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Abstract: A miniscule amount of work was done for the assessment of measurement errors in
the existence of missing data using a few sampling techniques, while no work was available for
the assessment of correlated measurement errors in the existence of missing data. This study
aimed to propose some general imputation methods and the corresponding resultant estimators in
the existence of missing data under ranked set sampling, provided the data was contaminated with
the correlated measurement errors. The mean square error of the developed resultant estimators was
established to the first order approximation. The potency of the developed imputation methods and
corresponding resultant estimators was assessed by a comprehensive simulation experiment relying on
a hypothetically created population. The findings indicated that the proposed imputation methods and
the resultant estimators surpassed the traditional imputation methods and the resultant estimators. In
addition, a real data application of the proposed imputation methods was also provided.
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1. Introduction

Survey sampling is used in a variety of disciplines like epidemiology, ecology, medicine, and
agriculture, among others, with the underlying premise that all variables are accurately assessed.
However, as recorded correct values in exercise are nearly impossible, this criterion is usually
ignored. Consequently, errors are always present in the data recorded. The discrepancy between the
recorded value and the actual value is known as measurement error (ME) and arises due to the faulty
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instrument, faulty experimental techniques, interviewers, participants, and data interpreters used.
Several authors have assessed the effect of MEs, including [1–10], among others.

The aforementioned authors assumed that the MEs in study and auxiliary variables are
independent, but presumably it may not be adequate to assume that the MEs are independent in both
study and auxiliary variables, as the same investigator frequently gathers data on both variables.
Instead, they will be correlated and dependent, and this dependency in the MEs may be brought on by
the hidden underlying deportment of the data. This assumption suggests that MEs arise due to
inherent characteristics of the data-generating process rather than external factors like instrument
flaws or human mistakes. However, it does not explicitly define the specific nature of this underlying
behavior. Some important sources of correlated MEs include instrumental bias, calibration issues,
observer bias, environmental factors, sampling errors, processing errors, time-dependent changes,
interference effects, memory effects, methodological constraints, etc. The issue of correlated ME was
primarily introduced by [11], who measured the effect of the correlated MEs on the efficacy of the
usual ratio and product estimators of the population mean. Recently, the effect of correlated MEs on
the efficacy of the various estimators was assessed by [12, 13].

The ranked set sampling (RSS) is the efficient alternative to simple random sampling (SRS). It was
originated by [14] to estimate the production of the mean pasture, but it may be efficiently utilized in
the situations where ranking of the observations is much easier than obtaining their exact values.
These situations frequently occur in the fields of medicine [15, 16], forestry [17], environmental
monitoring [18], and reliability [19]. Essentially, the RSS was developed by [14] for the population
mean estimation. However, to date, it has been applied to almost all statistical problems, including
statistical inference [20], estimation of the population mean [21–28], the population variance [29], the
population proportion [30], and the cumulative distribution function [31].

In survey sampling, situations may arise when the data is contaminated with the missing values. In
such situations, it becomes tedious for the survey professionals to draw a valid conclusion. To solve the
issue of missing values in the data, the imputation is used. There are several imputation techniques that
have been proposed by different authors, including [32–38], but literature contains no work to tackle
the issue of missing data when the data is contaminated with the correlated MEs. This work has the
following objectives:

(i). To develop some fundamental theory under missing completely at random for RSS in the case of
missing data when the data is contaminated with correlated MEs.

(ii). To adapt imputation methods like mean, ratio, product, and power ratio imputation methods and to
propose Searls type power ratio imputation methods for estimating the population mean without
modifying the initial responses while imputing the missing values.

(iii). To assess the effect of correlated MEs on the efficacy of the adapted and suggested imputation
methods.

In Section 2, we define the theory and notations used throughout this study. In Section 3, we adapt
some fundamental imputation methods such as mean, ratio, and product imputation methods, while
in Section 4, we suggest Searls type power ratio imputation methods along with their properties for
estimating the population mean to evaluate the impact of correlated MEs under RSS. In Section 5, we
present a mathematical comparison to evaluate the performance of the imputation methods. Section 6
offers an extensive simulation study and the interpretation of simulation results. Application of the
adapted and proposed methods is discussed in Section 7. The conclusion is provided in Section 8.
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2. Methodology and notations

In the fundamental RSS process, one first determines a set size H. Then, H2 sample units are
randomly selected from the population and divided into H sets, each of size H. The units in each set
are given judgment ranking without obtaining actual measurements. The ith judgement order statistic
is quantified from the ith (i = 1, 2, ...,H) set, and the remaining unquantified units are returned to the
population. This completes a cycle of RSS. The complete cycle may be replicated K times to obtain
a ranked set sample of size n = HK. The ith judgement order statistic for the lth cycle is X[i]l. The
ranking procedure may contain some errors, which is shown by the usage of square brackets, whereas
the square brackets are changed to round brackets if the rankings are perfect. As compared to SRS
of equivalent size, the RSS frequently results in more effective inference. This is due to the fact
that a ranked set sample includes information from both the preliminary rankings and the quantified
observations in addition to the information provided by the observations themselves.

Suppose that the true measurements on the jth unit of the study and auxiliary variables are X j and
Y j, respectively. Although true measurements on these units cannot be obtained due to some reasons,
they may still be measured as x j and y j using the ME v j and u j for the jth unit of the corresponding
variables. Let x j = X j+v j and y j = Y j+u j, where j = 1, 2, ..., n. Let (ȳ, x̄) be the sample means, (µy, µx)
be the population means, (σ2

y , σ2
x) be the population variances, (Cy, Cx) be the population coefficients

of variation of variables (y, x), respectively, and ρxy be the coefficient of correlation between variables
x and y. The MEs (u j, v j) are also unobservable, having means of (0, 0), variances (σ2

u, σ2
v), population

coefficients of variation (Cu, Cv), and correlation coefficient of ρuv.
Let H1 = HP be the number of responding units out of sampled H units, where P is the probability

that the ith respondent belongs to the responding group ru and (1 − P) is the probability that the ith

respondent belongs to the non-responding group r̄u such that s = ru ∪ r̄u. Let r = HKP be the
responding units out of sampled n units such that n > r. The value Yi, i ∈ ru is observable for each
unit, except for the units i ∈ r̄u where the values are missing and require imputation to construct
the complete structure of data to make a valid conclusion. The known auxiliary variable population
data assists to execute the imputation of missing Y values. Suppose x̄r,rss =

∑H1
i=1

∑K
l=1 x(i:i)l/HKP and

ȳr,rss =
∑H1

i=1

∑K
l=1 y[i:i]l/HKP are the traditional estimators of µx and µy, respectively, such that x(i:i)l and

y[i:i]l are the ith order statistics and ith judgement order in the ith sample of size H in cycle l for variables
X and Y , respectively. For convenience, we have denoted x(i:i)l and y[i:i]l by x(i) and y[i], respectively. To
determine the mean square error (MSE) of the proposed estimators under MEs, we use the following
notations: ȳr,rss = µy(1+ δ0), x̄r,rss = µx(1+ δ1), and x̄n,rss = µx(1+ δ2), where δi, i = 0, 1, 2 are the error
terms, provided that

E(δ0) = E(δ1) = E(δ2) = 0,
E(δ2

0) = (∅∗C2
y −W2∗

y + ∅
∗C2

u −W2∗
u ) = ∆∗02,

E(δ2
1) = (∅∗C2

x −W2∗
x + ∅

∗C2
v −W2∗

v ) = ∆∗20,

E(δ2
2) = (∅C2

x −W2
x + ∅C2

v −W2
v ) = ∆20,

E(δ0δ1) = (∅∗ρxyCxCy −W∗
xy + ∅

∗ρuvCuCv −W∗
uv) = ∆

∗
11,

E(δ0δ2) = (∅ρxyCxCy −Wxy + ∅ρuvCuCv −Wuv) = ∆11,

E(δ1δ2) = E(δ2
2) = (∅C2

x −W2
x + ∅C2

v −W2
v ) = ∆20,
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where

∅ =
1

HK
; ∅∗ =

1
HKP

; Cx =
S x

µx
; Cv =

S v

µx
; Cy =

S y

µy
; Cu =

S u

µy
; W2∗

y =
1

H2KP

H∑
i=1

(µy[i]
− µy)2

µ2
y

;

W2
x =

1
H2K

H∑
i=1

(µx(i)
− µx)2

µ2
x

; W2∗
x =

1
H2KP

H∑
i=1

(µx(i)
− µx)2

µ2
x

; Wxy =
1

H2K

H∑
i=1

(µx(i)
− µx)(µy[i]

− µy)

µxµy
;

W∗
xy =

1
H2KP

H∑
i=1

(µx(i)
− µx)(µy[i]

− µy)

µxµy
; W2

u =
1

H2K

H∑
i=1

(µu[i]
− µu)2

µ2
y

; W2∗
u =

1
H2KP

H∑
i=1

(µu[i]
− µu)2

µ2
y

;

W2
v =

1
H2K

H∑
i=1

(µv(i)
− µv)2

µ2
x

; W2∗
v =

1
H2KP

H∑
i=1

(µv(i)
− µv)2

µ2
x

; Wuv[i] =
1

H2K

H∑
i=1

(µu[i]
− µy)(µx(i)

− µv)

µuµv
;

W∗
uv =

1
H2KP

H∑
i=1

(µu[i]
− µy)(µx(i)

− µv)

µuµv
; µx(i)

= E(x(i)); and µy[i]
= E(y[i]).

The above results can be easily extended from Al-Omari and Bouza (2014).

3. Adapted imputation methods

In this section, we adapted some fundamental imputations to sort out the missing data problems
when the data is contaminated with correlated MEs.

3.1. Mean imputation method

We propose mean imputation of the population mean by extending the results of [33] for single
value imputation when y values of the ith sample unit under RSS are missing and require imputation.
The techniques of imputation for population mean are given as

y.im =

y[i] for i ∈ ru,

ȳr,rss for i ∈ r̄u.

The resultant estimator is given by

tm = ȳr,rss.

The variance of the estimator tm is given by

V(tm) = µ2
y∆
∗
02. (3.1)

Considering the additional auxiliary information into account, the imputation methods are
categorized as
Scheme I: When µx is known and x̄n,rss is used.
Scheme II: When µx is known and x̄r,rss is used.
Scheme III: When µx is not known and x̄n,rss, x̄r,rss are used.

AIMS Mathematics Volume 10, Issue 4, 9805–9831.
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3.2. Conventional ratio imputation methods

The classical ratio imputation methods in the presence of ME are given as
Scheme I

y.ir1
=

y[i] for i ∈ ru,
1

n−r

[
nȳr,rss

µx
x̄n,rss
− rȳr,rss

]
for i ∈ r̄u.

Scheme II

y.ir2
=

y[i] for i ∈ ru,
1

n−r

[
nȳr,rss

µx
x̄r,rss
− rȳr,rss

]
for i ∈ r̄u.

Scheme III

y.ir3
=

y[i] for i ∈ ru,
1

n−r

[
nȳr,rss

x̄n,rss

x̄r,rss
− rȳr,rss

]
for i ∈ r̄u.

Under the above schemes, the resultant estimators are

tr1 = ȳr,rss
µx

x̄n,rss
,

tr2 = ȳr,rss
µx

x̄r,rss
,

and tr3 = ȳr,rss
x̄n,rss

x̄r,rss
.

The MSE equations of the above resultant estimators are given by

MS E(tr1) = µ
2
y(∆∗02 + ∆20 − 2∆11), (3.2)

MS E(tr2) = µ
2
y(∆∗02 + ∆

∗
20 − 2∆∗11), (3.3)

and MS E(tr3) = µ
2
y[∆∗02 + (∆∗20 − ∆20) − 2(∆∗11 − ∆11)]. (3.4)

3.3. Conventional product imputation methods

The conventional product imputation methods in the presence of ME are given as
Scheme I

y.ip1
=

y[i] for i ∈ ru,
1

n−r

[
nȳr,rss

x̄n,rss

µx
− rȳr,rss

]
for i ∈ r̄u.

Scheme II

y.ip2
=

y[i] for i ∈ ru,
1

n−r

[
nȳr,rss

x̄r,rss

µx
− rȳr,rss

]
for i ∈ r̄u.
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Scheme III

y.ip3
=

y[i] for i ∈ ru,
1

n−r

[
nȳr,rss

x̄r,rss

x̄n,rss
− rȳr,rss

]
for i ∈ r̄u.

Under the above schemes, the resultant estimators are

tp1 = ȳr,rss
x̄n,rss

µx
,

tp2 = ȳr,rss
x̄r,rss

µx
,

and tp3 = ȳr,rss
x̄r,rss

x̄n,rss
.

The MS E equations of the above resultant estimators are given by

MS E(tp1) = µ
2
y(∆∗02 + ∆20 + 2∆11), (3.5)

MS E(tp2) = µ
2
y(∆∗02 + ∆

∗
20 + 2∆∗11), (3.6)

and MS E(tp3) = µ
2
y[∆∗02 + (∆∗20 − ∆20) + 2(∆∗11 − ∆11)]. (3.7)

3.4. Power ratio imputation methods

The power ratio imputation methods in the case of correlated MEs are as follows:
Scheme I

y.ig1
=

y[i] for i ∈ ru,

1
n−r

[
nȳr,rss

(
µx

x̄n,rss

)Θ1
− rȳr,rss

]
for i ∈ r̄u.

Scheme II

y.ig2
=

y[i] for i ∈ ru,

1
n−r

[
nȳr,rss

(
µx

x̄r,rss

)Θ2
− rȳr,rss

]
for i ∈ r̄u.

Scheme III

y.ig3
=

y[i] for i ∈ ru,

1
n−r

[
nȳr

(
x̄n,rss

x̄r,rss

)Θ3
− rȳr,rss

]
for i ∈ r̄u.

Under the aforementioned schemes, the resultant estimators will be given by

tg1 = ȳr,rss

(
µx

x̄n,rss

)Θ1

,

tg2 = ȳr,rss

(
µx

x̄r,rss

)Θ2

,

and tg3 = ȳr,rss

( x̄n,rss

x̄r,rss

)Θ3

,

AIMS Mathematics Volume 10, Issue 4, 9805–9831.



9811

where Θ1, Θ2, and Θ3 are duly selected scalars.
The minimum MS E of the resultant power ratio estimators tg1 , tg2 , and tg3 at the optimum values of

Θ1(opt) = ∆11/∆20, Θ2(opt) = ∆
∗
11/∆

∗
20, and Θ3(opt) = (∆∗11 −∆11)/(∆∗20 −∆20), respectively, is expressed by

min.MS E(tg1) = µ
2
y

(
∆∗02 −

∆2
11

∆20

)
, (3.8)

min.MS E(tg2) = µ
2
y

∆∗02 −
∆∗

2

11

∆∗20

 , (3.9)

and min.MS E(tg3) = µ
2
y

[
∆∗02 −

(∆∗11 − ∆11)2

(∆∗20 − ∆20)

]
. (3.10)

4. Suggested imputation methods

In the sampling theory, one of the objectives of the researchers is to improve the efficiency of their
estimators. In order to improve the efficiency of the estimators, [39] suggested a procedure which
is based on pre-multiplying a tuning parameter in the estimators. Employing Searls philosophy, we
multiplied a tuning parameter in the power ratio imputation methods and suggested Searls type power
ratio imputation methods for the estimation of population mean in the presence of missing data when
the data is contaminated with the correlated MEs. The proposed imputation methods are given by
Scheme I

y.is1
=

y[i] for i ∈ ru,

1
n−r

[
nΛ1ȳr,rss

(
µx

x̄n,rss

)Θ1
− rȳr,rss

]
for i ∈ r̄u.

Scheme II

y.is2
=

y[i] for i ∈ ru,

1
n−r

[
nΛ2ȳr,rss

(
µx

x̄r,rss

)Θ2
− rȳr,rss

]
for i ∈ r̄u.

Scheme III

y.is3
=

y[i] for i ∈ ru,

1
n−r

[
nΛ3ȳr

(
x̄n,rss

x̄r,rss

)Θ3
− rȳr,rss

]
for i ∈ r̄u.

Under the aforementioned schemes, the resultant estimators are given by

Ts1 = Λ1ȳr,rss

(
µx

x̄n,rss

)Θ1

,

Ts2 = Λ2ȳr,rss

(
µx

x̄r,rss

)Θ2

,

and Ts3 = Λ3ȳr,rss

( x̄n,rss

x̄r,rss

)Θ3

,

where Λ j, j = 1, 2, 3 and Θ j are appropriately selected scalars.
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(1) When Λ j , Θ j = 1, the Searls type power ratio imputation methods y.is j
and the resultant Searls

type power ratio estimators Ts j deform into the usual ratio imputation methods y.ir j
and the

resultant ratio estimators tr j .
(2) When Λ j = 1 and Θ j = −1, the Searls type power ratio imputation methods y.is j

and the resultant
Searls type power ratio estimators Ts j deform into the usual product imputation methods y.ip j

and
the resultant product estimators tp j .

(3) When Λ j = 1, the Searls type power ratio imputation methods y.is j
and the resultant Searls type

power ratio estimators Ts j deform into the power ratio imputation methods y.ig j
and the resultant

power ratio estimators tg j .

Theorem 4.1. The minimum MS E of the resultant Searls type power ratio estimators Ts j , j = 1, 2, 3
is expressed up to first-order approximation as

min.MS E(Ts j) = µ
2
y

1 − M2
j

L j

 . (4.1)

Proof. Expressing the estimator Ts1 in terms of errors as

Ts1 = Λ1µy(1 + δ0)
[

µx

µx(1 + δ2)

]Θ1

,

= Λ1µy(1 + δ0)(1 + δ2)−Θ1 ,

= µyΛ1

[
1 + δ0 − Θ1δ2 − Θ1δ0δ2 +

Θ1(Θ1 + 1)
2

δ2
2

]
. (4.2)

Subtracting µy from both sides of (4.2) provides (4.3):

Ts1 − µy = µy

[
Λ1

(
1 + δ0 − Θ1δ2 − Θ1δ0δ2 +

Θ1(Θ1 + 1)
2

δ2
2

)
− 1

]
. (4.3)

Taking the expectation from each side of (4.3), we obtain

Bias(Ts1) = µy

[
Λ1

(
1 +
Θ1(Θ1 + 1)

2
∆20 − Θ1∆11

)
− 1

]
.

Do square and take the expectation from each side of (4.3), and we obtain

MS E(Ts1) = µ
2
y

 1 + Λ2
1(1 + ∆∗02 + (2Θ2

1 + Θ1)∆20 − 4Θ1∆11)
−2Λ1

(
1 + Θ1(Θ1+1)

2 ∆20 − Θ1∆11

)  ,
= µ2

y(1 + Λ2
1L1 − 2Λ1M1), (4.4)

where L1 = 1 + ∆∗02 + (2Θ2
1 + Θ1)∆20 − 4Θ1∆11 and M1 = 1 + Θ1(Θ1+1)

2 ∆20 − Θ1∆11.
Minimization of the (4.4) w.r.t. Λ1 provides:

Λ1(opt) =
M1

L1
.

AIMS Mathematics Volume 10, Issue 4, 9805–9831.
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Use of Λ1(opt) in (4.4) provides:

minMS E(Ts1) = µ
2
y

(
1 −

M2
1

L1

)
.

In the same way, we can obtain the minimum MSE of the rest of the resultant proposed estimators
Ts j , j = 2, 3. We may usually write

MS E(Ts j) = µ
2
y(1 + Λ2

j L j − 2Λ jM j), (4.5)

where L2 = 1 + ∆∗02 + (2Θ2
2 + Θ2)∆∗20 − 4Θ2∆

∗
11, M2 = 1 + Θ2(Θ2+1)

2 ∆∗20 − Θ2∆
∗
11, L3 = 1 + ∆∗02 + (2Θ2

3 +

Θ3)(∆∗20 − ∆20) − 4Θ3(∆∗11 − ∆11), and M3 = 1 + Θ3(Θ3+1)
2 (∆∗20 − ∆20) − Θ3(∆∗11 − ∆11).

Minimization of (4.5) w.r.t. Λ j provides:

Λ j(opt) =
M j

L j
.

Use of Λ j(opt) in (4.5) provides:

minMS E(Ts j) = µ
2
y

1 − M2
j

L j

 .
Note that minimizing Λ j and Θ j simultaneously is a typical task. Thus, putting Λ j = 1 in the respective
estimators and minimizing the MSE w.r.t. Θ j provides the optimum values of Θ j as

Θ1(opt) =
∆11

∆20
,

Θ2(opt) =
∆∗11

∆∗20
,

and Θ3(opt) =
(∆∗11 − ∆11)
(∆∗20 − ∆20)

.

□

Remark 4.1. By setting ρuv = 0 in the above results, the case of uncorrelated MEs can be obtained.
These results are more extensive and all-encompassing, and they specifically contain the results of the
uncorrelated MEs.

5. Mathematical comparison

The mathematical comparison of the proposed Searls type power ratio imputation methods is done
with the adapted imputation methods in this section, and the following efficiency conditions are
developed.

Lemma 5.1. The suggested estimators Ts j repress the usual mean estimator tm, if

V(tm) > MS E(Ts j) =⇒ µ2
y∆
∗
02 > µ

2
y

1 − M2
j

L j

 =⇒ M2
j

L j
> 1 − ∆∗02.
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Lemma 5.2. (i). The suggested estimator Ts1 represses the ratio estimator tr1 under scheme I, if

MS E(tr1) > MS E(Ts1)

=⇒ µ2
y(∆∗02 + ∆20 − 2∆11) > µ2

y

(
1 −

M2
1

L1

)
=⇒

M2
1

L1
> 1 − ∆∗02 − ∆20 + 2∆11.

(ii). The suggested estimator Ts2 represses the ratio estimator tr2 under scheme II, if

MS E(tr2) > MS E(Ts2)

=⇒ µ2
y(∆∗02 + ∆

∗
20 − 2∆∗11) > µ2

y

(
1 −

M2
2

L2

)
=⇒

M2
2

L2
> 1 − ∆∗02 − ∆

∗
20 + 2∆∗11.

(iii). The suggested estimator Ts3 represses the ratio estimator tr3 under scheme III, if

MS E(tr3) > MS E(Ts3)

=⇒ µ2
y[∆∗02 + (∆∗20 − ∆20) − 2(∆∗11 − ∆11)] > µ2

y

(
1 −

M2
3

L3

)
M2

3

L3
>1 − ∆∗02 − (∆∗20 − ∆20) + 2(∆∗11 − ∆11).

Lemma 5.3. (i). The suggested estimator Ts1 represses the product estimator tp1 under scheme I, if

MS E(tp1) > MS E(Ts1)

=⇒ µ2
y(∆∗02 + ∆20 + 2∆11) > µ2

y

(
1 −

M2
1

L1

)
=⇒

M2
1

L1
> 1 − ∆∗02 − ∆20 − 2∆11.

(ii). The suggested estimator Ts2 represses the product estimator tp2 under scheme II, if

MS E(tp2) > MS E(Ts2)

=⇒ µ2
y(∆∗02 + ∆

∗
20 + 2∆∗11) > µ2

y

(
1 −

M2
2

L2

)
=⇒

M2
2

L2
> 1 − ∆∗02 − ∆

∗
20 − 2∆∗11.

(iii). The suggested estimator Ts3 represses the product estimator tp3 under scheme III, if

MS E(tp3) > MS E(Ts3)

=⇒ µ2
y[∆∗02 + (∆∗20 − ∆20) + 2(∆∗11 − ∆11)] > µ2

y

(
1 −

M2
3

L3

)
M2

3

L3
>1 − ∆∗02 − (∆∗20 − ∆20) − 2(∆∗11 − ∆11).
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Lemma 5.4. (i). The suggested estimator Ts1 represses the power ratio estimator tg1 under scheme I, if

MS E(tg1) > MS E(Ts1)

=⇒ µ2
y

(
∆∗02 −

∆2
11

∆20

)
> µ2

y

(
1 −

M2
1

L1

)
M2

1

L1
>1 − ∆∗02 +

∆2
11

∆20
.

(ii). The suggested estimator Ts2 represses the power ratio estimator tg2 under scheme II, if

MS E(tg2) > MS E(Ts2)

=⇒ µ2
y

(
∆∗02 −

∆∗211

∆∗20

)
> µ2

y

(
1 −

M2
2

L2

)
M2

2

L2
>1 − ∆∗02 +

∆∗211

∆∗20
.

(iii). The suggested estimator Ts3 represses the power ratio estimator tg3 under scheme III, if

MS E(tg3) > MS E(Ts3)

=⇒ µ2
y

[
∆∗02 −

(∆∗11 − ∆11)2

(∆∗20 − ∆20)

]
> µ2

y

(
1 −

M2
2

L2

)
M2

3

L3
>1 − ∆∗02 +

(∆∗11 − ∆11)2

(∆∗20 − ∆20)
.

The suggested imputation methods repress the adapted imputation methods if the mathematical
conditions determined under the above lemmas are satisfied.

6. Simulation

To strengthen the mathematical results as well as to see the effect of the correlated MEs on the
adapted and suggested imputation methods and the resultant estimators, a comprehensive simulation
is conducted on a hypothetically created population. The simulation algorithm is delineated under the
following points.

(i). A population of size N = 1000 is created utilizing a four-variate multivariate normal distribution
through R software as W = (X,Y, u, v)′ with the mean vector µw = (µx, µy, 0, 0)′ and covariance
matrix: 

σ2
x ρxyσxσy 0 0

ρxyσxσy σ2
y 0 0

0 0 σ2
u ρuvσuσv

0 0 ρuvσuσv σ2
v

 .
The descriptives used to create the population are as follows: µy = 12, µx = 18, σ2

y = 125,
σ2

x = 136, ρxy=-0.9, -0.5, -0.1, 0, 0.5, 0.9, σ2
u = 12, σ2

v = 14, and ρuv=-0.9, -0.5, 0, 0.5, 0.9.
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(ii). Take 12000 ranked set samples of size n = 15 from the above population using RSS.
(iii). Consider the samples taken in step (ii), and the 12000 values of each resultant estimator are

obtained.
(iv). Utilizing the descriptives described in (i), the percent relative efficiency (PRE) of several

estimators is obtained for the responding probability P = 0.67 as well as for different
combinations of MEs such as 5%, 10%, and 15%. The PRE is calculated employing the
following expression:

PRE =
∑12000

i=1 (tmi − µy)2∑12000
i=1 (T ∗i − µy)2

× 100

where T ∗i = tm, tr1 , tr2 , tr3 , tp1 , tp2 , tp3 , tg1 , tg2 , tg3 , Ts1 , Ts2 , Ts3 .

The findings of the simulation are displayed in Tables 1–4.
Tables 1–4 contains the simulation results (PRE) of the resultant adapted and proposed estimators.

The important results are construed in the following points:

(1). The findings of Table 1 are given for positive correlation coefficients ρxy = 0, 0.5, 0.9 from where
it is noticed that:

• The percent relative efficiency of the ratio estimator tr1 under scheme I grows with the
consecutive growth in the valuations of ρxy from 0 to 0.9. The percent relative efficiency
also grows with the consecutive growth in the magnitude and direction of ρuv from −0.9 to
0.9. These observations are clearly visible from Figure 1. The percent relative efficiency of
the ratio estimators tr2 and tr3 under schemes II and III, respectively, follow the same
demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the product estimator tp1 under scheme I diminishes with

the consecutive diminishment in the valuations of ρxy from −0.1 to −0.9. The percent relative
efficiency also diminishes with the consecutive diminishment in the magnitude and direction
of ρuv from −0.9 to 0.9. These observations are clearly visible from Figure 2. The percent
relative efficiency of the product estimators tp2 and tp3 under schemes II and III, respectively,
follow the same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the power ratio estimator tg1 under scheme I grows with

the consecutive growth in the valuations of ρxy from 0 to 0.9. The percent relative efficiency
also grows with the consecutive growth in the magnitude and direction of ρuv from −0.9 to
0.9. These observations are clearly visible from Figure 3. The percent relative efficiency of
the power ratio estimators tg2 and tg3 under schemes II and III, respectively, follow the same
demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the Searls type power ratio estimator Ts1 under scheme

I grows with the consecutive growth in the valuations of ρxy from 0 to 0.9. The percent
relative efficiency also grows with the consecutive growth in the magnitude and direction
of ρuv from −0.9 to 0.9. These observations are clearly visible from Figure 4. The percent
relative efficiency of the Searls type power ratio estimators Ts2 and Ts3 under schemes II and
III, respectively, follow the same demeanor for which the figures can be provided, if needed.
• The proposed Searls type power ratio estimators repress the ratio, product and power ratio

estimators under the respective schemes for different valuations of correlation coefficients.
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(2). The findings of Table 2 are given for negative correlation coefficient ρxy = −0.1, − 0.5, − 0.9
from where it is noticed that:

• The percent relative efficiency of the ratio estimator tr1 under scheme I diminishes with the
consecutive diminish in the valuations of ρxy from −0.1 to −0.9, but the percent relative
efficiency grows with the consecutive growth in the magnitude and direction of ρuv from
−0.9 to 0.9. These observations are clearly visible from Figure 5. The percent relative
efficiency of the ratio estimators tr2 and tr3 under schemes II and III, respectively, follow the
same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the product estimator tp1 under scheme I grows with the

consecutive diminishment in the valuations of ρxy from −0.1 to −0.9. The percent relative
efficiency also diminishes with the consecutive growth in the magnitude and direction of ρuv

from −0.9 to 0.9. These observations are clearly visible from Figure 6. The percent relative
efficiency of the product estimators tp2 and tp3 under schemes II and III, respectively, follow
the same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the power ratio estimator tg1 under scheme I grows with the

consecutive diminishment in the valuations of ρxy from −0.1 to −0.9, but the percent relative
efficiency diminishes with the consecutive growth in the magnitude and direction of ρuv from
−0.9 to 0.9. These observations are clearly visible from Figure 7. The percent relative
efficiency of the power ratio estimators tg2 and tg3 under schemes II and III, respectively,
follow the same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the Searls type power ratio estimator Ts1 under scheme I

grows with the consecutive diminishment in the valuations of ρxy from −0.1 to −0.9. The
percent relative efficiency also grows with the consecutive growth in the magnitude and
direction of ρuv from −0.9 to 0.9. These observations are clearly visible from Figure 8. The
percent relative efficiency of the Searls type power ratio estimators Ts2 and Ts3 under
schemes II and III, respectively, follow the same demeanor for which the figures can be
provided, if needed.
• The proposed Searls type power ratio estimators repress the ratio, product and power ratio

estimators under the respective schemes for different valuations of correlation coefficients.

(3). The findings of Table 3 are given for positive correlation coefficient ρxy = 0, 0.5, 0.9 with
different percentages of ME. When ME=5%, then it is noticed that:

• The percent relative efficiency of the ratio estimator tr1 under scheme I grows with the
consecutive growth in the valuations of ρxy from 0 to 0.9. The percent relative efficiency
also grows with the consecutive growth in the magnitude and direction of ρuv from −0.9 to
0.9. These observations are clearly visible from Figure 9. The percent relative efficiency of
the ratio estimators tr2 and tr3 under schemes II and III, respectively, follow the same
demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the product estimator tp1 under scheme I diminishes with

the consecutive diminish in the valuations of ρxy from −0.1 to −0.9. The percent relative
efficiency also diminishes with the consecutive diminish in the magnitude and direction of
ρuv from −0.9 to 0.9. These observations are clearly visible from Figure 10. The percent
relative efficiency of the product estimators tp2 and tp3 under schemes II and III, respectively,
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follow the same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the power ratio estimator tg1 under scheme I grows with

the consecutive growth in the valuations of ρxy from 0 to 0.9. The percent relative efficiency
also grows with the consecutive growth in the magnitude and direction of ρuv from −0.9 to
0.9. These observations are clearly visible from Figure 11. The percent relative efficiency of
the power ratio estimators tg2 and tg3 under schemes II and III, respectively, follow the same
demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the Searls type power ratio estimator Ts1 under scheme I

grows with the consecutive growth in the valuations of ρxy from 0 to 0.9. The percent relative
efficiency also grows with the consecutive growth in the magnitude and direction of ρuv from
−0.9 to 0.9. These observations are clearly visible from Figure 12. The percent relative
efficiency of the Searls type power ratio estimators Ts2 and Ts3 under schemes II and III,
respectively, follow the same demeanor for which the figures can be provided, if needed.
• The proposed Searls type power ratio estimators repress the adapted ratio, product and

power ratio estimators under the respective schemes for different valuations of correlation
coefficients.
• Moreover, the above observations are also true for the other percentages of ME, like 10%

and 15%.

(4). The findings of Table 4 are given for negative correlation coefficients ρxy = −0.1, − 0.5, − 0.9
with different percentages of ME. When ME=5%, then it is noticed that:

• The percent relative efficiency of the ratio estimator tr1 under scheme I diminishes with the
consecutive diminishment in the valuations of ρxy from −0.1 to −0.9, but the percent relative
efficiency grows with the consecutive growth in the magnitude and direction of ρuv from −0.9
to 0.9. These observations are clearly visible from Figure 13. The percent relative efficiency
of the ratio estimators tr2 and tr3 under schemes II and III, respectively, follow the same
demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the product estimator tp1 under scheme I grows with the

consecutive diminishment in the valuations of ρxy from −0.1 to −0.9. The percent relative
efficiency also diminishes with the consecutive growth in the magnitude and direction of ρuv

from −0.9 to 0.9. These observations are clearly visible from Figure 14. The percent relative
efficiency of the product estimators tp2 and tp3 under schemes II and III, respectively, follow
the same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the power ratio estimator tg1 under scheme I grows with the

consecutive diminishment in the valuations of ρxy from −0.1 to −0.9, but the percent relative
efficiency diminishes with the consecutive growth in the magnitude and direction of ρuv from
−0.9 to 0.9. These observations are clearly visible from Figure 15. The percent relative
efficiency of the power ratio estimators tg2 and tg3 under schemes II and III, respectively,
follow the same demeanor for which the figures can be provided, if needed.
• The percent relative efficiency of the Searls type power ratio estimator Ts1 under scheme I

grows with the consecutive diminishment in the valuations of ρxy from −0.1 to −0.9. The
percent relative efficiency also grows with the consecutive growth in the magnitude and
direction of ρuv from −0.9 to 0.9. These observations are clearly visible from Figure 16. The
percent relative efficiency of the Searls type power ratio estimators Ts2 and Ts3 under
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schemes II and III, respectively, follow the same demeanor for which the figures can be
provided, if needed.
• The proposed Searls type power ratio estimators repress the ratio, product and power ratio

estimators under the respective schemes for different valuations of correlation coefficients.
• Moreover, the above observations are also true for the other percentages of ME, like 10%

and 15%.
Table 1. PRE of different estimators when ρxy = 0, 0.5, 0.9.

Scheme I Scheme II Scheme III
ρxy ρuv tr1 tp1 tg1 Ts1 tr2 tp2 tg2 Ts2 tr3 tp3 tg3 Ts3

0 -0.9 84.80 88.87 102.19 126.76 64.79 72.50 106.96 130.45 73.31 79.74 104.56 123.86
-0.5 85.92 87.83 102.07 126.84 66.82 70.43 106.54 130.47 75.03 78.05 104.29 125.04

0 87.15 86.46 102.04 126.93 69.13 67.82 106.44 130.78 76.97 75.88 104.23 126.46
0.5 88.60 85.00 102.14 127.18 71.95 65.15 106.79 131.60 79.29 73.62 104.45 128.19
0.9 89.79 83.98 102.33 127.50 74.38 63.36 107.40 132.60 81.25 72.08 104.84 129.64

0.5 -0.9 85.96 81.59 102.27 121.91 66.90 59.38 107.21 126.90 75.10 68.58 104.72 123.49
-0.5 87.26 80.59 102.42 122.24 69.33 57.81 107.71 127.77 77.14 67.16 105.04 125.00

0 88.75 79.26 102.73 122.61 72.24 55.77 108.75 129.11 79.53 65.30 105.70 126.85
0.5 90.46 77.87 103.22 123.16 75.78 53.72 110.44 131.13 82.36 63.41 106.76 129.06
0.9 91.86 76.90 103.71 123.74 78.84 52.35 112.16 133.15 84.76 62.11 107.83 130.93

0.9 -0.9 91.92 80.23 103.46 124.86 78.97 57.25 111.27 133.22 84.86 66.65 107.28 129.88
-0.5 93.32 79.16 103.90 125.29 82.19 55.63 112.84 134.97 87.32 65.17 108.25 131.58

0 95.28 77.64 104.72 126.08 86.96 53.40 115.81 138.19 90.87 63.10 110.07 134.22
0.5 97.44 76.44 105.69 127.26 92.62 51.70 119.49 142.38 94.93 61.51 112.27 137.21
0.9 98.99 75.52 106.52 128.17 97.00 50.45 122.78 145.99 97.97 60.31 114.20 139.49

Table 2. PRE of different estimators when ρxy = −0.1, − 0.5, − 0.9.

Scheme I Scheme II Scheme III
ρxy ρuv tr1 tp1 tg1 Ts1 tr2 tp2 tg2 Ts2 tr3 tp3 tg3 Ts3

-0.1 -0.9 82.77 88.95 102.34 125.95 61.32 72.65 107.44 129.66 70.29 79.86 104.86 121.99
-0.5 83.89 87.86 102.13 125.97 63.21 70.50 106.76 129.48 71.94 78.10 104.43 123.16

0 85.10 86.44 102.02 125.99 65.34 67.79 106.37 129.55 73.78 75.85 104.18 124.54
0.5 86.53 84.92 102.03 126.19 67.95 65.02 106.40 130.15 75.99 73.51 104.20 126.27
0.9 87.72 83.87 102.14 126.47 70.21 63.18 106.78 130.97 77.86 71.91 104.44 127.71

-0.5 -0.9 79.10 93.18 103.71 126.63 55.53 81.85 112.16 132.31 65.08 87.06 107.83 118.47
-0.5 80.13 91.97 103.23 126.41 57.10 79.08 110.47 131.18 66.52 84.94 106.78 119.44

0 81.24 90.42 102.78 126.17 58.83 75.69 108.92 130.22 68.08 82.30 105.80 120.58
0.5 82.53 88.76 102.43 126.08 60.93 72.27 107.73 129.73 69.95 79.55 105.05 122.04
0.9 83.62 87.60 102.27 126.14 62.75 69.97 107.21 129.76 71.55 77.67 104.72 123.27

-0.9 -0.9 76.65 99.03 106.55 129.13 52.00 97.13 122.88 141.43 61.79 98.06 114.25 116.47
-0.5 77.54 97.55 105.70 128.52 53.25 92.92 119.53 138.47 62.96 95.15 112.29 117.14

0 78.74 95.48 104.70 127.81 55.00 87.44 115.76 135.34 64.59 91.22 110.03 118.16
0.5 80.23 93.63 103.91 127.52 57.25 82.90 112.85 133.46 66.66 87.86 108.26 119.60
0.9 81.25 92.28 103.46 127.36 58.86 79.78 111.27 132.50 68.10 85.48 107.28 120.68
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Table 3. PRE of the estimators for different levels of MEs with ρxy = 0, 0.5, 0.9.
Scheme I Scheme II Scheme III

ME % ρxy ρuv tr1 tp1 tg1 Ts1 tr2 tp2 tg2 Ts2 tr3 tp3 tg3 Ts3

5% 0 -0.9 86.06 87.75 102.24 126.27 67.07 70.27 107.11 130.34 75.25 77.91 104.65 124.56
-0.5 86.61 87.15 102.21 126.30 68.10 69.11 107.01 130.42 76.11 76.96 104.59 125.17

0 87.31 86.50 102.21 126.39 69.43 67.89 107.02 130.66 77.22 75.94 104.60 125.94
0.5 87.31 86.50 102.21 126.39 69.43 67.89 107.02 130.66 77.22 75.94 104.60 125.94
0.9 88.71 85.21 102.31 126.66 72.16 65.53 107.35 131.44 79.46 73.94 104.81 127.57

0.5 -0.9 87.58 80.29 102.66 121.80 69.95 57.35 108.53 127.93 77.65 66.74 105.56 124.83
-0.5 88.24 79.72 102.79 121.96 71.24 56.47 108.98 128.50 78.71 65.95 105.84 125.63

0 89.07 79.10 102.98 122.22 72.90 55.53 109.62 129.34 80.06 65.08 106.25 126.66
0.5 89.97 78.36 103.24 122.51 74.75 54.45 110.50 130.39 81.55 64.08 106.80 127.81
0.9 90.72 77.88 103.46 122.81 76.33 53.74 111.28 131.36 82.80 63.42 107.29 128.77

0.9 -0.9 94.72 79.27 104.43 125.92 85.55 55.80 114.76 137.00 89.83 65.33 109.43 132.70
-0.5 95.43 78.76 104.72 126.23 87.33 55.03 115.83 138.19 91.14 64.62 110.08 133.65

0 96.31 78.21 105.11 126.66 89.61 54.22 117.26 139.80 92.79 63.87 110.94 134.83
0.5 97.28 77.54 105.58 127.15 92.20 53.26 119.09 141.79 94.64 62.97 112.03 136.20
0.9 98.07 77.11 105.98 127.60 94.39 52.64 120.63 143.51 96.17 62.39 112.94 137.31

10% 0 -0.9 84.90 89.01 102.20 126.86 64.98 72.77 106.97 130.55 73.47 79.96 104.57 123.94
-0.5 85.89 87.78 102.06 126.82 66.77 70.34 106.52 130.45 74.99 77.97 104.28 125.04

0 87.22 86.53 102.04 126.98 69.25 67.95 106.44 130.83 77.07 75.99 104.23 126.51
0.5 88.68 85.05 102.14 127.24 72.10 65.25 106.79 131.66 79.41 73.70 104.45 128.26
0.9 89.93 84.09 102.33 127.61 74.66 63.55 107.42 132.71 81.47 72.24 104.85 129.75

0.5 -0.9 86.07 81.74 102.27 122.01 67.10 59.64 107.20 126.98 75.27 68.80 104.71 123.55
-0.5 87.25 80.56 102.42 122.19 69.30 57.76 107.72 127.72 77.12 67.12 105.04 124.96

0 88.82 79.35 102.73 122.66 72.39 55.90 108.75 129.15 79.64 65.42 105.70 126.88
0.5 90.54 77.94 103.22 123.21 75.96 53.83 110.45 131.19 82.51 63.51 106.77 129.11
0.9 92.00 77.03 103.72 123.85 79.14 52.53 112.18 133.28 84.99 62.29 107.84 131.02

0.9 -0.9 91.97 80.33 103.45 124.89 79.07 57.40 111.23 133.21 84.94 66.79 107.26 129.86
-0.5 93.38 79.28 103.89 125.40 82.32 55.80 112.81 135.05 87.42 65.33 108.23 131.64

0 95.34 77.73 104.72 126.13 87.10 53.52 115.80 138.22 90.98 63.22 110.06 134.24
0.5 97.51 76.53 105.69 127.33 92.81 51.83 119.50 142.44 95.07 61.63 112.27 137.24
0.9 99.06 75.60 106.53 128.21 97.20 50.56 122.80 146.04 98.11 60.41 114.21 139.50

15% 0 -0.9 83.77 90.10 102.26 127.48 63.01 75.02 107.18 131.01 71.77 81.76 104.70 123.41
-0.5 85.38 88.55 101.98 127.53 65.83 71.84 106.25 130.78 74.20 79.20 104.10 125.10

0 87.14 86.56 101.89 127.62 69.09 68.00 105.97 131.14 76.94 76.03 103.92 127.12
0.5 89.41 84.58 102.09 128.15 73.60 64.42 106.60 132.61 80.62 72.99 104.33 129.83
0.9 91.00 83.00 102.45 128.59 76.94 61.71 107.80 134.25 83.28 70.63 105.10 131.90

0.5 -0.9 84.64 83.00 102.04 122.29 64.52 61.71 106.46 126.50 73.07 70.63 104.24 122.47
-0.5 86.48 81.52 102.14 122.68 67.85 59.28 106.78 127.42 75.91 68.48 104.44 124.58

0 88.58 79.57 102.51 123.14 71.92 56.25 108.03 129.13 79.26 65.74 105.24 127.18
0.5 91.22 77.71 103.25 124.12 77.42 53.50 110.53 132.29 83.66 63.20 106.82 130.55
0.9 93.14 76.19 104.03 124.88 81.74 51.36 113.29 135.34 86.98 61.18 108.53 133.21

0.9 -0.9 90.13 81.78 102.83 125.01 75.09 59.69 109.11 131.61 81.81 68.85 105.93 128.37
-0.5 92.08 80.21 103.30 125.49 79.32 57.21 110.72 133.51 85.13 66.62 106.93 130.65

0 94.45 77.41 104.31 125.93 84.88 53.07 114.33 137.00 89.34 62.79 109.17 133.93
0.5 97.94 76.23 105.73 128.13 94.01 51.42 119.63 143.46 95.90 61.24 112.35 138.51
0.9 100.21 74.94 107.01 129.57 100.63 49.67 124.78 149.13 100.42 59.56 115.35 141.97
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Table 4. PRE of the estimators for different levels of MEs with ρxy = −0.1, − 0.5, − 0.9.
Scheme I Scheme II Scheme III

ME % ρxy ρuv tr1 tp1 tg1 Ts1 tr2 tp2 tg2 Ts2 tr3 tp3 tg3 Ts3

5% -0.1 -0.9 83.93 87.78 102.30 125.36 63.29 70.32 107.33 129.31 72.01 77.96 104.79 122.60
-0.5 84.48 87.15 102.23 125.36 64.24 69.12 107.09 129.29 72.83 76.97 104.64 123.20

0 85.17 86.48 102.19 125.41 65.47 67.85 106.94 129.39 73.89 75.90 104.55 123.96
0.5 85.92 85.67 102.18 125.50 66.82 66.37 106.90 129.63 75.03 74.65 104.52 124.84
0.9 86.56 85.14 102.20 125.63 68.00 65.40 106.97 129.94 76.02 73.83 104.56 125.57

-0.5 -0.9 80.02 92.07 103.46 125.86 56.92 79.30 111.28 131.30 66.36 85.12 107.29 118.80
-0.5 80.52 91.39 103.24 125.73 57.69 77.78 110.50 130.76 67.06 83.94 106.80 119.29

0 81.15 90.64 103.01 125.64 58.69 76.16 109.71 130.28 67.96 82.66 106.30 119.91
0.5 81.83 89.75 102.79 125.56 59.77 74.30 108.98 129.89 68.92 81.18 105.84 120.64
0.9 82.41 89.15 102.66 125.56 60.73 73.07 108.53 129.73 69.77 80.19 105.56 121.26

-0.9 -0.9 77.05 97.20 105.95 127.51 52.57 91.98 120.51 138.58 62.32 94.48 112.87 116.18
-0.5 77.51 96.46 105.56 127.24 53.21 89.98 118.98 137.24 62.93 93.06 111.97 116.54

0 78.09 95.63 105.13 126.98 54.05 87.84 117.37 135.94 63.71 91.51 111.01 117.09
0.5 78.70 94.67 104.70 126.72 54.95 85.41 115.75 134.65 64.54 89.73 110.03 117.54
0.9 79.24 94.00 104.41 126.59 55.75 83.79 114.68 133.87 65.28 88.53 109.38 118.03

10% -0.1 -0.9 82.89 89.09 102.34 126.05 61.51 72.94 107.45 129.76 70.46 80.09 104.87 122.08
-0.5 83.86 87.82 102.13 125.97 63.16 70.40 106.75 129.47 71.90 78.02 104.43 123.16

0 85.18 86.51 102.01 126.05 65.47 67.92 106.36 129.61 73.89 75.96 104.18 124.61
0.5 86.62 84.98 102.03 126.26 68.11 65.13 106.4 130.21 76.12 73.60 104.20 126.35
0.9 87.86 83.98 102.14 126.58 70.48 63.37 106.79 131.08 78.09 72.08 104.45 127.83

-0.5 -0.9 79.22 93.31 103.72 126.73 55.72 82.15 112.18 132.41 65.25 87.29 107.84 118.57
-0.5 80.10 91.92 103.22 126.41 57.05 78.97 110.45 131.17 66.47 84.86 106.77 119.44

0 81.32 90.48 102.77 126.23 58.95 75.83 108.91 130.27 68.19 82.40 105.80 120.65
0.5 82.62 88.81 102.42 126.15 61.08 72.37 107.72 129.79 70.08 79.63 105.04 122.13
0.9 83.77 87.70 102.27 126.24 63.01 70.17 107.20 129.85 71.77 77.83 104.71 123.40

-0.9 -0.9 76.73 99.09 106.55 129.18 52.10 97.31 122.90 141.51 61.88 98.18 114.26 116.53
-0.5 77.64 97.63 105.71 128.62 53.40 93.16 119.57 138.57 63.10 95.31 112.31 117.24

0 78.82 95.53 104.70 127.87 55.12 87.58 115.75 135.39 64.71 91.33 110.03 118.24
0.5 80.33 93.68 103.90 127.58 57.41 83.03 112.83 133.51 66.80 87.96 108.25 119.70
0.9 81.35 92.32 103.45 127.41 59.00 79.87 111.23 132.53 68.23 85.55 107.26 120.76

15% -0.1 -0.9 81.84 90.22 102.47 126.77 59.80 75.28 107.89 130.43 68.95 81.96 105.15 121.64
-0.5 83.44 88.61 102.08 126.74 62.45 71.96 106.59 129.92 71.28 79.30 104.32 123.30

0 85.18 86.55 101.87 126.74 65.48 67.98 105.90 129.96 73.90 76.01 103.88 125.30
0.5 87.44 84.50 101.93 127.20 69.67 64.28 106.09 131.12 77.42 72.87 104.00 127.99
0.9 89.01 82.87 102.20 127.58 72.77 61.49 106.98 132.53 79.95 70.44 104.57 130.06

-0.5 -0.9 78.40 94.37 104.03 127.58 54.49 84.70 113.29 133.68 64.12 89.20 108.53 118.36
-0.5 79.88 92.58 103.25 127.23 56.72 80.46 110.53 131.80 66.17 86.01 106.82 119.76

0 81.47 90.34 102.58 126.88 59.19 75.53 108.25 130.44 68.40 82.17 105.38 121.43
0.5 83.55 88.10 102.14 126.93 62.64 70.95 106.78 130.14 71.45 78.47 104.44 123.77
0.9 84.97 86.33 102.04 127.04 65.11 67.58 106.46 130.49 73.58 75.67 104.24 125.54

-0.9 -0.9 76.06 100.19 107.04 130.27 51.18 100.57 124.89 143.47 61.01 100.38 115.41 116.56
-0.5 77.32 98.03 105.74 129.36 52.94 94.25 119.71 139.07 62.67 96.07 112.40 117.51

0 79.08 95.10 104.33 128.00 55.51 86.50 114.39 134.60 65.06 90.53 109.20 118.72
0.5 81.21 92.41 103.30 128.06 58.79 80.07 110.72 132.71 68.04 85.71 106.94 121.26
0.9 82.74 90.56 102.83 128.04 61.27 75.98 109.10 132.08 70.25 82.52 105.92 123.01
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Figure 1. PRE of the estimator tr1 reported in Table 1 for ρxy = (0, 0.5, 0.9), and ρuv =

(−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 2. PRE of the estimator tp1 reported in Table 1 for ρxy = (0, 0.5, 0.9), and ρuv =

(−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 3. PRE of the estimator tg1 reported in Table 1 for ρxy = (0, 0.5, 0.9), and ρuv =

(−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 4. PRE of the estimator Ts1 reported in Table 1 for ρxy = (0, 0.5, 0.9), and ρuv =

(−0.9, − 0.5, 0, 0.5, 0.9).

ro
_x

y

−0.8

−0.6

−0.4

−0.2

ro_uv
−0.5

0.0

0.5

P
R

E
78

80

82

84

86

79

80

81

82

83

84

85

Figure 5. PRE of the estimator tr1 reported in Table 2 for ρxy = (−0.1, − 0.5, − 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 6. PRE of the estimator tp1 reported in Table 2 for ρxy = (−0.1, − 0.5, − 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 7. PRE of the estimator tg1 reported in Table 2 for ρxy = (−0.1, − 0.5, − 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 8. PRE of the estimator Ts1 reported in Table 2 for ρxy = (−0.1, − 0.5, − 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 9. PRE of the estimator tr1 reported in Table 3 for ME=5%, ρxy = (0, 0.5, 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 10. PRE of the estimator tp1 reported in Table 3 for ME=5%, ρxy = (0, 0.5, 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 11. PRE of the estimator tg1 reported in Table 3 for ME=5%, ρxy = (0, 0.5, 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 12. PRE of the estimator Ts1 reported in Table 3 for ME=5%, ρxy = (0, 0.5, 0.9), and
ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 13. PRE of the estimator tr1 reported in Table 4 for ME=5%, ρxy = (−0.1, − 0.5, −
0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 14. PRE of the estimator tp1 reported in Table 4 for ME=5%, ρxy = (−0.1, − 0.5, −
0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 15. PRE of the estimator tg1 reported in Table 4 for ME=5%, ρxy = (−0.1, − 0.5, −
0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).
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Figure 16. PRE of the estimator Ts1 reported in Table 4 for ME=5%, ρxy = (−0.1, − 0.5, −
0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).

7. Application

This section provides the application of the adapted and suggested imputation methods. The
imputation methods are applied over two different real datasets which are described below.

Dataset 1 is taken from [40], pp. 652–659, which is based on 284 municipalities of Sweden. A
municipality typically consists of a town and its neighboring areas. The sizes and other characteristics
of the municipalities vary greatly. The population consists of 284 municipalities. In the present study,
the total number of seats in 1982 (S82) in municipal council is chosen as study variable y and the
number of conservative seats in 1982 (CS82) in the municipal council is chosen as the auxiliary variable
x. Following are the necessary descriptive statistics: N=284, n = 15, H = 3, K = 5, P = 0.67,
Ȳ=46.0704, X̄=9.095, σ2

y=158.5533, σ2
x=24.3690, σ2

u = 15.8553, σ2
v = 2.4369, ρxy=0.6878, and

ρuv = −0.0155.
Dataset 2 is based on the humidity of Karachi, Pakistan, which was recently used by [41]. The

humidity levels of Karachi vary throughout the year. The highest levels occur in August, reaching
82% (very high), while the lowest is recorded in January at 54%. Throughout the year, the average
humidity in Karachi is 70%. Humidity plays an important role in how temperatures are felt. During
the warmest month, May, the maximum average temperature is around 360C. Combined with high
humidity during this period, the temperature can feel even warmer than the thermometer shows.
During the coldest month, January, the maximum average temperature is around 260C. This period
has moderate humidity. Here, we considered the daily basis maximum percentage of humidity. The
humidity (%) in the year 2022 is taken as the study variable y, while the year 2021 is taken as the
auxiliary variable x. The imputation methods are implemented over the humidity data of Karachi.
Following are the required descriptive statistics: N=365, n = 50, H = 3, K = 5, P = 0.67, Ȳ= 90.09,
X̄=90.82, σ2

y=55.08, σ2
x=52.98, σ2

u = 7.84, σ2
v = 6.90, ρxy=0.76, and ρuv = 0.04.

For the above datasets, the PRE of the adapted and proposed estimators is calculated by employing
the following expression:

PRE =
V(tm)

MS E(T ∗)
× 100 (7.1)
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where T ∗ = tm, tr1 , tr2 , tr3 , tp1 , tp2 , tp3 , tg1 , tg2 , tg3 , Ts1 , Ts2 , Ts3 . The outcomes displayed in Table 5
show the outperformance of the suggested estimators over the adapted estimators for both datasets.

Table 5. PRE of the adapted and suggested estimators for real datasets
Scheme I Scheme II Scheme III

Estimators tr1 tp1 tg1 Ts1 tr2 tp2 tg2 Ts2 tr3 tp3 tg3 Ts3

Dataset 1 59.35 24.57 123.36 124.81 49.45 17.92 139.39 141.28 74.78 39.81 110.28 125.30
Dataset 2 137.41 46.17 140.70 141.10 168.44 36.49 175.99 176.08 115.49 63.52 116.62 119.09

8. Conclusions

In sampling theory, very few researchers have studied the problem of mean estimation in the
presence of missing data provided the data is contaminated with MEs under a few sampling designs.
However, the problem of mean estimation in the presence of missing data provided the data is
contaminated with the correlated MEs has not yet been studied by any researcher. This paper has
provided a fundamental effort to adapt the classical mean, ratio, product, and power ratio imputation
methods and propose Searls type power ratio imputation methods along with their resultant
estimators. The MSE of the adapted and proposed resultant estimators is obtained by employing the
first-order approximation. The mathematical comparison is performed to derive the efficiency
conditions under which the proposed estimators would repress the adapted estimators. Theoretical
insights are enriched by a comprehensive simulation that additionally assesses the effect of the
correlated MEs on the efficacy of the resultant estimators. The simulation findings are displayed in
Tables 1–4 by PRE. The findings of Tables 1 and 2 demonstrate that the PRE of the proposed Searls
type power ratio estimators Ts j , j = 1, 2, 3 grows as ρxy varies from 0 to 0.9 and reduces as the value
of ρxy grows from -0.9 to -0.1, which also relies on the direction and magnitude of ρuv. Further, the
same pattern is also observed in the PREs of the adapted and suggested resultant estimators reported
in Tables 3 and 4 for various percentages of MEs. It is also noticed that the PRE of the suggested
estimators is significantly different in the case of uncorrelated and correlated MEs. In addition, the
suggested Searls type power ratio estimators repress the adapted estimators for duly opted values of
σ2

y , σ2
u, σ2

x, σ
2
v , ρxy, ρuv, and percentages of MEs. The suggested estimators were also applied to two

different real datasets. The results of both real datasets were reported in Table 5 and demonstrated the
dominance of the suggested estimators over the adapted ones under each scheme. Henceforth, the
adapted and suggested imputation methods and the resultant estimators are strongly recommended to
the surveyors to solve the real-life challenges of uncorrelated and correlated MEs.
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