n1+1

hn+1
AA )2 − (

n∑
b=n1+n2+1

hn+1
bb )2

− 2
n1∑

a=1

n1+n2∑
A=n1+1

hn+1
aa hn+1

AA − 2
n1∑

a=1

n∑
b=n1+n2+1

hn+1
aa hn+1

bb 2
n1+n2∑

A=n1+1

n∑
b=n1+n2+1

hn+1
AA hn+1

bb .

Assume

τ1 =2τ(TxMn) −
n1 − 2
n1 − 1

(
n1∑

a=1

hn+1
aa )2 − (

n1+n2∑
A=n1+1

hn+1
AA )2 − (

n∑
b=n1+n2+1

hn+1
bb )2

− 2
∑

a

∑
A

hn+1
aa hn+1

AA − 2
∑

a

∑
b

hn+1
aa hn+1

bb − 2
∑

A

∑
b

hn+1
AA hn+1

bb − n(n − 1)c.

Thus,

(n1 − 1)τ1 = (n1 − 1)
[
2τ(TxMn) −

(n1 − 1) − 1
n1 − 1

(
n1∑

a=1

hn+1
aa )2 − (

n1+n2∑
A=n1+1

hn+1
AA )2

− (
n∑

b=n1+n2+1

hn+1
bb )2 − 2

∑
a

∑
A

hn+1
aa hn+1

AA − 2
∑

a

∑
b

hn+1
aa hn+1

bb

− 2
∑

A

∑
b

hn+1
AA hn+1

bb − n(n − 1)c
]

=⇒ (n1 − 1)τ1 = (n1 − 1)[2τ(TxMn) − (
n1∑

a=1

hn+1
aa )2 − (

n1+n2∑
A=n1+1

hn+1
AA )2

− (
n∑

b=n1+n2+1

hn+1
bb )2 − 2

∑
a

∑
A

hn+1
aa hn+1

AA − 2
∑

a

∑
b

hn+1
aa hn+1

bb

− 2
∑

A

∑
b

hn+1
AA hn+1

bb − n(n − 1)c] − (
n1∑

a=1

hn+1
aa )2

=⇒ (n1 − 1)τ1 = (n1 − 1)[−||h||2] − (
n1∑

a=1

hn+1
aa )2

=⇒ (
n1∑

a=1

hn+1
aa )2 = (n1 − 1)[τ1 + ||h||2]

=⇒ (
n1∑

a=1

hn+1
aa )2 = (n1 − 1)[τ1 +

n∑
i, j=1

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2]
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=⇒ (
n1∑

a=1

hn+1
aa )2 = (n1 − 1)

[
τ1 +

n1∑
a=1

(hn+1
aa )2 +

n1+n2∑
A=n1+1

(hn+1
AA )2 +

n∑
b=n1+n2+1

(hn+1
bb )2

+

n∑
i, j=1
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2
]
.

From Lemma 2.1 with

αa = hn+1
aa ,

β = [τ1 +

n1∑
a=1

(hn+1
aa )2 +

n1+n2∑
A=n1+1

(hn+1
AA )2 +

n∑
b=n1+n2+1

(hn+1
bb )2

+

n∑
i, j=1
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2],

we have

hn+1
11 hn+1

22 ≥
1
2

[τ1 +

n1∑
a=1

(hn+1
aa )2 +

n1+n2∑
A=n1+1

(hn+1
AA )2 +

n∑
b=n1+n2+1

(hn+1
bb )2 +

n∑
i, j=1
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2].

Assume
π1 =< κ1, κ2 > .

Hence,

K(π1) = c +
m∑

r=n+1

(hr
11hr

22 − (hr
12)2)

=⇒ K(π1) = c + hn+1
11 hn+1

22 +

m∑
r=n+2

hr
11hr

22 −

m∑
r=n+1

(hr
12)2

=⇒ K(π1) ≥ c +
1
2

[τ1 +

n1+n2∑
A=n1+1

(hn+1
AA )2 +

n∑
b=n1+n2+1

(hn+1
bb )2 +

n∑
i, j=1
i, j

(hn+1
i j )2

+

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2] −
m∑

r=n+1

(hr
12)2 +

m∑
r=n+2

hr
11hr

22.

Arranging the terms of the right hand side in the last inequality, we derive

K(π1) ≥c +
1
2
τ1 +

1
2

n1+n2∑
A=n1+1

(hn+1
AA )2 +

1
2

n∑
b=n1+n2+1

(hn+1
bb )2

+

m∑
r=n+2

hr
11hr

22 −

m∑
r=n+1

(hr
12)2 +

n∑
i, j=1
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2.
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Applying [10, Lemma 2] with the last four terms of the above inequality, we find that

K(π1) ≥ c +
1
2
τ1 +

1
2

n1+n2∑
A=n1+1

(hn+1
AA )2 +

1
2

n∑
b=n1+n2+1

(hn+1
bb )2 +

1
2

n∑
i, j=3
i, j

(hn+1
i j )2

+
1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2 +
1
2

(hr
11 + hr

22)2 +

m∑
r=n+1

n∑
j+3

((hr
1 j)

2 + (hr
2 j)

2)

=⇒ K(π1) ≥ c +
1
2
τ1 +

1
2

n1+n2∑
A=n1+1

(hn+1
AA )2 +

1
2

n∑
b=n1+n2+1

(hn+1
bb )2 +

1
2

n∑
i, j=3
i, j

(hn+1
i j )2 +

1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2,

and substituting

1
2
τ1 =τ(TxMn) − (

n1∑
a=1

hn+1
aa )2 +

1
2(n1 − 1)

(
n1∑

a=1

hn+1
aa )2 −

1
2

(
n1+n2∑

A=n1+1

hn+1
AA )2 −

1
2

(
n∑

b=n1+n2+1

hn+1
bb )2

−
∑

a

∑
A

hn+1
aa hn+1

AA −
∑

a

∑
b

hn+1
aa hn+1

bb −
∑

A

∑
b

hn+1
AA hn+1

bb − n(n − 1)c,

we get

K(π1) ≥ c + τ(TxMn) − (
n1∑

a=1

hn+1
aa )2 +

1
2(n1 − 1)

(
n1∑

a=1

hn+1
aa )2 −

1
2

(
n1+n2∑

A=n1+1

hn+1
AA )2

−
1
2

(
n∑

b=n1+n2+1

hn+1
bb )2 −

∑
a

∑
A

hn+1
aa hn+1

AA −
∑

a

∑
b

hn+1
aa hn+1

bb

−
∑

A

∑
b

hn+1
AA hn+1

bb − n(n − 1)c +
1
2

n1+n2∑
A=n1+1

(hn+1
AA )2

+
1
2

n∑
b=n1+n2+1

(hn+1
bb )2 +

1
2

n∑
i, j=3
i, j

(hn+1
i j )2 +

1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2

=⇒ K(π1) ≥ c + τ(TxMn) +
1

2(n1 − 1)
(

n1∑
a=1

hn+1
aa )2 − n(n − 1)c +

1
2

n1+n2∑
A=n1+1

(hn+1
AA )2

+
1
2

n∑
b=n1+n2+1

(hn+1
bb )2 +

1
2

n∑
i, j=3
i, j

(hn+1
i j )2 +

1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2 −
n2

2
||H||2.

Using (2.14), we have

K(π1) ≥ c +
n2∆

1 f1

f1
+

n3∆
1 f2

f2
− n2n3g(∇1(ln f1),∇1(ln f2)) + τ(TxN1) + τ(TxN2) + τ(TxN3)

+
1

2(n1 − 1)
(

n1∑
a=1

hn+1
aa )2 − n(n − 1)c +

1
2

n1+n2∑
A=n1+1

(hn+1
AA )2 +

1
2

n∑
b=n1+n2+1

(hn+1
bb )2
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+
1
2

n∑
i, j=3
i, j

(hn+1
i j )2 +

1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2 −
n2

2
||H||2

=⇒ τ(TxN1) − K(π1) ≤
n2

2
||H||2 − [c +

n2∆
1 f1

f1
+

n3∆
1 f2

f2
− n2n3g(∇1(ln f1),∇1(ln f2))

+ τ(TxN2) + τ(TxN3) +
1

2(n1 − 1)
(

n1∑
a=1

hn+1
aa )2 − n(n − 1)c +

1
2

n1+n2∑
A=n1+1

(hn+1
AA )2

+
1
2

n∑
b=n1+n2+1

(hn+1
bb )2 +

1
2

n∑
i, j=3
i, j

(hn+1
i j )2 +

1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2].

From (2.3), we have

−2τ2(TxN2) = −2τ̄2(TxN2) +
m∑

r=n+1

n1+n2∑
A,A′=n1+1

(hr
AA′)

2 −

m∑
r=n+1

(hr
(n1+1)(n1+1) + · · · + hr

(n1+n2)(n1+n2))
2

and

−2τ3(TxN3) = −2τ̄3(TxN3) +
m∑

r=n+1

n∑
b,b′=n1+n2+1

(hr
bb′)

2 −

m∑
r=n+1

(hr
(n1+n2+1)(n1+n2+1) + · · · + hr

nn)2.

So,

τ(TxN1) − K(π1) ≤
n2

2
||H||2 −

n2∆
1 f1

f1
−

n3∆
1 f2

f2
+ n2n3g(∇1(ln f1),∇1(ln f2)) + (

n2

2
−

n
2
− 1)c

− τ̄2(TxN2) − τ̄3(TxN3) −
1
2

n∑
i, j=3

(hn+2
i j )2 −

1
2

m∑
r=n+2

n∑
i, j=3

(hr
i j)

2 −
1
2

∑
A

(hn+1
AA )2

−
1
2

∑
b

(hn+1
bb )2 +

1
2

m∑
r=n+1

n1+n2∑
A,A′=n1+1

(hr
AA′)

2 +
1
2

m∑
r=n+1

n∑
b,b′=n1+n2+1

(hr
bb′)

2

=⇒ τ(TxN1) − K(π1) ≤
n2

2
||H||2 −

n2∆
1 f1

f1
−

n3∆
1 f2

f2
+ n2n3g(∇1(ln f2),∇1(ln f2))

+ (
n2

2
−

n
2
− 1)c − τ̄2(TxN2) − τ̄3(TxN3) −

1
2

n1∑
a,a′=3
a,a′

(hn+1
aa′ )2 −

1
2
× 2

n1∑
a=3

n1+n2∑
A=n1+1

(hn+1
aA )2

−
1
2
× 2

n1∑
a=3

n∑
b=n1+n2+1

(hn+1
ab )2 −

1
2
× 2

n1+n2∑
A=n1+1

n∑
b=n1+n2+1

(hn+1
Ab )2 −

1
2

m∑
r=n+2

n1∑
a,a′=3

(hr
aa′)

2

−
1
2
× 2

m∑
r=n+2

∑
a

∑
A

(hr
aA)2 −

1
2
× 2

m∑
r=n+2

∑
a

∑
b

(hr
ab)2 −

1
2
× 2

m∑
r=n+2

∑
A

∑
b

(hr
Ab)2.

Putting

n = (n1 + n2 + n3), τ̄2(TxN2) =
n2(n2 − 1)

2
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and
τ̄3(TxN3) =

n3(n3 − 1)
2

,

we have our inequality. Clearly, equalities hold if, and only if:
(i)

α1 + α2 = α3 = · · · = αn,

which implies

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

n1n1
,

µ = µ1 + µ2 = hn+1
11 + hn+1

22 .

(ii)
m∑

r=n+2

(hr
11 + hr

22)2 +

m∑
r=n+1

n∑
j=3

((hr
1 j)

2 + (hr
2 j)

2) = 0.

(iii)

(
n1∑

a=1

hn+1
aa )2 =

m∑
r=n+1

(hr
(n1+1)(n1+1) + · · · + hr

(n1+n2)(n1+n2))
2 =

m∑
r=n+1

(hr
(n1+n2+1)(n1+n2+1) + · · · + hr

nn)2.

(iv)

n1∑
a,a′=3
a,a′

(hn+1
aa′ )2 +

n1∑
a=3

n1+n2∑
A=n1+1

(hn+1
aA )2 +

n1∑
a=3

n∑
b=n1+n2+1

(hn+1
ab )2

+

n1+n2∑
A=n1+1

n∑
b=n1+n2+1

(hn+1
Ab )2 +

m∑
r=n+2

n1∑
a,a′=3

(hr
aa′)

2 +

m∑
r=n+2

n1∑
a=3

n1+n2∑
A=n1+1

(hr
aA)2

+

m∑
r=n+2

n1∑
a=3

n∑
b=n1+n2+1

(hr
ab)2 +

m∑
r=n+2

n1+n2∑
A=n1+1

n∑
b=n1+n2+1

(hr
Ab)2 = 0.

That is,

Aκn+1 =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:



µ1 hn+1
12 0 · · · 01n1

hn+1
21 µ2 0 · · · 02n1

0 0 µ · · ·
...

...
...

...
. . .

...

0(n1)(1) · · · · · · · · · µ


,



hn+1
(n1+1)(n1+1) · · · · · · hn+1

(n1+1)(n1+n2)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n1+n2)(n1+1) · · · hn+1

(n1+n2)(n1+n2)


,



hn+1
(n1+n2+1)(n1+n2+1) · · · · · · hn+1

(n1+n2+1)(n)
... · · ·

...
... · · ·

...
... · · ·

...

hn+1
(n)(n1+n2+1) · · · hn+1

(n)(n)


.
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For r ∈ {n + 2, · · · ,m}, since

hr
11 + hr

22 =

n∑
j=3

hr
1 j =

n∑
j=3

hr
2 j =

n1∑
a,a‘=3

hr
aa‘ =

∑
a

∑
A

hr
aA =
∑

a

∑
b

hr
ab =
∑

A

∑
b

hr
Ab = 0,

Aκr =


BLOCK(I) On1×n2 On1×n3

On2×n1 BLOCK(II) On2×n3

On3×n1 On3×n2 BLOCK(III)

 ,
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as



hr
11 hr

12 0 · · · 01n1

hr
21 −hr

11 0 · · · 02n1

0 0 033 · · ·
...

...
...

...
. . .

...

0(n1)(1) · · · · · · · · · 0n1n1


,



hr
(n1+1)(n1+1) · · · · · · hr

(n1+1)(n1+n2)
... · · ·

...
... · · ·

...
... · · ·

...

h(n1+n2)(n1+1)cr · · · hr
(n1+n2)(n1+n2)


,



hr
(n1+n2+1)(n1+n2+1) · · · · · · hr

(n1+n2+1)(n)
... · · ·

...
... · · ·

...
... · · ·

...

hr
(n)(n1+n2+1) · · · hr

(n)(n)


.

This completes the inequality part of (1).
If equality of (i) or (ii) or (iii) holds, Nn is mixed totally geodesic in Mm(c). Moreover, Nn is N1-

minimal, N2-minimal, and N3-minimal. Thus, Nn is a minimal warped product sub-manifold in the
Riemannian space form Mm(c). □

The above theorem provides partial answer to the Chen problem of finding a necessary condition
for the bi-warped product sub-manifold of a Riemannian space form to be minimal. The conditions are
stated in the following corollaries.

Corollary 3.1. Let
ϕ : Nn = N1 × f1 N2 × f2 N3

be an isometric immersion of a bi-warped product sub-manifold Nn into a Riemannian space form
Mm(c). Then, for each point x ∈ Nn,

δN1
n1 +

n2∆ f1

f1
+

n3∆ f2

f2
≤ n2n3g(∇(ln f1),∇(ln f2)) +

n1

2
(n1 + 2n2 + 2n3 − 1)c + n2n3c − c,

and if the equality holds, then the immersion ϕ is minimal.

Corollary 3.2. Let
ϕ : Nn = N1 × f1 N2 × f2 N3

be an isometric immersion of a bi-warped product sub-manifold Nn into a Riemannian space form
Mm(c). Then, for each point x ∈ Nn,

δN2
n2 +

n2∆ f1

f1
+

n3∆ f2

f2
≤ n2n3g(∇(ln f1),∇(ln f2)) +

n2

2
(n2 + 2n1 + 2n3 − 1)c + n1n3c − c,

and if the equality holds, then the immersion ϕ is minimal.
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Corollary 3.3. Let
ϕ : Nn = N1 × f1 N2 × f2 N3

be an isometric immersion of a bi-warped product sub-manifold Nn into a Riemannian space form
Mm(c). Then, for each point x ∈ Nn,

δN3
n3 +

n2∆ f1

f1
+

n3∆ f2

f2
≤ n2n3g(∇(ln f1),∇(ln f2)) +

n3

2
(n3 + 2n1 + 2n2 − 1)c + n1n2c − c,

and if the equality holds, then the immersion ϕ is minimal.

4. Conclusions

If the warping function is f1 = 1, then the first warped product becomes an ordinary product and
a whole Nn becomes a simply warped product sub-manifold of Riemannian space form Mm(c). So,
Theorem 3.1 gives the results of [10]. The main limitation for our article is that we only investigated
on Riemannian space forms without any additional structures on it. It should be noted that imposing
additional structures like Sasakian, Kenmotsu, etc. may extend our results.

The Chen delta invariant has applications in physics, particularly in the study of topological field
theories. In algebraic topology it measures the extent to which a loop in space fails to be the boundary
of a surface. If a loop is the boundary of a surface, then the Chen delta invariant is zero [11]. We
investigated the effect of warping functions on the Chen’s delta invariant for bi-warped product sub-
manifolds on Riemannian space forms. So finding the Chen inequality for various space forms with
additional structures will be an interesting area to discover.
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