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1. Introduction

Consider the jump-diffusion process {L(¢), > 0} as follows:
M(@)
—L(t) = ct+ 0B + )V, (1.1)
i=1
where constant ¢ > 0 is the drift and o > 0 is volatility for the diffusion term, {M(7),t > 0} is a Poisson
process with rate k > 0, and {B(¢),t > 0} is a standard Wiener process with B(0) = 0. The random
variables {Y;,7 > 1} are independent and identically distributed (i.i.d.) with probability density function
(p.d.f.) fy(y). The processes {B(t)}, {M(?)}, and {Y;} are assumed to be independent.
The process {L(¢),t > 0} is a special case of Lévy processes. The corresponding exit problems for
this kind of process are widely used in finance and actuarial science. In the theory of mathematical
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finance, see for example, Kou [1], Kou and Wang [2], Gao and Yin [3], Alili and Kyprianou [4], Cai
and Kou [5]. In the setting of risk theory, Gerber [6] first proposed the perturbed risk process to model
the investment of the surplus. Since then, such risk models have received a lot of attentions, see for
example, (Dufresne and Gerber [7], Tsai [8, 9], Zhang and Yang [10], Adékambi and Takouda [11]).
However, Ait-Sahalia and Jacod [12] proved that the normality behavior was insufficient to describe
the leptokurtic property through empirical study. Chi [13] extended the classical risk process perturbed
by diffusion to include the jumps. By using the Wiener-Hopf factorization method, they gave the
analytical expression for the EDP function. Chi and Lin [14] further investigated the jump-diffusion
risk model and the EDP function under the threshold dividend strategy. Yin et al. [15] studied the
hyper-exponential jump-diffusion processes, and the explicit expressions of the dividend formulae are
investigated under different strategies. Yin et al. [16] further considered the mixed-exponential jump-
diffusion processes and gave some applications in finance and insurance. Zhang et al. [17] proposed
a dependent risk model perturbed by a jump-diffusion process, in which dependence between the
interclaim time and claim amounts is determined by some bivariate distribution. We remark that the
risk models with different dependent structures have attracted more and more attentions in recent years,
see for example, (Boudreault, et al. [18], Chadjiconstantinidis and Vrontos [19], Xie and Zou [20]).

The aim of the present paper is two-fold. First, motivated by Zhang et al. [17], we study the EDP
functions for a dependent risk model perturbed by mixed-exponential jump-diffusion process, in which
the claim amounts and claim inter-arrival times are dependent through FGM copula. Second, we obtain
analytical expressions for the Laplace transforms and defective renewal equations satisfied by the EDP
functions.

Consider the surplus process {U(¢),t > 0} for an insurance company given by

N()

U@ =u-Lt)- ) X,
i=1

where u > 0 is initial surplus and L(¢) is defined by (1.1). {N(¢#),¢ > 0} is a Poisson process with rate
A > 0, and interclaim times {W;,i > 1} are identically distributed as the canonical random variable
W with p.d.f. fy and cumulative distribution function (c.d.f.) Fy. The claim amounts {X;,i > 1} are
i.i.d. positive random variables with p.d.f. fy, c.d.f. Fyx. Suppose that {L(¢),t > 0} is independent of
{N(t),t > 0} and {X;,i > 1}.

The sequence {(W;, X;),i > 1} is assumed to be i.i.d. and distributed like a canonical random vector
(W, X). However, the dependence structure between {W;,i > 1} and {X;, i > 1} through the FGM copula.
More precisely, the joint p.d.f. fyx of (W, X) has the following form

Jwx(t, %) = fx(x) fw(t) + 0fx(0) fw (@1 = 2Fx(0))(1 = 2Fw(2)), (1, x) € R* X R,

where —1 < 6 < 1. The readers are referred to Chadjiconstantinidis and Vrontos [19] for more details
on the FGM copula. It is easy to see that fxw(x,?) can be further rewritten as

fwx(t, x) = 2e™ fx(x) + 022" — de™)hy(x), (1.2)

where hy(x) = (1 = 2Fx(x)) fx(x).
Furthermore, the jumps {Y;} are assumed to follow mixed-exponentially distribution, that is,

Jr(y) = pu Z pinie” o0y + qa Z 966”1, <o),

i=1 j=1
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where p, 2 0,q, = 1-p,, X2 pi= 1,219 =1,0<mp <m < <np,and0 <6 <6, <--- <0,
I(4) is the indicator function of the event A.

Let 7 = inf>of{t, U(¥) < 0} be the time of ruin, where 7 = oo if ruin does not occur in finite time. To
ensure that ruin will not occur almost surely, the following safety loading condition is needed, that is,

m

, LI
C+K(m2%+qdz H—_J)>/1EX. (1.3)

i=1 1! i=1

In this article, we aim to evaluate the EDP function proposed by Gerber and Shiu [21]. For 6 > 0,
the EDP function is defined by

¢(u) = Ele”w(U(1=),] UT) Dr<eo) | U(0) = ul,

where U(7—) is the surplus prior to ruin, | U(7) | is the deficit at ruin, and w(x, y) is the penalty function
for x,y > 0. From practical perspectives, He et al. [22] presented comprehensive comments on the
EDP function in the existing actuarial literature.

Note that ruin can be caused by either a claim or the jump-diffusion process (1.1). Thus, the EDP
function can be decomposed as

pu) = ¢ (u) + ¢o(u),

where
¢(u) = E[e " w(U(T-),| UT) Dir<covm=o) | U0) = ul, (1.4)

¢:(u) = E[e"w(U(1-),| UT) Dir<covmy<0y | U0) = u]. (L.5)

Without loss of generality, it is supposed that w(0,0) = 1.

The rest of the paper is organized as follows. Section 2 gives analytical expression for a g-potential
measure related to the jump-diffusion process. In Section 3, we obtain some integral expressions
and the Laplace transforms of the EDP functions. The defective renewal equations are obtained in
Section 4. Section 5 gives explicit expressions when the individual claim amounts follow exponential
distributions, and a numerical example is also provided. Finally, some discussions are made in
Section 6.

2. Some preliminaries

Unless otherwise stated, we add a hat above a letter to indicate its Laplace transform.

Define L(f) = Supy<,<; L(s). Let e, follow an exponential distribution with parameter g and ey = co.
For ¢ > 0, the Wiener-Hopf factorization implies that L(e,) and L(e,) — L(e,), g > 0 are independent
and infinitely divisible. Therefore, we have

q

Elexp(=sL{egDElexp(=s{Lie,) = LieD] = Elexp(=sLep)] = —— ==

2.1)

where

2 N pii Ly 9,6,
_0-_ 2 DPilli J7J
G(s) = > s +cs+/<(pu .:El ni—s+Qd E . 1).

1

AIMS Mathematics Volume 10, Issue 4, 9882-9899.



9885

For g > 0, the equation G(s) = g has exactly m + 1 positive roots = 5, —B24,"** » —Bm+1gand n + 1
negative roots —yi 4, —¥24,* "+ » —Vn+1,4 Satisfying

0<—Big<m<—Prg < <Nn <Pty <™,

O<y1,q<91<72,q<---<9n<)/n+l’q<oo,

see Yin et al. [16] for more details. Then, (2.1) can be rewritten as

g ANL@= 9116 +9)

J-a($)frg(s) = -G(s) 1™ (s + ;. 7) H"+1(S + 7’161)

(2.2)

where f, , and f_, are the p.d.f. of L(e,) and L(e,) — L(e,), respectively.
Since E[exp(—sL(e,))] and E[ exp ( — s(L(e,) — L(e,)))] are analytic for Re(s) > 0 and Re(s) < 0,
then by (2.2) and partial fraction we can obtain

m+1 n+1
A (1+’j’q
" E E _— 2.3
Jals) = +,81q Foals) = s+, (2:3)

wherea_;, (i=1,2,--- ,m+1),a,;,(j=1,2,--- ,n+ 1) are some constants.
Inverting the Laplace transforms in (2.3) gives us

m+1
Fra@) == a_iqgexp(—Bigx), x <0, 2.4)
i=1
n+1
Frg@®) = D @ jgexp(=y;4x), x > 0. (2.5)
j=1

Let 7, = inf (¢ > 0: L(¢) > u) be the first time when L(¢) cross upwards u«. In particular, by Yin
et al. [16] we have

n+1

Ele™™; L(t,) = u] = Z BjAjexp(—y,qu), 2.6)

=

where

Yi
MaO-% e
j n+1 Yiq A] = n+1
[Ti2 1 (1 m) [Ti2 1k¢ﬂ’kq

For g > 0, we define a g-potential measure as follows:

R9(u; dx) = f e "P(u— L(t) € dx, T, > f)dt. 2.7)
0
By (23) of Zhang et al. [17], we have

1
ROwdn =+ [ Foa -t = y = X)dydx. 2.8)
q ye[OV(u—x),u]
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For 0 < x < u, by submitting (2.4) and (2.5) into (2.8) and some straightforward calculations, we
obtain

lm+1n+1 Ao i e
RO(u;dx) = = 3 3" 228 fexp(—y, i+ B, 4X) = eXp(— (1t = X))1dx. 2.9)
ji=1 =1 Yirq _lBj'l,fI

Analogously, for x > u, we get
m+1 n+l

RO (u; dx) = Z Z e I ek p(—y o gtt + By gX) — EXP(—By (i — X)Idx.  (2.10)

Tinm=aY ~PBia
3. Laplace transforms for the EDP functions

3.1. Laplace transform for ¢ (u)

By conditioning on whether bankruptcy occurred by jump-diffusion process before the first claim,
we have

¢ () = fo j; El[e™ (U (=), [U@)e<)|U(0) = ul finx (2, x)dedx

. f f OBt = L) = Dty cwwr e it )i
0 0
I] (l/l) + Iz(l/l)

First, we deal with 7,(u). It is apparent that

1 (u)

f ) f ) E[e ™ w(u — L(t,~), L(t,) — )iz, <5 | fwx (¢, x)dedx
0 0

fw fwf e S w(u — L(s), L(s) — u) f,,(s)ds fix(t, x)dtdx. (3.1)
o Jo Jo

Substituting fwx(z, x) into (3.1) and noting that fooo fx(x)dx =1 and fooo hx(x)dx = 0, we have

Li(w) = Ele™"™w(U(r,~), IU(T)D],

where g; = 4 + d. For notational convenience, denote by g, = 4 + ¢q;.
By examining if L(r,) = u occurs, we have

Li(w) = Ele?™; L(t,) = u] +E[le™ "™ w(u — L(t,), L(t,) — u); L(t,) > u]
11 (u) + 1) 5(u). (3.2)

Replacing g by ¢, in (2.6) gives

n+1

Ii(w) = ) BjA;exp(= q,u).

J=1
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Solving the Laplace transform of /; ;(«) leads to

n+1

lii(s) = ZBjAjf exp (= (s +yjq ) u)du
J=1 0

B nz“ BjA;
=1 S+ Yia
(s)

T -G’ o

where
o 17 (5 + Brg) 2 (BjAj [T g (s + )’k,ql))
2 [T (o = ) [Tz Bk + ) .

Let Ny be the Poisson random measure associated with the jumps of L(z). The p.d.f. of Ny is
denoted by «fy(—y)dtdy. Then we have

n(s) =

(3.4)

ILz(lxl) Ef f e_[ht(,()(l/l - L(t—), y—u-+ L(t_))I[(L_,(t—)SM,yZu—L(I—))NW(dt’ dX)
0 0

f f f e Mw(x,y — X)kqy Z 0;e " dyP(u — L(t) € dx, 7, > t)dt
0 0 X _/21

f ) 2(X)RV(u; dx), (3.5)

0

where ; .
2(x) = Kkqq Z 0, f w(x,y — x)e " dy.
J=1 x

Substituting RV (u; dx) together with (2.9) and (2.10), Eq (3.5) becomes

m+1 n+l a a
—JjLq1 %+, j2.q1
L) = — — X
q1 Yirar —Bj
Jj1=1 jo=1 J2,91 J1,91

f 2(x) CXP(—ij,ql u +:8j1,q1x)dx

0

- [) 2(x) exp(=yj,.q (. — x))dx — f 2(x) exp(—f, 4, (u — x))dx]. 3.6)

Based on (3.6), we can obtain

1 m+1 n+l
A j1.q19+,jp.qi

91 525 = Yo = Bijiai
m+1 n+l n n
1 a_ i .g10+,jr.q % [(le,ql - yjz,q])(Z(S) - Z(_ﬁjl,QI))]

fl,z(S)

ABja)  As)  UBjia) — 2(S)]

S+ Ypha S+ Vg S +ﬁj1ﬂ1

]1 1 jo=1 ﬂjl 41 sz,ql (S + ’)/4/.2»4]1)(‘3‘ +ﬁj1,q1)
_ W) O a- g ﬂ]‘]l
= +41 3.7
G( ) f LI( )J:Z] ql(s +ﬁ]q1 ( )
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Now, we deal with I,(u).

L (u)

f f e "Bl (u — L(t) = X)(xcur.0,50 ) fwx (2, X)dedx
o Jo

A j; M1 ) = M2 (NR (u; dy) + 24 f 2R (u; dy),

0

where 1,1() = [ fe(0)d,(y — x)dx, 7:2(0) = [ Ohx(X),(y — x)dx.
Similar to (3.7), taking Laplace transforms on both sides of (3.8) leads to

. He1() = Mea(s) 5 RS a g e (=Big) = ea(—Bjg)]
ho = AT i —fm(s)g1 AT
fira(s) & a2 (—Bigy)
2| s f+q2(); ey

By noting that 7, (s) = fx(s)d,(s) and fi;2(s) = Ohx(s)¢,(s), we have

7($)+2(s) Y fe L) fagi(8)
q1-G(s) Z 2 s+Bjq;

q1 G(S) Q- G(S)

where

L(j) = “ql [2(=Bia) + s (=B1a) — Fea(—Bia D],

N G- a
L(j) = . (240 2(=Bjq2)]-

3.2. Laplace transform for ¢.(u)

Now, we condition on the arrival of the first claim. Thus,

¢(u) f f e "Blg.(u — L(1) - Xz 0y<ux+Liey<uw L fwx (, x)drdx
0o Jo

. f f Ele " w(u — L), x + L) — )]z cnes i i (s )l x
0 0
Ji(w) + Jr(u).

Substituting fwx(x, t) together with (2.7), we derive

Ji(u) =4 f (6,1() = o2 (R (us dy) + 24 f Ne2(R (u; dy),
0

0

So(u) = 24 f (@1(y) = @2 ()R (u; dy) + 22 f W (VR (u; dy),
0

0

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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where

y y
Nea(y) = fo Jx(0s(y — 0)dx, 7s2(y) = fo Ohx(x)¢s(y — x)dx,

() = f ey, x = Y)dx, wa(y) = f B (). x - ).
y y

Taking Laplace transforms on both sides of (3.12) and (3.13) yields

hs) = Alﬁs’gls)__(zss’i(s) —fl,ql(s)g“—’f"“[’7871;:if,i>/3;q7;,2<—ﬁj,q1)]]
Pl b X S o1
and
by = | 2O f+q1()m2+1a_”l[ b))
2 _2 (Gi s~ frans )2 a‘qu"(z:uj(ﬁi Z )| (3.15)

where 7.,(s) = fX(s)éa(s), Nen(s) = Gﬁx(s)@(s). Substituting (3.14) and (3.15) into the Laplace
transforms qAﬁs(s), some rearrangements yield

/1[&)1(5)—(7)2(3‘)] +2/l[ Do (s) ]_ Z Z d(})ﬂrq,(g)

R q1—G(s) q2—G(s) 548,
Pe(s) = : (3.16)

Fx(9)—-6hx(s) Ohx(s)

1-4 q1-G(s) 2/lqz—XG(S)

where
- /la_’jvql A N ~ N
d\(j)) = p [71e.1(=Bjg) + ©1(=Bjq)) — Ne2(=Bjg) — ©2(=Bg)];
. 2Aa_
d2(J) = q Lt [77.92( ﬁjqz) + W ( ﬁjqz)]
2

To identify the analytical expressions fo <Z>§(s) and ¢,(s), the constants /;(j) and d;(j) should be
determined. Consider the following generalized Lundberg equation:

fx(s) + Ohx(s) Lo Ohx(s) |
- G(s) g — G(5)

Lemma 3.1. For 6 > 0 the generalized Lundberg equation (3.17) has 2m + 2 roots, say p(0) ---
Pam+2(0) such that Re(p;(6)) > 0 for i=1,...,2m+2.

(3.17)

Proof. Equation (3.17) can be rewritten as
A(fx(s) + Ohx(5))(q2 — G(s)) + 240hx(s)(q1 — G(5)) = (g1 — G(5))(q2 — G(5)).

AIMS Mathematics Volume 10, Issue 4, 9882-9899.
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The discussions in Section 2 imply that (¢; — G(s))(g2 — G(s)) = 0 has exactly 2m + 2 roots in the
right half complex plane. By the Rouché theorem, it is sufficient to show that

IA(fx(5) + 0hx(5))(q2 — G(5)) + 2460hx(5)(q1 — G())| < [(q1 — G(5))(q2 — G(s))],

which can be completed by imitating the same steps as Proposition 1 of Chadjiconstantinidis and
Vrontos [19]. O

Without loss of generality, let p;(9) be the root with the smallest real part, it tends to zero as 6 — 0.
Furthermore, it is a simple root due to the net profit condition (1.3). For the sake of symbol simplicity,
we denote these 2m + 2 roots by p; - -+ pam+2 and suppose that the roots are distinct.

Since ¢,(s) and @.(s) are analytic for Re(s) > 0, by (3.10), (3.16), and Lemma 3.1, we obtain

n(p/a + 2(01) i ’"Zl L) g (00)

3.18
G(pk) ll]l ﬁj% ( )

(o) — @2(pr) 2 (p0) 23S di(G) frgi(00)
A 21 , 3.19
[ ~Gon ]+ [qz—Gw] ZZ ot B G-19)

i=1 j=1

for k = 1,...,2m + 2. Therefore, the unknown constants /;(j) and d;(j) can be given explicitly through
solving the linear Egs (3.18) and (3.19).

4. Defective renewal equations

In this section, we need an operator 7'y introduced by Dickson and Hipp [23] as follows. For a
measurable function f, define

T\ f(x) = f exp(—s(y — ) f(y)dy,

see Li and Garrido [24] for more properties of this operator.
We first investigate the common denominator in (3.10) and (3.16). Define

m+1 A(S)
AW = [ ]G+ B + B, o) = i = 1.2,
1;[ Jq Jq e 1( 5+ B

24 4 5 - A 42 4 - A
&1(5) = 5 (x(s) = Ohx() | |0 = 9)f1(9). 825) = S Ohx(s) | | = 9)frn(s),

we assume that g,(s) and g,(s) are the Laplace transforms of functions g;(x) and g,(x).
The denominator in (3.10) can be rewritten as

D(s) = m[A(S) A1(5)81(5) — A2(8)82(9)].

AIMS Mathematics Volume 10, Issue 4, 9882-9899.
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Note that A(s) is a polynomial with leading coefficient 1 and degree 2m + 2. Taylor’s expansion
formula implies that

@m+1)
A(s) = A(p) + A () (s —pi) + -+ + ————(s — p)™" ' + (s = p)™" "
2m+1)!
By Lemma 3.1 in Li and Garrido [24], we obtain
2§2 A(sz:ﬁk(pk) B 2m+2 A/(pk) 44 _é:':l))!(s _ pk)zm + (s — pk)2m+l .
el | AP ) B [ ok — p1)

Similarly, for i = 1,2, we have

(" y]
2m+2 Ai()—Ai(pr) 2m+2 A’ . - 1 —
i S—pk _ < Ai(pk) + (m l)u(s pk)m + (s pk)m
2m+2 - 2m+2 N
=1 lin]’l;tk(pk - pl) k=1 Hlin],lik(pk _pl)
Let
2m+2

()= | |(s=p.
i=1

Then, A(s) — 7(s) is a polynomial with degree 2m + 1. Lagrange interpolation formula leads to

2m+2 2m+2

A(s) —1(s) = Z 1—[

=1 I=1,12k Pk~

o [A1(0)81(0r) + Ax(01)82(01)]-

Thus, the denominator in (3.10) can be calculated as

1 2m+2 2m+2
D(s) = — T(S) + Z 100)81(pr) + A2()82(pi)] — A1(5)81(s) — Ax(5)82(s)
AL =1 =12k P

[, (A6 NTT Aoz
= ol Z( :<f>s Z | (s—pkk)(ik—kpa)]

i k=1 I=1,l#k

_ e[, Zzl (ziz A2E0 3,(5) + Ay(py) MU0 izk(pk))
A(S) - =L kel leinlflik(pk - 01
T(S) [ 2 2m+2
= Al Z 2, COTT kgl(O)] n

where

Ai(or)
[T ok = p1)

We continue to study the numerator in (3.10), let

Ci(k) =

m+1 li .
hg(s) — —(JT(S) + Z(S)) 1—[(7]1 S)f+ q1(s) Bé«,(S) A( )Z +(é) .
J4qi
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Thus, we can rewrite the numerator of (3.10) as

1 < X A
Ne) = 705 2 () = Bei()f e (9)]
i=1

By imitating the same steps discussed above, we can derive that

m+1 B 1(s)=B¢1(px) m+1 B2 (5)=B2(pk)
S—Pk S—Pk
= 0’ = 0
kZ:; zzgflik(/)k - p1) kzz; zzinlflik(l)k - p1)
Then, we have
) 2 2m+2
N(s) = A— > > [CLOT T, £ 0) = CLOT T, 0)], 4.2)
im1 =1
where B, (o)
Ok
Crith) = ——

12 ok — )
Therefore, submitting (4.1) and (4.2) into (3.10) implies that the Laplace transform (}S{(S) can be
simplified to

o ZW%QMW 10 (0) = CLUOT T, h (0)]
+ 25 S Cik) T T,,8:(0) '

Finally, we consider the numerator in Eq (3.16). Define

dc(s) = (4.3)

R 21 = R R 40 1+ R
he(s) = = ﬂ(m — 8) fe.q (DNW1(5) — W2(5)], heo(s) = = rll(m — 8) [0, ()02 (), 4.4)
i=1 i=

m+l1 .

. B, ; .

Bui®) = A0 Y, I €l = o P o120k L k2 4)
— 5+ By Hz=1,z¢k(Pk —Pi

By (4.4) and (4.5), the numerator of Eq (3.16) can be rewritten as

1 2
Ne(s) = 5 D MAihei(9) = Beilf (9]
i=1

Then, by imitating the same procedure to derive (4.2), we have

2m+2

2
Mm—faZEh@Mﬁmﬁw@—awnm@mn (4.6)
=1

k=1
Therefore, submitting (4.1) and (4.6) into (3.16) implies that the Laplace transform ¢,(s) can be

simplified to
Sy St [Coi)T Ty, fr.4,(0) = ClIOT Ty he (0)]
L+ 3%, 22 T T,,8:(0) '

Pe(s) = (4.7)
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Theorem 4.1. The EDP functions ¢,(u) and ¢.(u) satisfy the following defective renewal equations:

¢r(u) = fo ¢¢(u — x)g(x)dx + Hy(u), 4.8)
¢e(u) = fo ¢e(u — x)g(x)dx + He(u), 4.9)
where
2 2m+2

g == > ClT,gi(x),

i=1 k=1

2 2m+2

Hew) = ) > [Coill)Ty, frg () = CrRIT, e (w),
i=1 k=1
2 2m+2

How) = > 3 [CoilTy, frg () = COT,hei(a)].
i=1 k=1

Proof. Equations (4.8) and (4.9) can be obtained by inverting (4.3) and (4.7) directly. To complete the
proof, we only need to show that fooo g(x)dx < 1, that is, 2(0) < 1. Since
7(s) | fx9) i) bhx(s)

RS S I )
A T8 1 - G(s) 7 — G(s)

Then, we have

2 =1-221-

/lfx(s) — Ohx(s) 1 Ohx(s) ]’ (4.10)
7(s)

g1 — G(s) g2 — G(s)
setting s = 0 in (4.10) leads to

m+1 A A A
! BiaBi. _oh i
20 = 1- 1o Bl RO ) O]
[Ti27 px q1 — G(0) g, — G(0)
- 1_ 9 H?:ll BiaPia
A+6 Hif;zpk
< 1.

For the case of 6 = 0, we obtain
2 BiaBia: o1 I LT € funx(t, x)drdx
[T o o0 p1(6)
1% BiaBig: EW
[T o PO

Hjm:l] ﬂquﬁj@ - Di - -0,
1—+[C+K(pu E —l+qd E J)—/IEX]
Hizzﬂpk pral/l i=1

§0)

< 1,

where the L'Hopital’s rule has been used in the second equality and the last step is guaranteed by
inequality (1.3). O
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5. Explicit expressions for the EDP functions

In this section, the p.d.f. of individual claim amount is assumed to be fx(x) = ae™*. By (4.10), we

have
- 20s) = é921+319—nm”—2m% [T,G7i = ) [T}=,(6; + s)
()l (s+a)(s+20) [T (s +Big) TTEI (5 + Vi)
+£ —21afs [T = ) [T)=1(6; + 9)
o2 (s +a)(s +20) [T (s + Bigy) ?:}(S +Yjg)
_ K(s)
() +a)(s +20) [T (s + 7105 + Vi)
where
n+1
K(s) = A(s)(s+a)(s+2a) n(s + Vi S+ Vingn)
=1

. 2 (0= Daas - 220 T2 = ) [12,(6; + 5)
o2 (s+a)(s+20) [T (s +Big) TTE1 (5 + Vi)

L2 —2dabs [T = ) [T}=1(0; + )
o2 (s + @)(s + 20) [T (s + Big) 151 (5 + ¥50) |

Since K(s) is a polynomial of degree 2m+2n+6, Lemma 3.1 implies that

2n+4

K(s)=7(s) | [(s+&.

i=1
Assume that &, - - - , &,,44 are distinct. Then, we have
1 (s + a)(s + 2a) H?:ll(s + g )+ Vig)
1 —-2(s) [T (s + &)

, (@8 T 0y =0 gy =E0)

2n
N7 &€
- 14+ Z 1isk
k=1 S+ &
2n+4
Z
= Lr,
oStk

where

_(@=80Qa = &) TR gy — €0V gp — E0)
[T L& = &) '

k

Plugging (5.1) into (4.3) implies that

2n+4 2
s :Za@m
(ﬁ{(S) = Hé’(S) + £ .+ é‘-‘k .

5.1
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Similarly, we have

Inverting the above Lapalce transforms gives us

2n+4 A
2 _ kHs(s)
() = Ho(s) + ; v
2n+4 u
¢y (u) = Hy(u) + Z Z fo exp(—&x(u — x))Hy(x)dx, (5.2)
an:+l4 U
¢o(u) = Ho(u) + Z Z fo exp(—&x(u — x))He(x)dx. (5.3)
k=1

To explain the specific solution procedure, we provide a numerical example. By setting w = 1 and
0 = 01in (5.2) and (5.3), respectively, the ruin probabilities ¢,(u) and ¢.(u) can be expressed as

¢ (u) = P(t <00, U(7) = 0lU0) = u), ¢p(u) =P(r <00,U(r) <0|UQO) = u).

Example. Supposec=1,1=05,0=2,p,=06,¢,=04, p1 =1, =1, m=1,n=1n =12,
0 =05 a=15 60 =-05 g, =05, g0 = 1.5,k = 1. It is easy to check that the safety loading
condition (1.3) holds. The corresponding parameters can be calculated and we list them in Table 1.
The ruin probabilities ¢,(u) and ¢.(u) can be obtained as follows:

¢o(u) = 0.6973¢ 712 —1.8490e 271> — 008114120 — 1.8548¢ 70530

+65.2873¢ 0419 122 102670287 — 43.0094¢ 7032484 4 3 780711316
—14.7828¢ 4% 42,1406 "5 — 31.4134¢7%,

¢e(u) = —0.2975¢7271% 1.0.3793¢ 2721 - 0.2403¢ 4120 — 1.3090¢
+21.7508¢ 704219 4 0728470287 _ (0.2473¢70-3248% _ (0, 1556¢ 115164
—20.0873¢70:4060n 4 1 47377138414 1 0.0876¢" — 2.0828¢ "%,
Table 1. Parameters needed in solving ¢,(u) and ¢,(u).

YL Y21 By, B, Yig Y2.40 Brag By
0.3248 1.1516 -0.2890 -1.3874 0.4060 1.3841 -0.5598 -1.4303
a_1q a_n.q Ay g aynq a_1.q a_n.q Ay lq ay2.q
-0.2073 -0.0427 0.9976 -1.9976 -0.5516 -0.1984 0.9263 -1.9263
L(1) L(2) L(1) h(2) di(1) d\(2) da(1) d2(2)
0.0721 -0.0005 1.0965 -0.0062 -0.0999 0.0000 1.3400 0.0504
P1 P2 P3 P4 &1 & &3 &4
0 0.5685 1.3773 1.4336 2.6712 2.3215 1.4150 0.8365
&s &6
0.4219 0.2897
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Figure 1 illustrates the behavior of the ultimate ruin probability and its two decompositions. We
note that the probabilities caused by a claim and jump-diffusion process are not monotonic functions
of the initial capital. However, the ultimate ruin probability for the risk process {U(¢)} decreases as the
initial capital increases. This is consistent with the conclusion in Zhang et al. [17] and confirms our
expectations.

Ruin probability
o
o
T
I

Initial surplus

Figure 1. Ultimate ruin probability and its decompositions.

6. Conclusions

In the present paper, we investigate a dependent risk model perturbed by a mixed-exponential jump-
diffusion process, in which the joint p.d.f. of the interclaim time and claim size is introduced through
a FGM copula. The EDP function and its two decompositions are studied deeply. In terms of a
g-potential measure, the Laplace transforms and defective renewal equations satisfied by the EDP
functions are obtained. A numerical example is presented to illustrate the ruin probability and its
decompositions caused by claims and the jump-diffusion process.

Compared with the traditional insurance model, we use a g-potential measure method instead of
deriving the integro-differential equations to obtain the main results. This technique is developed by
Zhang et al. [17], and it is very effective in dealing with some perturbed risk models. We generalize
the double-exponential jump-diffusion process in Zhang et al. [17] to the case of mixed-exponential
jump-diffusion process, and the FGM copula is adopted to model the dependence structure. Although
the calculation is tedious, similar closed-form solutions for the EDP function can still be obtained.

From the practical perspective, the proposed jump-diffusion risk model can be used to capture the
sudden fluctuations in the real insurance market. The corresponding results obtained may be used to
help managers protect the insurance company against possible bankruptcy by informing the minimum
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capital levels. On the other hand, the assumption of independence between the claim amount random
variable and the interclaim time is restrictive from practical contexts, and it is popular to use copulas to
model the dependence structure between random variables in financial risk management and actuarial
science. However, due to the complexity of Lévy process, it involves a relatively large amount of
computation and parameter estimation may be more difficult in practice. Nonetheless, the Lévy risk
model has received widespread attention due to its excellent ability to describe the risk characteristics
of insurance and financial markets.

The model considered in this paper can be further extended to more general framework. For
example, we can consider a general Lévy risk model with hyper-exponential jumps or the jump process
having rational Laplace transforms. Finally, one can use generalized FGM copulas to generalize the
risk model proposed in this paper.
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