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Abstract: Homomorphic encryption plays a crucial role in the challenging problem of privacy
preservation. In this survey, we describe a number of homomorphic schemes providing the relevant
definitions to make the topic accessible to both cryptographers and mathematicians. We classify the
schemes according to the timeline of appearance and, for some of them, we verify that they are correct
with respect to decryption and evaluation, providing proofs or references. Recent research directions
are also briefly discussed in this context.
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1. Introduction

Protecting the privacy of electronic data is a major challenge for today’s security researchers. A
2013 study by the Cloud Security Alliance revealed a worrying increase in the number of incidents in
which cloud data was leaked as a result of negligence, malware, or insider attacks [39]. The problem is
that the users lose control over potentially privacy sensitive data. Encrypting data before sending it to
the cloud is a simple way of guaranteeing confidentiality. However, if one uses traditional encryption,
it also becomes impossible for the cloud operators to carry out any kind of processing of that data,
as they would have to decrypt it first. Solving this problem is an active area of research. A number
of approaches have been studied, relying on different techniques to address the problem of cloud
security without compromising the functionality. Here we focus on solutions that are purely based
on homomorphic encryption (HE) for privacy preservation.
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Homomorphic encryption schemes allow computations on the encrypted data. The result of those
computations remains in encrypted form, and can thus only be recovered by the owner of the
decryption key. Hence, homomorphic encryption offers privacy for both the client’s and the server’s
data. For these reasons HE has shown great success in a variety of domains and applications, from
the financial/business sector to the healthcare sector, the government sector, and even to neural
networks [47]. The concept was imagined in the late seventies, but the first realization did not come
until three decades later. HE schemes can be grouped into different categories, based on what operations
they support and limitations they put on the circuit. Partially homomorphic encryption (PHE) schemes
only support either addition or multiplication. Somewhat homomorphic encryption (SHE) supports
both multiplication and addition on encrypted data. It cannot support arbitrarily deep circuits, making
it unsuitable for some applications. Fully homomorphic encryption (FHE) schemes support both
addition, multiplication, and circuits of arbitrary depth.

Research in the area exploded after 2009 when Craig Gentry presented the first FHE scheme. In
HE schemes, for security reasons, the encryption adds noise to the data and the decryption process is
the removal of that noise. Performing operations on ciphertexts increases the noise and too much noise
prevents correct decryption. It is possible to circumvent this by using the bootstrapping technique [25].
Bootstrapping reduces the accumulated noise so that further computation can be done. This process
can be repeated as many times as needed to evaluate any given circuit. However, bootstrapping is
computationally expensive which is why in practice many solutions do not use it. These days, both
the public and private sectors are embracing this new security paradigm and are actively working at
making HE more practical and easier to use.

2. Homomorphic encryption schemes

Let # denote a plaintext space and let F' be a family of functions defined on " = {(my,...,m,) |
m; € P} that can be viewed as Boolean circuits C. In most cases £ = {0, 1} is identifiable with the ring

Zy = {[0],, [112}.
An encryption scheme & is F-homomorphic (or an F-evaluation scheme) if it is given by the
following four probabilistic algorithms in polynomial time:

& = (KeyGen, Enc, Dec, Eval)

where

e KeyGen is the key generator; it takes as inputs a security parameter A and an optional parameter
a, representing for instance the number of homomorphic operations allowed, and outputs the
secret key sk, the public key pk and the (public) evaluation key evk needed to compute the
homomorphic operations on the ciphertext. Writing A for the auxiliary space and K, K, and K,
for the spaces of the secret, public, and evaluation keys, respectively, we obtain

KeyGen: Nx A — K, x K, X K,

KeyGen(4, a) = (sk, pk, evk).

In this paper we will usually denote the security parameter by A. In other works, sometimes the
security parameter is denoted by 17 to keep track of its length.
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e Encis the encryption algorithm; it takes as inputs the public key pk and the message m and returns

the ciphertext ¢ as an element of the ciphertexts space X,
Enc: K, xP - X
Enc(pk,m) = c.

e Eval is the evaluation algorithm; it takes as inputs the evaluation key evk, a function f € F,
and a string (cy, ..., c,) of either ciphertexts or previous evaluated texts and returns as output a
ciphertext c;. Writing Y for the space of the outputs of Eval, with Z the union of X and Y and
with Z* the space of n-strings in Z for a generic n, we get

Eva: K. xFxZ" - Y
Eval(evk, f, (ci,...,cn) = cy.

e Dec is the decryption algorithm; it takes as inputs the secret key sk and a ciphertext ¢ (or an
output of the evaluation algorithm) and outputs the plaintext m’,

Dec: K, xZ—>P

Dec(sk,c) = m’.
Given a family F of functions, an F-homomorphic scheme & is called

e correct with respect to decrypting if for any plaintext m € P, we have
Dec(sk, Enc(pk, m)) = m.

e correct with respect to evaluation if for any function f € F, we have

Pr[(Dec(sk, Eval(evk, f, (c1,...,cn))) f(Dec(sk,cy),...,Dec(sk, c,))]

= 1-€),

for a negligible function € *.

e a somewhat homomorphic encryption scheme (SHE) if it is correct with respect to both decrypting
and evaluation.

e compact if there exists a polynomial p such that for every function f € F, every triplet
of keys (sk, pk,evk), and every ciphertext ¢; € X, the output of the evaluation algorithm
Eval(evk, f, (c1,...,c,)) consists of at most p(A) bits, independent from the complexity of the
function f (that is, from the length of the corresponding Boolean circuit C). In other words, the
length of the ciphertext does not grow too much when involved in homomorphic operations and
the length of the final output depends on the length of the security parameter only.

e a leveled homomorphic encryption scheme (LHE) if it is a compact SHE scheme in which the
length of the output of Eval does not depend on the auxiliary parameter, usually denoted in this
context by L, that specifies the maximum number of consequent products allowed.

*A function € : N — R is negligible if for any positive integer c, there exists an integer N, such that for every x > N, one gets
le(x)] < x7€.
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e a fully homomorphic encryption scheme (FHE) if it is a compact SHE scheme and F is the set of
all functions (efficiently computable).

F is the set of the
allowed functions
’ F-homomorphic scheme }—

correctness of
deciphering

correctness
of evaluation

SHE: Somewhat

]
homomorphic scheme

compact scheme

|

h

the length of the
output of Eval does
not depend on L

the number of allowed
products is at most L

LHE: Leveled |
homomorphic scheme ‘

F = {all functions}

i

—> ’ FHE: Fully homomorphic scheme

Figure 1. Types of homomorphic schemes.

We remark that in a scheme that is correct with respect to evaluation, the cipheretexts
Eval(evk, f, (cy,...,c,)) and Enc(pk, f(Dec(sk, c), ..., Dec(sk, c,)))

correspond to the same plaintext, but arise from distinct constructions (for instance, they could have
different levels of noise).

In practice, the functions considered often correspond to sums (denoted by f; or +) and products
(denoted by f, or X) defined on a specific algebraic structure and the fact that the scheme is correct
with respect to evaluation makes sure that, given two ciphertexts ¢; and c,, we get

Dec(sk, cr,) = Dec(sk, ¢;) + Dec(sk, ¢;)

and
Dec(sk, c,) = Dec(sk, ¢1) x Dec(sk, c»).

The origin of homomorphic encryption goes back to 1978 when, in [48], Rivest, Adleman
and Dertouzos introduced the concept of privacy homomorphism and showed some examples of
homomorphic schemes, one of which was RSA. Among other things, they posed the following
question: For what algebraic systems does a useful privacy homomorphism exist? Later, various
examples of homomorphic schemes based on a unique operation followed, such as the one by
ElGamal [21] and Paillier [43]. In 2005, Boneh, Goh and Nissim (BGN) [7] described the first SHE
scheme based on two operations: an arbitrary number of sums and a unique product, possibly followed
by an arbitrary number of sums.
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3. The first FHE schemes

Craig Gentry was the first to describe a plausible construction of an FHE scheme in [25], marking
a turning point in the theory. His strategy consisted of three steps: the construction of an SHE scheme
based on evaluation of low-degree polynomials, the use of the technique of squashing to the encryption
procedure in order to express it as a low-degree polynomial (supported by the scheme), and finally the
application of the method of bootstrapping to obtain an FHE scheme. Gentry’s SHE scheme is also
the first to be built on ideal lattices: the secret key represents a good basis for the lattice, meaning that
its vectors are pairwise orthogonal, while the public key is given by a bad basis of the same lattice,
made by skew vectors. Indeed, the security of Gentry’s scheme is based on the fact that the problem
of finding an orthogonal basis of a lattice is hard. In order to make the scheme bootstrappable, Gentry
suggested to reduce the length of the decrypting polynomial adding to the public key a large set of
vectors, requiring for the secret key to be the sum of a very sparse subset of such a set (the security of
the scheme is therefore based on the sparse subset sum problem (SSSP)).

The first implementation of Gentry’s scheme was proposed in 2010 by Smart and Vercauteren (SV)
in [51]. In that work, the authors used principal ideals with a prime determinant and expressed the
secret key as a unique integer. However, given the complexity of the key generation (in order to obtain
an ideal with a determinant that is prime, many candidates are required) such a scheme does not support
parameters big enough to apply bootstrapping (it is not possible to generate keys with ideal lattices of
dimension larger than 2048); it is therefore an SHE scheme that cannot be made into an FHE scheme.

Later, Gentry and Halevi (GH) [26] adopted the same approach of Smart and Vercauteren, working
on the same ring R = Z[x]/(x" + 1), for a positive integer N = 2", but without requiring for the
lattice to have a determinant that is a prime number. Moreover, they described a faster algorithm to
generate the secret key (invoking Fourier’s discrete transform and its inverse to compute the inverse
of the polynomial that generates the principal ideal lattice in the case of a general integer N and
an easier recursive procedure when N = 2", as in the actual scheme described) and simplified the
squashing, obtaining a decrypting polynomial of degree at most 15. In particular, the (GH) scheme is
bootstrappable for every dimension of the lattice involved, even if its security is for low dimensions.

2009 2010 2011
G SV GH
Gentry Smart and Gentry and
Vercauteren Halevi

Figure 2. SHE schemes defined on lattices.

The strength of the SHE schemes based on lattices lies on their theoretical feasibility and on the
efficiency of the encrypting and decrypting algorithms obtained using the techniques of batching
and squashing: the first allows one to cipher multiple messages in a unique ciphertext and the latter
decreases the decrypting complexity. On the other hand, the fact that such schemes are constructed
on complex mathematical structures induces high computational costs and requires a large amount
of memory space, making it hard to implement them efficiently. Moreover, in [19], Cramer et al.
highlighted the vulnerability of such schemes if attacked, for instance, by a quantum algorithm in
polynomial time.
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In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan introduced in [52] a new family of SHE
schemes working on the ring of integers Z and basing the security on the SSSP and the approximate
greatest common divisor problem (AGCD). The (DGHV) scheme is easier to treat with respect to
Gentry’s scheme (G) [25] since the operations involved are sums and products of integers in modular
arithmetic. In [52], the authors applied Gentry’s approach to show how to use the techniques of
squashing and bootstrapping to build FHE schemes. The (DGHV) scheme is notably valued for its
elegance and simplicity, but its high computational complexity and long bit-length of the public key
make it less efficient in practical uses. Moreover, such a scheme is vulnerable to chosen-ciphertext
attacks and noise flood attacks.

In what follows we give a detailed description of Gentry’s scheme and of Smart and Vercauteren’s
scheme.

3.1. Gentry’s scheme (G)

Given a basis B = {Zl, e, ?;n} of R”, the corresponding lattice of dimension 7 is defined as

L= {Zn:ZiZ,'lZi EZ}
i=1

and the parallelepiped associated to B is

o > 11
P(B) = {Zx,-b,-lx,- S [—E,E)}

i=1

If @ € R" is a vector, the expression
N
u mod B

denotes the unique vector %’ € P(B) such that W — ©’ € L.
Let f(x) € Z[x] be a monic and irreducible polynomial of degree n (whose definition depends on
the security parameter 1) and consider the ring of integer polynomials modulo f:

R = Z[x]/{f(x)).

Every ideal of R is a lattice, and we will refer to such a structure as the ideal lattice. Note also that R
can be viewed as a subset of Z", identifying any polynomial of R with the vector of their coefficients.
Suppose that if B is a basis of the ideal lattice I of R, then for every x € R (corresponding to the vector
X), the vector ¥ mod B is unique and can be computed efficiently.

The plaintext space is P = {0, 1}, which can be embedded in R (and so in Z") setting 2 = (0, ...,0)
ifm=0and n =(0,...,0,1)if m = 1. Let J be an ideal lattice of R (again seen as a subset of Z").

e The keys are given by
KeyGen : N — Mat,«,(Z) X Mat,»,(Z) X Mat,«,(Z)

KeyGen() = (sk = By, pk = By, evk = pk)

where By and By are bases for J, described as matrices, and the secret key is good (formed by
pairwise orthogonal vectors) while the pubblic key is bad.
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e Given the message m € {0, 1} and the corresponding vector 71 € Z", the encryption algorithm is
Enc: Mat,,(Z) X R — P(Bg)

Enc(pk, n1) = 27 + m) mod By,

where 7 € Z" is a random vector representing the noise. In other words, Enc(pk, 1) is the unique
vector of the parallelepiped $(Bg) such that

27 + m) — Enc(pk, m) € J
and we can compute it as
Enc(pk, i) = 27 + i) = |27 + i) - Byt |- B = |27 + ) - By | - B

e The decryption algorithm is

Dec: Matyxn(Z) X P(Bpk) = Z»
Dec(sk, ©) = [€ mod Bgls.

That is, we consider the congruence class modulo 2 of the unique vector ¢’ of the parallelepiped
P(Bg) such that € — ¢’ € J, which can be computed as

¢ =7-|C By| Ba=|7By| Bu.

e F is the family of sums (denoted by f;) and products (denoted by f,) in the ring R (so they are
sums and products among real coefficients polynomials modulo f(x)). The algorithm Eval outputs
sums and products modulo evk = By. If ¢ and ¢, are two ciphertexts, seen as elements of R, then

Eval: Mat,,,(Z) x RXxR - R
Eval(evk, f;, (c1,¢2)) = (c1 + ¢2) mod By

Eval(er, fp, (Cl, Cz)) =(cy - C2) mod Bpk'

With the notations (c; + ¢;) and (c; - ¢;) we mean that we first compute the sum or the product of
the polynomials ¢; and ¢, in R and then we express the result as a vector of coefficients in Z".

We remark that the scheme described by Gentry in [25] also allows for a larger plaintext space.
More precisely, fixing an ideal lattice I of R and a basis B;, one can consider as a plaintext space any
subset £ of R mod B;. In this case, the output of the decryption algorithm will not be modulo 2 but
modulo B;:

Dec(sk, ©) = [¢ mod Bg] mod B;.

The scheme described above corresponds to taking I = (2), that is, the set of polynomials of degree at
most n — 1 with only even coefficients.

Gentry’s scheme is correct with respect to decryption, as long as the noise vectors and the vectors
of the public basis are small enough. Indeed, if 7 € {0, 1}" is a plaintext (viewed as an element of R),
the corresponding ciphertext ¢ can be expressed as 7 + (27 + m), for a vector 7 € J. Hence

C-Byl =(j+QF+n) By =(j-By)+ Q7 +ni)- By.
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Since 7 € J, the vector 7 - B has integer coeflicients and we deduce that
|2 B3| = |@7 + - B
If the vectors forming the basis By and the vector 27 + m are small enough (for instance, if all
coeflicients of (27 + mi) - By have an absolute value less than 1/2), then
|7 + ) - Bg!| = @7 + i) - By
and so
Dec(sk, ©) = [27 + ni) - By, - Bsly = [Q7 + m)], = m.

N
The scheme is also correct with respect to the evaluation of sums. Let 1= j1+Q7 +m;)and
-
T2 = jo+ (27 + ni») be the ciphertexts associated with the plaintexts m; and ms.

Then
Dec(sk, Eval(evk, f;, (€1, €»))) = Dec(sk, €, + ¢» mod Bg)

=[(Cy+ ¢, mod Bg) mod Bgl,
=[¢,+ ¢, mod B«l,

=[1(@1 + €2 - B3 B,

= |[¢1- By + @2 Byl By,

= (€1 By Ba, + |72 Bl B,
= Dec(sk, ¢;) + Dec(sk, ¢»).

Similarly, it is possible to verify that the scheme is correct with respect to the evaluation of the
product. This proves that Gentry’s scheme is an SHE scheme.

3.2. Smart and Vercauteren’s scheme (SV)
Let A be the fixed security parameter, and let us consider

e an integer N = N(1) = 2" € N, that defines the polynomial f(x) = x + 1 and the ring
R = Z[x)/{f(x)) = Z[x]/(x" + 1);

e an integer t = #(1) € N.

Choose a polynomial v(x) = f\i()l v;x' € R such that v, is odd, and every coefficient has an absolute

value less than 2’ (and at least one coefficient is an integer of bit-length 7). Given the matrix

Vo Vi -t VN-l
—VN-1 Vo °* VN2
V.= € My(2),
_Vl _V2 .o e VO

its determinant d = det(V) is a prime number.
Let us now consider the ideal lattice J = (v) generated by the polynomial v(x) and the unique
number r € [-d/2,d/2) that is a zero of both f(x) and v(x) modulo d (considering the reductions
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modulo d in the interval [-d/2,d/2)). The uniqueness of r is proved in [50, Lemma 1] using algebraic
number theory techniques. Note that the ideal J is completely determined by d and r.
Finally, set r; := ¥ mod d and consider the normal Hermitian form of J:

d 0 0 - 0
- 1 0 -+ 0

B=HNFQ)=| -» 0 1 -+ 0|eMun(®. (3.1)
—ry.; 00 - 1

Note that the matrix V represents a good basis for J, while B represents a bad basis. The plaintext
space is P = Z,. In this context, we can now present the algorithms of the scheme:

e The keys are given by
KeyGen: N - R X (NXR) x N

KeyGen(1) = (sk = w(x),pk = (d, r),evk = d),

where w(x) 1s such that v(x) - w(x) = d mod f(x), so w(x) is an inverse of v(x) modulo f(x). The
public key can also be defined as a matrix: pk = B.
¢ Given the plaintext m € Z,, the encryption algorithm is

Enc: WXR)XZ, = Z,

Enc(pk, m) = [2u(r) + m],

where u = f\i{)l u;x' € Z[x] is a random polynomial with integer coefficients representing the

noise and u(r) is the evaluation of the polynomial u in r. If we write % for the vector of the
coefficients of u and i for the vector corresponding to m (as in Gentry’s scheme), encrypting m
is equivalent to computing the first entry of the vector 2% + 7 mod B.
e The decryption algorithm is
Dec: RXZ; — Z,
Dec(sk, c) = [c - {%H ,
d 1

where wy is the first coefficient of the polynomial w(x).
e The evaluation algorithm Eval outputs sums and products in the ring R, computed modulo evk =
d.

N By definition, the ciphertext ¢ corresponding to '@)e plaintext m is the first entry of the unique vector
¢’ of the parallelepiped P(B) such that (2% +m) — ¢’ € J. Using the polynomial notation and recalling
that J is generated by v(x), we get

2u(r) +m—c =q(r) - vy

for a polynomial ¢(x) € R. Dividing by v(x), using the fact that v(x)~! = w(x)d™!, and looking at the
first coefficient of the polynomials, we obtain
Qu(r) + m)wy

—c'%m](r)— 7
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If the error is small enough, that is, such that [M1 = 0, then

{C'WO

p w=q(r)

and the decryption procedure is correct (as vy 1s odd by assumption):

Dec(wy, Eval(pk, m)) = [2u(r) +m —q(r)vy — {c -alon2

= [2u(r) + m — q(r)(vo = 1],
=m.

It is not hard to prove that the evaluation is correct as well, and so this is an SHE scheme.
4. FHE schemes from learning with errors

In 2011 Brakerski and Vaikuntanathan started a new reaserch direction introducing the first FHE
schemes based on the learning with errors problem (LWE) [12] (extended version in [14]) and on
the ring learning with errors problem (RLWE) [13]. Such schemes have a great relevance in modern
cryptography. Indeed, they offer an optimal combination of security, functionality, and applicability.
Forn > 1 and g > 2, the (search-)LWE problem asks to recover s = (s1, ..., s,) € Z; given any desired
m = poly(n) independent linear equations such as the following,

ansy+...+a,s,t+é :bl (mod (])

aysy +...+axys, +e = bz (IllOd q)

am1S1+ oo+ AuSy + €y = by, (Mod q)

where the matrix A = (a) € Z;”" is chosen uniformly, and each e; is usually taken from a Gaussian
distribution y and rounded to the nearest integer (modulo g). The LWE problem is believed to be
computationally hard, because of the Regev’s reduction from the worst-case hardness of some lattice
problems, such as GapSVP (the decision version of the Shortest Vector Problem, which consists in
finding a non-zero vector v € L that minimizes the Euclidean norm), to the search-LWE problem [46].
This reduction works for any modulus g > 2 v/n/a@, with 0 < @ < 1, but it requires the use of quantum
computation. In [45], Peikert proved that LWE is classically at least as hard as worst-case GapSVP on
lattices for large modulus ¢ > 2"/2. Since then, the LWE problem has become one of the most attractive
and promising topics for post-quantum cryptography.

In Brakerski and Vaikuntanathan’s scheme (BV), given a plaintext m € Z, and a secretkey § € Zy,
the idea is to generate a ciphertext

C=(d.(d,3)+2e+m) €L XZ,

where d € Zy 1s a vector chosen uniformly at random and e € Z, is an error chosen with distribution
X(Z,). In this way the message m is masked twice: by the scalar product (@, ¥') and by the noise 2e.
These masks can be removed independently in the process of decrypting: the first is subtracted and
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the noise noise 2e is canceled considering the congruence class modulo 2 (as long as the error e is
small enough, that is, such that 2e + m mod g = 2e + m). In [12] the authors also show how to make
the scheme bootstrappable (and so into an FHE scheme), introducing the techniques of relinearization
and modulus switching, in substitution of Gentry’s squashing technique. The relinearization is used to
control the growth of noise, in particular after operations of multiplication, while the modulus switching
consists on considering an integer p smaller than g and, given a ciphertext ¢ modulo ¢, to multiply it
by p/q and to approximate the result to the nearest integer, obtaining a new ciphertext ¢’ modulo p.

The scheme (BV-RLWE) described in [13] is a new version of (BV) whose security is based on the
polynomial LWE problem, that is proved to be equivalent to the RLWE problem. The main difference
is in the fact that plaintexts, keys and ciphertexts are built not working in Z,, for an odd integer g, but
in the ring R, = Z,[x]/{f(x)), for a prime number g and a suitable polynomial f(x) € Z[x].

In 2012 Brakerski, Gentry and Vaikuntanathan (BGV) [10] (technical report in [9], extended version
in [11]) proposed a procedure to build an LHE scheme (without invoking the bootstrapping) and
a new bootstrapping technique used to obtain an FHE scheme. These innovations represented an
important change in the field because they allow for the scheme to be truly applicable in various
practical situations. The scheme (BGV) exists in two versions, based on the LWE and RLWE problems,
respectively. The scheme (BGV-RLWE) is the most efficient and it was implemented in the open-source
HEIlib library by IBM [35]. We point out that such a scheme has been improved in [27] (with optimized
bootstrapping in [28]) and the library architecture is based on a variant of (BGV) proposed by Gentry,
Halevi and Smart [29].

Again in 2012, Brakerski (B) [6] presented a variant of (BGV) based on the Scale-invariant
technique, in substitution of modulus switching. In particular, in the encryption algorithm the plaintext
m is “scaled” multiplying it by the number L] (and the decrypting algorithm is modified accordingly).
In the scheme (B) the technique of key wwitching also appears, consisting of two algorithms:
SwitchKeyGen, (s,7) that, starting form a secret key s and a “target” key ¢, outputs a matrix Py,
and SwitchKey (P, c,) that, using the matrix Pg,, allows it to express a ciphertext ¢y, encrypted
using the key s, as a ciphertext ¢,, encrypted using the key (1, 7). As a consequence of this innovation,
the dimension of the errors arising from the operations of multiplication grows linearly. Also, a classic
reduction is used to show that its security is based on the hardness of (SVP) (in previous works the
reductions were of quantum type only).

Fan and Vercauteren (FV) [24] implemented and optimized the RLWE version of Brakerski’s
scheme (B), introducing two ways of relinearizing the output of the product evaluation, in order to
obtain a polynomial of degree 1 instead of 2. The scheme (FV) is one of the three schemes implemented
in Microsoft’s Simple Encrypted Arithmetic Library (SEAL) [49].

2011 2012 2012 2012
BV BGV B FV
Brakerski Brakerski, Gentry Brakerski Fan and
Vaikuntanathan Vaikuntanathan Vercauteren

Figure 3. First schemes based on the LWE and RLWE problems.

The next two subsections are devoted to the (BGV) scheme and to the (FV) scheme, respectively.
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4.1. Brakerski, Gentry and Vaikuntanathan’s scheme (BGV)

We first present a base scheme (without evaluation) on which both the LWE and RLWE versions of
the (BGV) scheme are built, as described in [10]. Choosing a security parameter A, we consider a ring
R depending on A, setting for instance R = Z in the LWE version and R = Z[x]/(x¢ + 1) in the RLWE
version, for an integer d = d(1) = 2¢ € N. For every positive integer ¢ € N, set

R, = R/tR.

Hence, if R = Z we get R, = Z, and if R = Z[x]/{x? + 1) we obtain R, = Z,[x]/{x? + 1). The plaintext
space is P = R;.
Let us consider the following further parameters:

e an integer u = u(d) € N;

e an odd modulus g = ¢(1) € N of u-bit;

e two dimensions n = n(4d), N = N(1) € N;

e adistribution y = y(A4) on R (as small as possible).

The algorithms of the base scheme are defined as follows.

e The keys are given by
KeyGen: N — RZH X MatNX(n+1)(Rq)

KeyGen(A) = (sk = 5 = (1, 5 [1],..., 5 [n]), pk = A),

N
where 5" € x(R}) is a secret vector and, given a vector e € )((Rf]\’ ) representing the error and a
matrix A” € Matyy,(Ry), the matrix A € Matnyxm.1)(Rg) is defined as the matrix that has the vector
— —

b=As5+2¢¢ R;V as the first column, followed by the n columns of the matrix —A’. Note that

A3 =27.
e Given a plaintext m € R,, set m = (m,0,...,0) € RZ“. The corresponding ciphertext is given by
Enc: MatNX(n+1)(Rq) X RSH - RSH
Enc(pk = A, m) = [m + A" - 7],

where 7 € RY is a vector representing the error.

We point out that in [10] the authors remark that the scheme (BGV-RLWE) is more efficient if
one puts N = 1 (so that the matrix A can be thought of as a vector of length n + 1) and introducing
in the output of Enc a further small error e e R’;”:

Enc(pk = A, m) = [m + 2¢ + AT 7y
e The decryption algorithm is
Dec: RI*' XRI"' — R,
Dec(sk = ¥, ¢) = [ (¢, ), ]2-
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Note that the base scheme is correct with respect to decryption if the error ¢ is small:

Dec(sk = 5, Enc(pk = A, m)) = [ [(mi + AT -7, ], ]2
=| ki, ) +(AT- 7. ), |
= tm+a- 3,7, |,
=11

| m+2(2, 7)), |, = m.

2

In [10, Section 3.4] the authors describe an LHE scheme, in which for every level [, with 0 </ < L,
distinct keys and distinct moduli are defined. Instead of using bootstrapping to make it into an FHE
scheme, they define an algorithm, called Refresh, that allows one to modify the level of the ciphertext,
passing to keys and modulus of the previous level and decreasing the noise. The Refresh algorithm
uses an extra evaluation key evk (that can be viewed as an encryption of the secret key) and is formed
by

e SwitchKey: Allows it to pass from a ciphertext ¢, encrypted using the secret key ; defined
at the level [, to a ciphertext ¢, encrypted using the secret key s,_; defined at the level [ — 1,
preserving the initial modulus ¢;;

e Scale: Starting from the ciphertext ¢, it outputs a ciphertext ¢, encrypted using the same secret
key §;_; but with respect to the modulus ¢;_;.

The family F' of homomorphic operations is formed by sums f; and products f, in the ring RZ“.
Given two ciphertexts ¢; and ¢, encrypted using the same secret key (at the same level [), the
evaluation of the sum is

Eval(er, fs’ (?1, ?2)) = Refresh(evk, [?1 + ?Z]q[)-

As for the product f,,, we consider the following linear equation depending on the ciphertext ¢:
Lz(X) = (¢, X).

Note that decryption ¢ with the secret key s corresponds to computing [[Lz()],]2. Given two
ciphertexts ¢, and ¢,, we can now consider a quadratic equation, that can be also viewed as a linear
equation on tensor products:

LY, (RO X) = Lz(R) - Lz ().

We can now define the evaluation algorithm for the product:

Eval(evk, f,, (T, ¢2)) = Refresh(evk, L2 (¥ ® ¥)).

—
Cl,

We refer to [10] for the proof of the correctness of the evaluation.

4.2. Fan and Vercauteren’s scheme (FV)

In [24] Fan and Vercauteren applied the relinearization technique to decrease the length of products
of ciphertexts and proposed two SHE schemes, which we are going to describe, referring to them as
version 1 and version 2 of (FV).
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Given a security parameter A, let us consider the polynomial rings

R = Z[x]/{x* + 1) and R, = Z,[x]/{x? + 1),

for a positive integer d = 2* and a positive integer ¢ = #(1). The plaintext space is P = R,.
Moreover, we fix the following parameters:

an odd integer g = g(1) € N (the modulus);

an integer 7 € N (used for relinearization in version 1);

an integer p € N (used for relinearization through modulo switching in version 2);

two error distributions y = (A1) and ¥’ = x’(4) defined on R. The distribution y can be identify
with the discrete Gaussian distribution. However, ' is used in version 2 and must differ from y,
otherwise the security of the scheme would be considerably weakened.

We remark that if x € R, and y € R, = Z,[x]/(x? + 1), then both x and y can be viewed as elements
of R and as such can be multiplied. With the symbol - we denote the operation of multiplication in R.
The algorithms of (FV) are the following:

the keys are generated by
KeyGen: N — R, X (R; X R,)) X K,

KeyGen(a) = (sk = s,pk = ([=(a - s + €)],, a), evk)

where s € R, and a € R, are chosen uniformly at random, e € y(R) is an error and with evk; and
evk, we denote the evaluation keys in versions 1 and 2 of the (FV) scheme, respectively.

In version 1, let £ = [log;(q)], and forevery i €0, ..., € seta; € R, (chosen uniformly at random),
e; € Y(R) and

—_— _— —_— .. . i . 2 .
evk = evk; = ([ (ai-s+e)+ T -s ]q,a,){ie[o’a}

In version 2, the relinearization consists of passing from computations modulo g to computations
modulo pg:
evk = evk, = ([—(a -s+e)+p- sz]p.q,a) ,

fora € R,, and e € }'(R).
Given a plaintext m € R, and the public key
pk = (pK[1], pk[2]) = ([-(a - s + &)1y, @),

we get
Enc: (R, X R,) X R, = (R, XR,)

Enc(pk, m) = ( [PK[1]-u-+ e +1 2] ml, , (ki1 -u+ eal, ).
for some u € R, and errors ey, e; € y(R).
Given a ciphertext ¢ = (¢[1], €[2]), the decryption algorithm is
Dec: Ry, X (R, X R,) > R,

t-[C[] + 2[2] - s]qH
q .

Dec(sk, ) = H
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The family F consists of sums f; and products f, in R. Let ¢; = (¢4[1], €1[2]) and ¢, =
(C5[11, €2[2]) be two ciphertexts. The evaluation algorithm is defined among the sets

Eval: K. x F X (R; X R;) = (R; X R,)
and, applied to the sum, is the natural evaluation:
Eval(evk, f;, (€1, €2) = [C1 + €2,

As for the product, the relinearization technique is invoked and the output is different in the two
versions of (FV). First, let us compute

_ Ht (1] %[H)H
x = :
q q

y= Ht (G411 Cal2] + 4121 - EE[U)H
q .

and

- Hr (T1[2]- szu
q .

In version 1, we express z as: z = Zﬁzo zi - T', for z; € Ry, and we get
/ /
Eval(evky, f,, (¢1, ¢2)) = ([x + Z evki[7][1] -z, [y + Z evk;[7]12] - zi],)-
i=0 i=0

Instead, in version 2 the evaluation of the product is:

Eval(eVKZ, fp, (Z‘)l, ?2)) = [lx + H%ﬁz[l]‘u l
q

[efl==2))

Both versions of (FV) are correct with respect to both decryption and evaluation, and so they are
SHE schemes. Indeed, if the errors are small enough (that is, such that O is the nearest integer to
the product fl ‘le-u+e +ep-5]),itis easy to see that the decryption procedure is correct:

q
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Dec(sk, Enc(pk, m)) =

[t pK[1] -+ e +L§J-m]q+[pk[2]-u+ez]q-S]qH

L q :
N t-[[[—(a~s+e)]q-u+el+L%J~m]q+[a~u+eg]q-s]qu
q t

-[[[e-u+e1+{%J~m]q+e2-s]qu

t

Q= Q=

-[e-u+el+gJ-m+ez-s]H

t

=m+

t
—~[e-u+el+eg~s]H
q t

=m.

The proof of the correctness of the evaluation of sums and products can be read in detail in [24,
Section 4]. Moreover, in [24, Sections 5 e 6] the authors show how to produce an LHE scheme
and an FHE scheme.

5. Other FHE schemes and recent developments

In 2013 Gentry, Sahai and Waters (GSW) [30] suggested a different approach for the computation
of homomorphic operations, starting a research direction known as the third generation of FHE
schemes. The (GSW) scheme does not invoke the modulus switching technique, but the approximate
eigenvector method reduces the error arising from products to a small polynomial factor. On the other
hand, the (GSW) scheme requires high communication costs (the ciphertext is larger with respect to
the corresponding plaintext) and high computational complexity. To remedy such problems, various
optimizations of such a scheme were later proposed. Alperin-Sherift and Peikert (AP) [1] suggested a
new bootstrapping algorithm considering the process of decrypting as an arithmetic function instead
of a Boolean circuit, a procedure later improved by Hiromasa et al. [33] and extended to rings by
Ducas and Micciancio (FHEW: Fastest Homomorphic Encryption in the West) [20]. We remark that
the (FHEW) scheme is the first one to execute bootstrapping in a fraction of a second; in the literature,
this innovative bootstrapping technique is known as AP/FHEW bootstrapping.

The (FHEW) scheme has been the starting point used by Chillotti et al. in 2020 [15] to define
the (TFHE) scheme based on the torus that uses a new bootstrapping technique (known as GINX)
first described by Gama et al. in [31]; see also [22] for an algebraic version of (TFHE) and [23] for
an application. In a recent work, Lee and Micciancio et al. [41] described a bootstrapping technique
combining the best aspects of AP/FHEW and GINX/TFHE.

In 2017, Cheon, A. Kim, M. Kim, and Song (CKKS) [17] started the so-called fourth generation of
FHE schemes, suggesting a new method to construct an LHE scheme and including an open-source
library (known as HEANN [34]) that implements it. The (CKKS) scheme was extended to an FHE
scheme in [16] and constitutes the starting point for many further optimizations. For instance, in [37]
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Kim, Papadimitriou and Polyakov proposed a technique to decrease the propagation of errors, rescaling
the ciphertexts before applying the homomorphic operations, and presented two RNS (residue number
system) variants of (CKKS), both implemented in the PALISADE library [44].

One of the novelties of the fourth generation schemes is that they use approximate arithmetic, which
makes the algorithms faster. In 2021, Li and Micciancio [40] proved that the (CKKS) scheme and its
variants are vulnerable to attacks by adversaries knowing the encryption function.

2013 2014 2015 2017 2020
GSW AP FHEW CKKS FHEW
Gentry, Sahai Alperin-Sheriff Ducas and Micciancio ~ Cheon, Kim, Chillotti et al.

and Waters and Peikert Kim and Song

Figure 4. Third and fourth generation schemes based on the LWE and RLWE problems.

We conclude this survey on fully homomorphic encryption briefly describing recent results aimed
at improving efficiency and security of FHE schemes.

5.1. Chimera

In 2020, Boura, Gama, Georgieva and Jetchev introduced the scheme known as CHIMERA [8]: a
hybrid scheme combining (TFHE), (FV) and (CKKS). In CHIMERA, the plaintext space is defined
in such a way that the plaintext spaces of (TFHE), (FV) and (CKKS) could embed in it. Using
bootstrapping, the authors describe a procedure that allows it to pass from ciphertexts encrypted using
(TFHE) or (CKKS) to ciphertexts encrypted according to (FV), and vice versa. CHIMERA turned out
to be very useful in many practical scenarios, in which the various natures of the operations involved
caused the application of only one of the schemes (TFHE), (FV) or (CKKS) inadequate. Moreover,
CHIMERA contributes the project of standardization of FHE schemes.

5.2. HERA, RUBATO and HERMES

In 2021, Cho et al. [ 18] proposed a scheme, called (RtF) (real-to-finite-field), that combines (CKKS)
and (FV) and exploits a new stream cipher, known as HERA, based on modular arithmetic. They
showed how such strategies allow one to encrypt large real numbers without incurring in an excessive
growth of the ciphertext’s dimension or of the memory space needed to compute homomorphic
operations. In 2022, Ha et al. [32] followed the approach of Cho et al. [18] and introduced a new
stream cipher, called RUBATO, that further decreases the computational complexity of (RtF).

In 2023, Bae, Cheon, Kim, Park, and Stehlé [3] proposed two solutions to the ring packaging
problem, that is, the problem of conversion of a scheme based on the LWE problem to one based on
the RLWE problem. On one hand, they presented a strategy that speeds up the existing ring packaging
technique through bootstrapping and ring switching; on the other, they introduced a completely new
method, called HERMES, showing how to apply it to transform a symmetric cryptosystem based on
LWE into a variant of (CKKS). In particular, the authors proved that HERMES is more efficient than
both HERA and RUBATO.
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5.3. Variants of (BGV) and (FV)

In 2021, Kim, Polyakov and Zucca [38] described new schemes inspired by the (BGV) and (FV)
schemes. The variant of (FV) contains various optimizations, including decreasing of noise growth and
the definition of a novel algorithm for the evaluation of multiplication that reduces the computational
complexity of the original one. As for (BGV), the authors describe a “pratical” variant that is more
efficient than (FV) in certain real scenarios. Both variants have been implemented in the PALISADE
library.

In 2023, Okada, Player and Pohmann [42] proposed a strategy to improve the evaluation of
polynomials in the bootstrapping of (FV), using Galois automorphisms. Moreover, they showed how
some of the bootstrapping techniques of (FHEW) and (TFHE) can be applied to (FV).

5.4. ThFHE schemes

One of the strategies invoked to strengthen the security of public-key cryptosystems consists in
dividing the secret key into n parts, delivered to n distinct clients, so that only their cooperation (or
the cooperation of a certain number of them) could lead to decryption. Such a technique is known as
threshold public key encryption and the expression t-out-of-n means that at least # + 1 of the n clients
must cooperate to decipher the message. In [2] the authors showed that threshold public key encryption
can be applied to FHE schemes, that are in this case denoted by ThFHE. In 2023, Boudgoust and
Scholl [5] introduced a new ThFHE scheme of type ¢-out-of-n based on the LWE problem that involves
the use of a modulus given by a polynomial function of the security parameter (while previous works
required a superpolynomial modulus, with consequent increase of computational costs).

We remark that the innovative bootstrapping procedure elaborated by Lee et al. in [41] is particularly
efficient when applied to ThFHE schemes.

5.5. Optimization in the choice of parameters

One of the major difficulties in applying FHE schemes to real scenarios lies in the determination
of the best parameters to use in order to preserve security requiring low computational costs. In 2023,
Bergerat et al. [4] formalized the problem of the parameters’ choice as an optimization problem and
suggested to encrypt a plaintext into more than one ciphertexts using novel algorithms. Their work
focused on the (TFHE) scheme, but the strategy illustrated can also be applied to other FHE schemes.

5.6. Optimization of rotation keys

Certain FHE schemes, such as (FV) and (CKKS), support rotation operations, that is, permutations
of the ciphertexts components (e.g., the entries of the vector corresponding to the ciphertext). These
operations are needed if the scheme contains homomorphic operations involving distinct components
of the ciphertext and they require an evaluation key, called the rotation key. In 2023, Lee, Lee, Kim, and
No [36] introduced a hierarchic system of rotation keys, which allows it to generate such keys starting
from the public key and a small number of rotation keys, significantly decreasing the communication
costs between client and server.
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6. Conclusions

Fully homomorphic encryption represents an important step forward in cryptography, offering
unprecedented levels of privacy and data security. Its ability to perform computations on encrypted
data without decryption has the potential to transform how we handle and use sensitive information
in various domains, including healthcare, finance and national security. As FHE schemes continue to
mature and practical applications emerge, this revolutionary technology is poised to play a critical role
in defining the future of data security and privacy.

Gentry’s work represented a breakthrough in the field of cryptography by presenting the first
plausible scheme that supports arbitrary computations on encrypted data. This achievement has long
been considered the Holy Grail of cryptography, due to its usefulness in multiple industries, from
cloud computing to data mining. The original scheme was based on ideals and lacked efficient
implementation. However, its central idea, i.e., the use of an SHE scheme capable of evaluating its
own decryption circuit, was subsequently applied to other cryptographic systems, including LWE and
AGCD, providing more efficient schemes. With the introduction of other important techniques, such
as module and key switching, these systems have become increasingly efficient over time. The key
advances in FHE cryptography can be summarized as follows:

e Development of FHE schemes based on cryptographic systems other than ideal ones: this has led
to more efficient and practical schemes.

e Development of techniques to improve the efficiency of FHE schemes: such techniques include
module and key switching and packing.

e Development of efficient implementations of FHE schemes: these implementations have made
FHE schemes more accessible and usable.

Opverall, advances in FHE have led to more efficient FHE schemes, which can be used in a wide
range of applications, including:

e Healthcare data analytics: FHE can be used to perform complex analytics on sensitive healthcare
data, such as medical images or genetic data, without compromising patient privacy.

e Financial data analysis: FHE can be used to perform complex financial analysis, such as risk
assessment or price forecasting, without revealing sensitive customer or transaction information.

e Government data analysis: FHE can be used to perform analysis of sensitive government data,
such as intelligence data or national security data, without compromising national security.

e Cloud computing: FHE can be used to allow cloud providers to process sensitive data securely,
without having to decrypt it.

e Data mining: FHE can be used to perform data analysis on large datasets, without having to reveal
sensitive information contained in the data.

Advances in the field have made FHE schemes a promising technology with significant potential to
transform the way sensitive data is handled. As FHE schemes continue to improve, they are expected
to have a significant impact on a wide range of scenarios.

AIMS Mathematics Volume 10, Issue 4, 9539-9562.



9558

Author contributions

Valentina Grazian: Investigation, Writing — original draft; Antonio Tortora and Maria Tota: Writing
—review and editing.

Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are members of the National Group for Algebraic and Geometric Structures, and their
Applications. They would like to thank the referees for their useful comments, and Prof. Carlo Blundo
for the inspiring conversations and meaningful suggestions that enabled them to improve this work.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. J. Alperin-Sheriff, C. Peikert, Faster bootstrapping with polynomial error, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 8616 LNCS (PART 1), (2014), 297-314. https://doi.org/10.1007/978-3-662-
44371-2_17

2. G. Asharov, A. Jain, A. Lépez-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs, Multiparty
computation with low communication, computation and interaction via threshold FHE, In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology — EUROCRYPT 2012, (2012),
483-501, Berlin, Heidelberg.

3. Y. Bae, J. H. Cheon, J. Kim, J. H. Park, D. Stehlé, Hermes: Efficient ring packing using mlwe
ciphertexts and application to transciphering, In Helena Handschuh and Anna Lysyanskaya,
editors, Advances in Cryptology — CRYPTO 2023, (2023), 37-69. Cham: Springer Nature
Switzerland. https://doi.org/10.1007/978-3-031-38551-3_2

4. L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J. B. Orfila, et al.,
Parameter optimization and larger precision for (T)FHE, J. Cryptol., 36 (2023), 28.
https://doi.org/10.1007/s00145-023-09463-5

5. K. Boudgoust, P. Scholl, Simple threshold (fully homomorphic) encryption from Iwe with
polynomial modulus, International Conference on the Theory and Application of Cryptology and
Information Security, (2023), 371-404.

6. Z. Brakerski, Fully homomorphic encryption without modulus switching from classical GapSVP,
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, (2012), 868—886. Springer.

AIMS Mathematics Volume 10, Issue 4, 9539-9562.


https://dx.doi.org/ https://doi.org/10.1007/978-3-662-44371-2_17
https://dx.doi.org/ https://doi.org/10.1007/978-3-662-44371-2_17
https://dx.doi.org/ https://doi.org/10.1007/978-3-031-38551-3_2
https://dx.doi.org/https://doi.org/10.1007/s00145-023-09463-5 

9559

7. D. Boneh, E. J. Goh, K. Nissim, Evaluating 2-dnf formulas on ciphertexts, In Joe Kilian, editor,
Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA,
USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Computer Science,
(2005), 325-341. Springer. https://doi.org/10.1007/978-3-540-30576-7_18

8. C. Boura, N. Gama, M. Georgieva, D. Jetchev, CHIMERA: combining ring-lwe-
based fully homomorphic encryption schemes, J. Math. Cryptol., 14 (2020), 316-338.
https://doi.org/10.1515/jmc-2019-0026

9. Z.Brakerski, C. Gentry, V. Vaikuntanathan, Fully homomorphic encryption without bootstrapping,
Cryptology ePrint Archive, Paper 2011/277, 2011. https://eprint.iacr.org/2011/277

10. Z. Brakerski, C. Gentry, V. Vaikuntanathan, (leveled) fully homomorphic encryption
without bootstrapping, In Shafi Goldwasser, editor, Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, January §8-10, 2012, (2012), 309-325. ACM.
https://doi.org/10.1145/2090236.2090262

11. Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) fully homomorphic encryption without
bootstrapping. ACM Trans. Comput. Theory, 6 (2014), 1-36. https://doi.org/10.1145/2633600

12. Z. Brakerski, V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE,
In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, (2011), 97-106. IEEE Computer
Society. https://doi.org/10.1109/FOCS.2011.12

13. Z. Brakerski, V. Vaikuntanathan, Fully homomorphic encryption from ring-lwe and security
for key dependent messages, In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, volume 6841 of Lecture Notes in Computer Science, (2011), 505-524. Springer.
https://doi.org/10.1007/978-3-642-22792-9 29

14. Z. Brakerski, V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE,
SIAM J. Comput., 43 (2014), 831-871. https://doi.org/10.1137/120868669

15. I. Chillotti, N. Gama, M. Georgieva, M. Izabachéne, TFHE: fast fully homomorphic encryption
over the torus, J. Cryptol., 33 (2020), 34-91. https://doi.org/10.1007/s00145-019-09319-x

16.J. H. Cheon, K. Han, A. Kim, M. Kim, Y. Song, Bootstrapping for approximate
homomorphic encryption, In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology — EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part I, volume 10820 of Lecture Notes in Computer Science, (2018), 360-384. Springer.
https://doi.org/10.1007/978-3-319-78381-9_14

17. J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic encryption for arithmetic of approximate
numbers, In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624
of Lecture Notes in Computer Science, (2017), 409—437. Springer. https://doi.org/10.1007/978-3-
319-70694-8_15

AIMS Mathematics Volume 10, Issue 4, 9539-9562.


https://dx.doi.org/ https://doi.org/10.1007/978-3-540-30576-7_18
https://dx.doi.org/https://doi.org/10.1515/jmc-2019-0026
https://eprint.iacr.org/2011/277
https://dx.doi.org/ https://doi.org/10.1145/2090236.2090262
https://dx.doi.org/ https://doi.org/10.1145/2090236.2090262
https://dx.doi.org/https://doi.org/10.1145/2633600
https://dx.doi.org/ https://doi.org/10.1109/FOCS.2011.12
https://dx.doi.org/ https://doi.org/10.1007/978-3-642-22792-9_29
https://dx.doi.org/ https://doi.org/10.1007/978-3-642-22792-9_29
https://dx.doi.org/https://doi.org/10.1137/120868669
https://dx.doi.org/https://doi.org/10.1007/s00145-019-09319-x
https://dx.doi.org/https://doi.org/10.1007/978-3-319-78381-9_14
https://dx.doi.org/ https://doi.org/10.1007/978-3-319-70694-8_15
https://dx.doi.org/ https://doi.org/10.1007/978-3-319-70694-8_15

9560

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

.J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, et al., Transciphering framework for approximate
homomorphic encryption, In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology — ASIACRYPT 2021, (2021), 640-669. Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-92078-4 22

R. Cramer, L. Ducas, C. Peikert, O. Regev, Recovering short generators of principal ideals in
cyclotomic rings, In Advances in cryptology — EUROCRYPT 2016. Part II, volume 9666 of
Lecture Notes in Comput. Sci., (2016), 559-585. Springer, Berlin. https://doi.org/10.1007/978-
3-662-49896-5_20

L. Ducas, D. Micciancio, FHEW: bootstrapping homomorphic encryption in less than a second, In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology — EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, (2015), 617-640. Springer. https://doi.org/10.1007/978-3-662-46800-5_24

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, In
Advances in cryptology (Santa Barbara, Calif., 1984), volume 196 of Lecture Notes in Comput.
Sci., (1985), 10-18. Springer, Berlin. https://doi.org/10.1007/3-540-39568-7_2

M. Ferrara, A. Tortora, M. Tota, An overview of torus fully homomorphic encryption, International
Journal of Group Theory, Proceedings of Ischia Group Theory 2022, 14 (2025), 59-73.

M. Ferrara, A. Tortora, M. Tota, A data aggregation protocol based on TFHE,
International Journal of Computer Mathematics: Computer Systems Theory, 9 (2024), 243-252.
https://doi.org/10.1080/23799927.2024.2415034

J. Fan, F. Vercauteren, Somewhat practical fully homomorphic encryption, IACR Cryptol. ePrint
Arch., (2012), 144.

C. Gentry, Fully homomorphic encryption using ideal lattices, In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, (2009), 169-178. ACM.
https://doi.org/10.1145/1536414.1536440

C. Gentry, S. Halevi, Implementing gentry’s fully-homomorphic encryption scheme, Annual
international conference on the theory and applications of cryptographic techniques, (2011), 129—
148. https://doi.org/10.1007/978-3-642-20465-4_9

C. Gentry, S. Halevi, N. P. Smart, Fully homomorphic encryption with polylog overhead, Annual
International Conference on the Theory and Applications of Cryptographic Techniques, (2012),
465-482. https://doi.org/10.1007/978-3-642-29011-4_28

C. Gentry, S. Halevi, N. P. Smart, Better bootstrapping in fully homomorphic encryption, In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, Public Key Cryptography - PKC 2012
- 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt,
Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture Notes in Computer Science,
(2012), 1-16. Springer.

C. Gentry, S. Halevi, N. P. Smart, Homomorphic evaluation of the AES circuit, In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology

AIMS Mathematics Volume 10, Issue 4, 9539-9562.


https://dx.doi.org/ https://doi.org/10.1007/978-3-030-92078-4_22
https://dx.doi.org/ https://doi.org/10.1007/978-3-030-92078-4_22
https://dx.doi.org/ https://doi.org/10.1007/978-3-662-49896-5_20
https://dx.doi.org/ https://doi.org/10.1007/978-3-662-49896-5_20
https://dx.doi.org/https://doi.org/10.1007/978-3-662-46800-5_24
https://dx.doi.org/ https://doi.org/10.1007/3-540-39568-7_2
https://dx.doi.org/https://doi.org/10.1080/23799927.2024.2415034
https://dx.doi.org/ https://doi.org/10.1145/1536414.1536440
https://dx.doi.org/ https://doi.org/10.1145/1536414.1536440
https://dx.doi.org/ https://doi.org/10.1007/978-3-642-20465-4_9
https://dx.doi.org/https://doi.org/10.1007/978-3-642-29011-4_28

9561

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture
Notes in Computer Science, (2012), 850—867. Springer.

C. Gentry, A. Sahai, B. Waters, Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based, In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
(2013), 75-92. Springer. https://doi.org/10.1007/978-3-642-40041-4_5

N. Gama, M. Izabacheéne, P. Q. Nguyen, X. Xie, Structural lattice reduction: Generalized
worst-case to average-case reductions and homomorphic cryptosystems, In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology — EUROCRYPT 2016, (2016), 528-558.
https://doi.org/10.1007/978-3-662-49896-5_19

J. Ha, S. Kim, B. Lee, J. Lee, M. Son, Rubato: Noisy ciphers for approximate
homomorphic encryption, In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology — EUROCRYPT 2022, (2022), 581-610. Springer International Publishing.
https://doi.org/10.1007/978-3-031-06944-4 20

R. Hiromasa, M. Abe, T. Okamoto, Packing messages and optimizing bootstrapping in GSW-FHE,
In Public-key cryptography—PKC 2015, volume 9020 of Lecture Notes in Comput. Sci., (2015),
699-715. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-46447-2_31

HEaaN Private AI Homomorphic Encryption Library. https://heaan.it/, January 2023.
Crypto Lab, Korea.

S. Halevi, V. Shoup, Design and implementation of helib: a homomorphic encryption library,
Cryptology ePrint Archive, Paper 2020/1481, 2020. https://eprint.iacr.org/2020/1481

J. W. Lee, E. Lee, Y.-S. Kim, J. S. No, Rotation key reduction for client-server systems
of deep neural network on fully homomorphic encryption, In Jian Guo and Ron Steinfeld,
editors, Advances in Cryptology — ASIACRYPT 2023, (2023), 36—68. Springer Nature Singapore.
https://doi.org/10.1007/978-981-99-8736-8 2

A. Kim, A. Papadimitriou, Y. Polyakov, Approximate homomorphic encryption with reduced
approximation error, In Topics in cryptology—CT-RSA 2022, volume 13161 of Lecture Notes in
Comput. Sci., (2022), 120-144. Springer. https://doi.org/10.1007/978-3-030-95312-6_6

A. Kim, Y. Polyakov, V. Zucca, Revisiting homomorphic encryption schemes for finite fields, In
Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology — ASIACRYPT 2021, (2021),
608—639. Springer International Publishing. https://doi.org/10.1007/978-3-030-92078-4 21

R. Ko, S. G. Lee, V. Rajan, Cloud computing vulnerability incidents: A statistical overview,
Technical report, Cloud Vulnerabilities Working Group, Bellingham, WA, USA, 2013.

B. Li, D. Micciancio, On the security of homomorphic encryption on approximate numbers, In
Advances in cryptology — EUROCRYPT 2021. Part I, volume 12696 of Lecture Notes in Comput.
Sci., (2021), 648-677. https://doi.org/10.1007/978-3-030-77870-5_23

Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, et al., Efficient FHEW bootstrapping
with small evaluation keys, and applications to threshold homomorphic encryption, In Advances in
cryptology — EUROCRYPT 2023. Part 111, volume 14006 of Lecture Notes in Comput. Sci., (2023),
227-256. Springer, Cham. https://doi.org/10.1007/978-3-031-30620-4 8

AIMS Mathematics Volume 10, Issue 4, 9539-9562.


https://dx.doi.org/ https://doi.org/10.1007/978-3-642-40041-4_5
https://dx.doi.org/https://doi.org/10.1007/978-3-662-49896-5_19
https://dx.doi.org/https://doi.org/10.1007/978-3-031-06944-4_20 
https://dx.doi.org/ https://doi.org/10.1007/978-3-662-46447-2_31
https://heaan.it/
https://eprint.iacr.org/2020/1481
https://dx.doi.org/ https://doi.org/10.1007/978-981-99-8736-8_2
https://dx.doi.org/ https://doi.org/10.1007/978-981-99-8736-8_2
https://dx.doi.org/ https://doi.org/10.1007/978-3-030-95312-6_6
https://dx.doi.org/https://doi.org/10.1007/978-3-030-92078-4_21
https://dx.doi.org/https://doi.org/10.1007/978-3-030-77870-5_23
https://dx.doi.org/ https://doi.org/10.1007/978-3-031-30620-4_8

9562

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

@ AIMS Press

H. Okada, R. Player, S. Pohmann, Homomorphic polynomial evaluation using galois structure and
applications to bfv bootstrapping, In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology
—ASIACRYPT 2023, (2023), 69—100. Springer Nature Singapore. https://doi.org/10.1007/978-981-
99-8736-8_3

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, In Advances
in cryptology — EUROCRYPT ’99 (Prague), volume 1592 of Lecture Notes in Comput. Sci., (1999),
223-238. Springer, Berlin. https://doi.org/10.1007/3-540-48910-X_16

Palisade homomorphic encryption software library. https://palisade-crypto.org/,
December 2022. Crypto Lab, Korea.

C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. STOC’09-Proceedings of the 2009 ACM International Symposium on Theory
of Computing, 333-342. Association for Computing Machinery (ACM), New York, 2009.
https://doi.org/10.1145/1536414.1536461

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal of the
ACM, 56 (2009), 1-40. https://doi.org/10.1145/1568318.1568324

R. Podschwadt, D. Takabi, P. Hu, Privacy-preserving Deep Learning with Homomorphic
Encryption, arXiv:2112.12855 [cs.CR] arXiv:2112.12855v2 [cs.CR].

R. L. Rivest, L. Adleman, M. L. Dertouzos, On data banks and privacy homomorphisms, In
Foundations of secure computation (Workshop, Georgia Inst. Tech., Atlanta, Ga., 1977), (1978),
169-179. Academic Press.

Microsoft SEAL (release 4.1), https://github.com/Microsoft/SEAL, January 2023.
Microsoft Research, Redmond, WA.

A. Silverberg, Fully homomorphic encryption for mathematicians, In Women in numbers 2:
research directions in number theory, volume 606 of Contemp. Math., (2013), 111-123. Amer.
Math. Soc., Providence, RI. https://doi.org/10.1090/conm/606/12143

N. P. Smart, F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext
sizes, In Phong Q. Nguyen and David Pointcheval, editors, Public Key Cryptography - PKC 2010,
13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France,
May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in Computer Science, (2010), 420-
443. Springer. https://doi.org/10.1007/978-3-642-13013-7_25

M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully homomorphic encryption over the
integers, In Henri Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer
Science, (2010), 24-43. Springer. https://doi.org/10.1007/978-3-642-13190-5_2

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 4, 9539-9562.


https://dx.doi.org/https://doi.org/10.1007/978-981-99-8736-8_3
https://dx.doi.org/https://doi.org/10.1007/978-981-99-8736-8_3
https://dx.doi.org/https://doi.org/10.1007/3-540-48910-X_16
https://palisade-crypto.org/
https://dx.doi.org/https://doi.org/10.1145/1536414.1536461
https://dx.doi.org/https://doi.org/10.1145/1568318.1568324
https://github.com/Microsoft/SEAL
https://dx.doi.org/ https://doi.org/10.1090/conm/606/12143
https://dx.doi.org/https://doi.org/10.1007/978-3-642-13013-7_25
https://dx.doi.org/ https://doi.org/10.1007/978-3-642-13190-5_2
https://creativecommons.org/licenses/by/4.0

	Introduction
	Homomorphic encryption schemes
	The first FHE schemes
	Gentry's scheme (G)
	Smart and Vercauteren's scheme (SV)

	FHE schemes from learning with errors
	Brakerski, Gentry and Vaikuntanathan's scheme (BGV)
	Fan and Vercauteren's scheme (FV) 

	Other FHE schemes and recent developments
	Chimera
	HERA, RUBATO and HERMES
	Variants of (BGV) and (FV)
	ThFHE schemes
	Optimization in the choice of parameters
	Optimization of rotation keys

	Conclusions

