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Abstract: This paper analyzed a cytokine-enhanced viral infection model incorporating three
distributed delays: (1) Intracellular delays in infected CD4+ T cells induced by inflammatory cytokines
and viruses, (2) delays in CD4+ T cell activation at inflammatory sites and subsequent cytokine
production, and (3) viral replication delays. By using Lyapunov functionals and LaSalle’s invariance
principle, we established that each equilibrium exhibits global asymptotic stability under certain
conditions. Furthermore, we formulated an optimality system that incorporates delays and then
characterized it using Pontryagin’s Maximum Principle. Numerical simulations have confirmed the
global asymptotic stability of all equilibrium points in the system. Furthermore, for the optimal
control system, our simulations not only justified the necessity of incorporating time delay in modeling
inflammatory cytokine production but also highlighted the critical importance of tailoring precise HIV
treatment strategies according to specific time-delay values.
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1. Introduction

Acquired Immunodeficiency Syndrome (AIDS), a life-threatening condition caused by human
immunodeficiency virus (HIV) infection, remains a major global health challenge with significant
mortality rates. As a retrovirus, HIV primarily infects cells expressing the CD4 receptor, notably
CD4+ T helper lymphocytes—a key component in regulating immune responses. During disease
progression, HIV-infected individuals experience a gradual decline in CD4+ T cell counts. Clinically,
the transition to AIDS is defined when CD4+ T cell counts decline below 200 cells/ul, marking severe
immunodeficiency and increased susceptibility to opportunistic infections [1, 2].

In HIV immunopathology, the demise of CD4+ T cells can be attributed to three predominant
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mechanisms: (1) Apoptosis, a non-inflammatory programmed cell death; (2) programmed necrosis,
characterized by plasma membrane rupture; and (3) pyroptosis, an intensely inflammatory form of cell
death triggered by strong inflammatory signals [3]. Nonetheless, studies have indicated that a mere 5%
of CD4+ T cell demise is attributed to caspase-3-driven apoptosis, with the preponderance of these
fatalities being precipitated by caspase-1-induced pyroptosis [4, 5]. Caspase-1, a pro-inflammatory
cysteine protease, mediates both the cleavage of pro-inflammatory cytokines (e.g., IL-1β, IL-18) and
the execution of pyroptotic cell death. Notably, pyroptosis in HIV-infected CD4+ T cells generates
inflammatory signals that recruit uninfected CD4+ T cells, establishing a self-perpetuating cycle of
infection and cell death [4, 6]. This pathological mechanism contributes to viral persistence, as
demonstrated by Wang et al. [7], who showed that pyroptosis-induced chronic inflammation promotes
homeostatic proliferation of memory CD4+ T cells—a key reservoir for HIV. These dynamics have
been quantitatively characterized through cytokine-enhanced viral infection models [8–11].

Cytotoxic T lymphocytes (CTLs), as the key effector cells of adaptive immunity, play an
indispensable role in antiviral immune defense. CTLs can precisely recognize and specifically
eliminate HIV-infected host cells, effectively suppressing viral replication and spread within infected
cells. Moreover, through the secretion of various cytokines (e.g., IFN-γ, TNF-α), CTLs participate in
immunomodulation by enhancing the function of antigen-presenting cells and boosting the activity of
other immune cells such as natural killer cells and B cells, thereby establishing a coordinated antiviral
immune network. Numerous HIV research models have integrated CTL immune responses into their
frameworks, such as [12–15].

Extensive research has established that viral infection of susceptible cells involves a characteristic
temporal delay between initial virion contact and productive infection, rather than occurring
instantaneously. Recognizing the critical role of time delays in viral dynamics, Jiang and Zhang [16]
developed a cytokine-enhanced viral infection model featuring a nonlinear incidence rate with discrete
time delays. Zhang et al. [17] subsequently extended this framework by incorporating CTL immune
responses and demonstrating Hopf bifurcation at the immunity-activated equilibrium. However,
both studies [16, 17] overlooked the time delay in inflammatory cytokine production—a critical
factor in antiviral immune regulation. Moreover, empirical and theoretical evidence suggest that
distributed delays provide more accurate representations of empirical systems compared to discrete
delays [18–20]. To address these critical limitations, we develop an advanced modeling framework
by introducing two key modifications to the model in [17]: (i) Explicit incorporation of cytokine
synthesis delays, and (ii) systematic integration of three distinct distributed-delay mechanisms. These
improvements lead to the following enhanced dynamical system:

ẋ(t) = λ − β1xc − β2xv − µx,
ẏ(t) =

∫ ∞
0

f1(τ)e−m1τ[β1x(t − τ)c(t − τ) + β2x(t − τ)v(t − τ)]dτ − (α + d)y − pyz,
ċ(t) = σ

∫ ∞
0

f2(τ)e−m2τy(t − τ)dτ − qc,
v̇(t) = k

∫ ∞
0

f3(τ)e−m3τy(t − τ)dτ − γv,
ż(t) = ηyz − bz,

(1.1)

where x(t), y(t), c(t), v(t), and z(t) represent the concentrations of uninfected CD4+ T cells, infected
CD4+ T cells, inflammatory cytokines, viruses, and CTL immune responsive cells at time t,
respectively. The term e−m1τ quantifies the survival probability of susceptible cells that were exposed
to inflammatory cytokines and viruses at time t − τ and subsequently became productively infected
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by time t. The terms e−m2τ and e−m3τ represent the probabilities of cytokine production initiation by
infected cells at time t−τ and viral particle maturation and release by time t. In model (1.1), we employ
the same integration variable τ across all delay kernels (e−m1τ, e−m2τ, and e−m3τ) since each represents
an independent temporal delay in the integration process. This unified notation is adopted without
loss of generality for mathematical convenience. Here, fi : [0,∞) → [0,∞) represent probability
distributions that are supported on a compact support, fi(τ) ≥ 0, and

∫ ∞
0

fi(τ)dτ = 1 (i = 1, 2, 3). All
model parameters are strictly positive, with their biological interpretations provided in Table 1.

Table 1. Biological significance of all parameters used in model (1.1).

Parameters Meaning
λ the production rate of uninfected CD4+ T cells
β1 the rate of infection of CD4+ T cells caused by inflammatory cytokines
β2 the rate of infection of CD4+ T cells caused by the viruses
µ, d, q, γ, b the natural death rate of uninfected and infected CD4+ T cells, cytokines,

viruses, and CTLs
α the mortality of infected CD4+ T cells due to pyroptosis
σ the proliferation rate of inflammatory cytokines
k the proliferation rate of viruses
η the proliferation rate of CTLs

While a complete cure for HIV remains elusive, current therapeutic strategies utilizing reverse
transcriptase inhibitors (RTIs) and protease inhibitors (PIs) have demonstrated efficacy in suppressing
viral replication and managing HIV infection. However, the long-term administration of antiretroviral
therapies presents significant challenges, including drug toxicity, resistance development, and patient
compliance issues. Studies have established that optimized treatment regimens incorporating RTIs and
PIs can significantly improve the quality of life for AIDS patients [21, 22]. Chen et al. [9] developed
an optimal control framework with four control variables within a cytokine-enhanced viral infection
model. Subsequent work has extended this approach to incorporate time-delayed systems [23–25],
while computational advances have introduced differential algorithms based on forward-backward
difference approximations for numerical implementation [22, 24, 26]. Motivated by the critical role of
temporal delays in HIV pathogenesis, we propose an optimal control analysis of a cytokine-enhanced
viral infection model incorporating three distinct distributed delays in this paper.

This paper is structured as follows. Section 2 establishes the fundamental properties of model (1.1),
proving solution positivity and boundedness while introducing two critical reproduction numbers and
characterizing system equilibria. Section 3 demonstrates the global stability of these equilibria through
the construction of suitable Lyapunov functionals and application of LaSalle’s invariance principle.
Section 4 develops the optimal control system using Pontryagin’s Maximum Principle. Numerical
simulations in Section 5 verify the global stability results and examine delay effects in the optimal
control system (4.2). The paper concludes with a discussion of findings in Section 6.
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2. Preliminaries

The initial conditions for system (1.1) are given by:

x(θ) = φ1(θ), y(θ) = φ2(θ), c(θ) = φ3(θ), v(θ) = φ4(θ), z(θ) = φ5(θ),
φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ)) ∈ C5

+ = {φ ∈ C((−∞, 0],R5
+)},

(2.1)

where φ(θ)eδθ is uniformly continuous for θ ∈ (−∞, 0] and ||φ|| = sup
θ≤0
|φ(θ)|eδθ < ∞ for any δ > 0,

R5
+ = {(x1, x2, x3, x4, x5) : xi ≥ 0, i = 1, 2, 3, 4, 5}. Following the fundamental theory of functional

differential equations [27], system (1.1) admits a unique solution (x(t), y(t), c(t), v(t), z(t)) satisfying
these initial conditions.

Theorem 2.1. (Positivity and boundedness) For t > 0, the solutions of model (1.1) satisfying initial
conditions (2.1) are positive and ultimately bounded.

Proof. We first prove the positivity of x(t). Conversely, we assume there exists a t1 > 0 such that
x(t1) = 0. From the first equation of (1.1), we can deduce that ẋ(t1) = λ > 0. Therefore, for t ∈
(t1 − ε, t1) where ε > 0 is sufficiently small, we have x(t) < 0. This contradicts the condition that
x(t) > 0 for t ∈ (0, t1). Hence, we have x(t) > 0 for all t > 0. Next, we will demonstrate that
y(t) > 0, c(t) > 0, v(t) > 0, and z(t) > 0 for all t > 0. In fact, suppose that there exists a t2 > 0 for the
first time such that F(t2) = min{y(t2), c(t2), v(t2), z(t2)} = 0. We consider four possible cases:

(i) F(t2) = y(t2), (ii) F(t2) = c(t2), (iii) F(t2) = v(t2), (iv) F(t2) = z(t2).

For case (i), we have y(t) > 0 for 0 < t < t2, and c(t) > 0, v(t) > 0, z(t) > 0 for 0 < t ≤ t2. From the
second equation of (1.1), we can deduce that

ẏ(t2) =

∫ ∞

0
f1(τ)e−m1τ[β1x(t2 − τ)c(t2 − τ) + β2x(t2 − τ)v(t2 − τ)]dτ > 0.

Thus, y(t) < 0 for all t ∈ (0, t2), which causes a contradiction. Similar contradictions arise in cases (ii)–
(iv). Therefore, (x(t), y(t), c(t), v(t), z(t)) is positive for all t > 0.

To demonstrate the boundedness of the system, we begin by analyzing the first equation of
model (1.1). We observe that

ẋ(t) = λ − β1xc − β2xv − µx ≤ λ − µx.

Solving this differential inequality yields

x(t) ≤ x(0)e−µt +
λ

µ
(1 − e−µt).

For non-negative initial conditions in (2.1), this solution implies lim sup
t→∞

x(t) ≤ λ
µ
, which conclusively

establishes the boundedness of x(t). We define W(t) as

W(t) =

∫ ∞

0
f1(τ)e−m1τx(t − τ)dτ + y(t) +

p
η

z(t),
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which is a continuous function. Differentiating W(t) with respect to t, we obtain

Ẇ(t) =

∫ ∞

0
f1(τ)e−m1τ[λ − β1x(t − τ)c(t − τ) − β2x(t − τ)v(t − τ) − µx(t − τ)]dτ

+

∫ ∞

0
f1(τ)e−m1τ[β1x(t − τ)c(t − τ) + β2x(t − τ)v(t − τ)]dτ − (α + d)y − pyz +

p
η

(ηyz − bz)

≤ λ

∫ ∞

0
f1(τ)e−m1τdτ − µ̄W(t),

where µ̄ = min{µ, α + d, b}. Solving this differential inequality gives

W(t) ≤ W(0)e−µ̄t +
λ
∫ ∞

0
f1(τ)e−m1τdτ

µ̄
(1 − e−µ̄t).

From the non-negativity conditions in (2.1), we conclude lim sup
t→∞

W(t) ≤
λ
∫ ∞

0 f1(τ)e−m1τdτ
µ̄

, which implies

that lim sup
t→∞

y(t) ≤
λ
∫ ∞

0 f1(τ)e−m1τdτ
µ̄

, and lim sup
t→∞

z(t) ≤
ηλ

∫ ∞
0 f1(τ)e−m1τdτ

pµ̄ . Likewise, by leveraging the third

and fourth equations of model (1.1), we can derive lim sup
t→∞

c(t) ≤
λσ

∫ ∞
0 f1(τ)e−m1τdτ

∫ ∞
0 f2(τ)e−m2τdτ

µ̄q and

lim sup
t→∞

v(t) ≤
λk

∫ ∞
0 f1(τ)e−m1τdτ

∫ ∞
0 f3(τ)e−m3τdτ

µ̄γ
. Consequently, for t > 0, the functions x(t), y(t), c(t), v(t),

and z(t) are all bounded. �

The model (1.1) admits an infection-free equilibrium given by E0 = (x0, 0, 0, 0, 0), where x0 = λ/µ.
Following the methodology in [28], we derive the basic reproduction number:

R0 =
σβ1x0k1k2

q(α + d)
+

kβ2x0k1k3

γ(α + d)
,

where k1 =
∫ ∞

0
f1(τ)e−m1τdτ, k2 =

∫ ∞
0

f2(τ)e−m2τdτ, k3 =
∫ ∞

0
f3(τ)e−m3τdτ.

We define R0 = R01 + R02, where

R01 =
σβ1x0k1k2

q(α + d)
, R02 =

kβ2x0k1k3

γ(α + d)
.

Obviously, R01 quantifies the expected number of secondary infections caused by inflammatory
cytokines, while R02 represents the average number of new viruses produced by a single virion. If
R0 > 1, an infection equilibrium E1 = (x1, y1, c1, v1, 0) is established in model (1.1), where

x1 =
γq(α + d)

σγβ1k1k2 + kqβ2k1k3
, y1 =

µγq(R0 − 1)
σγβ1k2 + kqβ2k3

, c1 =
σy1k2

q
, v1 =

ky1k3

γ
.

Similarly, we derive the CTL immune reproductive number R1, defined as the average CTL load
produced during the lifespan of a CTL cell:

R1 =
ηµγq(R0 − 1)

b(σγβ1k2 + kqβ2k3)
.
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If R1 > 1, the immunity-activated equilibrium E∗ = (x∗, y∗, c∗, v∗, z∗) in model (1.1) can be
obtained, where

x∗ =
ληqγ

k2β1σbγ + k3β2kbq + µηqγ
, y∗ =

b
η
, c∗ =

σbk2

ηq
,

v∗ =
kbk3

ηγ
, z∗ =

b(α + d)(σγβ1k2 + kqβ2k3)(R1 − 1)
p(k2β1σbγ + k3β2kbq + µηqγ)

.

3. Global stability of equilibria

Theorem 3.1. If R0 ≤ 1, then the infection-free equilibrium E0 of model (1.1) is globally
asymptotically stable.

Proof. The Lyapunov functional V1(t) is characterized as follows:

V1(t) = k1

(
x − x0 − x0 ln

x
x0

)
+ y +

(α + d)R01

k2σR0
c +

(α + d)R02

k3kR0
v +

p
η

z + V11(t) + V12(t),

where

V11(t) = β1

∫ ∞

0
f1(τ)e−m1τ

∫ t

t−τ
x(s)c(s)dsdτ + β2

∫ ∞

0
f1(τ)e−m1τ

∫ t

t−τ
x(s)v(s)dsdτ,

V12(t) =
(α + d)R01

k2R0

∫ ∞

0
f2(τ)e−m2τ

∫ t

t−τ
y(s)dsdτ +

(α + d)R02

k3R0

∫ ∞

0
f3(τ)e−m3τ

∫ t

t−τ
y(s)dsdτ.

By calculating the time derivative of V1(t) along the solutions of model (1.1) and applying λ = µx0, we
derive that

V̇1(t) = k1

(
1 −

x0

x

)
[λ − β1xc − β2xv − µx] +

∫ ∞

0
f1(τ)e−m1τ[β1x(t − τ)c(t − τ) + β2x(t − τ)v(t − τ)]dτ

− (α + d)y − pyz +
(α + d)R01

k2σR0

[
σ

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ − qc

]
+

(α + d)R02

k3kR0

[
k
∫ ∞

0
f3(τ)e−m3τy(t − τ)dτ − γv

]
+

p
η

(ηyz − bz)

+ k1β1xc − β1

∫ ∞

0
f1(τ)e−m1τx(t − τ)c(t − τ)dτ + k1β2xv − β2

∫ ∞

0
f1(τ)e−m1τx(t − τ)v(t − τ)dτ

+
(α + d)R01

k2R0

[
k2y −

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ

]
+

(α + d)R02

k3R0

[
k3y −

∫ ∞

0
f3(τ)e−m3τy(t − τ)dτ

]
= −

k1µ(x − x0)2

x
+

k1x0

R0
(β1c + β2v) (R0 − 1) −

pb
η

z.

Clearly, we have V̇1(t) ≤ 0 when R0 < 1, with the equality holding if and only if x = x0, c = 0, v = 0,
and z = 0. According to [27, Theorem 5.3.1], solutions asymptotically approach M0, which is the
largest invariant subset where V̇1(t) = 0. Substituting c = 0 into the third equation of system (1.1) yields

0 = ċ(t) = σ

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ.
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Since f2(τ)e−m2τ is non-negative and σ > 0, this implies y(t − τ) = 0 for all τ ≥ 0, and thus y = 0.
Consequently, the largest invariant set where V̇1(t) = 0 is the singleton E0.

If R0 = 1, we have

V̇1(t) = −
k1µ(x − x0)2

x
−

pb
η

z ≤ 0,

where the equality holds if and only if x = x0 and z = 0. Substituting x = x0 into the first equation
of (1.1) yields c = 0, v = 0. Through the third equation (with c = 0) or the fourth equation (with
v = 0) of system (1.1), we further deduce y = 0. Thus, the largest invariant set satisfying V̇1(t) = 0
is M0 = E0.

Therefore, by applying LaSalle invariance principle, we deduce that the infection-free equilibrium
E0 is globally asymptotically stable if R0 ≤ 1. �

Theorem 3.2. If R0 > 1 and R1 ≤ 1, then the infection equilibrium E1 of model (1.1) is globally
asymptotically stable.

Proof. The Lyapunov functional V2(t) is defined below:

V2(t) = x1g
(

x
x1

)
+

y1

k1
g
(

y
y1

)
+
β1x1(c1)2

σk2y1
g
(

c
c1

)
+
β2x1(v1)2

kk3y1
g
(

v
v1

)
+

p
ηk1

z + V21(t) + V22(t),

where

V21 =
β1x1c1

k1

∫ ∞

0
f1(τ)e−m1τ

∫ t

t−τ
g
(

x(s)c(s)
x1c1

)
dsdτ +

β2x1v1

k1

∫ ∞

0
f1(τ)e−m1τ

∫ t

t−τ
g
(

x(s)v(s)
x1v1

)
dsdτ,

V22(t) =
β1x1c1

k2

∫ ∞

0
f2(τ)e−m2τ

∫ t

t−τ
g
(
y(s)
y1

)
dsdτ +

β2x1v1

k3

∫ ∞

0
f3(τ)e−m3τ

∫ t

t−τ
g
(
y(s)
y1

)
dsdτ.

Here, g(u) = u−1− ln u, u > 0. Obviously, g(1) = 0, which is the global minimum for g(u). Noting that

λ = β1x1c1 + β2x1v1 + µx1, k1β1x1c1 + k1β2x1v1 = (α + d)y1, k2σy1 = qc1, k3ky1 = γv1,

the time derivative of V2(t) along the solutions of model (1.1) is as follows:

V̇2(t) =

(
1 −

x1

x

)
[λ − β1xc − β2xv − µx]

+
1
k1

(
1 −

y1

y

) {∫ ∞

0
f1(τ)e−m1τ[β1x(t − τ)c(t − τ) + β2x(t − τ)v(t − τ)]dτ − (α + d)y − pyz

}
+

β1x1c1

k2σy1

(
1 −

c1

c

) [
σ

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ − qc

]
+

β2x1v1

k3ky1

(
1 −

v1

v

) [
k
∫ ∞

0
f3(τ)e−m3τy(t − τ)dτ − γv

]
+

p
ηk1

(ηyz − bz)

+ β1x1c1

(
xc

x1c1
− ln

xc
x1c1

)
−
β1x1c1

k1

∫ ∞

0
f1(τ)e−m1τ

(
x(t − τ)c(t − τ)

x1c1
− ln

x(t − τ)c(t − τ)
x1c1

)
dτ

+ β2x1v1

(
xv

x1v1
− ln

xv
x1v1

)
−
β2x1v1

k1

∫ ∞

0
f1(τ)e−m1τ

(
x(t − τ)v(t − τ)

x1v1
− ln

x(t − τ)v(t − τ)
x1v1

)
dτ
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+ β1x1c1

(
y
y1
− ln

y
y1

)
−
β1x1c1

k2

∫ ∞

0
f2(τ)e−m2τ

(
y(t − τ)

y1
− ln

y(t − τ)
y1

)
dτ

+ β2x1v1

(
y
y1
− ln

y
y1

)
−
β2x1v1

k3

∫ ∞

0
f3(τ)e−m3τ

(
y(t − τ)

y1
− ln

y(t − τ)
y1

)
dτ

= −
µ(x − x1)2

x
+ (β1x1c1 + β2x1v1)

(
1 −

x1

x
+ ln

x1

x

)
+

β1x1c1

k1

∫ ∞

0
f1(τ)e−m1τ

(
1 −

y1x(t − τ)c(t − τ)
yx1c1

+ ln
y1x(t − τ)c(t − τ)

yx1c1

)
dτ

+
β2x1v1

k1

∫ ∞

0
f1(τ)e−m1τ

(
1 −

y1x(t − τ)v(t − τ)
yx1v1

+ ln
y1x(t − τ)v(t − τ)

yx1v1

)
dτ

+
β1x1c1

k2

∫ ∞

0
f2(τ)e−m2τ

(
1 −

c1y(t − τ)
cy1

+ ln
c1y(t − τ)

cy1

)
dτ

+
β2x1v1

k3

∫ ∞

0
f3(τ)e−m3τ

(
1 −

v1y(t − τ)
vy1

+ ln
v1y(t − τ)

vy1

)
dτ +

ηp
bk1

(R1 − 1)z.

Obviously, we can obtain that V̇2(t) ≤ 0 if R1 < 1. By [27, Theorem 5.3.1], solutions asymptotically
approach M1, which is the largest invariant subset where V̇2(t) = 0. It can be verified that V̇2(t) = 0 if
and only if

x1

x
=

y1x(t − τ)c(t − τ)
yx1c1

=
y1x(t − τ)v(t − τ)

yx1v1
=

c1y(t − τ)
cy1

=
v1y(t − τ)

vy1
= 1,

and z = 0. By substituting x = x1 into the first equation of (1.1) and applying λ = β1x1c1 +β2x1v1 +µx1,
we derive

β1(c1 − c) + β2(v1 − v) = 0. (3.1)

Furthermore, inserting y(t−τ) =
cy1
c1

into the third equation of system (1.1) and employing k2σy1 = qc1,
we obtain

σ

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ − qc =

σcy1k2

c1
− qc = 0.

This equality implies that c remains constant. Let c = c̃1. Furthermore, from the identity c1y(t−τ)
cy1

=
v1y(t−τ)

vy1
= 1, we obtain v = c̃1v1

c1
. Submitting c = c̃1 and v = c̃1v1

c1
into (3.1), we obtain

β1(c1 − c) + β2(v1 − v) =
1
c1

(c1β1 + β2v1)(c1 − c̃1) = 0,

which necessarily implies c1 = c̃1. Consequently, we establish the identities y = y1, c = c1, and v = v1.
Furthermore, given that z = 0, we conclude that the largest invariant set where V̇2(t) = 0 is precisely
the singleton M1 = E1.

When R1 = 1, employing an analogous approach to the preceding analysis, we conclude that x =

x1, y = y1, c = c1, and v = v1. Furthermore, substituting the identity k1β1x1c1 + k1β2x1v1 = (α + d)y1

and by the second equation of (1.1) yields py1z = 0 which implies z = 0. Consequently, the largest
invariant set satisfying V̇2(t) = 0 reduces to the singleton M = E1.

By applying the LaSalle invariance principle, we obtain the global asymptotic stability of the
infection equilibrium E1 for model (1.1). �
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Theorem 3.3. If R1 > 1, then the immunity-activated equilibrium E∗ of model (1.1) is globally
asymptotically stable.

Proof. The Lyapunov functional V3(t) is defined below:

V3(t) = x∗g
( x

x∗

)
+

y∗

k1
g
(

y
y∗

)
+
β1x∗(c∗)2

σk2y∗
g
( c
c∗

)
+
β2x∗(v∗)2

kk3y∗
g
( v
v∗

)
+

pz∗

ηk1
g
( z
z∗

)
+ V31(t) + V32(t),

where

V31(t) =
β1x∗c∗

k1

∫ ∞

0
f1(τ)e−m1τ

∫ t

t−τ
g
(

x(s)c(s)
x∗c∗

)
dsdτ +

β2x∗v∗

k1

∫ ∞

0
f1(τ)e−m1τ

∫ t

t−τ
g
(

x(s)v(s)
x∗v∗

)
dsdτ,

V32(t) =
β1x∗c∗

k2

∫ ∞

0
f2(τ)e−m2τ

∫ t

t−τ
g
(
y(s)
y∗

)
dsdτ +

β2x∗v∗

k3

∫ ∞

0
f3(τ)e−m3τ

∫ t

t−τ
g
(
y(s)
y∗

)
dsdτ.

By computing the time derivative of V3(t) along the trajectories of model (1.1) and applying

λ = β1x∗c∗ + β2x∗v∗ + µx∗, k1β1x∗c∗ + k1β2x∗v∗ = (α + d)y∗ + py∗z∗,

k2σy∗ = qc∗, k3ky∗ = γv∗, ηy∗ = b,

we obtain

V̇3(t) =

(
1 −

x∗

x

)
(λ − β1xc − β2xv − µx)

+
1
k1

(
1 −

y∗

y

) {∫ ∞

0
f1(τ)e−m1τ[β1x(t − τ)c(t − τ) + β2x(t − τ)v(t − τ)]dτ − (α + d)y − pyz

}
+

β1x∗c∗

k2σy∗

(
1 −

c∗

c

) [
σ

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ − qc

]
+

β2x∗v∗

k3ky∗

(
1 −

v∗

v

) [
k
∫ ∞

0
f3(τ)e−m3τy(t − τ)dτ − γv

]
+

p
ηk1

(
1 −

z∗

z

)
(ηyz − bz)

+ β1x∗c∗
( xc

x∗c∗
− ln

xc
x∗c∗

)
−
β1x∗c∗

k1

∫ ∞

0
f1(τ)e−m1τ

(
x(t − τ)c(t − τ)

x∗c∗
− ln

x(t − τ)c(t − τ)
x∗c∗

)
dτ

+ β2x∗v∗
( xv

x∗v∗
− ln

xv
x∗v∗

)
−
β2x∗v∗

k1

∫ ∞

0
f1(τ)e−m1τ

(
x(t − τ)v(t − τ)

x∗v∗
− ln

x(t − τ)v(t − τ)
x∗v∗

)
dτ

+ β1x∗c∗
(

y
y∗
− ln

y
y∗

)
−
β1x∗c∗

k2

∫ ∞

0
f2(τ)e−m2τ

(
y(t − τ)

y∗
− ln

y(t − τ)
y∗

)
dτ

+ β2x∗v∗
(

y
y∗
− ln

y
y∗

)
−
β2x∗v∗

k3

∫ ∞

0
f3(τ)e−m3τ

(
y(t − τ)

y∗
− ln

y(t − τ)
y∗

)
dτ

= −
µ(x − x∗)2

x
−

x∗

x
(β1x∗c∗ + β2x∗v∗) + β1x∗c + β2x∗v +

β1

k1

∫ ∞

0
f1(τ)e−m1τx(t − τ)c(t − τ)dτ

+
β2

k1

∫ ∞

0
f1(τ)e−m1τx(t − τ)v(t − τ)dτ −

y∗β1

k1y

∫ ∞

0
f1(τ)e−m1τx(t − τ)c(t − τ)dτ
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−
y∗β2

k1y

∫ ∞

0
f1(τ)e−m1τx(t − τ)v(t − τ)dτ +

β1x∗c∗

y∗k2

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ

−
β1x∗c∗qc

k2σy∗
−
β1x∗(c∗)2

k2cy∗

∫ ∞

0
f2(τ)e−m2τy(t − τ)dτ +

β2x∗v∗

y∗k3

∫ ∞

0
f3(τ)e−m3τy(t − τ)dτ

−
β2x∗v∗γv

k3ky∗
−
β2x∗(v∗)2

k3vy∗

∫ ∞

0
f3(τ)e−m3τy(t − τ)dτ + 3(β1x∗c∗ + β2x∗v∗)

− β1x∗c∗ ln
xc

x∗c∗
−
β1x∗c∗

k1

∫ ∞

0
f1(τ)e−m1τ

(
x(t − τ)c(t − τ)

x∗c∗
− ln

x(t − τ)c(t − τ)
x∗c∗

)
dτ

− β2x∗v∗ ln
xv

x∗v∗
−
β2x∗v∗

k1

∫ ∞

0
f1(τ)e−m1τ

(
x(t − τ)v(t − τ)

x∗v∗
− ln

x(t − τ)v(t − τ)
x∗v∗

)
dτ

− β1x∗c∗ ln
y
y∗
−
β1x∗c∗

k2

∫ ∞

0
f2(τ)e−m2τ

(
y(t − τ)

y∗
− ln

y(t − τ)
y∗

)
dτ

− β2x∗v∗ ln
y
y∗
−
β2x∗v∗

k3

∫ ∞

0
f3(τ)e−m3τ

(
y(t − τ)

y∗
− ln

y(t − τ)
y∗

)
dτ

= −
µ(x − x∗)2

x
+ (β1x∗c∗ + β2x∗v∗)

(
1 −

x∗

x
+ ln

x∗

x

)
+

β1x∗c∗

k1

∫ ∞

0
f1(τ)e−m1τ

(
1 −

y∗x(t − τ)c(t − τ)
yx∗c∗

+ ln
y∗x(t − τ)c(t − τ)

yx∗c∗

)
dτ

+
β2x∗v∗

k1

∫ ∞

0
f1(τ)e−m1τ

(
1 −

y∗x(t − τ)v(t − τ)
yx∗v∗

+ ln
y∗x(t − τ)v(t − τ)

yx∗v∗

)
dτ

+
β1x∗c∗

k2

∫ ∞

0
f2(τ)e−m2τ

(
1 −

c∗y(t − τ)
cy∗

+ ln
c∗y(t − τ)

cy∗

)
dτ

+
β2x∗v∗

k3

∫ ∞

0
f3(τ)e−m3τ

(
1 −

v∗y(t − τ)
vy∗

+ ln
v∗y(t − τ)

vy∗

)
dτ.

Thus, we obtain V̇3(t) ≤ 0. It can be verified that V̇3(t) = 0 if and only if

x∗

x
=

y∗x(t − τ)c(t − τ)
yx∗c∗

=
y∗x(t − τ)v(t − τ)

yx∗v∗
=

c∗y(t − τ)
cy∗

=
v∗y(t − τ)

vy∗
= 1.

According to the LaSalle invariance principle, we obtain the global asymptotic stability of the infection
equilibrium E∗ for model (1.1). �

4. Optimal control

To systematically optimize HIV treatment strategies, we propose an optimal control framework
incorporating four time-dependent therapeutic interventions:

• u1(t): Prevents inflammatory cytokines from infecting healthy CD4+ T cells.
• u2(t): Quantifies RTI efficacy in preventing viral reverse transcription.
• u3(t): Suppresses the production of inflammatory cytokines to mitigate excessive immune

activation.
• u4(t): Represents PI effectiveness in inhibiting viral maturation.
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To achieve a balance between simplicity and generality, we employ discrete time delays as an
alternative to distributed delays, thereby facilitating our investigation of the following optimal
control problem:

ẋ(t) = λ − (1 − u1)β1xc − (1 − u2)β2xv − µx,
ẏ(t) = (1 − u1)β1e−m1τ1 x(t − τ1)c(t − τ1) + (1 − u2)β2e−m1τ1 x(t − τ1)v(t − τ1) − (α + d)y − pyz,
ċ(t) = (1 − u3)σe−m2τ2y(t − τ2) − qc,
v̇(t) = (1 − u4)ke−m3τ3y(t − τ3) − γv,
ż(t) = ηyz − bz.

(4.1)
During the process of HIV pathogenesis, CD4+ T lymphocytes play a dual role as both principal

targets for viral infection and central regulators of adaptive immune responses. This dual functionality
makes their preservation critical for maintaining host immunity against HIV progression. Meanwhile,
CTLs mediate antiviral defense through two distinct mechanisms: (i) Direct cytolysis of infected
cells, and (ii) cytokine-mediated suppression of viral replication. Recognizing these essential roles
of CD4+ T cells and CTLs in HIV immunopathology, we derive the following objective function for
system (4.1):

J(u1, u2, u3, u4) =

∫ t f

0

{
x(t) + z(t) −

[A1

2
u1

2(t) +
A2

2
u2

2(t) +
A3

2
u3

2(t) +
A4

2
u4

2(t)
]}

dt,

where t f denotes treatment duration, and Ai(i = 1, 2, 3, 4) represent the relative costs of the treatments
corresponding to the respective controls.

In HIV therapeutic optimization, the central paradigm necessitates establishing an optimal
equilibrium between three critical dimensions: (1) Immunological reconstitution via maximal
preservation of uninfected CD4+ T lymphocyte reservoirs and amplification of CTL effector
populations, (2) mitigation of cumulative pharmacological toxicities impacting treatment adherence,
and (3) containment of long-term economic burdens associated with combination antiretroviral therapy.
These competing constraints mean that a minimization approach would be counterproductive to our
fundamental goals of immune system restoration and viral control. Accordingly, we formulate the
optimization problem as follows: Find the optimal controls (u∗∗1 , u

∗∗
2 , u

∗∗
3 , u

∗∗
4 ) that satisfy

J(u∗∗1 , u
∗∗
2 , u

∗∗
3 , u

∗∗
4 ) = max{J(u1, u2, u3, u4) : (u1, u2, u3, u4) ∈ U},

where the set of admissible controls U is specified as

U = {(u1(t), u2(t), u3(t), u4(t)) : ui(t) is Lebesgue measurable, ui(t) ∈ [0, 1], t ∈ [0, t f ], i = 1, 2, 3, 4}.

Following established techniques [9,26], we derive the subsequent theorem concerning the existence
of the optimal control.

Theorem 4.1. There exists an optimal control pair (u∗∗1 , u
∗∗
2 , u

∗∗
3 , u

∗∗
4 ) ∈ U such that

J(u∗∗1 , u
∗∗
2 , u

∗∗
3 , u

∗∗
4 ) = max

(u1,u2,u3,u4)∈U
J(u1, u2, u3, u4).
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To derive the optimal control system, we apply Pontryagin’s Maximum Principle. The
corresponding Hamiltonian function is defined as

H(X, Xτ1 , Xτ2 , Xτ3 , u, λ) = −x − z +
A1

2
u1

2 +
A2

2
u2

2 +
A3

2
u3

2 +
A4

2
u4

2 +

5∑
i=1

λihi,

where

h1 = λ − (1 − u1)β1xc − (1 − u2)β2xv − µx,
h2 = (1 − u1)β1e−m1τ1 x(t − τ1)c(t − τ1) + (1 − u2)β2e−m1τ1 x(t − τ1)v(t − τ1) − (α + d)y − pyz,
h3 = (1 − u3)σe−m2τ2y(t − τ2) − qc,
h4 = (1 − u4)ke−m3τ3y(t − τ3) − γv,
h5 = ηyz − bz,

and
X = (x(t), y(t), c(t), v(t), z(t)), Xτi(t) = X(t − τi)(i = 1, 2, 3),

u = (u1(t), u2(t), u3(t), u4(t), u5(t)), λ = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t)).

We define the characteristic function X[m,n](t) as

X[m,n](t) =

{
1, t ∈ [m, n],
0, others.

Applying Pontryagin’s Maximum Principle, we can derive the following theorem.

Theorem 4.2. Let u∗∗1 , u
∗∗
2 , u

∗∗
3 , u

∗∗
4 be optimal controls with corresponding state solutions

x∗∗, y∗∗, c∗∗, v∗∗, and z∗∗ of system (4.1). Then there exist adjoint variables λ1, λ2, λ3, λ4, λ5 satisfying
the equations

λ̇1(t) = 1 + λ1[(1 − u∗∗1 )β1c∗∗ + (1 − u∗∗2 )β2v∗∗ + µ]
− X[0,t f−τ1](t)[(1 − u∗∗1 (t + τ1))β1e−m1τ1c∗∗ + (1 − u∗∗2 (t + τ1))β2e−m1τ1v∗∗]λ2(t + τ1),

λ̇2(t) = λ2[(α + d) + pz∗∗] − X[0,t f−τ2](t)(1 − u∗∗3 (t + τ2))σe−m2τ2λ3(t + τ2)
− X[0,t f−τ3](t)(1 − u∗∗4 (t + τ3))ke−m3τ3λ4(t + τ3) − λ5ηz∗∗,

λ̇3(t) = λ1(1 − u∗∗1 )β1x∗∗ − X[0,t f−τ1](t)(1 − u∗∗1 (t + τ1))β1e−m1τ1 x∗∗λ2(t + τ1) + λ3q,

λ̇4(t) = λ1(1 − u∗∗2 )β2x∗∗ − X[0,t f−τ1](t)(1 − u∗∗2 (t + τ1))β2e−m1τ1 x∗∗λ2(t + τ1) + λ4γ,

λ̇5(t) = 1 + λ2 py∗∗ − λ5(ηy∗∗ − b),

with the transversality conditions

λi(t f ) = 0, i = 1, 2, 3, 4, 5.

Furthermore, the optimal control is specified as

u∗∗1 (t) = min
{

1,max
{
λ2β1e−m1τ1 x∗∗(t − τ1)c∗∗(t − τ1) − λ1β1x∗∗c∗∗

A1
, 0

}}
,
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u∗∗2 (t) = min
{

1,max
{
λ2β2e−m1τ1 x∗∗(t − τ1)v∗∗(t − τ1) − λ1β2x∗∗v∗∗

A2
, 0

}}
,

u∗∗3 (t) = min
{

1,max
{
λ3σe−m2τ2y∗∗(t − τ2)

A3
, 0

}}
,

u∗∗4 (t) = min
{

1,max
{
λ4ke−m3τ3y∗∗(t − τ3)

A4
, 0

}}
.

Proof. Through the application of Pontryagin’s Maximum Principle, we derive both the adjoint system
and the corresponding transversality conditions, from which

λ̇1(t) = −

[
∂H
∂x

+ X[0,t f−τ1](t)
∂H
∂xτ1

|(t+τ1)

]
(X,u)=(X∗∗,u∗∗)

, λ1(t f ) = 0,

λ̇2(t) = −

[
∂H
∂y

+ X[0,t f−τ1](t)
∂H
∂yτ1

|(t+τ1) + X[0,t f−τ2](t)
∂H
∂yτ2

|(t+τ2) + X[0,t f−τ3](t)
∂H
∂yτ3

|(t+τ3)

]
(X,u)=(X∗∗,u∗∗)

,

λ2(t f ) = 0,

λ̇3(t) = −

[
∂H
∂c

+ X[0,t f−τ1](t)
∂H
∂cτ1

|(t+τ1)

]
(X,u)=(X∗∗,u∗∗)

, λ3(t f ) = 0,

λ̇4(t) = −

[
∂H
∂v

+ X[0,t f−τ1](t)
∂H
∂vτ1

|(t+τ1)

]
(X,u)=(X∗∗,u∗∗)

, λ4(t f ) = 0,

λ̇5(t) = −

[
∂H
∂z

]
(X,u)=(X∗∗,u∗∗)

, λ5(t f ) = 0.

Applying the optimality conditions, we have

∂H
∂u1

= A1u1 + λ1β1xc − λ2β1e−m1τ1 x(t − τ1)c(t − τ1) = 0,

∂H
∂u2

= A2u2 + λ1β2xv − λ2β2e−m1τ1 x(t − τ1)v(t − τ1) = 0,

∂H
∂u3

= A3u3 − λ3σe−m2τ2y(t − τ2) = 0,

∂H
∂u4

= A4u4 − λ4ke−m3τ3y(t − τ3) = 0.

Using the constraints on the control set U, we derive

u∗∗1 (t) = min
{

1,max
{
λ2β1e−m1τ1 x∗∗(t − τ1)c∗∗(t − τ1) − λ1β1x∗∗c∗∗

A1
, 0

}}
,

u∗∗2 (t) = min
{

1,max
{
λ2β2e−m1τ1 x∗∗(t − τ1)v∗∗(t − τ1) − λ1β2x∗∗v∗∗

A2
, 0

}}
,

u∗∗3 (t) = min
{

1,max
{
λ3σe−m2τ2y∗∗(t − τ2)

A3
, 0

}}
,

u∗∗4 (t) = min
{

1,max
{
λ4ke−m3τ3y∗∗(t − τ3)

A4
, 0

}}
.

Consequently, we obtain the subsequent optimality system:
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ẋ∗∗(t) = λ − (1 − u∗∗1 )β1x∗∗c∗∗ − (1 − u∗∗2 )β2x∗∗v∗∗ − µx∗∗,
ẏ∗∗(t) = (1 − u∗∗1 )β1e−m1τ1 x∗∗(t − τ1)c∗∗(t − τ1) + (1 − u∗∗2 )β2e−m1τ1 x∗∗(t − τ1)v∗∗(t − τ1)

− (α + d)y∗∗ − py∗∗z∗∗,
ċ∗∗(t) = (1 − u∗∗3 )σe−m2τ2y∗∗(t − τ2) − qc∗∗,
v̇∗∗(t) = (1 − u∗∗4 )ke−m3τ3y∗∗(t − τ3) − γv∗∗,
ż∗∗(t) = ηy∗∗z∗∗ − bz∗∗,
λ̇1(t) = 1 + λ1[(1 − u∗∗1 )β1c∗∗ + (1 − u∗∗2 )β2v∗∗ + µ]

− X[0,t f−τ1](t)[(1 − u∗∗1 (t + τ1))β1e−m1τ1c∗∗ + (1 − u∗∗2 (t + τ1))β2e−m1τ1v∗∗]λ2(t + τ1),
λ̇2(t) = λ2[(α + d) + pz∗∗] − X[0,t f−τ2](t)(1 − u∗∗3 (t + τ2))σe−m2τ2λ3(t + τ2)

− X[0,t f−τ3](t)(1 − u∗∗4 (t + τ3))ke−m3τ3λ4(t + τ3) − λ5ηz∗∗,
λ̇3(t) = λ1(1 − u∗∗1 )β1x∗∗ − X[0,t f−τ1](t)(1 − u∗∗1 (t + τ1))β1e−m1τ1 x∗∗λ2(t + τ1) + λ3q,
λ̇4(t) = λ1(1 − u∗∗2 )β2x∗∗ − X[0,t f−τ1](t)(1 − u∗∗2 (t + τ1))β2e−m1τ1 x∗∗λ2(t + τ1) + λ4γ,

λ̇5(t) = 1 + λ2 py∗∗ − λ5(ηy∗∗ − b),
u∗∗1 (t) = min

{
1,max

{
λ2β1e−m1τ1 x∗∗(t−τ1)c∗∗(t−τ1)−λ1β1 x∗∗c∗∗

A1
, 0

}}
,

u∗∗2 (t) = min
{
1,max

{
λ2β2e−m1τ1 x∗∗(t−τ1)v∗∗(t−τ1)−λ1β2 x∗∗v∗∗

A2
, 0

}}
,

u∗∗3 (t) = min
{
1,max

{
λ3σe−m2τ2 y∗∗(t−τ2)

A3
, 0

}}
,

u∗∗4 (t) = min
{
1,max

{
λ4ke−m3τ3 y∗∗(t−τ3)

A4
, 0

}}
,

λi(t f ) = 0, i = 1, 2, 3, 4, 5.

(4.2)

5. Numerical simulations

In this section, we present numerical simulations implemented in MATLAB to: (1) Rigorously
verify the global asymptotic stability of the equilibrium points through phase portrait analysis; (2)
demonstrate the critical role of optimal control in system regulation through comparative studies; and
(3) investigate the sensitivity of the controlled system to varying time delays.

Now, we systematically validate the stability properties through three distinct parameter
configurations. The parameter values are derived from [17] and they are λ = 10, β1 = 0.0012, β2 =

0.001, µ = 0.1, α = 0.1, d = 0.75, p = 0.001, σ = 0.25, q = 0.1, k = 13, γ = 0.3, η = 0.33, m1 =

m2 = m3 = 0.1, and the initial value is (50, 3, 60, 2, 450).

• The infection-free equilibrium E0: Setting m1 = 1, m2 = m3 = 0.1, and b = 3, the calculated
basic reproduction number R0 = 0.34665 < 1 demonstrates the global asymptotic stability
of E0(100, 0, 0, 0, 0), as evidenced by phase-space trajectories in Figure 1. This numerical
observation aligns precisely with the theoretical predictions of Theorem 3.1.
• The immunity-free equilibrium E1: Maintaining equivalent mutation rates m1 = m2 = m3 = 0.1,

while preserving b = 3, we obtain R0 = 2.1828 > 1 and R1 = 0.44375 < 1. Figure 2 reveals
the global convergence of solutions toward E1(45.8127, 4.0341, 6.382, 110.6215, 0), thereby
confirming Theorem 3.2.
• The immune equilibrium E∗: Adjusting parameters to m1 = 0.2, m2 = m3 = 0.1, and

reduced b = 0.32, the computed threshold R1 = 1.7349 > 1 triggers the emergence
of E∗(77.8625, 0.9697, 1.5341, 26.5906, 138.2788). As shown in Figure 3, all trajectories
asymptotically approach this endemic equilibrium, conclusively corroborating Theorem 3.3.
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Figure 1. Phase portrait of system (1.1) for the infection-free equilibrium E0 when R0 ≤ 1.
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Figure 2. Phase portrait of system (1.1) for the infection equilibrium E1 when R0 > 1 and
R1 ≤ 1.
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Figure 3. Phase portrait of system (1.1) for the immunity-activated equilibrium E∗ when
R1 > 1.

Following the numerical approach developed in [24], we simulate the optimal control system (4.2)
with the following specifications: The terminal time is set to t f = 50 as in [24], while other parameters
such as b = 0.32, λ = 10, β1 = 0.0012, β2 = 0.001, µ = 0.1, α = 0.1, d = 0.75, p = 0.001, σ =

0.25, q = 0.1, k = 13, γ = 0.3, η = 0.33, m1 = m2 = m3 = 0.1 are adopted from [17]. The control
weights are uniformly set to A1 = A2 = A3 = A4 = 10. For computational simplicity without loss of
generality, we assume identical time delays τ1 = τ2 = τ3 = τ.

To systematically assess the influence of control strategies on the dynamic system described by
the equations, we conduct a comparative analysis of the numerical simulations for the system with
and without optimal control at τ = 0.4. As depicted in Figure 4, which shows the trajectories of key
variables over time:

• Uninfected CD4+ T cells (x(t)): Under the impact of control measures, the concentration of
uninfected CD4+ T cells exhibits a notable upward trend. Specifically, the concentration increased
from 66.0828 (without control) to 81.3165 (with control) at t = 700, reflecting a 23.1% increase.
This increase indicates that control effectively promotes the maintenance or growth of the
population of uninfected immune cells.
• Infected CD4+ T cells (y(t)), viruses (v(t)), and CTL immune responsive cells (z(t)): The

concentrations of infected cells, viruses, and immune responsive cells all decrease significantly
when control is implemented. This suggests that the control strategies are successful in curbing
the spread of infection and reducing the overall burden on the immune system.
• Inflammatory cytokines (c(t)): At t = 700, the concentration of inflammatory cytokines exhibited

a marked increase, reaching 5.9767 under controlled conditions compared to 4.9148 in the
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absence of intervention, representing a 21.61% elevation. This indicates that the control measures
adopted (such as the use of certain drugs, the implementation of specific treatment regimens, etc.)
have had an impact on the body’s inflammation-related status.
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Figure 4. The dynamics of the x(t), y(t), c(t), v(t), and z(t) under different delays.

However, implementation of optimal HIV control strategies resulted in a marked increase in
uninfected CD4+ cell populations, accompanied by rapid declines in infected cell counts, viral
load, and immune effector cell numbers. Notably, inflammatory cytokines demonstrated only
gradual reduction, exhibiting persistent resistance to therapeutic intervention. These findings align
with established clinical evidence [29], confirming that while antiretroviral therapy (ART) can
partially mitigate CD4+ T cell pyroptosis, complete suppression of the inflammatory cascade remains
unattainable with current approaches.

To systematically investigate the temporal effects on optimal control dynamics, we perform a
comparative analysis of system variables x(t), y(t), c(t), v(t), and z(t) under distinct time-delay regimes
τ = 0.4, τ = 4, and τ = 10 in Figure 5. To demonstrate the time-delay effects more clearly, we analyze
the system variables at t = 300 under different delay conditions as follows:

• Uninfected CD4+ T cells (x(t)): The concentration of uninfected CD4+ T cells exhibited a
progressive increase from 52.2254 at τ = 0.4 to 63.9181 at τ = 10, which implies that prolonged
time delays may create a more favorable microenvironment for preserving uninfected cells.
• Infected CD4+ T cells (y(t)): A contrasting decline was observed in infected CD4+ T cells, with

concentrations decreasing from 0.8191 (τ = 0.4) to 0.6862 (τ = 10). This trend suggests
that extended time delays may disrupt critical phases of the viral infection cycle, consequently
reducing the population of infected cells.
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• Inflammatory cytokines (c(t)): The levels of inflammatory cytokines decreased moderately, from
21.0851 when τ = 0.4 to 19.4179 when τ = 10, suggesting that prolonged time delays may
attenuate inflammatory responses, potentially through delayed immune signaling pathways.
• Viruses (v(t)): Viral concentration demonstrated a dramatic decline from 42.9187 (τ = 0.4) to

12.1682 (τ = 10), highlighting the inhibitory effect of time delays on viral replication. Extended
delays may impair essential lifecycle stages (e.g., reverse transcription, assembly, or release) and
disrupt viral fitness.
• CTL immune responsive cells (z(t)): CTL cell populations plummeted from 3427 (τ = 0.4) to

413.46 (τ = 10), a 7.3-fold reduction. This sharp decline may stem from diminished antigenic
stimulation due to lower viral loads under prolonged delays, leading to reduced clonal expansion
of effector CTLs.

Additionally, the fluctuation range of inflammatory cytokines remains minimal across different
time delays in Figure 5. This is because ART fails to fully restore cytokine levels to baseline,
leading to persistent low-grade secretion of inflammatory factors. Notably, our numerical simulations
demonstrate that this constrained variation in inflammatory cytokines reflects effective management of
systemic inflammation. Such control is critical for minimizing immune cell damage and fostering the
recovery and proliferation of CD4+ T lymphocytes and other immune cells, ultimately enhancing the
host’s antiviral capacity.
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Figure 5. The comparison graph for x(t), y(t), c(t), v(t), and z(t) with and without
optimal control.

Numerical simulations illustrating the temporal evolution of optimal controls ui(t)(i = 1, 2, 3, 4)
across different time-delay regimes are presented in Figure 6.
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• u1(t) and u2(t): As the time delay increases, the duration required to reach optimal control
intensity decreases significantly: By 74.39% for u1(t) (from 449 days at τ = 0.4 to 115 days
at τ = 10) and 60% for u2(t) (from 335 days at τ = 0.4 to 134 days at τ = 10). This delay-induced
deceleration slows viral infection progression, immune activation, and viral replication, thereby
granting the immune system additional time to mount an autonomous response against HIV
infection and mitigating disease progression. Consequently, prolonged high-intensity application
of u1(t) and u2(t) becomes unnecessary under extended delay conditions.
• u3(t) and u4(t): While the time required for u3(t) and u4(t) to achieve optimal control remains

relatively unchanged, their optimal intensity values exhibit significant decreases. Quantitative
analysis reveals a 61.58% reduction in peak value for u3(t) (from 4.7222 × 10−4 at τ = 0.4 to
1.8142× 10−4 at τ = 10) and a 63.78% decrease in peak value for u4(t) (from 0.0185 at τ = 0.4 to
0.0067 at τ = 10). This substantial attenuation in control intensity requirements corresponds to
the reduction in the virus’s transmissibility under extended delay conditions.
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Figure 6. The behavior of the optimal controls ui(t)(i = 1, 2, 3, 4) under different
delays (t ∈ [0, 1000]).

These findings suggest distinct clinical implications based on time-delay magnitude. Under
minimal time-delay conditions (τ ≤ 0.4), the observed viral replication activity necessitates immediate
intensification of pharmacological intervention to effectively inhibit viral infection and reverse
transcription during critical phases. Conversely, extended time-delay scenarios (τ ≥ 10) permit gradual
dose reduction or frequency modulation of therapeutic agents, mitigating potential adverse effects and
drug-resistance development associated with prolonged high-intensity treatment.

Figure 7 illustrates the temporal evolution of the optimal control ui(t)(i = 1, 2, 3, 4) over the
restricted time domain t ∈ [0, 6000]. Our analysis demonstrates that the values of ui(t)(i = 1, 2, 3, 4)
are gradually approaching 0 as τ ranges from 0.4 to 10. This phenomenon emerges because sufficiently
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large time delays, coupled with the host’s adaptive responses to therapeutic interventions and inherent
feedback regulatory mechanisms, ultimately obviate the necessity for supplementary control measures
during prolonged treatment. Notably, as the time delay τ increases, the peak value of u2(t) exhibits an
initial increase followed by a subsequent decrease. Specifically, when τ = 0.4, the peak magnitude
of u2(t) is 0.1948. As τ rises to 4, the peak value increases to 0.3791, beyond which it declines and
eventually converges to zero. This biphasic response likely reflects a clinically significant transitional
phase in HIV treatment: the temporary intensification of control may compensate for emerging stress
responses to prior therapy, while subsequent adaptation of both host and pathogen systems, along with
disease progression dynamics, collectively permit gradual reduction of intervention intensity.
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Figure 7. The behavior of the optimal controls ui(t)(i = 1, 2, 3, 4) under different
delays (t ∈ [0, 6000]).

6. Conclusions

This study presents a comprehensive analysis of a cytokine-enhanced viral infection model
incorporating three distributed delays. We derived two critical epidemiological thresholds—the basic
reproduction number (R0) and CTL immune reproduction number (R1)—that fundamentally determine
the system’s dynamic behavior. Through rigorous mathematical analysis using Lyapunov functionals
and LaSalle’s Invariance Principle, we established precise conditions guaranteeing global asymptotic
stability of all equilibrium points. Furthermore, by applying Pontryagin’s Maximum Principle, we
developed an optimal control framework that explicitly incorporates time-delay effects.

Through numerical simulations, we verified the global asymptotic stability of three equilibrium
points under distinct parameter conditions. Our systematic analysis elucidates the temporal evolution
of crucial biological components—uninfected cells, infected cells, inflammatory cytokines, viral load,
and immune effector cells—under both controlled and uncontrolled conditions. Furthermore, we
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performed detailed investigations into the time-dependent behavior of these components under varying
time-delay conditions (τ = 0.4, 4, and 10). Additionally, we simulated the time-dependent profiles of
optimal control strategies ui(t)(i = 1, 2, 3, 4) across different delay conditions, examining both short-
term [0, 1000] and long-term [0, 6000] dynamical behavior.

Our findings conclusively demonstrate that control measures are indispensable in HIV treatment
protocols, while also highlighting the critical role of inflammatory cytokine production delays in
modeling HIV pathogenesis. Moreover, given the substantial inter-patient variability in time-delay
parameters, our results underscore the importance of personalized disease monitoring strategies.
Notably, under ideal conditions with sufficiently large time delays, the intensity of optimal control can
asymptotically diminish to near-zero levels. This finding underscores two critical implications: (i) The
essential role of incorporating time delays in HIV/AIDS treatment optimization, and (ii) the clinical
importance of precisely calibrating therapeutic interventions according to specific delay parameters.
These insights not only deepen our theoretical comprehension of HIV pathogenesis but also provide a
foundation for more effective, patient-specific treatment approaches.
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