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1. Introduction

Numerous fractional operators are discussed in the literature [1-3], with the Caputo and Riemann-
Liouville derivatives being the most significant and widely used [4-6]. In 2000, Hilfer [7] generalized
the Riemann-Liouville derivative, introducing what is now referred to as the Hilfer fractional
derivative (HFrD).

In literature, various authors used HFrD in their research work with fractional differential and
integro-differential models; for example, Raghavan et al. [8] found solutions of the fractional
differential equations (FrDEs) with HFrD applying the Laplace transform. Li et al. [9] developed
results on the existence and uniqueness and also developed solutions for FrDEs by HFrD. Zhu et al. [10]
extracted the solutions of fractional integro-differential models with HFrD. Bedi et al. [11] developed
results of the existence and uniqueness of solutions for Hilfer FrDEs. Kasinathan et al. [12] developed
results related to mild solutions for FrDEs. Lv and Yang [13] established results for the existence and
uniqueness of mild solutions for stochastic models applying semigroup theory. Jin et al. [14] researched
the existence and uniqueness of mild solutions to the diffusion model. Karthikeyan et al. [15] discussed
results about the controllability of delayed FrDEs. Hegade and Bhalekar [16] developed results of
stability for FrDEs. For more studies related to work with HFrD, see [17, 18].

In recent years, many scholars have actively worked on various topics related to different classes
of fractional stochastic differential equations (FSDEs). In [19], Batiha et al. proposed an innovative
approach for solving FSDEs. They obtained approximate solutions for these equations and compared
the results with solutions obtained by other methods. Chen et al. [20] established the existence
and uniqueness of solutions to FSDEs and presented results related to stability. The authors also
found solutions using the Euler-Maruyama technique for FSDEs. Moualkia and Xu [21] undertook
a theoretical analysis of variable-order FSDEs. They determined approximate solutions for these
equations and assessed their accuracy by comparing them with solutions from alternative methods.
In [22], Ali et al. investigated the coupled system of FSDEs regarding the existence and uniqueness of
solutions and stability and found solutions. Li et al. carried out a stability investigation of a system of
FSDE:s in [23]. The research analyzes the interaction between fractional calculus, stochastic processes,
and time delays to provide a better understanding of system stability. It sheds light on the effective
solution of these equations via several numerical methods. Moreover, the paper examined various
types of stability in FSDEs. Albalawi et al. [24] conducted existence and uniqueness of solution
and stability analysis for FSDEs with conformable derivatives. In [25], Doan et al. established the
convergence of the Euler-Maruyama approach for FSDEs, found solutions using this technique, and
presented stability results. In [26], Umamaheswari et al. discussed the existence and uniqueness of
solutions using the Picard scheme for FSDEs with Lévy noise. In [27], Li et al. studied Hilfer FSDEs
with delay concerning the existence and uniqueness of solutions using the Picard method. Moreover,
they investigated finite-time stability using various inequalities. For further information on FSDEs,
refer to [28-32].

Stochastic fractional delay differential equations (SFDDEs) are a mathematical model that includes
fractional derivatives to take into account memory effects, delays in the display of time layer
interactions, and stochastic processes for recording randomness or noise. These equations are
particularly suitable for systems where past conditions, delay effects, and random variations have
a significant impact on dynamics. SFDDEs find applications in various real-life scenarios, such
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as modeling biological systems with delayed feedback and environmental noise (e.g., population
dynamics), engineering systems with memory and delays (e.g., control systems in robotics), finance
(e.g., asset pricing with time-lagged market responses), and physics (e.g., viscoelastic materials with
delayed stress-strain relationships). By integrating these complex factors, SFDDEs provide a robust
framework for analyzing and predicting the behavior of time-dependent, uncertain systems.

The average principle is a valuable way to analyze various systems. Focusing on averaged equations
instead of the original complex time-dependent system provides an effective way to simplify the
analysis and reduce complexity. The effectiveness of the average principle depends on the identification
of conditions in which the system averaged in a particular context corresponds to the original system.
Various authors have presented results on the average principle from different perspectives, such as
Zou et al. [33], who established the average principle for FSDEs with impulses. Zou and Luo [34]
established a novel result regarding the average principle for SFDDEs with the Caputo operator. The
authors [35] established a result on the average principle with the Caputo derivative for neutral FSDE:s.
Mao et al. [36] established averaging principle results for stochastic delay differential equations with
jumps. Xu et al. [37] also worked to prove an averaging principle theorem for FSDEs. Guo et al. [38]
studied the averaging principle for stochastic differential equations under a general averaging condition,
which is weaker than the traditional case. In [39,40], the authors proved the averaging principle for
impulsive FSDEs. Ahmed and Zhu [41] presented results regarding the averaging principle for Hilfer
FSDEs with Poisson jumps. Xu et al. [42] presented an averaging principle for Caputo FSDEs driven
by Brownian motion in the mean square sense. Jing and Li [43] worked on the averaging principle
for backward stochastic differential equations. Djaouti et al. [44] presented some generalizations of
the averaging principle for neutral FSDEs. Mouy et al. [45] also proved the averaging principle for
Caputo-Hadamard FSDEs with a pantograph term. Liu et al. [46] presented results for Caputo FSDEs
with Brownian motion and Lévy noise [47]. Yang et al. [48] presented results for FSDEs with Poisson
jumps regarding the averaging principle.

Motivated by the above discussion, this paper presents significant findings on the existence and
uniqueness of solutions, continuous dependence (Con-D), regularity, and average principle for Hilfer
SFDDE:s of the pth moment. The pth moment is a crucial tool for studying stochastic systems, helping
assess the system’s behavior and stability by providing a measure of its response over time. The pth
moment can be applied to study the behavior of a stochastic system by analyzing its expected value.
Moreover, the pth moment is an essential tool in probability analysis, offering a convenient framework
for investigating and verifying the stability of stochastic systems.

This research study uses the contraction mapping principle to determine the existence and
uniqueness results of the Hilfer SFDDES solution. Next, we present the Con-D results by assuming
that the coefficients correspond to the global Lipschitz condition. Additionally, various inequalities
are used to describe regularity and determine average principle results. Finally, examples and graphic
illustrations are included to support the results derived from this study.

Remark 1.1. By proving the outcomes of the theoretical analysis regarding well-posedness, regularity,
and average principle, we conclude that these results can be generalized to SFDDEs with the
Hadamard fractional operator.

Remark 1.2. Unlike traditional fractional models, SFDDEs with HFrD present a fundamental
challenge due to the interaction of memory, randomness, and time delay effects. These complexities
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make it even more difficult to derive analytical or approximate solutions and ensure stability.
Furthermore, the relationship between HFrD and probabilistic properties requires careful treatment of
functional spaces, noise structures, and solution methods.

Listed below are the main contributions of our study:

(1) This research work establishes results on the well-posedness, regularity, and average principle for
SFDDEs concerning HFrD.

(2) Most of the findings related to existence, uniqueness, and average principle for FSDEs have
been established in the mean-square sense; however, we obtained these results using the pth
moment. Consequently, our study extended the results on well-posedness and average principle
for SFDDE:s to the case where p = 2.

(3) We provide several numerical examples along with their graphical representations to verify the
accuracy and reliability of our theoretical findings.

(4) We provide results for FSDEs with a delay term.

In this research, we study the following SFDDEs driven by Brownian motions:

D)@ (e) = e, (©), w(e - 5)) + 56, D), T — )52,
@(c) = o(c), —s<c<0, (1.1)

]IE)L_ll})(l_a)TD'(O) =0,

where s € R* is the delay time, o7(c) is the history function for all ¢ € [—s, 0], and Dgf represents HFrD
withorders 0 < ¥ < 1,1 <a< 1. Thef: [0,M] x R™ x R™ — R™ and g : [0, M] x R™ x R™ — RMb
are the m-dimensional measurable functions. The stochastic process (W), follows a standard
Brownian trajectory within the b-dimensional complete probability space (Q,F, P). o : [-s,0] - R™
is a continuous function. Assume that the norm of R™ is || - || and El|o"(¢)||P < oo. The operator I[E)L_ﬁ)(]_a)
is the Riemann-Liouville fractional integral operator.

The structure of the paper is as follows: The next section, Preliminary, discusses definitions, a
lemma, and some assumptions. Section 3 presents the main results regarding Hilfer SFDDEs. Section 4
provides results related to average principle. Then, we present examples to illustrate our established
theoretical results in Section 5. Section 6 contains the conclusion, and we discuss future directions.

2. Preliminaries

First, we discuss the most important part of the paper, which serves as the foundation of our
established results.

Definition 2.1. [49] Considering a function w(c), the fractional integral operator of order a can be
expressed as

a _ 1 f @(p)
Fw(c) = T@ Jy o go)l‘adsp’ ¢>0.
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Definition 2.2. [50] The HFrD of order 0 <9 < 1 and 0 < a < 1 is given as follows:

d
Dﬂa (c) — ]Iﬂ(l a)d I[f)l_'—_ﬂ)(l_a)w(c)’

_d
here, D = T
Lemma 2.1. [50] When a > % and ¢ > 0, we have

_n _ o) 2114, < £ saol
F(2a—1)f0(c @) Laa1(ng™)de < a1 (™).

Definition 2.3. Forp > 2 and ¢ € [0, o), assume AL = LP(Q, F, P) consists of all Fcth measurable with
p™ integrable w = (@, @5, ,@y)! : Q —> R™as

Iell, = (ZEuwAP))

The w(c) : [0,M] — LP(Q,F, P) is an F-adapted process when w(c) € A{ and ¢ > 0. For 0’ € Af,
the @w(c) is a solution of Eq (1.1) if

oc@-bd-a)

_ _ a-1 _
7O e -o+e e )f( @) (e, w(p), w(p — 9))de

1 a-1 _
+% j: (c— )" 8o, w(p), w(p — s))dw(p). 2.1)

For f and g, assume the following:

e (H,) When ¥¢y,0,,¢1,{> € R™, there are %, and % such as
lIf (e, €1, 62) = f(e, &1, DIy < 2416 = Gillp + 1162 = ).

(e, €1, 62) — 8¢, &1, Oy < 216 = Gilly + 1162 = &llp)-
e (Hj) For f(c, 0, 0) and g(c, 0, 0), we have

esssupllf(c,0,0)|l, <y, esssupllg(c 0,0, <.

cel0,M] ce[0.M
Now, assume the following:

o (H3) When ¥¢y,0,,01,0,€,C € R™, ¢ € [0,M], there is %3 > 0 such as

lIf(e, €1, €2) — (e, &1, DIV Mls(e, €1, €) — 8(¢, £1, )
<(lt; = &ill + 1162 = &l).

e (H,) For f and g in system Eq (1.1), for £, € R™, and ¢ € [0, M], we can find a constant %, > 0
such that it satisfies the following:

IfCe, €, Ol V lls(e, €, DIl < Z(1 + NIl + 1IZ11).
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e (Hs) There exist functions?and 8, along with positive bounded functions N;(M;) and N,(M;)
defined for M, € [0, M], such that for all ¢ € [0, M], ¢, € R™, and p > 2, the following holds:

I ~
Mf() [Ife. £,0) = f(£, OlPde < Ry (M1 + 1P + I1Z1P),

= [ e, £, B OPde < N1+ 1P + TP,
where limyy, e N1(M) = 0, limyg, 0o 82 (M;) = 0 and N, (M), 8,(M,) are positively bound functions.
3. The main results
This section establishes the well-posedness and regularity of the solutions to SFDDE:s.

3.1. Well-posedness

First, we present the important results regarding well-posedness for SFDDE:s.
We have 7, : #P(0, M) — #P(0, M) with 7, (w(0)) = o’. Then,

O_c(ﬁ (1-a)

a-1
ho(@(©) = 19(1 me el s f (= )" flp, @(p), wle — 5))de

+ = f (€ = 9" '8(p, (@), T(p — 5))dw(p). (3.1
I'(@) Jo
The main tool for establishing the key results is as follows:
|1 + @l < 27 (el + ([w2lly), Yo1, @, € R™, 3.2)

Lemma 3.1. Assume that (H,) and (H,) hold; then h,, is well-defined.
Proof. For w(c) € #P[0,M] and ¢ € [0, M], the following results are derived using Eqgs (3.1) and (3.2):
ore@-1(1-a)

@1 -a)+a)llp

222 a1
i [ - o st aten o

P 22p—2

+
I'P(a)

[ (@@)|) <27~

p
f (¢ — )" (o, w(), w(p — 8))dg
p

(3.3)

By Holder’s inequality, we have

H f - (g, D), w(go—s))dso

Z f: - @[ (e, m(0). w(e - S))Idso)p
J=1

( f (c— )<P o dsa f If.(0. m(0), D(p — 9))|" dsv)
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p=1y"' (*
<M 1(@__1) fo ([f(e. (), m(e - s))||§d¢. (3.4)
From (H;), we obtain
[fte. @(@). @@ - ), S2p‘1(||f(s0, @(p), (e~ ) ~ (e, 0,0 +|f(e. 0, 0)||§)
<2 (2%} + e -9l + . 0.0F)  3)
Accordingly, we obtain
fo [fte. @) e ~ ) de
P P
< 2P 1%p((6¢i}vos’$7”ww)”p) + (ewse}v(igtﬂ{)”w(go — S)”p) )j: 1dp + 2P 1||f(¢p, 0, O)”i j: 1de

< 2P“M%1p(||w«p)||§€p + ||er(p - S)||ng) +207![f(e. 0, 0)|7 f; 1dp. (36)

By Eqgs (3.4) and (3.6), we get the following:

H j: (=0 fle. ). - )|
(LY o (o, + ot -l + [ lie.0.0fas) @)
By (H,), we obtain
| j: (=0 e, ). g — )|
SMap_l(;;_ll)p_lf’_](%IPM(HW(‘,D)”;@ +lete = 9, + vaur). (3.8)

By Burkholder-Davis-Gundy inequality and Holder’s inequality, we obtain

H f:  — ) '8, @(p), @(p — 5))dW(p)

p

p
m p

= Z E‘ f: =) (8,0, m(e), W(p - S))dW(<p)‘
J=1

<>, GE f (c— ¢
J=1 0

> GE f (c — )2

J=1 0

p b=
dsD( f (c—¢)2“‘2d<p) de
0
MZQ—]

Gp(za = 1) 2 fo (= ¢/ |ls(e, T, wlp — )| de. (3.9)

p

2

2
de

8,(0, w(p), w(p — s))

IA

8,(0, @(p), w(p — s))

IA
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By utilizing (H,) and (H,), we obtain

lste. o). ae = N} <2 2|} + e - 9)]) + 2 lste. 0. 0]

szp-l%"(llwwlli + || - S)||§) + 2Py, (3.10)

So, we get
C
fo (c = @) |lsle, w(e), wlp - 9)|| de

SZP_IOZ/ZP f(c _ ¢)20—2((esssup||w(go)|| )p + (esssup”w(go - s)|| )p)dgo + 2P 1yP f(c — 0)¥2dy
0 0e[0,M] P 0e[0.M] P 0

2p—lM(2a—1)
< -

< (%P(nw(so)nggp+||w<<p—s)||£;€p)+wp). (3.11)

So, from above, we have
p—1nr2a-1

ﬁ(%"(llw(so)llf;fp + |lw(p - s)||{;€p) + ¢P). (3.12)

f; © — 9/ ?ls(e. T(). @ ~ 9)|| de <

By using Eq (3.12) in Eq (3.9), we obtain

p
| f; (¢ - ¢ '5(6, (), e - 5))dw(e)
p
M26-1\ B op-1y26-1
<Clr—) S5 (%"(nw(so)uf;ep+||w(go—s>||{;€p)+¢p). (3.13)

By putting Eqs (3.8) and (3.13) into Eq (3.3), we find that ||7,(@(c))||7p, < co. So, the 7, is well-defined.
Now, we establish the result regarding existence and uniqueness.

Theorem 3.1. If (H,) and (H,) are satisfied, then Eq (1.1) with @ (0) = o’ has a unique solution.

Proof. Taking > 0:
n>2P"1r(2a - 1), (3.14)

where

~ 2P‘1 ( o %Pm(pa—mﬂ)(p _ 1)p—1 p_](M(za_l)

— %2 P
I (pa —2a + 1! 2a—1 ) Ko GP)‘ (3.15)

0

The weighted norm || - ||, is

l@@©If  \»

@)l = esssup(m)p, Ve (c) € FP([0, M]). (3.16)

ce[0,M]

For w(c) and @ (c), we obtain
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IIT%(W(C)) lie (T ©)Ilp

w)“ ! f(so @ (), w(p — 3)) — o, T(y), Ty — S)))dso

(3.17)

f (¢ = 9 (ale. ), w0 - 9) - 5l B, Bl - s)))

FP(a)
Using the Holder’s inequality and (H;), we obtain

_ "0)0—1

P
(fte. @), w0 = 9) = (. B, Bl - S)))dso

=Z ([ &0 (i6. w010 - ) 6. 360,06 - )]
J=1

m <a @-0p-2) P_l _ —
<y E( f - v d f (¢« = [, (¢. B(9). W - 9)) — f, (. D), Bl - S))|pd<ﬁ))

J=

%PM(pa 2a+1)(p

<op-1
- (pa — 2a + 1)p-!

p—1
D f (c— @)% 2(||ZU(90) a)||) + @ - -z -9 )dtp (3.18)

Hence, we have

p
fo (c— <p)“‘1(f(90, @(p), w(p - s)) — fle, T(p), T(P — S)))dso
p

@/IPM(pa—ZaH)(p _ l)p—l
(pa—2a+ 1)p-!

<op-!

fo (c- 90)2“‘2(||W(90) ~ @@ + [@te -5 - B - s>>||§)dso. (3.19)

However, using (H;) and the Burkholder-Davis-Gundy inequality, we have

C p
f (c— 90)“‘1(9(% @(p), w(p — ) — 8(p, T(p), T(P — S)))dW(cp)

p

f (¢~ 9 (5.0, @0, w0 - 9) - 1 ), B~ 9)

]:

— 072y, w(p), T — 9)) = 8,0, B (), Tlp — 9))| dso

p-2

f € — ) ?|v,(0, @), w(p — 5)) — 8,(0. T(p), T(p — 9))|" d<p f (€ — )" zdso)T

Ma-D\ 5
(5 —) w6 f €= (|ote) - T + [t -9 - B -9l Jdg.  (3:20)

a—1

So, from above

“ fo c(c - so)““(g(so, @(p), w(p — ) — 8le, T(p), T(p - s)))
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<2p-1(M(2“‘”)p22

> Uy Cy f (c— 90)2“_2(”?”(90) ~ @Iy + ||m(e - ) - B0 - s)IIS)dgo. (3.21)
a-1 0

Thus, Yc € [0, M], we have

Io(@(©) = ho(@O); <6 f: (||w(<,a> ~ B} +[[we - ) - B - s>||s)<c —¢)*de. (322)

So,

||ha—’lD'(C) - h(ra'(c)”g
!EZ(I—l (UCZQ—I)

1 C
S—(Sf(c— )22
LIy (UCZ‘H) 0 4

@) -zl
(‘Eza_l(ncza ) I£2a—1(77cza_l)p

1 ¢
S AR TSI c— )82 e, (ne2!
m2(1—1(I7C2“—1) L( ®) ( 2a 1(77 )esssup

$e[0,M]

— ) — (0 — s)IIP
+’£2a—1(77(c—s)2“‘1)”w(¢ s) — @(p S)Ilp)

L5601 (n(c —5)%¢1)
(||?U(90) - 5(¢)IIE)
T )

Q) — B — P
ll@(p —s) —@(p S)Ilp))d

£,0_1(n(c — 5)29-1)
lw(p) — @), N N )
= 8,01 (ne2e-1) %5 f:(c - QO)Z z(mza—l(ﬂcz 1) + 28501 (n(c - S)z 1))d<p

2llw(p) — @@l
K501 (mc871)

Now, we use the following:

+ %501 (n(c - s)z““)esssup(
$e[0M]

) f (€ — )20 (") dep. (3.23)
0

1 2a-2 2a-1 1 2a-1
_— - £, dp < —1&,,_ .
f-D f:(c @) Mo (ne™ )y < — 1(7e™)
We obtain the required result from Eq (3.23).

(26F(2a - 1))

1 (w () = Ao (@)l < ") - @(P)lly- (3.24)

From Eq (3.14), we obtain w < 1.

Theorem 3.2. If &:(¢c, o) is a solution that is Con-D on q, then

lim esssupl|&a(c, o) — E(c, o)l = 0. (3.25)

a—a  ce[0,M]

Proof. Assume a, & € (1, 1). Then,
&a(c,0) = &ale, 0)
:% f; (c - (p)a—l(f(so, Ealp, ), Ealp — 5, 0)) — fo, Ea(, ), Ea(p — s, U)))d‘p
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! ~
+ f (r( )( - - %(c - so)“‘l)f(so, Ea(e, o), &a(p — 5, 0))dg
r i [ 60" (06,0, a6 - 5.0 - 560t i - 0 i)

+ f(l“( )( - ) - m( c— )" 1)9(90 &, 0), &(p — 8, 0))dw(p). (3.26)

We extract the subsequent outcome from Eq (3.26) by employing Eq (3.2).
léate, o) — &ate, o),
¢
<% [ 6= 0 fee.) - e o)
0

p
%2 f(r( )( — ) - m( ¢— @) ‘)f(so &, o), E(p — s, 0))dy i
1 1 < P
4022 f (r@( O - e <p)“_1)9(s0,§a(90, N&e sl (2D
Suppose the following:
O, ¢,0,8) = 'm< g - ﬁ( ! (3.28)

By Holder’s inequality, (H,), (H,), and Eq (3.2), we have

¢

al_L a-1 ~ ((p — P
(o - e o et £t - s.ondg|

p
" E( fo D¢, ¢, 0, D (¢, £alp, ), Ealp - s,a>>|dso)
m ¢ p p-1
3" E(( fo (@ 0,0,0) 7 dy ) f: . &x(p, ). £t — s, o))
c L\ =
<( f (@G 00,0 dg) f 1dg) f (. £5(0.0). a0 — 5. )
0 0 0
< f (@(c,so,a,a))zdso)ZM"? f 2 (et I + e = 5. DI + I, O Jo
f (@, 9.6.8) de ) Mzzp (2w esssupliéate, I + esssupligate - 5. +97). (3.29)

ce[0,M] ce[O,M]

Now, by Burkholder-Davis-Gundy inequality, Eq (3.28), (H,), and (H,), we obtain

a-1 1 -1 : o P
(r(a)< =m0 )g(so,fa«o,(r),fa(so s oNiwe)|

=2 E
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<> G| fo (¢, 0.0, D102 £ 7). £l — 5. ) dw(p)|

<D @pE[( f: <1>2(c,smaﬁ)lg,(so,fa(go,cr),fa(so—s,ff>>|pd¢)§(f(: qﬂ(c,so,a,a)déﬂ)%]z

p-2
2

=C, f: ®Z(c,so,a,&>||g(so,fa<so,cr>,§a<¢—s,a>>||§d¢( f q>2(c,¢,a,@d¢)

p
sep( f (¢, g, . a)dgo)zzp—‘(zp—‘%;(esssupng&(go, I + esssupliéa(e — s, DI +¢P). (3.30)
0 ce[0,M]

ce[0,M]

Thus, we obtain the following:

léate. o) ~ &ate, )|
Lr6-1 (1)

p

||§a(<pﬂ)—§-‘a(<p,rf)||p
y) 2a-1
0, (77(2“’1 ) ‘EZ(Z—I (77C )ng

!EZG— | (UCZG—I )

P
+ 23p_3(2p_1?/]p(esssupllfa(% ollp + esssupliéale — s, o)llp) + %lfp)( f (@(c, ¢, a, 5))2d60)2M%
ce[0,M] ce[0,M] 0

)5 j(;c(c _ 90)2(1—2

<

P
2
+ 23"_3(2"_1 Uy (esssupliéa(p, o)l + esssupliéale — s, alp) + yF )Gp( f (DG, ¢, 5))2(190)
ce[0.M] ce[0,M] 0
< 2P0 (2a —

1
) ate. o) - &t o

F 22 B esssuplést M + esssupliao - .M + 97 [ (@G e ap) 1
0

ce[0,M] ce[0,M]
P
2
+ 23"‘3(2"‘1%p(esssupll§a(so, ol + esssuplléa(e — s, llp) + wP)Gp( f (D(c, 0, 0, 6))26190) .
ce[0,M] ce[0,M] 0
(3.31)

From the above, we have

(1- M)Hfa(e, o) - & o)
17 n

<3271 esssupliéat, O + esssupligate =5, ) + 7 f (@G 0.0,0)dg) 1°
0

ce[0,M] ce[0,M]
¢ 5
#2052 U esssuplison O + esssuplto = 5. ) + 7)) [ (00,607 dg)
ce[0,M] ce[0,M] 0
(3.32)

Now, we prove the following:

llm Sl/lp f ((D(C, 90, a, a))zd(lD = O
0

A—ace[0,M]
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We possess the following:

2a- 2 28~ 2 a+d-2
f (@G0 D) dp = f - FZ()) B rZ()) f (cr<a>)r(a)
2a-1) (2a 1) (@+d-1)
- ((1\2{ - 1))F21(a) " (gc[i - 1))F21(&) a4+ ?—/ﬂl)l“(a)f‘(&)' (3-33)
It thereby demonstrated the necessary outcome.
Theorem 3.3. For o, ¥ € Aj, we have
la(e, o) = éale, P)ll, < Zllo- = Pllp, ¥ ¢ € [0, M. (3.34)

Proof. As we have

&a(c, 0) = &a(e, V)

oc@-Dhi-a) P@-hHi-a)

TOd-a+a) T@1-a+a)
1
P f (c— w)“‘l(f(so, Ealp, ), Eal — 5, 0)) — (s Eal0, ), Exl — s, ‘P)))dcp
@ Jo

1
T f: (€ = @7 (80, Ea(, 0), Ea(p = 5, 0)) = B(p, £alp, ), Ealp — 5, '9)))AW(9). (3.35)
By applying Eq (3.2), we obtain
léate, o) = &ate D]

ool oc@-Dh-a) P @-DH-a) p
7 r@d - +a) T -a)+a)ll,
22p—2 C . P
t e f (¢ = @il €6l ), £l = 5,0 = (., Eal, W), Eal - s,%))dc,o
2p 2
t e f (¢ = 080 s, ), Ea(0 = 5,00) = (0, Ea(0, @), bl = 5. ) (3.36)

By Holder’s inequality and (H, ), we obtain

p
‘ j: (c- so)“—l(f(so, Eul. ). a0 — 5.0)) — (@, Ealp, ), Exl0 — s, ‘P)))dw
p

= D ([ (=0 (16t = 5.0~ .t =5 ¥ )|
=

<al)<p2) pl
S [0

j: (c = @ If (. £alp. 0). alep — 5.0)) — (@, £l W), Ealp — s, ‘P))|d90))
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%PM(pa—ZGH)(p _ 1)p—1

2 e
| (-0 (et - £ ]+ (e - 5.0) - £t - 5. WY (3.37)
Hence, we have
| [0 (. a0 a0 5.0 = i 0.6 =5, 0 g Z
e
f: (c~ 90)2“_2(”&(% ) = &alp, O[] + [Jéale = 5, 0) = ol = s, T)||§)d¢. (3.38)

Now, utilizing (H,), Holder’s inequality, and Burkholder—-Davis—Gundy inequality, we derive

= Z E‘ \f(:(c - So)a_l (g,(QO, fa(‘Pa 0-)7 fa(‘ﬁ -5, O-)) - BI(QO, fa(‘Pa \P)’ fa(‘ﬁ -S, T)))dW((’D)
J=1

m
<> GE
J=1

< Z GPE j; (c - "0)20—2|gl(()0, fa(‘P, 0-)7 fa(‘ﬁ =S, 0-)) - gz((p’ sca(% \P)7 fa(‘P =S, \P))|pd¢
=1

J
( j: (c—so)za‘zchp)

szp-l%pep(llfa«o, o) =&l V| + [éalp — 5,0) — &ale — s, T)IIE)dso. (3.39)

f; (c— 90)““(5(90, Ea(p, 0), Ea(p = 5,0)) = 8(p, Ea(, ), Ealp = s, ‘P)))dW(QO)

p
p

p

P
2

j: (€ — @) [B,(0: éalp, ). £al — 5, 0)) — B,(. £al0. ¥). Ealp — s, ‘P))|2d<p

p=2
2

By substituting Eqs (3.37) and (3.39) into Eq (3.36), we obtain

éate, o) = &ale, V)|

oc@-D-a) Pe@-DH-a)

TW(1—a)+a) L@ —-a)+a)

p
p-1

+ 205 j: €= o7 (leate. ) - &, D Jag. (340)

p

By referring to the Gronwall inequality, we conclude

, o~ ) ¢ s ore@-D1-0) We@-H(1-a)  p

9 - ,\P 32_ 26 - B d —_ .

ate. o) - &ute. B exp( fo -9 (’O)Hl“(ﬁ(l—a)+a) ool
Thus, we obtain the following result:

@-1)(1-a) Pe@-DHi-a) p

L) — &, PP < 271E _(2P5r2 _1 <2“—‘>)H ¢ - .

[éate.) = ate. WO < 27 Bnors (2007 2 = e W = = |
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Hence, we
lim |[éo(c, o) = &ale, W), = 0.
The proof is so done.

3.2. Regularity

The following result pertains to regularity.

Theorem 3.4. If (H,) and (H,) are valid, then for § > 0, we have
ol ) = a(or, Olly < Sle = 612, Ve, € [0, M.
Proof. For ¢ > ¢, then from Eq (3.2):

léate, o) — éats, |}

oL
P(a)222p

f (€ — ©)* (@, Ealp, ), Ealp — 5, 0))dy

p
p

_1 P
" Tra)2 f: (€ = @) 8(p, £alp, 0), £alp = 5, 0))dW(P)() i
—1 a- a
T D@z f e = %" = (¢ = ) [f(. &alp, 0), Ealp — 5, 0))dp
1 S
" [P(a)22-2p fo €= %" = (¢ — 0 |Ble, £al, ), £alpp — 5, 0))dw(p)

By Holder’s inequality and Burkholder-Davis-Gundy inequality, we obtain
IP(@)2*||éa(e, o) = &als, ||}

-1 p-1
=(pa _(f)p_1()c YR ||f(90, Eal, 0), Ealp — s, U))HE f 1o

+ ¢, £t 00, &t — 5. ! f‘ c-or2ae)( [(- o)

_ p S Y p
it &, 0). £ulo = 5. Ol f Ll fo =0 — (= [dg)
0

2-p
M=

+ 8. £alip, ), Ex( — 5, ODIEC, fo ((c — o~ (g - so)‘“)

p-2

X (j: ((c —o) ! —(¢— w)“‘l)zdSO) .

We have

p
p

p
p

p—2

(3.41)

(3.42)

[fe, éa, |} < 227 (227122 ||€alp, || + [|€atios o = D[S | + 1Ifo, OIE | < 227 (2P %P Ky + yP).
p P p
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And also

ot £ate. ol < 20! (271 % leato ] + ot = s, DL + lite ONF) < 2! PP K+ y7).

Furthermore,
S 3 3 2 (c_g)(Za—l)
_oNa-1 o sa-1
fo (e~ = dp = Z 5 (343)
So,
IP(@)2*||éa(e, o) = &als, ||}
p-2F bt p pyyp-1
- - +yP)2P G,
( 1)pl(c ¢) 1 2 _l)z(t §) YP)
2p-1
+ c— Y)Y S ———
a1 ) K (2—1)
Hence,
léate, o) = ol ||, < Se = )2,
where
(2p —2)r~! > 1 . 1
2p-2( Y = (HpgyP PYM2 o« — — (9Pg)/P pyHp-1
P =2 ((pa—l)P UK+ U+ QUK 42 ep)rp(a)
2p—1 P 1
p-2(__ = (9pgyP PYMZ o — — (9Pg)P pyHp-1 P
+2 ((za_l)p_l(Z%lK1+K)M +(2a_1)%(2 UK, +yP)2 Gp)r (@).

Thus, we obtain the following:
lim[léo(c, o) = &o(s, )|, = 0.

4. Averaging principle result

Now, we establish results concerning the average principle in the pth moment for SFDDEs within
the framework of the HFrD.

Lemma 4.1. Fors, when M, € [0, M], we obtain

5(€, OIP < % (1 + [I41I° + 11Z1IP),
where % = (2°7'8, (M) + 6771 %7).
Proof. By (H.), (Hs), and Eq (3.2),

I8, OIP < 2°7Hln(e, £,0) = 84 OIP + 227 la(e, £, OIP
< 207N, (M) (1 + 1P + 1P + 2P7' 22 (1 + el + 121DP

< (207N (M) + 677 2P) (1 + 1IIP + 1P -

The following is a lemma regarding the time-scale property of the HFrD.
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Lemma 4.2. Suppose the time scale ¢ = py, then
Dﬂ aW(/J'y) — aDﬂ aw_(c)

Proof. The HFrD of order 0 < ¢ < 1 and 0 < a < 1 is defined as

1 1
Doy w(uy) = f o f dgdg.
@(uy) = L@ Jo (¥ =)' ?0-9dpT(a) J, (y—p)'-0-00-0 @(up)dede
Let uyp = A, and by the chain rule, % = ﬁ_% <€ dgo(/"up) = pi=. So, we have

9.6 _ dA dA
Bo.w(y) = F(a)f (y - ﬂ)l ot dﬂr(a)f (y - ﬂ)(l e 0 )_7

From the above, we have

F(a) o (wy— D9 AAT(a) Jo  (uy — A)I-D01-0)

Dy S (uy) =

w(A)dAAA,

likewise, we obtain

D)o (uy) = @(A)dAAA.

1
F(a) f; (¢ = A)!1-9 dAT(a) j(: (c — A)1-M0-a)

So, we have the following result:
Dﬂaw(ﬂ)/) _ an)aw_(c)

Now, we establish an important result concerning average principle.

{ Dl’“m(t) f(E,W(C),w'(c—S))+9(§,W(C),W(C—S))%, @1

@w(0) =

Suppose § =v. By Lemma 4.2 and from Eq (4.1):

dw(ev)

_“]Dﬁ aw(sv) = f(v, w(ev), w(ev — €s)) + 8(v, w(ev), w(ev — €s)) =

By considering dw(ev) = yedw(v) and representing @(ev) = w,(v) and w(ev—¢s) = w,(v—s), we get

dw(v)

DY@, (v) = £, @ (), Wo(v = 8)) + £ 28(v, @), W(v — ) -

Despite the loss of generality, v = ¢ can be stated. The standard form of Eq (1.1) can be obtained by
applying £ — c.

{ Dﬂ“m(c)— (0, Te(©), Tole = 8)) + 65 21(0, T (0), Te(e — )29, 42)

@, (0) =
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Thus, Eq (4.2) can be expressed integrally as

O.C(ﬂ—l)(l—a) . 1 ¢ i
@(¢) Tol-o+a °Iw fo €= @) e, Te(p), T — 8))dp
+£573 r(la) j: € — 9" 'u(p, ), T — 9))dW(p),

for £ € (0, &]. The average of Eq (4.3) is as

oc@-D1-0)

1 a
) s R |, €9 e mie - o)
1 —
ret s [ o R, @i -

where f : R™ x R™ — R" g :R"xR"™ — R*xb,

Theorem 4.1. When G > 0 and ¢ > 0, and & € (0, £] with « € (0,ap — &), then

E[ sup |

ce[—s, pe7*]

@.(0) - T ] < U, e € (0,211,

Proof. By Eqgs (4.3) and (4.4), for ¢ € [0,u] C [0, M], we have
@,(¢) — w,(c)

= GL ‘ _ a1 B T oo
=£ r(a)ﬁ(c ‘P) (f(% TD'g((P), Wg(()D S)) f(wg(go),wa(()p S)))ng

1
+&%72

Via Jensen’s inequality, we have
* p
[@:©) - @)

| e b f a1 N o P
<o [ -0 (fte oo oty - 5) Tl mie - ) g

p
+ 207!

“—%L ‘ a1 B . .o
e fo -9 (5(90,wg(<ﬁ),wg(so 8)) — 8@ (), Wiy S)))dW(go)

<(L)p2P—18Pa ’
-~ T'(a)

fo ¢~ (e, @), it - 9) ~ @), 30— )

1, 1
+ (—— 2p_1 (a_f)p
(F(a)) &

Utilizing Eq (4.7) in Eq (4.5),

E] sup [}z - w0

0<c<u

1
<(— p2p_lspaE[ su
(F(a)) 0§c£u

c ~ P
f (c— so)a_l(f(so, @s(9), (@ — 3)) — (@ (p), T - S)))d"o" ]
0

F(la) ‘[0‘ (c— (p)a_l(g(go, ws(¢), wa(QD - S)) —E(WZ(QD), w;(gp — S)))dW(gD)

f; (c— so)“‘l(g(so, @), W@ — ) — B(@o (), Do — S)))dW(so)

4.3)

4.4)

4.5)

(4.6)

P
.4
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p
LIS 2>PE[ sup f (c—90)“‘1(9(%135(90),738@—S))—E(WZ(QD),WZGP—S)))dW(<p)H]
I'(a) o<e<ull Jo

=9, + 9,. (48)

From Q,, we have

Q) (= )p22p 2:spaE[ sup
I'(a) 0<e<u

¢ P
[ 6= (it 00 0= ) ~ e, 0 w00 - )| ]
+(=— )p22p 23"“E[ sup

I'(a) Sup fo (c— w)“‘l(f(% @), Ti(p — 9)) — f(@}(p), Ti(e — s)))d¢, p]
“Rn e (4.9)

By Holder’s inequality, Jensen’s inequality, and (Hj3) applied to Q;:

@-bp

1 e
9 s(@)pzzp-zep“ ( f (u—g) i dgo)

¢ [ sup [ [ (. @) (e — ) (. @) il — )| ‘“"]

0o<c<u Jo

1 pr3p-3 pa G-bp1f P11 -
S(%)I? P=3 P %P(u )p ((ap — 1))
(B 500 [ w0~ wiolf ] ] swp [t - mito- [P asl)

O<csu Jo O<c<u

U
:Q“gpau(ap—l)(f [ sup ||ws(A) @ (A)”p ]d(,o
0

()<<

U
; f E[ sup ||wg(A—s)—w:(A—s)llp]dcp), (4.10)
0

0<A<¢p

p-1
p—1 1 _\PH3p-3 p
here, Q7 = ((ap 1)) (_F(a)) 2°P % .

By Holder’s inequality, Jensen’s inequality, and (Hs) on Q,,

9 (1"(1 ))P22p nga(f (u— QD)((L ll)pdtp)p_

¢
E[ sup f
0o<c<u Jo

—1 .
()2 e B (B ) s + Bl + Bl -]

:lespau“p, (41 1)

p
dgo]

f(o, @), Tl = 9)) — f(@i(g), Tl — 9))

where 9, = (%a))pZZP_z((é;ll))p_lxl(U)(l + EHWZ(SD)HP + EIIWZ@D - S)”p)‘
The following is provided by Q, via Jensen’s inequality:

1 |
9, < P22p—2 (@-3)p
2 (F @ ) €
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¢ P
(E[ sup f = 0[50, B0, Tl - 9) - 506 ), T~ 9) awie | D
<c<u 0
1 poop2 @5
2 P— P
)
¢ p
(2] so0 | [ ¢ 0% [ste. 2601 7266 - 90 - Ko w0 - s foweo | |
=1 + Q. (4.12)

By applying (Hj3), Holder’s inequality, and Burkholder-Davis-Gundy inequality on 25,

%, (r(a))"zz“ P (200 - D' p)’

P

E [ fo (=92 |8 (¢, o), el — ) — 8 (0 To0), oo~ 9))|” dso]
1 Iy, P '
(/e e (20 - )’ fo (U= )

E[ sup [[loe(8) - @M + ot - 9) - 7iA - 9] d|

( )P23p 3 gla- 2)pu2 l%p(ppHZ(l p)p‘l)% fu(u_QD)(a_l)p
['(a) 0

| sup [[[h) - @i + lor - 5) - mia - 9| de]

0<A<¢p

U
:9218(“‘%)13115‘1([ (u— 90)(a_1)pE[ sup ||w8(A) - wZ(A)”p ]dgo
0<A<¢p

f (u—)* ”PE sup ||@.(A —s) - w(A—s)”p]dcp) (4.13)

O<A<

p+1
where Qy; = 2%~ 3%p(2(pp P~ 1) (ﬁ)p'

By Holder’s inequality and Burkholder-Davis-Gundy inequality,

9 <(F( ))pzzp_z(Z(P - 1)1_pPp+1)%5(a_%)p

E [f \If (0. @2(@), Til = 9)) = B (¢, i), Ti( - S))||2 (W= Qo)za-zd(p]

P
2

(r( P2 I 2 - 1rpr) | f (=)t

(ls @ @) 70 = D + [ (@0 @it - ) ) de|
| 2%733pmlgla-py(@-Dpt Dy Sl g (%f + %)p
el (G=Dp+1)

@(p - D'PpP )3 (1 +Ell|[@i@)|1 + Ell|@ie - 9|
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= Q6@ DPy@-2)p, (4.14)

where

Qs =273 (%P + U (26— 1) 7p*)

1
(Pa—-Dp+1)

1
(1 + El||l@@)|['1 + El||@i(e - S)||p])(m ).

Using Eqgs (4.9) to (4.14) in (4.8),

E[ sup ||@.(c) - wj;(c)||p]

O<ce<u
U
<Que™ U + Qe Py 4 f (Qnspau(“"‘“ + Q8PS — 90)(“_1)pd90)
0

| sup [l - mi]f fag

0<A<¢p

U
¥ f (QuemuD + Qe bt = 9B sup (A - 5) - wiA -9 Jdg. @15)
0

0<A<¢p

From Eq (4.15),

£ sup o0 - ol

29y

(a-1Hp (a—l)p)
E 27Fu 2 .
((@=Dp+1)

S(lesp“uap + 9228(“_5)1’11(“_5)9) exp (291lspau“p +
So, for o > 0 and « € (0,ap — g) with ¢ € [—s, pe7] C [0, M], we obtain

E[ sup  ||@.(0) - wi || < &', (4.16)

—8<C<pe™*

where

z = 8K1(9128pa(9'9k)ap + 9228<“5>P<ge“><“%>P)

28y

pa —K\ap
exp(ZQ“s (0e™) +—((a—1)p+1)

8<a—;>p(Q8—K)(a—;>p) _
So, proved the required result.

5. Examples

To better understand the theoretical results established in this research, we present examples along
with graphical comparisons of the original and averaged solutions. Figures 1-4 illustrate these
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comparisons, supporting the validity of our theoretical findings.
Example 1. Consider the following:

D) w(e) = 657 sin’ (@, (¢ = §) + ", (¢ — 5) cos’(e)

+36095 2 (¢ — 1) cos?(©) sin(@ ()22, ¢ € [0, 7], (5.1)

w@w(0) = o,

where ¢ = 0.95, s = 1, and

f(e, @w(c), w(c — s)) = 6sin’(c)w,(c — %) + @ (c — %) cos’(c),
g(c, w(c),w(c —s)) = 3w (c — %) cos?(¢) sin(@.(¢)).
The criteria of existence and uniqueness are fulfilled by f(¢c, @w(c), @(c — s)) and g(c, @w(c), @w(c — s)).

The averages of f and g are as

1

f(w(o), (e —s)) = 71_r fo " (6 sin?(¢)@.(¢) + @.(c) cos’ (%c))dc = %w:(c - 5),

B(w(c), w(c —s)) = 7lr fo‘ ' 3w,(¢) cos*(¢) sin(w(c))dec = %wf‘;(c - %) sin(@(c)).

The corresponding average is

9,0.95 _« 7 0. * 1 3.095-1 1\ o * dw(c
@:(0) = 0. ’

All conditions in Theorem 4.1 are satisfied by system (5.1). As a result, solutions @w,(c) and w(c) are
equivalent at the pth moment in the limit as € — 0. Figure 1 presents a graphical comparison between
solutions of the original system (5.1) and averaged system (5.2), demonstrating a strong agreement
between solutions w,(¢) and @(c) and confirming the accuracy of our theoretical conclusions.

Solutions of Fractional Stochastic Delay Differential Equations
T T T T T

Solutions
w S o (2] ~ ©
T T T T T T

N
T

0 . . . . . . .
0 0.5 1 1.5 2 25 3 35 4
Time

Figure 1. Red: original equation; blue: averaged equation for € = 0.001.
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Example 2. Take the following:

Dy M@ ,(c) = 36> sin (w,(c — 1)) sin®(©)@,(c)
+£290-2 sin (w,(c)) cos (@e(€)) 22, ¢ € [0, 7], (5.3)
w@(0) = o,

where a = 0.90, s = =, and

1

L
6, @0, e - ) = 35in (@.(c - ) SN0,
(e, (0), @(e — 5)) = sin (@4 () cos (@, (©).

The criteria of existence and uniqueness are fulfilled by f(¢, @ (c), @ (c — s)) and g(c, @w(c), @(c — s)).
The averages of f and g are as

(@), @(c —s)) = % fo " 3 sin (w,(c — %)) sin?(¢)w(c)de = % sin (@(c — %))wi(c),

o(w(c), w(c—89)) = % j(; ' sin (@,(c)) cos (w(c))de = sin (w(c)) cos (@i(c)).

The corresponding average is

{ DgngWZ(C) = %80'90 sin (w:‘(c - %))W;(C) + 80'90_% sin (W;(C)) Cos (wz(c))dc’ (5 4)

w.(0)=0".

All requirements in Theorem 4.1 are fulfilled by Example 2. Consequently, solutions @.(c) and @(c)
are equivalent at the pth moment in the limit as & — 0. Figure 2 provides a graphical comparison
between solutions of the original system (5.3) and the averaged system (5.4), illustrating a strong
agreement between w,(c) and w(c) and validating the accuracy of our theoretical findings.

Solutions of Fractional Stochastic Delay Differential Equations
T T T T

Solutions

. . . . . . .
0 0.5 1 15 2 25 3 35 4
Time

Figure 2. The red curve indicates the solution of the original equation, while the blue curve
represents the solution of the averaged equation for € = 0.001.
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Example 3. Examine the following:

Dy P @e(e) = 36" w,(c - §) cos (@e(0) sin (@(c))
+%ﬂ80‘95_% sin’ ¢ cos (@, (c)) sin (w&c))wdc)%, ¢ € [0,n], (5.5)
w(0) = o,

where a = 0.95, s = -, and

1
4’

1 1
f(c, @(c), w(c —s)) = gwg(c - 4_1) cos (w,(¢)) sin (w,(c)),

(e, w(c), w(c —s)) = %’T sin’ ¢ cos (w,(¢))@,(c) sin (w,(c)).

f(c, @w(c), @w(c — s)) and y(c, w(c), w(c — s)) satisfy the needs of existence and uniqueness.
The following are the averages:

~ 1 (™1 1 1 1
(). @ -5) = fo (e = ) sin (@,(0) cos (@,(O)de = zwi(e — 1) sin (@}(0) cos (@ (©).

o(w@(c), w(c—8)) = 7_1r f " %Tﬂ sin’ ¢ cos (@5(¢))w(¢) sin (@ () )de = sin (@ (c)) cos (@:(c)) ().
0

Thus,

Dy P w@i(c) = 1" wi(c — 1) sin (w@(c)) cos (w(¢))
+£29572 cos (@ (0))@(¢) sin (@(c) 242, (5.6)
w.(0)=0".
All conditions stated in Theorem 4.1 are satisfied by Example 3. As a result, solutions @,(¢) and @(c)
are equivalent at the pth moment in the limit as € — 0. Figure 3 depicts a graphical comparison
between solutions of the original system (5.5) and the averaged system (5.6), demonstrating a strong
agreement between w,(c) and w@(c) and confirming the accuracy of our theoretical results.

Solutions of Fractional Stochastic Delay Differential Equations
T T T T

Solutions
w B (%)) (2]
T T T T

N
T

[
T

0

. . . . . . .
0 0.5 1 15 2 25 3 35 4
Time

Figure 3. The red curve shows the solution of the original model, while the blue curve
depicts the solution of the averaged model for € = 0.001.
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Example 4. Take the following:

D% @.(c) = 2% sin (w(c)) cos (w.(c)) exp™

+£%95-7 gin (wo(0))w,(c — %) cos (Wa(c))%’ ¢ €[0,7], (.7)

w(0) = o,

where ¢ = 0.95,s = £, and

f(c, @(c), w(c —s)) = g sin (w,(¢)) cos (w,(c)) exp ™",
(¢, @(¢), w(c — 8)) = sin (@(0)) @ (c - %) cos (@,(¢)).

The %sin (w(c)) cos (w.(c)) exp™ and sin(w.(¢c))w(c — %) cos (w,(c)) satisfy the conditions of

existence and uniqueness.
The averages of f and g:

?(w(c), w(c—8)) = l f " (2 sin (@ (c)) cos (w,(c)) exp* )dc
T Jo 2
= sin(a7(0)) cos (@)1 — exp™,
2
B@©. 06~ 9) =+ [ sin(@,0)@ - 3)cos (@,0)ds = sin (@) - 3)c03 (@00).
0

So, we get

Dy P wi(e) = 22 sin (w(¢)) cos (w@:(c))(1 — exp™)
+&2953 sin (@:(0)) @ (c — 2) cos (@(c)) 22, (5.8)
w.(0)=0".

Figure 4 presents the same results as in Examples 1-3.

Solutions of Fractional Stochastic Delay Differential Equations
14 T T T T

12|

10

Solutions

. . . . . . .
0 0.5 1 15 2 25 3 35 4
Time

Figure 4. The solution of the original equation is shown in red, while the solution of the
averaged equation is shown in blue for € = 0.001.
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6. Conclusions

Our research work is important as follows: First, by proving results of existence and uniqueness,
Con-D, regularity, and average principle in the pth moment, we extend the outcomes for p = 2.
Secondly, for the first time in the literature, we construct well-posedness and average principle results
in the context of HFrD of SFDDEs. Third, we consider SFDDEs, which represent a more generalized
class of FSDEs, and we present some graphical results to prove the validity of our results.

The following are the main points we can work on in the future: We can explore the important
concept of controllability for SFDDEs concerning HFrD. We can establish well-posedness, regularity,
and average principle results for stochastic Volterra-Fredholm integral equations.
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