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Abstract: We investigate the inhomogeneous nonlinear Schrödinger equation with partial harmonic
confinement. First, we present a global well-posedness result for small data in the intercritical regime.
Second, we obtain a threshold of global existence versus finite-time blow-up in the mass-critical
regime. Finally, we prove the L2 concentration of the mass-critical non-global solution with minimal
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1. Introduction

We consider the nonlinear, focusing, inhomogeneous Schrödinger equation with a partial harmonic
confinement {

i∂tu + ∆u −
∑

j∈J |x j|
2u + |x|−ϱ|u|p−1u = 0;

u(0, ·) = u0.
(1.1)

Hereafter, the space dimension is N ≥ 2 and the wave function is denoted by
u := u(t, x) : R × RN → C. The set of partial confinement components is ∅ , J := {i1, . . . , ik}, where
1 ≤ k < N and 1 ≤ i1 < · · · < ik < N. Finally, the exponent of the source term is p > 1, and the
singular inhomogeneity satisfies 0 < ϱ < 2̃ := N

3 χ[2,3] + 2χ[4,∞).

The cubic nonlinear Schrödinger equation, commonly referred to as the Gross–Pitaevskii equation
(GPE), plays a crucial role in physics. Specifically, (1.1) with p = 3, ϱ = 0, and an external trapping
potential provides an effective description of Bose–Einstein condensates (BEC). A Bose–Einstein
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condensate is a macroscopic collection of bosons that, at extremely low temperatures, occupy the same
quantum state. This phenomenon was experimentally observed only in the last two decades [1, 2],
which has spurred extensive theoretical and numerical research. In experiments, BEC is observed
in the presence of a confining potential trap, and its macroscopic behavior is highly dependent on
the shape of this trapping potential. When the trap potential is confined along partial directions
in the space, [3, 4] showed the same properties as the whole confinement in the space under some
assumptions. At low enough temperature, neglecting the thermal and quantum fluctuations, a Bose
condensate can be represented by (1.1). Specifically, if we consider a condensate of particles of mass
and negative effective scattering length in a partial confining potential using variables rescaled by the
natural quantum harmonic oscillator units of time, we get (1.1). Equation (1.1) arises also in the
propagation of mutually incoherent wave packets in nonlinear optics. For more details we refer to [5].

Several historic works have addressed the non-linear Schrödinger equation with partial confinement.
The existence of orbitally stable ground states was investigated in [4], and the strong instability of
standing waves was studied in [6]. A mixed source term was considered in [7]. The energy scattering
of global solutions in the focusing intercritical regime was treated in [3, 8–10], while the finite-time
blow-up of energy solutions was examined in [11, 12]. Thresholds for global existence versus energy
concentration were established in [13, 14]. See also [15, 16] for the mass-critical NLS concentration
without any potential. All these works focus on the homogeneous regime, corresponding to (1.1) with
ϱ = 0. The only paper addressing the inhomogeneous case appears to be [17], which investigated
the existence and stability of standing waves. This work aims to extend the existing literature to the
inhomogeneous regime, specifically treating the case ϱ , 0 in (1.1). The challenge lies in addressing
the partial confinement, which breaks the scaling invariance, as well as the singular inhomogeneous
term | · |−ϱ. The method used here does not cover the energy-critical regime, which is investigated
in a work in progress. A solid theoretical understanding of the problem motivates us to explore its
numerical and practical aspects in future work.
Let us outline the plan of the manuscript. Section 2 proves a global existence result. Section 3
establishes a threshold of global existence versus blowup of mass-critical solutions. Sections 4-
5 investigate the finite-time blow-up of mass-critical non-global solutions. In the appendix, some
variance-type identities are established.

For simplicity, let us denote the Lebesgue space Lp := Lp(RN) and the classical norms ∥ ·∥p := ∥ ·∥Lp ,
∥ · ∥ := ∥ · ∥2. Let us denote the Sobolev space H1 := { f ∈ L2 and ∇ f ∈ L2}. Finally, if A and B are
positive real numbers, A ≲ B means that A ≤ CB for an absolute positive constant C > 0.

1.1. Preliminary

First, let us give some notations. Let the real numbers

Bk := ϱ +
(N − k)(p − 1)

2
, B := B0 and A := −B + 1 + p.

Let us define pk,c := 1 + 4−2ϱ
N−k , the mass critical exponent pc := p0,c and the energy critical one

pc :=
{

1 + 4−2ϱ
N−2 , i f N ≥ 3;
+∞, i f N = 2.
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Note that, since the partial confinement breaks the scaling invariance, the mass-critical and energy-
critical exponents are taken as the same for the INLS without any potential. The so-called energy space
is

Σ = ΣJ := {u ∈ H1; x ju ∈ L2, ∀ j ∈ J},

endowed with the norm

∥ · ∥Σ :=
(
∥ · ∥2 +

∑
j∈J

∥x j · ∥
2
) 1

2
.

Hereafter, we denote for u ∈ Σ, the conserved real quantities under the flow of (1.1), which are
respectively referred to as the mass and the energy

M(u) := ∥u∥2; (Mass)

E(u) := ∥∇u∥2 +
∑
j∈J

∥x ju∥2 −
2

1 + p

∫
RN
|u|1+p|x|−ϱ dx. (energy)

The problem (1.1) is locally well-posed in the energy space, as demonstrated by the results in [8,
18, 19]. Specifically, by applying the Strichartz estimate from [8], we employ the standard fixed-point
method introduced in [18], while incorporating techniques from [19] to address the inhomogeneous
term.

Proposition 1.1. Let N ≥ 2, 0 < ϱ < 2̃, 1 < p < pc and u0 ∈ Σ. Then, the Cauchy problem (1.1) has a
unique maximal solution u ∈ C

(
[0,T max),Σ

)
, in the sense that

T max < ∞ =⇒ lim sup
T max

∥u(t)∥Σ = ∞.

Moreover, the mass and energy are conserved

M(u(t)) = M(u0), E(u(t)) = E(u0).

In order to investigate the problem (1.1), we take the elliptic problem with no potential

∆ϕ − ϕ + |x|−ϱ|ϕ|p−1ϕ = 0, 0 , ϕ ∈ H1. (1.2)

The existence and uniqueness of the ground state hold for 0 < ϱ < 2̃ and 1 < p < pc. Specifically,
the existence of the ground state is established in [20–22], while its uniqueness is derived in [23, 24].
Below, we outline the main contributions of this paper.

1.2. Main results

First, we give a global existence result, for small data in the intercritical regime.
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Theorem 1.1. Let N ≥ 2, 0 < ϱ < 2̃ and pc < p < pc. Let ϕ be the positive radial decreasing ground
state of (1.2) and 0 , u0 ∈ Σ satisfying

∥u0∥ ≤
(B − 2

A

) B−2
2A
∥ϕ∥

p−1
A
(
∥∇u0∥

2 +
∑
j∈J

∥x ju0∥
2
)− B−2

2A
. (1.3)

Then, there exists a unique global solution u ∈ C(R,Σ) to the Schrödinger problem (1.1), which satisfies

∥∇u(t)∥2 +
∑
j∈J

∥x ju(t)∥2 <
2B

B − 2
E(u0), ∀t ≥ 0.

Remarks 1.1. 1. Taking 0 < λ ≪ 1, one checks that λu0 satisfies the above condition. This gives an
infinite family of global solutions.

2. When B→ 2, equivalently p→ pc, the above conditions read ∥u0∥ < ∥ϕ∥.
3. The previous result complements [25] to the inhomogeneous regime, namely, ϱ , 0.

In order to prove the finite-time blow-up of solutions, one needs the next variance identities.

Proposition 1.2. Let N ≥ 2, 0 < ϱ < 2̃ and 1 < p < pc. Let u ∈ C
(
[0,T ];Σ

)
be a local solution to the

problem (1.1). Then, for all t ∈ [0,T ], holds

∂2
t

(∑
j<J

∥x ju(t)∥2
)
= 8

(∑
j<J

∥∂ ju(t)∥2 − (N − k)(
1
2
−

1
1 + p

)
∫
RN
|u(t, x)|1+p|x|−ϱ dx

−
ϱ

2(1 + p)

∫
RN
|u(t, x)|1+p(∑

j∈J

x2
j
)
|x|−ϱ−2 dx

)
. (1.4)

Moreover, if xu0 ∈ L2, then

∂2
t

(
∥xu(t)∥2

)
= 8

(
∥∇u(t)∥2 −

∑
j∈J

∫
RN
|x j|

2|u(t, x)|2 dx −
B

1 + p

∫
RN
|u(t, x)|1+p|x|−ϱ dx

)
. (1.5)

Remarks 1.2. 1. In order to use (1.5), we need that the data belongs to the set

Σ′ :=
{
u ∈ H1, xu ∈ L2

}
↪→ Σ. (1.6)

2. The previous result is proved in the appendix.

Using the variance-type identities in Proposition 1.2, we present the following blow-up result.

Proposition 1.3. Let N ≥ 2, 0 < ϱ < 2̃ and 1 < p < pc. Let u ∈ C
(
[0,T ),Σ

)
be a local solution to the

problem (1.1). Then, u is non-global if

1. p ≥ pc and u0 ∈ Σ
′ satisfies one of the following:

(a) E(u0) < 0;
(b) E(u0) = 0 and ℑ

∫
RN ū0

(
x · ∇u0

)
dx < 0.
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2. k = 1, 0 < ϱ < 2
N−1 , p ≥ 1 + 4

N−k and one of the following holds:

(a) E(u0) < 0;
(b) E(u0) = 0 and

∑
j<J ℑ

∫
RN ū0

(
x j · ∇u0

)
dx < 0.

Remarks 1.3. 1. The identity (1.5) reads by use of the energy

∂2
t

(
∥xu(t)∥2

)
= 8

(
E(u0) − 2

∑
j∈J

∫
RN
|x j|

2|u(t, x)|2 dx −
B − 2
1 + p

∫
RN
|u(t, x)|1+p|x|−ϱ dx

)
. (1.7)

So, by (1.7), since p ≥ pc reads B ≥ 2, the first point of Proposition 1.3 follows by time integration.
2. The identity (1.4) reads by use of the energy

∂2
t

(∑
j<J

∥x ju(t)∥2
)
= 8

(
E(u0) −

∑
j∈J

∫
RN
|x j|

2|u(t, x)|2 dx −
∑
j∈J

∥∂ ju∥2

−
[
(N − k)(

1
2
−

1
1 + p

) −
2

1 + p

] ∫
RN
|u|1+p|x|−ϱ dx

−
ϱ

2(1 + p)

∫
RN

(∑
j∈J

x2
j
)
|x|−ϱ−2|u|1+p dx

)
≤ 8

(
E(u0) −

[
(N − k)(

1
2
−

1
1 + p

) −
2

1 + p

] ∫
RN
|u|1+p|x|−ϱ dx

)
. (1.8)

So, by (1.8), since p ≥ 1 + 4
N−k , the second point of Proposition 1.3 follows by time integration.

3. The assumption k = 1 in the second case is because 1 + 4
N−k ≤ p < pc.

The ground state of (1.2) gives a threshold of global existence versus finite-time blow-up of mass-
critical solutions to (1.1).

Theorem 1.2. Let N ≥ 2, 0 < ϱ < 2̃ and p = pc. Let u ∈ C
(
[0,T max),Σ

)
be a maximal solution to (1.1)

and ϕ be the positive radial solution to (1.2). Then,

1. T max < ∞ if ∥u0∥ > ∥ϕ∥ and u0 ∈ Σ
′;

2. T max = ∞ if ∥u0∥ < ∥ϕ∥.

In the mass-critical regime, we give a mass-concentration result of non-global solutions.

Theorem 1.3. Let N ≥ 2, 0 < ϱ < 2̃ and p = pc. Let u ∈ C
(
[0,T max),Σ′

)
a non-global solution to (1.1)

and a positive real function µ := µ(t) such that

lim
t→T max

µ(t)∥∇u(t)∥ = ∞. (1.9)

Thus, there exists x(t) ∈ RN satisfying

∥ϕ∥2 ≤ lim inf
t→T max

∫
|x−x(t)|≤µ(t)

|u(t, x)|2dx, (1.10)

where ϕ is the ground state to (1.2).
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Remarks 1.4. 1. Thanks to the identity (1.7), the concentration does not occur in the potential
quantity, namely lim supt→T max ∥x ju(t)∥2 < ∞, for any j < J.

2. The assumption u0 ∈ Σ
′ is imposed because the use of (1.8) needs p ≥ 1 + 4

N−1 ,which fails for
p = pc.

3. The mass concentration (1.10) implies in particular that the solution has no L2 limit when t →
T max.

Eventually, we study the lower bound for the mass-critical blow-up rate.

Theorem 1.4. Let N ≥ 3, 0 < ϱ < 2̃, p = pc and ϕ be the radial positive solution to (1.2). Let
u ∈ C

(
[0,T max),Σ

)
be a maximal non-global solution to (1.1) satisfying ∥u0∥ = ∥ϕ∥. Then,

∥∇u(t)∥ ≳
1

T max − t
, ∀t ∈ [0,T max). (1.11)

Remarks 1.5. 1. In the case p = pc, in order to study the non-global solutions to (1.1), we use the
associated ground state without any potential, namely the solution to (1.2).

2. The restriction on space dimensions N > 2 is needed when using Hardy estimate.
3. In the standard NLS case, namely without partial confinement, a classical scaling argument gives
∥∇u(t)∥ ≳ 1

√
T max−t

, which is better than the lower bound (1.11).

In the next sub-section, we gather some standard estimates.

1.3. Useful estimates

The next compactness result [26, Theorem 1.3] is adapted to the analysis of the blow-up
phenomenon of Schrödinger equations.

Lemma 1.1. Let N ≥ 2, 0 < ϱ < 2, m, M > 0 and a sequence of H1 satisfying

sup
n
∥un∥H1 < ∞, lim sup

n→∞
∥∇un∥ ≤ M2 and lim sup

n→∞

∫
RN
|un|

1+pc |x|−ϱ dx ≥ m1+pc .

Then, there exist V ∈ H1 and a sequence (xn) in RN such that up to a sub-sequence, one has

un(· + xn) ⇀ V weakly in H1;

∥V∥ ≥
( 2m

M(1 + pc)

) 1
pc−1
∥ϕ∥,

where ϕ is a ground state to (1.2).

The following Gagliardo-Nirenberg inequality [27, 28] will be useful.

Proposition 1.4. Let N ≥ 1, 0 < ϱ < min{2,N} and 1 < p < pc. Then, for all f ∈ H1,

∫
RN
| f (x)|1+p|x|−ϱ dx ≤ Kopt∥ f ∥A∥∇ f ∥B (1.12)

:=
1 + p

A

(A
B

) B
2
∥ϕ∥−(p−1)∥ f ∥A∥∇ f ∥B, (1.13)
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where ϕ is a the ground state solution to (1.2). Moreover, we have the Pohozaev type identities

∥∇ϕ∥2 =
B
A
∥ϕ∥2 =

B
1 + p

∫
RN
|ϕ(x)|1+p|x|−ϱdx. (1.14)

Finally, one gives an elementary useful result [29].

Lemma 1.2. Let an open interval I ⊂ R, t0 ∈ I, θ > 1, a, z > 0 and g ∈ C(I,R+). Let the real function
defined on R+ by f (x) := a − x + zxθ, x∗ := (zθ)−

1
θ−1 and z∗ := θ−1

θ
x∗. Then,

g < x∗, on I,

provided that
a ≤ z∗ g(t0) < x∗ and f ◦ g > 0.

Now, let us establish the main results.

2. Global well-posedness

In this section, we prove Theorem 1.1. Let us define the quantities

g(t) := ∥∇u(t)∥2 +
∑
i∈J

∥xiu(t)∥2; (2.1)

a := ∥∇u0∥
2 +

∑
i∈J

∥xiu0∥
2; (2.2)

z :=
2Kopt

1 + p
∥u0∥

A, (2.3)

where t ∈ [0,T max) and Kopt is given in Proposition 1.4. Let also the real function defined on (0,∞),
by

h : s 7→
(B − 2

A

) B−2
2A
∥ϕ∥

p−1
A s−

B−2
2A . (2.4)

With the conservation laws, we write

g(t) = ∥∇u(t)∥2 +
∑
i∈J

∥xiu(t)∥2

= E(u0) +
2

1 + p

∫
RN
|u(t, x)|1+p|x|−ϱ dx

< ∥∇u0∥
2 +

∑
i∈J

∥xiu0∥
2 +

2
1 + p

∫
RN
|u(t, x)|1+p|x|−ϱ dx. (2.5)

So, (2.5) via Proposition 1.4 and the mass conservation law implies that
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g(t) <∥∇u0∥
2 +

∑
i∈J

∥xiu0∥
2 +

2Kopt

1 + p
∥u0∥

A∥∇u(t)∥B

<∥∇u0∥
2 +

∑
i∈J

∥xiu0∥
2 +

2Kopt

1 + p
∥u0∥

A
(
g(t)

) B
2

=a + z
(
g(t)

) B
2
. (2.6)

By (2.6), the real function f : x 7→ a − x + zx
B
2 satisfies f

(
g(t)

)
> 0, for any t < T max. Now, the

assumption (1.3) reads ∥u0∥ ≤
(

B−2
A

) B−2
2A
∥ϕ∥

p−1
A a−

B−2
2A , rewritten as

a ≤
B − 2

A
∥ϕ∥

2(p−1)
B−2 ∥u0∥

− 2A
B−2 . (2.7)

Let us keep the notations of Lemma 1.2, namely

θ :=
B
2

; (2.8)

x∗ :=
(
zθ

)− 1
θ−1 ; (2.9)

z∗ :=
B − 2

B
x∗. (2.10)

Taking into account of Proposition 1.4, yields

z∗ =
B − 2

B

( 2Kopt

1 + p
∥u0∥

A B
2

)− 2
B−2

=
B − 2

B

( 1
A

(
A
B

)
B
2 ∥ϕ∥−(p−1)∥u0∥

AB
)− 2

B−2

=
B − 2

B

(
(
A
B

)
B
2 −1∥ϕ∥−(p−1)∥u0∥

A
)− 2

B−2

=
B − 2

A
∥ϕ∥

2(p−1)
B−2 ∥u0∥

− 2A
B−2 . (2.11)

So, (2.7) and (2.11), imply that a ≤ z∗ < x∗. Applying Lemma 1.2, it follows that supt∈[0,T max) g(t) <
x∗. Then, u is global, namely T max = ∞. Moreover, the energy reads via Proposition 1.4,

E(u0) = ∥∇u∥2 +
∑
i∈J

∥xiu∥2 −
2

1 + p

∫
RN
|u|1+p|x|−ϱ dx

≥ ∥∇u∥2 +
∑
i∈J

∥xiu∥2 −
2Kopt

1 + p
∥u0∥

A∥∇u∥B

≥ ∥∇u∥2 +
∑
i∈J

∥xiu∥2 −
2Kopt

1 + p
∥u0∥

A
(∑

i∈J

∥xiu∥2 + ∥∇u∥2
) B

2
. (2.12)
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So, by (2.12), we write

E(u0) ≥
(
∥∇u∥2 +

∑
i∈J

∥xiu∥2
)(

1 −
2Kopt

1 + p
∥u0∥

A(
∑
i∈J

∥xiu∥2 + ∥∇u∥2)
B
2 −1

)
≥

(
1 −

2Kopt

1 + p
∥u0∥

Ag
B
2 −1

)
g. (2.13)

Since g < x∗, we get by (2.13),

E(u0) >
(
1 −

2
B

)
g. (2.14)

Finally, (2.14) implies that

sup
t∈[0,∞)

g(t) <
B

B − 2
E(u0). (2.15)

The proof of Theorem 1.1 is closed by (2.15).

3. Global/ non-global mass-critical solutions

This section proves Theorem 1.2. So, we fix p = pc and taking account of Proposition 1.4, we
denote the quantities

Bc = 2, Ac =
4 − 2ϱ

N
, Kopt =

(
1 +

2 − ϱ
N

)
∥ϕ∥−

4−2ϱ
N . (3.1)

Thus, by Proposition 1.4, we write

E(u0) ≥ ∥∇u(t)∥2 −
2

1 + pc
Kopt∥∇u(t)∥Bc∥u(t)∥Ac +

∑
j∈J

|x j|
2|u(t, x)|2

≥ ∥∇u(t)∥2
(
1 −

2
1 + pc

Kopt∥u0∥
4−2ϱ

N
)
+

∑
j∈J

|x j|
2|u(t, x)|2

≥ ∥∇u(t)∥2
(
1 −

[∥u0∥

∥ϕ∥

] 4−2ϱ
N

)
+

∑
j∈J

|x j|
2|u(t, x)|2. (3.2)

By (3.2), if ∥u0∥

∥ϕ∥
< 1, it follows that T max = ∞.

Now, we take for λ, µ > 0 the scaling u0 := λϕ( ·
µ
) and we compute

∥u0∥
2 = λ2µN∥ϕ∥2; (3.3)

∥x ju0∥
2 = λ2µN+2∥x jϕ∥

2; (3.4)
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∥∇u0∥
2 = λ2µN−2∥∇ϕ∥2; (3.5)

∥|x|−
ϱ

1+p u0∥
1+pc
1+pc
= λ1+pµN−ϱ∥|x|−

ϱ
1+pc ϕ∥

1+pc
1+pc

. (3.6)

Let us pick 0 < ε ≪ 1 and

µ4
∑
j∈J

∥x jϕ∥
2 <

N
2 − ϱ

∥ϕ∥2
([

(ε + ∥ϕ∥2)∥ϕ∥−2] 2−ϱ
N − 1

)
; (3.7)

λ2 :=
(
ε + ∥ϕ∥2

)
∥ϕ∥−2µ−N . (3.8)

Taking account of the Pohozaev identities, namely (1.14),

∥ϕ∥2 =
Ac

Bc
∥∇ϕ∥2 =

Ac

1 + pc
∥|x|−

ϱ
1+pc ϕ∥

1+pc
1+pc

,

we write by (3.3) to (3.6),

E(u0) = ∥∇u0∥
2 +

∑
j∈J

∥x2
ju0∥

2 −
2

1 + p
∥|x|−

ϱ
1+p u0∥

1+pc
1+pc

= λ2µN
(
µ−2∥∇ϕ∥2 + µ2

∑
j∈J

∥x jϕ∥
2 −

2
1 + pc

λ−1+pcµ−ϱ∥|x|−
ϱ

1+pϕ∥
1+pc
1+pc

)
= λ2µN

((
µ−2 − λ

4−2ϱ
N µ−ϱ

)
∥∇ϕ∥2 + µ2

∑
j∈J

∥x jϕ∥
2
)
. (3.9)

Thus, by (3.9) via (3.7) and (3.8), we write

E(u0) = λ2µN−2
(
(1 − λ

4−2ϱ
N µ2−ϱ)∥∇ϕ∥2 + µ4

∑
j∈J

∥x jϕ∥
2
)

= λ2µN−2
(
(1 − [(ε + ∥ϕ∥2)∥ϕ∥−2]

2−ϱ
N )∥∇ϕ∥2 + µ4

∑
j∈J

∥x jϕ∥
2
)

= λ2µN−2
( N
2 − ϱ

(
1 − [(ε + ∥ϕ∥2)∥ϕ∥−2]

2−ϱ
N
)
∥ϕ∥2 + µ4

∑
j∈J

∥x jϕ∥
2
)

< 0. (3.10)

The proof is achieved via Remark 1.3.

4. Mass-critical concentration

This section proves Theorem 1.3. Let us pick the sequences

tn → T max, as n→ ∞; (4.1)
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λn :=
∥∇ϕ∥

∥∇u(tn)∥
; (4.2)

vn := λ
N
2
n u(tn, λn·). (4.3)

Thus, by (3.3) and (3.6), we write

∥vn∥ = ∥u0∥ and ∥∇vn∥ = ∥∇ϕ∥. (4.4)

Moreover, by (4.2) because p = pc, we have

H(vn) := E(vn) −
∑
j∈J

∥x jvn∥
2

= λ2
nH(u(tn))

= λ2
n

(
E(u0) −

∑
j∈J

∥x ju(tn)∥2
)
. (4.5)

Applying (1.7), it follows that ∂2
t

(
∥xu(t)∥2

)
≤ 8E(u0), which implies that

sup
n

∑
j∈J

∥x ju(tn)∥ ≲ 1. (4.6)

So, (4.5) via (4.6) and the fact that λn vanishes at infinity, implies that

∫
RN
|vn|

1+pc |x|−ϱ dx→
1 + pc

2
∥∇ϕ∥2 when n→ ∞. (4.7)

Applying Lemma 1.1, with ∥∇ϕ∥2 = M and 1+pc
2 ∥∇ϕ∥

2 = m1+pc , there exist xn ∈ R
N and V ∈ H1

such that ∥ϕ∥ ≤ ∥V∥ and

vn(· + xn) ⇀ V, in H1. (4.8)

Thus, for any real number R > 0, yields

lim inf
n

∫
|x−xn |≤Rλn

|u(tn, x)|2 dx ≥
∫
|x|≤R
|V(x)|2 dx. (4.9)

Now, since

µ(tn)
∥∇u(tn)∥
∥∇ϕ∥

=
µ(tn)
λn
→ ∞,

taking n ≫ 1, by (4.9), we write
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lim inf
n

sup
y∈RN

∫
|x−y|≤µ(tn)

|u(tn, x)|2 dx ≥ ∥V∥2 ≥ ∥ϕ∥2.

Then,

∥ϕ∥2 ≤ lim inf
t→T max

sup
y∈RN

∫
|x−y|≤µ(t)

|u(t, x)|2 dx.

With a continuity argument, there exists x(t) ∈ RN satisfying

∥ϕ∥2 ≤ lim inf
t→T max

∫
|x−x(t)|≤µ(t)

|u(t, x)|2 dx.

This concludes the proof of Theorem 1.3.

5. Blow-up rate

This section proves Theorem 1.4.

5.1. Weak convergence

We start with the next auxiliary result.

Proposition 5.1. Let N ≥ 2, p = pc and ϕ a ground state of (1.2). Let u ∈ C
(
[0,T max),Σ′

)
be a

blowing-up solution to (1.1) satisfying ∥u0∥ = ∥ϕ∥. Then, there exists x0 ∈ R
N such that

∥u(t)∥2 ⇀ ∥ϕ∥2δx0 , as t → T max,

in the sense of distribution.

Proof. By Theorem 1.3, namely (1.10), we have for any R > 0,

∥ϕ∥2 ≤ lim inf
t→T max

∫
|x−x(t)|≤R

|u(t, x)|2 dx. (5.1)

So, (5.1) via the identity ∥u0∥ = ∥u(t)∥ = ∥ϕ∥ implies that for any R > 0,

∥ϕ∥2 = lim inf
t→T max

∫
|x−x(t)|≤R

|u(t, x)|2 dx. (5.2)

Now, we take ψ ∈ C∞0 (RN), λn → 0 and tn → T max, when n → ∞. We define w(t) := u(t, · + x(t))

and zn := λ
N
2
n wn(λn·), so by the dominated convergence theorem, we get

∣∣∣ ∫
RN
ψ(x)|w(tn)|2 dx − ψ(0)∥ϕ∥2

∣∣∣ = ∣∣∣ ∫
RN
ψ(λny)λN

n |w(tn, λny)|2 dy − ψ(0)∥ϕ∥2
∣∣∣

=
∣∣∣ ∫
RN
ψ(λny)|zn|

2 dy − ψ(0)∥ϕ∥2
∣∣∣
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≲
∣∣∣∥zn∥

2 − ∥ϕ∥2
∣∣∣ + ∫

RN

∣∣∣ψ(λny) − ψ(0)
∣∣∣|ϕ|2 dy

→ 0. (5.3)

Thus, (5.3) implies that in the sense of distribution, when t → T max,

|u(t, · + x(t))|2 ⇀ ∥ϕ∥2δ0. (5.4)

Now, for a real-valued function θ(x), we compute

|∇
(
ueiτθ(x))|2 = |∇u|2 + τ2|∇θ(x)|2|u|2 + 2τ∇θ(x) · Im(ū∇u). (5.5)

Hence, by (5.5), we get

H
(
ueiτθ) = ∥∇(ueiτθ)∥2 − 2

1 + pc

∫
RN
|u|1+pc |x|−ϱ dx

=
(
∥∇u∥2 + τ2

∫
RN
|∇θ|2|u|2 dx + 2τ

∫
RN
∇θ · Im(ū∇u) dx

)
−

2
1 + pc

∫
RN
|u|1+pc |x|−ϱ dx

= H(u) + τ2∥u∇θ∥2 + 2τ
∫
RN
∇θ · Im(ū∇u) dx. (5.6)

Moreover, by Proposition 1.4 for any τ ≥ 0,

H
(
ueiτθ) ≥ ∥∇(ueiτθ)∥2 (

1 −
(∥ueiτθ∥

∥ϕ∥

)p−1
)

= ∥∇
(
ueiτθ)∥2 (

1 −
(∥u0∥

∥ϕ∥

)p−1
)

= 0. (5.7)

Now, (5.7) and (5.6) give a negative discriminant of the polynomial τ 7→ H(ueiτθ), namely

∣∣∣ ∫
RN
∇θ · Im(ū∇u) dx

∣∣∣ ≤ √
H(u0)∥u∇θ∥. (5.8)

Moreover, (1.1) gives for any 1 ≤ j ≤ N,

∣∣∣∣∂t

∫
RN

x j|u(t, x)|2 dx
∣∣∣ = 2

∣∣∣ ∫
RN

x jℜ
(
ū∂tu

)
dx

∣∣∣
= 2

∣∣∣ ∫
RN

x jℑ
(
ū∆u

)
dx

∣∣∣. (5.9)
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since H(u) ≤ E(u0), an integration by parts via (5.8), (5.9) and the mass conservation law, implies
that

∣∣∣∣∂t

∫
RN

x j|u(t, x)|2 dx
∣∣∣ = 2

∣∣∣ ∫
RN
∇x j · ℑ

(
ū∇u

)
dx

∣∣∣
≲ ∥u∇x j∥

≲ 1. (5.10)

Taking tn → T max, with (5.10) via the Cauchy criteria, it follows that

∣∣∣∣ ∫
RN

x j|u(tn, x)|2 − x j|u(tm, x)|2 dx
∣∣∣ ≲ |tn − tm| → 0, when n,m→ ∞. (5.11)

So, (5.11) implies that the next limit exists

x∗ := ∥ϕ∥−1 lim
t→T max

∫
RN

x|u(t, x)|2 dx. (5.12)

Moreover, since

|x(t)|2
∫
RN
|u(t)|2 dx ≲

∫
RN
|u(t, x + x(t))|2|x + x(t)|2 dx = ∥xu(t)∥2, (5.13)

keeping in mind (1.5), it follows that

lim sup
t→T max

|x(t)| ≲ 1. (5.14)

Furthermore, using (5.4), via the equality

∫
|x|<R
|u(t)|2x dx =

∫
|x+x(t)|<R

|u(t, x + x(t))|2x dx +
∫
|x+x(t)|<R

|u(t, x + x(t))|2x(t) dx,

we write for R ≫ 1 and t → T max,

∫
|x|<R
|u(t)|2x dx −

∫
|x+x(t)|<R

|u(t, x + x(t))|2x(t) dx→ 0. (5.15)

Additionally, by Hölder estimate via (5.10), we have

∫
|x|>R
|u(t)|2x dx ≤ R−1

∫
|x|<R
|u(t)|2|x|2 dx
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≲ R−1. (5.16)

Hence, by (5.15) and (5.16), it follows that

∫
RN
|u(t)|2x dx − x(t)∥ϕ∥2 → 0. (5.17)

Thus, by (5.12) and (5.17), we write when t → T max,

x(t) → x∗. (5.18)

Finally, with (5.4) via (5.18), yields when t → T max,

|u(t, x)|2 ⇀ ∥ϕ∥2δx∗ . (5.19)

The proof of Proposition 5.1 is achieved by (5.19).

5.2. Proof of Theorem 1.4

Let us take a nonnegative smooth radial function denoted by Θ ∈ C∞0 (RN) satisfying

Θ(x) := |x|2, if |x| < 1, and |∇Θ|2 ≲ Θ. (5.20)

Using the above function, we define, for R > 0 and x∗ from Proposition 5.1,

ΘR := R2Θ(
·

R
); (5.21)

ΥR(t) :=
∫
RN
ΘR(x − x∗)|u(t, x)|2 dx. (5.22)

We compute using (1.1) via (5.20) and (5.8),

|Υ′R(t)| = 2
∣∣∣ ∫
RN
∇ΘR(· − x∗) · Im(ū∇u) dx

∣∣∣
≲

√
H(u0)∥u∇ΘR(· − x∗)∥

≲
√
ΥR(t). (5.23)

We integrate in time the identity (5.23) on [t, tn], where tn → T max, to get via (5.19),

√
ΥR(t) = lim

n→∞
|
√
ΥR(t) −

√
ΥR(tn)|

≲ |t − T max|. (5.24)
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We rewrite (5.24) as follows

ΥR ≲ (T max − ·)2. (5.25)

Letting R→ ∞ in (5.25), yields

Υ(t) := ∥(· − x∗)u(t)∥2 ≲
(
T max − t

)2
. (5.26)

Using (5.26) via Hölder and Hardy estimates, we write

∥u(t)∥2 =
∫
RN

∣∣∣(x − x∗)u(t)|(x − x∗)|−1u(t)
∣∣∣ dx

≲ ∥(· − x∗)u(t)∥∥| · −x∗|−1u(t)∥
≲ ∥(· − x∗)u(t)∥∥∇u(t)∥. (5.27)

We collect (5.26) and (5.27) to get

∥u(t)∥2 ≲ ∥u(t)(· − x∗)∥∥∇u(t)∥
≲

(
T max − t

)
∥∇u(t)∥. (5.28)

Finally, (5.28) via the mass conservation law gives (1.11). The proof of Theorem 1.4 is achieved.
□

A. Appendix: Variance identity

Let us give a proof of the first variance identity in Proposition 1.2. The second identity follows
similarly. Let a local solution to (1.1) denoted by u ∈ C

(
[0,T max),Σ

)
and the real function

V : [0,T max)→ R, t 7→
m∑
j<J

∥x ju(t)∥2. (A.1)

Multiplying the equation (1.1) by 2u and examining the imaginary parts, we get

∂t
(
|u|2

)
= −2ℑ

(
ū∆u

)
. (A.2)

We denote by a(x) :=
∑

j<J |x j|
2, b(x) :=

∑
j∈J |x j|

2. By (A.1) and (A.2), we compute using the
convention of sum to repeated index

∂tV = −2
∑
j<J

∫
RN
|x j|

2ℑ
(
ū∆u

)
dx
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= 2ℑ
∫
RN

(
∂ka∂ku

)
ū dx. (A.3)

Denoting the source term by N := |x|−ϱ|u|p−1u and using the equation (1.1), we write

∂tℑ
(
∂kuū

)
=ℑ(∂ku̇ū) + ℑ(∂ku ¯̇u)
=ℜ(iu̇∂kū) −ℜ(i∂ku̇ū)

=ℜ
(
∂kū

(
− ∆u +

∑
j∈J

|x j|
2u − N

))
−ℜ

(
ū∂k

(
− ∆u +

∑
j∈J

|x j|
2u − N

))
=ℜ

(
ū∂k∆u − ∂kū∆u

)
−ℜ

(
ū∂k

(∑
j∈J

|x j|
2u

)
− ∂kū

∑
j∈J

|x j|
2u

)
+ℜ

(
ū∂kN − ∂kūN

)
. (A.4)

Using the identity

1
2
∂k∆(|u|2) − 2∂lℜ

(
∂ku∂lū

)
= ℜ

(
ū∂k∆u − ∂kū∆u

)
, (A.5)

it follows that

∫
RN
∂kaℜ

(
ū∂k∆u − ∂kū∆u

)
dx =

∫
RN
∂ka

(1
2
∂k∆(|u|2) − 2∂lℜ(∂ku∂lū)

)
dx

=2
∫
RN
∂l∂kaℜ(∂ku∂lū) dx

=4
∑
j<J

∥∂ ju∥2. (A.6)

Moreover,

∫
RN
∂kaℜ

(
ū∂k(bu) − ∂kūbu

)
dx =

∫
RN

(∂ka∂kb)|u|2 dx = 0. (A.7)

Furthermore

∫
RN
∂kaℜ

(
ū∂kN − ∂kūN

)
dx =

∫
RN
∂kaℜ(∂k[ūN] − 2∂kūN) dx

= −

∫
RN

(
∆aūN − 2ℜ(∂ka∂kūN)

)
dx

= − 2(N − k)
∫
RN
|x|−ϱ|u|1+p dx − 2

∫
RN
∂kaℜ(∂kūN) dx. (A.8)

Using integration by parts, we get

∫
RN
∂kaℜ

(
∂kūN

)
dx =

∫
RN
∂kaℜ

(
∂kū|u|p−1u

)
|x|−ϱ dx
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=
1

1 + p

∫
RN
∂ka∂k(|u|1+p)|x|−ϱ dx

= −
1

1 + p

∫
RN
∆a|u|1+p|x|−ϱ dx −

1
1 + p

∫
RN
∂ka∂k

(
|x|−ϱ

)
|u|1+p dx

= − 2
N − k
1 + p

∫
RN
|u|1+p|x|−ϱ dx −

1
1 + p

∫
RN
∇a · ∇

(
|x|−ϱ

)
|u|1+p dx. (A.9)

Collecting (A.8) and (A.9), we have

∫
RN
∂kaℜ

(
ū∂kN − ∂kūN

)
dx = 2(N − k)

(
− 1 +

2
1 + p

) ∫
RN
|u|1+p|x|−ϱ dx

+
2

1 + p

∫
RN
∇a · ∇

(
|x|−ϱ

)
|u|1+p dx. (A.10)

Finally, plugging (A.10), (A.7) and (A.6) in (A.3), we get

1
2
∂2

t V = 4
∑
j<J

∥∂ ju∥2 − 2(N − k)(1 −
2

1 + p
)
∫
RN
|u|1+p|x|−ϱ dx +

2
1 + p

∫
RN
∇a · ∇

(
|x|−ϱ

)
|u|1+p dx.

(A.11)

This proves (1.4). The proof of (1.5) follows similarly by taking account of changing (A.7).
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