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1. Introduction

The theory of submanifolds has evolved naturally from the classical study of curves and surfaces
in Euclidean space, employing the tools of differential calculus. The extensive applications of
extrinsic and intrinsic Riemannian invariants of some sub-manifold, span across various scientific
disciplines, particularly within the realm of general relativity. The main motivation for such a study
lies in establishing the relationships between these invariants.

In the work [1], Chen demonstrated an inequality that involves these invariants for sub-manifolds
within Riemannian space forms. Building upon Nash’s theorem, researchers have derived geometric
constraints, known as intrinsic and extrinsic invariants, for warped products in diverse space forms
(see [2—-4]). Of particular interest is Chen’s first invariant, a significant intrinsic measure in our
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inequality, which was defined in [2].
Oy (x) = (T M™) —inf{K(n) :mr Cc T M",x € M",dim n = 2}, (1.1)

where K(r) is the sectional curvature of the plane section x, (7. M™) is the scalar curvature of 7, M".
Bishop and O’Neill [5] introduced the warped product of Riemannian manifolds to generate a broad
class of complete manifolds characterized by negative curvature.
In [6], Chen and Dillen introduced the notion of multiply warped product manifolds and
sub-manifolds as follows: Let My, ..., M, be Riemannian manifolds and let

M=M; X---X M,
be the Cartesian product of M, ..., M. For each i, denote by
oM — M,

the canonical projection of M onto M;. When there is no confusion, we identify M; with a horizontal
lift of M; in M via x;. If
foseoos it My > RT

are positive real-valued functions, then

k
g(Ly, Ly) := g(my.Ly, my.Ly) + Z(fi om)’ g(miLy, L)
i=2
defines a Riemannian metric g on M, called a multiply warped product metric, for any vector fields
Ly,L, on M and m;. denotes the push tangential map. The product manifold M endowed with this
metric is denoted by
M, X, My X --- X M.

In this case, the warping functions f, ..., f; are nonconstant functions on M;. It is clear that if all
fi,..., fi are constant except one function f; such that 2 < j < n, then M is a single warped product
manifold. Also, if any two functions are not constant and all others are constant, then multiply warped
product reduces to bi-warped product, which we discuss in this paper. Multiply warped products play
crucial roles in both physics and differential geometry, particularly in the realm of relativity theory.
Standard spacetime models such as Robertson-Walker and Schwarzschild are examples of warped
products. Furthermore, elementary models describing the regions around stars and black holes often
align with the warped product framework [7]. Additionally, many solutions to Einstein’s field equations
find expression in terms of warped products. [8].

In a study by [9], an enhanced form of the initial Chen inequality for Legendrian sub-manifolds
within Sasakian space forms was introduced. Furthermore, the authors in [10] presented the first Chen
inequality for general warped product sub-manifolds in a Riemannian space form. Similarly, in [11],
Alghamdi et al. established a comparable inequality for warped product Legendrian sub-manifolds
within Kenmotsu space forms. Additionally, in [12], Li et al. set forth a similar inequality for warped
product sub-manifolds within Q7 x R. Some applications of inequalities in other fields can be found
on [13].

Building upon the research mentioned above, this paper introduces the first Chen inequality for
bi-warped product sub-manifolds within Riemannian space forms. Additionally, we delve into the
examination of the equality case and provide insights into the applications of these inequalities within
the context of this study.
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2. Preliminaries

In this section, we present the foundational mathematical framework required to establish the first
Chen inequality for bi-warped product sub-manifolds in Riemannian space forms.

Consider the n-dimensional sub-manifold N* of a Riemannian manifold (M™, g) of dimension m.
Let V denote the Levi-Civita connection on M™, and let V be the induced connection on N”. The Gauss
and Weingarten formulas, which connect the geometry of the sub-manifold to that of the ambient
manifold, are given as follows:

Vi Ly =V Ly+h(Ly, L) (2.1)
and
lev = —Ale + V}:IU, (22)

where L;,L, € TN",vu € T*N", and h,V*+,A, denotes the second fundamental form, normal
connection, and the shape operator, respectively.
The well-known equation of Gauss is given by

R(Ly, Ly, L3, Ly) = R(Ly, Ly, Ly, Ly) + g(h(Ly, Ly), h(Ly, L3)) — g(h(Ly, L3), h(L,, Ly)), (2.3)

for any L, L, L3, Ly € T(T M™), where R and R are the curvature tensors of M™ and N, respectively.
If we select two linearly independent tangent vectors L, L, € T M, the sectional curvature of the 2-
plane 7 spanned by L; and L, can be expressed in terms of the Riemannian curvature tensor R as
follows:

g(R(Ll, L,)L,, L)
g(Ly, L1)g(Lo, Ly) — (8(Ly, Ly))*

If the 2-plane 7 is spanned by orthogonal unit vectors L; and L, from the tangent space 7. M™, where
x € M™, the previous definition can be expressed as:

I_((ﬂ') = I_((Ll ALy =

(2.4)

K(m) = Kyn(Li A Lp) = g(R(Ly, Lo)La, Ly). (2.5)

It is important to note that the sectional curvature is independent of the choice of orthonormal basis for
n and fully characterizes the Riemannian curvature tensor R. Furthermore, if K(r) is constant for all
planes 7 in 7M™ and for all points x € M™, specifically

K(m) =c,

we refer to M"™(c) as a real space form.
Here, then we have:

R(Ly, Ly)Ls = c(g(La, L3)Ly — g(Ly, L3)Ly), (2.6)
for any Ly, Ly, Ly € ['(TM™(c)).
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Scalar curvature for M™ is defined in terms of the sectional curvature as:

WM™ = Y Ky

1<i<j<m
_ (2.7)
= 2T M) = ) Ky
1<i#j<m
An interesting invariant for some manifold is the Chen’s first invariant, which is defined as:
Opm(x) = H(T M™) —inf{K(r) : mc T M",x € M",dim 7 = 2}. (2.8)

Whenever we consider the above geometric objects such as the sectional curvature, scalar curvature,
Chen’s first invariant, etc., for the sub-manifold N”, we simply denote them as K, T and 9, respectively.
In particular, the scalar curvature 7(x) of N at x is identical with the scalar curvature of the tangent
space T, ,N" of N" at x, that is,
7(x) = (T N").

Bi-warped product manifolds are special classes of manifolds. Let us consider,
N" = N, X# N, X N3

as the bi-warped product sub-manifold of the Riemannian space form M™(c). We choose an
orthonormal basis

{%1’ U s X X1 s Xt Xnj+mp+ls »%n}
of T.N", where
{%1, e ’%nl}’ {%n1+l’ e a%n|+n2}’ {%n1+n2+1a e ’%n}
are orthonormal bases of Ny, N,, and N3, respectively. Let {x,;,,- - ,%,} be an orthonormal basis of

TIN".
The coefficients of the second fundamental form /4 of N with respect to the above local frame are
denoted as

h:j = g(h(%H %])’ %r)a (2'9)
where i, j € {1,--- ,n}and r € {n + 1,--- ,m}. The mean curvature vector H is defined with respect to
the same local frame above, as

1 n
H=- h is”i). 210
. Z] (i, %) (2.10)

We say that N is a minimal sub-manifold of M"™ if H vanishes identically.
If f is a smooth function on M™, then its gradient V f and Laplacian A f are defined as

g(Vf, X) = Xf,

N 2.11
Af = ) (Vu)f = #tif). e
i=1
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So from Eqgs (2.3), (2.4), and (2.9), we get

K(xi Anj) = K(oe; Aoej) + Z (g(hir, W) — g(hijoer, hijot,))
r=n+1

(2.12)
= KOt A = KOt Ay + Z (' = (),

ity
r=n+1

where K(x; Ax ;) denotes the sectional curvature of the 2-plane spanned by x; and x; at x in the ambient
manifold M"™(c).
Taking the summation over the orthonormal frame of the tangent space of N in (2.12), we have

27(TN") = 22(T.N") + n*||H|* - ||AlI*. (2.13)
The sectional curvature and warping functions are related by the following formulas [14]:
() B0y THC ) Ko = 228
(i) ZoLy Do empet Kav = 252

(i) X302 Xy eme1 Kan = 77283V f3, V1)
So, we have

(TN = > K

1<i<j<n
n  ni+np ni+ny
IDITIES WD YRV I YD W
a=1 A=n;+1 a=1 b=ni+ny+1 A=n1+1 b=n;+ny+1
+ ), Kwt ), Kw+ ) K 219
1<a<a‘<m n+1<A<A‘<ni+ny ni+ny+1<b<b‘<n
1 1
mA fi  mAf, 1 1
= 7(TN") = 7 + 7 —nmonag(Vi(In f1), Vi(In f2))
1 2

+ T(TXN]) + T(TXNZ) + T(TXN_O,).
The following lemma will also be needed to prove our main result.

Lemma 2.1. [10] Let a1, s, ,@,,8 be (n + 1)(n > 2) real numbers such that

(X @)’ = (= )X, of +B),
then 2a @, > B, with equality holds if, and only if,

a1 +a) =@z = = Q.
3. First chen inequality for bi-warped product sub-manifolds of a Riemannian space forms

Theorem 3.1. Let
o : N' = N, Xf N> X, N; — Mm(c)
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be an isometric immersion of a bi-warped product sub-manifold N" into a Riemannian space form
M"(c). Then, for each point x € N" and each plane section

n; CTN", n;=dimN;>?2

fori=1,2,3, we have:
(1) If m; € T N, then

mAfi mAf

oo,
oym <— -
NS || H| 7 7

ny
+ E(nl +2n, + 2n3 — 1)c + nonszc — c.

+ non3g(V(In f1), V(In f3))

(2) If 7y € TN, then

A f _ nAf>
S b

np
+ E(nz +2ny + 2n3 — 1)c + nynzc — c.

2
n
Sy SEIIHIIZ —~ +nan3g(V(In f1), V(In f2))

3) Ifﬂ'3 C T\ Ns, then

mAfi n3Af>

2
n 2
<=|H|" -

-2 h h

ns
+ §(n3 +2n1 + 2ny — 1)c + nynyc — c.

+nyn38(V(ln f1), V(In f))

Onym

the equality holds at x € N" if, and only if, there exist an orthonormal basis {x,,--- ,x,} of T\N" and
an orthonormal basis {#,1,- -+ ,%,} of T N" such that:

(a) Ty = spanfx; .%o}, 7y = Span{sn, 41, ), T3 = SPA{Kpy1ny 1,y 4my42}-

(b) The shape operator takes the following forms, where O,,,, denoting the zero matrix of order m X n:
[i] If Ty € T Ny, then for r = n+ 1, we have

BLOCK(I) Oy, 5tny Oy, xns
A%n+l = Oannl BLOCK(II) Oanl’l3 s
Onyn, Ouyxny, ~ BLOCK(III)

where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

n+1 n+1 n+1 n+l
Uy h’l’gl 0 - Oy h(n1+1)(n1+1) R h(n]+1)(n1+nz) h(n1+n2+1)(n1+nz+1) oo h(n1+n2+1)(n)
Wt o 0 e Oy, : : : :
0 o u - 1, : ... : , : ... : ,
0 n+1 n+l1 n+1 n+l
(n1)(1) H h(m+n2)(m+l) h(n1+n2)(n1+n2) h(’l)(m+nz+l) h(”)(”)
where

po= g+ = R+ R
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Also, forre{n+2,--- ,mj,

BLOCK(I) O, 5ny Opyxns
A, =| Ouwx,  BLOCK(II) O\yxns ,
Oy Orny BLOCK(III)

where BLOCK(I), BLOCK(II) and BLOCK(III) are given, respectively, as

r r r
h', hy, 0 - 0Oy h(n1+l)(n1+1) T h(n1+l)(n1+n2) (n+m+ D +mp+)
B : . . .
h21 _hll O tte OZH[ . .
e ... ... r r
O(n])(l) Omnl h(n]+n2)(,,]+1)cr h(n1+n2)(n1+n2) h(n)(n1+n2+l)

[ii]] If my € TN, then for r = n + 1, we have

BLOCK(I) Oy, Opisons
Ayt =| Oy, BLOCK(I) Oy |+
Onyxn, Oy xny BLOCK(I1I)

where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

n+l | n+1 +1 n+1
hii h Hi o 0

Dn1) h(n, +1)(n+2) Oty +1)+m2)

1
G 2y 1) Ha Otny+2)m1+1)
+1 +1 e e e +1
oy Moy \Qeemen H (m(m+ma+1)
where

_ _ gn+l n+1
M=y o = gy P 2y 42)-
Also forre{n+2,--- ,m},

BLOCK(I) O, 5ny Ohnyxns
A%r = 0n2><m BLOCK(II) 0n2><l’l3 ’
Opsn Orany BLOCK(II])

where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as

r e .. r r . e
h, B ) (Hwsvmsty  Plngsioms2) 0 o Oty ) (Mot i st
. . r r
st s vmn 0 Ot +2)0n1-n2)

, 0 0 Oy +3)0m+3) *+° : ,

oy Oty 4211 +12) h

Ry Ot 4nzycnr+1) () +n2+1)

[iii] If m35 C T«N3, then for r = n + 1, we have

BLOCK(I) Oy, xn, Oty
A, = Oyxn, BLOCK(I1) Opysans ,
Oy, Opssany BLOCK(11I)

AIMS Mathematics

-
h(”l +ny+1)(n)

h(n1+n2+1)(nl+nz+1) T

,
h(n)(n)

hn+l

(n1+n2+1)(n)

n+1

(n)(n)

hr

(n+na+1)(n)

.
h(n)(n)
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where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

s DR /88| n+1 AU T RS 1
hll h(l)(nl) h(n1+1)(n1+l) h(n1+l)(n1+rl2) M1 hz: +a+1)(ny +12+2) 0 O(n1+n2+1)(n)
. . hn+1 . 0
: (m+m+2)(n +na+1) Ha (11 +12+2)(n)
, : e : , 0 0 uooe : ,
+1 +1 +1 +1 e e .
Ry M L R (M Otuycn s 1) H
where

— —_ +1 +1
=1+ 12 = R o ems 1) Pyt 2y +ms2)-

Forre{n+2,---,mj,

BLOCK(I) Oy xny Oy xns
A, = O 5, BLOCK(1]) Onysans ,
Oy, Opyxny BLOCK(11I)

where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as

r DY e r r e DY r
his h“)("l) h(”l”)("l*” h("1+1)("l+"2) h€n1+n2+l)(n|+nz+l) h€nl+n2+l)(n|+n2+2) 0 o Oamen
. . . . , .
(m+ma+2)(np+na+1) Hng+na+ 1) (g +na+1) 0 o Oy
, 0 0 Oy +12+3)(1141243)
r r r e e e
h(nl)(l) h(nl)(n]) h(’ll+'l2)(’l|+|)cr e h(n|+n2)(n]+nz) 0(")@1“72”) On

(4) If equality of (i) or (ii) or (iii) holds, then

Ny Xj, Ny Xp, N3
is mixed totally geodesic in M™(c). Moreover,

Ny X5 Ny Xy, N3
is both Dy, D>, and Ds-minimal. Thus,

Ni X5 Ny Xy, N3
is a minimal bi-warped product sub-manifold of M"(c).

Proof. For simplicity we are providing the complete proof of (1). The other two parts viz., (2) and (3)
can be proved in a similar way together with the equality cases.

We start our proof by considering a point x € N" and let m; C TN, be a 2-plane. We choose an
orthonormal basis

{%1’ U s Xy X+l s Xt Xnj+mp+ls »%n}
of T.N", where
{%l’ e ’%nl}’ {%n1+1’ e ,%n1+n2}a {%n1+n2+1’ ) %n}
are orthonormal bases of Ny, N,, and N3, respectively, and {x,.,- - ,%,} is an orthonormal basis of
TN". First, put
mry = span{x;, %>}

AIMS Mathematics Volume 10, Issue 4, 9917-9932.
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such that the normal vector %,,, is in the direction of the mean curvature vector H. We have from (2.3)
and (2.6)

n?||H|* = 27(T.M") + |h|* = n(n — 1,

which gives

np ni+ny n
O W =20(T M) + P = n(n = De = ( Y- Hgh? = > hgh?
a=1 A=n;+1 b=ni+ny+1
ni ni+ny ni n np+ny
DN A ERD YN A eI Z R,
a=1 A=n1+1 a=1 b=ni+ny+1 A=n1+1 b=nj+ny+1
Assume
ny+ny n
T =20(T M)~ h”” (=0 > myy
A= n1+1 b= ny+na+1
_zzzhn+lhn+l 222h11+1hn+1 2ZZhn+lhn+l _n(n_ l)C
Thus,
(}’ll _ 1) _ 1 ni np+ny
On = Dy = (n = D[20TM") = e O Hi Y = (3 1Y
a=1 A=n;+1
—( Z hgzl) ) Z Z hn+lhn+1 o) Z Z hn+1hn+1
b= n1+n2+1
-2 Z Z R — n(n — l)c]
nip+ny

= (m - Dy = (m - D2(T, M”)—(Zh"“ —( ), Y

a=1 A=ni+1

—( Z hzzl) _9 Z Z hn+1hn+1 ) Z Z hn+1hn+1

b= ni+ny+1
—2 Z Z KA — n(n = 1)c] - (Z 2

= (= D1y = (m = DI-NAIP - (Z 'y

a=1

= (Z Hh? = (ny = DIty + (1Al
a=1

— S = - Y e S Sy
a=1

i,j=1 r=n+2i,j=1
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ny+ny

— (Zhn+1 = (n _1) T +Z(hn+l) + Z (hn ) n Z (hn+1

A= n1+1 b= ny+ny+1
n+152 r\2
P Y Y]
i,j=1 r=n+2 i,j=1
(£}
From Lemma 2.1 with
n+1
hau ’
ny+ny
[T1+Z(hn+l) + Z (hn ) + Z (hn+1
A=ni+1 b=n1+ny+1
m n
1,2 2
Y Y D
i,j=1 r=n+2i,j=1
(£

we have

ni+ny

n+1 n+l [T1 +Z(hn+1) + Z (hn+l) " Z (hn+l) +i(h?j+1)2+ Zm: Zn:(h;j)z]

A=n1+1 b=ni+ny+1 i,j=1 r=n+2i,j=1
i#j

Assume
T =<X1, %y > .

Hence,

K(m) =c+ Y (k5 = (,)%)

r=n+1
= K(m)=c+ R mgt+ > Wb, = > ()
r=n+2 r=n+1
ny+ny
— K(m)2c+= [Tl U+ Z (> +Z(h”+‘
A= n1+1 b= ni+ny+1
z:#j
£ DHY = DT Y
r=n+2i,j=1 r=n+1 r=n+2
Arranging the terms of the right hand side in the last inequality, we derive
1 ni+ny n
K(m) zc+ 511+ 3 Z (W H? + - Z (h'y?
A ny+1 b ni+na+1
+ Z(hqz) +Z(h”“ Z Z(h
r=n+2 r=n+1 r=n+2i,j=1
t#]
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Applying [10, Lemma 2] with the last four terms of the above inequality, we find that

nip+ny
K@)z c+ 7'1+— D h + Z (HE)? + 22(}{’“
A n+1 b ni+ny+1 i,j=3
i#j
+ - Z Z(h’) + (h F T+ ()
r=n+2i,j=3 r=n+1 j+3

ni+ny

— K(m)>c+ 171 t5 D, gy +— Z () + ZZ(h”“ Z Z(h

A ny+1 b ni+na+1 i,j=3 r=n+2i,j=3
i#j
and substituting
1 l np ny+ny 1 n
n n+1 n+1 n+152 n+1,\2
ST =T(TM") - (Zh o _1)<Z SO HEAY =5 D Y
A=ni+1 b=ni+ny+1
- Z Z s = Y R = Y G = (= e,
a b A b
we get
ni+ny
K@) 2 c+(T, M")—(Zh’”‘ _1)(2 h)? ——( D,y
A:n1+l
_ _( Z hn;l 2 Z Zhglhrl Z Zhn+lhn+l
b n1+n2+1 a A
ny+ny
- Z Z KR = n(n - De + = Z ()
A n1+1
1 C n+1 n+1 r
+§ Z )+2Z(h 2ZZ(h
b=n1+ny+1 i,j=3 r=n+2i,j=3
i#]j
ny ni+np
= K(m) 2+ 7(T.M") + 50— (Z 2 ~ e+~ Z ()
) A ny+1
2
n+l 12 ry2 1 2
+— Z (hjy Z(h 3 Z Z(h,,) - Sl
b ny+np+1 z]— r=n+21i,j=3
i#]j
Using (2.14), we have
Al Al
K(m) 2 c+ 2 7 hoym - L ponsg(9 0 ), V(0 f3)) + 7(TNy) + 7(T,Na) + (TNy)
1
. 1 np+ny X 1 n X
h’“r —Dec+ = W)™+ = h’“r
2(1_1)2 —nn=Detz DG +5 0 3
A=ni+1 b=ni+ny+1
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Z(h"“) +3 Z Z(h %annz

tJ— r=n+2i,j=3
i#j

1 1
AN A nonsg(V'(In f,), V' (In f5))
fi f2

+ T(TNy) + 7(T.N3) + m(z WY = n(n = De + = Z ()2

2
n
= 7(T.N)) - K(m) < —||H||2 —[c+

A n1+1
n+1 n+l
Z (') + 5 Z(h >+2ZZ<h
b ny+ny+1 tJ 3 r=n+2i,j=3
i#j
From (2.3), we have
ny+ny
—275(TN2) = =272(TN2) + Z Z (T Z Bty T+ Bl ey o)’
r=n+1 A,A’=n;+1 r=n+1
and
—214(TN3) = —274(T,N3) + Z Z () - Z Bl o o emasy 7+ )P,
r=n+1b,b’=n;+ny+1 r=n+1
So,
n? oo mAlfi mA'f n n
(T,Ny) — K(my) < EIIHII ST T A +non3g(V'(In f)), V! (lnfz))+(— - -Dc
1
_ n+2 r n+1
— 2T Na) = T5(T.N3) — 5 Z(h -3 Z Z(h y-- Z(hAA y
lj 3 r=n+2i,j=3
1 ni+ny
5 D'y +— Z > Ky +2 Z Z ()
b r= n+1AA’=n1+1 r=n+1b,b'=n;+ny+1
nyA! n;A!
— (TN - K = D - P20 R 9 n £, 9 n )
h fz
2 n 1 ni niy+ny
+(— =5 = De=ToT.Ny) = T5(TuN;) = 5 Z (W =5 %2 ) (Y
aa =3 a=3 A=n;+1
atd
1 n+1 Nl n+l1
—Exzz Z (5> ——><2 Z Z () — < Z Z(h
a=3 b=ni+np+1 A=n1+1 b=n;+ny+1 r=n+2 a,a’=3
——><2 Z ZZ(h )2 ——><2 Z ZZ(h )2 ——><2 Z ZZ(h
r=n+2 a r=n+2 a r=n+2
Putting
m(ny — 1)

n=m +ny+n3), To(TNy)= 7
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and |

73(T,N;) = ’13(’13—_)’

2
we have our inequality. Clearly, equalities hold if, and only if:
(@)

a1 +a) =Q@3 =+ = O,

which implies
hn+l + hn+l hn+l _ hn+l
11 niny?

W=+ = hn+1 + hn+1.
(ii)

P+ (B + (5pH =0

r=n+1 j=3

i (hyy +

r=n+2

(111)

m
Z Bl i+ F My nyngon)”

r=n+1

Z hn+1

r=n+1

(iv)

ni ni nip+ny
n+1\2 n+1
2 (haa’ ) + 2 E (huA
a,a’ =3 a=3 A=n;+1
azd
ny+ny m ni m ni ny+ny

>y Z g+ D0 D W+ D0 ) ) ()

A=ni+1 b=ni+ny+1 r=n+2 a,a’=3 r=n+2 a=3 A=n;+1

)2 + i i (hzz—l)Z

a=3 b=ni+ny+1

m ni+ny

NP ITETS W W WA

r=n+2 a=3 b=n;+ny+1 r=n+2 A=n1+1 b=n;+ny+1

That is,

BLOCK(I)
Oann1
0n3><m

Onl Xny
BLOCK(II)

0n3 Xny

0n1 Xn3

Ol’lz Xn3 ’

BLOCK(III)

An+l T

where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as follows:

n+1 . n+l n+1 .
wo W3t 0 Otn, h(n1+1)(n1+l) Moy 1y 1) (ni+na+ D)(ny 42 +1)
W w0 024, : :
0 o u - i, : . : ,
Oyny u n+1 L gt ntl

(n1+n2)(ny+1) (n1+n2)(ny+n2) (m)(n1+nz2+1)

AIMS Mathematics

m
— r
= Z (M my+ 1y sy

+h )2

n+l

(ny+nz+1)(n)

n+1
h(n)(n)
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Forre{n+2,---,m}, since
n n ni
Ry hyy= Y W= > = 3 W= >N W= >N H, =) 3 h, =0,
Jj=3 Jj=3 a,a‘=3 a A a b A b
BLOCK(I) 0}’[] Xny Onl Xn3
A, = O, 5tn, BLOCK(I) Opnysans ,
Oy, Opyxny BLOCK(II)
where BLOCK(I), BLOCK(II), and BLOCK(III) are given, respectively, as
h', hy, 0 - Oy h(rn]+1)(n1+1) oot h(rn1+1)(n,+n2) h(rn]+nz+1)(n1+n2+1) oot h(rn]+n2+1)(n)
hy  =hyy 0 - Oy : : : :
0 0 O3 - R : e : ,
Owpay = Oun s emym+ner - hgn1+nz)(n1+nz) hzn)(n]+nz+1) h(rn)(n)

This completes the inequality part of (1).

If equality of (i) or (ii) or (iii) holds, N" is mixed totally geodesic in M™(c). Moreover, N" is N;-
minimal, N-minimal, and N;-minimal. Thus, N" is a minimal warped product sub-manifold in the
Riemannian space form M"(c). O

The above theorem provides partial answer to the Chen problem of finding a necessary condition
for the bi-warped product sub-manifold of a Riemannian space form to be minimal. The conditions are
stated in the following corollaries.

Corollary 3.1. Let
¢ N = N, X N> X N;

be an isometric immersion of a bi-warped product sub-manifold N" into a Riemannian space form
M"(c). Then, for each point x € N",

mAfi + mAf
f

and if the equality holds, then the immersion ¢ is minimal.

(SNqu +

< nonsg(V(In £), V(I f5)) + %(n1 + 2, + 203 — De + monsc — ¢,

Corollary 3.2. Let
o N" = N, X# N, X N;

be an isometric immersion of a bi-warped product sub-manifold N" into a Riemannian space form
M"(c). Then, for each point x € N",

nzAfl + H3Af2

Nil f

and if the equality holds, then the immersion ¢ is minimal.

Onym +

< mn3g(V(n f1), V(n f,)) + %(nz +2n; +2n3 — 1)c + ninzc —c,

AIMS Mathematics Volume 10, Issue 4, 9917-9932.



9931

Corollary 3.3. Let
¢ :N"=N; X5 Ny Xz, N3
be an isometric immersion of a bi-warped product sub-manifold N" into a Riemannian space form
M"(c). Then, for each point x € N",
mAfi + A f
h

and if the equality holds, then the immersion ¢ is minimal.

Sy + < nonzg(V(In f3), V(In f5)) + %(m 420, + 2y — De + mme — ¢,

4. Conclusions

If the warping function is f; = 1, then the first warped product becomes an ordinary product and
a whole N" becomes a simply warped product sub-manifold of Riemannian space form M"(c). So,
Theorem 3.1 gives the results of [10]. The main limitation for our article is that we only investigated
on Riemannian space forms without any additional structures on it. It should be noted that imposing
additional structures like Sasakian, Kenmotsu, etc. may extend our results.

The Chen delta invariant has applications in physics, particularly in the study of topological field
theories. In algebraic topology it measures the extent to which a loop in space fails to be the boundary
of a surface. If a loop is the boundary of a surface, then the Chen delta invariant is zero [11]. We
investigated the effect of warping functions on the Chen’s delta invariant for bi-warped product sub-
manifolds on Riemannian space forms. So finding the Chen inequality for various space forms with
additional structures will be an interesting area to discover.
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