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1. Introduction

A finite collection of strictly contractive maps on the real line is called an iterated function system
(IFS). Let @ = {@,}aeca be an IFS and p = (p,).ca be a probability vector. It is well-known that there
exists a unique Borel probability measure v, called the invariant measure, such that

v=> Pa-gav,

aeA

where ¢,V is the push-forward of v under the map ¢, : R — R.

When the construction does not involve complicated overlaps (say, under the strong separation
condition), the invariant measures are relatively easy to understand. For example, if the strong
separation condition holds, then the invariant measure v is supported on a Cantor set and is singular,
and the dimension of v is given by

dimv = —,
X

where h = h(p) is the entropy and y = x(®, p) is the Lyapunov exponent.

In this paper we consider IFS with inverses (i.e., IFS that contain inverse maps). IFS with inverses
were first introduced by the author in [5], motivated by the Furstenberg measure. See also [6]. We
show that the invariant measures for IFS with inverses agree with the invariant measures for associated
graph-directed IFS under the suitable choice of weight. The main results of [5] and [6] follow directly
from our result.
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The paper is organized as follows: In section 2, we recall IFS with inverses and state the main result.
Section 3 is devoted to preliminary lemmas. In section 4 we prove the main result.

2. Definitions and the main results

2.1. Random walks on the free groups

Let G be the free group of rank r > 2, and let W be a free generating set of G. Let A be a set that

satisfies
WcAcCcWuw!,

where W = {a™ !} ,c. Let & = [U,»; A" and & = AY. For w = wyw; - -+ we denote w|, = wy - - w,_1.
For w, ¢ € EU & we denote by w A £ their common initial segment. For w € & and £ € EU &, we
say that w precedes ¢ if w A & = w.

Let p = (p.)aeca be a non-degenerate probability vector, and let u be the associated Bernoulli
measure on &. We say that a (finite or infinite) sequence w € & U & is reduced if w;w;,, # aa™' for all
i>0anda € A. LetI'" (resp. I') be the set of all finite (resp. infinite) reduced sequences. For w € I’
we denote the associated cylinder set in I' by [w]. Define the map

red: & - I

in the obvious way, i.e., red(w) is the sequence derived from w by deleting all occurrences of
consecutive pairs aa~' (a € A). Let & C & be the set of all w such that the limit

lim red(w|,,) 2.1

n—oo

exists. For example, for any a € A we have aaa--- € Eand aa™'aa™" - - - ¢ E. By abuse of notation, for

w € & we denote the limit (2.1) by red(w). The following is well-known (see, e.g., chapter 14 in [3]):

Lemma 2.1. There exists 0 < € < 1 (drift or speed) such that
.1
lim — red(w|,)| = €
n—oo 1
for p-a.e. w € &. In particular, & has full measure.

2.2. Iterated Function Systems with inverses

Denote
A ={@b) e A axb).
For a € A, write R, = R X {a}. We freely identify R, with R below. Let X, € R, (a € A) be open

intervals and write X = (J,ca X,. Assume that there exist 0 <y < 1 and 0 < 6 < 1 such that for all
(a,b) € A*, the map ¢, : X, — X, is C'*? and satisfies

(1) ‘pab(Xb) - Xa;
(i) 0 < ¢!, ()| <y forall x € X;
(iil) ¢} : pu(Xp) = Xp is C'*0.
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We say that ® = {¢4}apeax 15 an IFS with inverses. For w = wy - - - w, € I'*, we denote

P = Pwpw; © """ O Puw,_w,-

Let Il : I — X be the natural projection map, i.e.,

(@) = () Pt Xa):
nx1

Define IT® : & — X by IT® = IT o red. Define the measure v = v(®, p) by v = Iy (i.e., the push-
forward of the measure u under the map I1¢ : & — X). We call v an invariant measure. It is easy to see
that if A = W, then the measure v is an invariant measure of an IFS. Let y = y(®, p) be the Lyapunov
exponent, and hgy = hgw(p) be the random walk entropy. See section 3 in [5] for the precise definition.
Fix x, € X, foreach a € A. For w € & and n € N we denote Xwn = Xj, Where j = j(w,n) € A is the last
letter of red(w],).

Proposition 2.1 (Proposition 3.1 in [5]). We have

.1 ,
X == r}l_{g n log |@req(w),) Xwm)

for u-a.e. w.

Notice that an IFS with inverses ® = {¢.}upeax does not have any explicit inverse map. The
next example illustrates why we call ® an IFS with inverses. For more detail, see Example 2.1 and
Appendix in [5].

Example 2.1. Letr =2, W ={0,1} and A = {0,1,17'}. For 0 < k,I < 1, define

I+Dx+1-1

(I-Dx+1+1

Let fi-1 = fl‘]. It is easy to see that we have fy(0) = 0, fi(=1) = =1, fi(1) = L and f;(0) =k, f{(1) =L
It is well-known that there exists a unique Borel probability measure v that satisfies

V= Z PafaV-

aeN

JSo(x) = kx, fi(x) =

The above measure is called a Fustenberg measure. See., e.g., [2]. Let
Yo = (=k, k), Y1 = (fi(=hk), 1) and Y_, = (-1, f_1(k)).
Then we have
f;l(Y\ Ya‘l) c Ya’

forall a e A, where Y = | ep Y, and Yy-1 = (. Notice that the sets {Y,}.ca are not mutually disjoint if

and only if k > fi(=k), which is equivalent to
1-k

[>—0.
1+k%

It is easy to see that there exist open intervals Xy, X1, X;-1 C R such that
Y,cX, and f,(X\ X,1)C X,
forall a € A, where X = |J,ep Xo and Xo-1+ = 0. Then {f,lx, }apear is an IFS with inverses, and the

associated invariant measure agrees with v. For the proof, see the Appendix in [5].
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Denote
dimy = inf {dimg Y : v(R\ Y) = 0}.

Proposition 2.2 (Proposition 3.3 in [5]). Assume that for all a € A, the sets {@up(Xp)}pear are mutually
disjoint, where
Af ={beA:(ab)e A"}

Then we have

h
dimv, = =%
X

forall a € A.

2.3. Graph-directed IFS and the main result

Given an IFS with inverses @ = {¢,}reax, One can naturally associate a graph-directed IFS by
restricting transitions from a to a~! for all @ € W. For the precise definitions of graph-directed IFS, see
section 1.7 in [1].

Let P = (Pay) be a |A| X |A| stochastic matrix that satisfies py, > 0 (a # b™') and py, = 0 (a = b7}).
Let p = (P, , px) be the unique row vector satisfying pP = p. Let 1z be the probability measure on
I associated with P and p. Define the measure v = v(®, P) by v = . Fora € A, denote v, = Vlx,. It
is easy to see that

Vo = Z Pab * PabVb-

(a,b)EA*

Let & = h(P) be the entropy and Y = Y(®, P) be the Lyapunov exponent, i.e.,

h=- Z ﬁlzﬁab 10g ﬁab,
(a.b)eh*

and

— .1 ,
X = - lim —log |¢;,, (x,,)
for p-a.e. w. Under the separation condition, we obtain the following. The argument is classical, so

we omit the proof. See, e.g., the proof of (2.6) in [4].

Proposition 2.3. For every a € A, assume that the sets {pu(Xp)}pear are mutually disjoint. Then we
have

dimvy, =

=< =

foralla € A.
Our main result is the following:

Theorem 2.1. Let @ = {@u)apen be an IFS with inverses. Then there exists a stochastic matrix P
such that .
v =", hgw = th and y = ly.

Since the graph directed IFS has essentially the same structure as IFS, by the above theorem most
of the results of IFS can be immediately extended to IFS with inverses. For example, the main results
of [5] and [6] follow directly from the above result.
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3. Preliminaries

Define u..q by redpy, i.e., the push-forward of the measure u under the map red : & — I'. From
below, for n > 0, which is not necessarily an integer, we interpret wl, to be w|,;. The following lemma
is immediate.

Lemma 3.1. We have

.1 ,
x == lim ~log|g,;, (xo.m)
for peg-a.e. w €T

Proof. Let w €T, and let n € & be such that w = red(r7). We can assume that 7 satisfies
.1
lim — [red(nl,)| = £
n—oo N1

and

.1 ,
X=- 31—210 n log |90red(n|n)(x;7,n)

Let € > 0, and let n € N be sufficiently large. Then, since w|—.), precedes red(n|,) and |red(z],)| <
(€ + €)n, we have

—log |"0‘,“|(f—e>n (Xao)| <mx < —log |<p:‘—'|(f—e)n (Xeo)| = 2€n - 108 Amin,

where
Amin = min{jgl, (0] : (@, b) € A*, x € Xp).

The result follows from this. O

For w € I'*, we denote
Eo = {v €& w precedes red(v)}

and

Ew = {U € & : there exists n € N s.t. red(v|,) = w}.

Notice that &, C Sw. For a € A, write

(1-p@Ee) @' en
=1 @' ¢A)

and p, = ,u(éa). We next prove the following crucial lemma.

Lemma 3.2. Let w € I'* and a € A be such that wa € I'*. Then we have

_ /«t(éwa).
u(&.)

a
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Proof. Fix such w € I'" and a € A. Notice that

&, =] | &2,

i=|w|

where B
ED ={v e & red]) = w, redl) # w (|| <k < i)}
Then, since B
EaNEV ={ve&:0'w)eé)néY,
we have
,U(Swa N 85‘?) =Pa" /1(85,1)))
Therefore,

,u(éwa) = ,u( |_| éo)a N é'ff)))

i=lwl

= i P H(EL)

i=|w|

= pa - ().

Similarly, we have the following:

Lemma 3.3. Forae A and w = wy - - - w, € I'* with w, = a, we have

H(EW) = qa - 1(E.).
Proof. Fix such a € A and w € I'*. Notice that

&, =] | &2,

i=|w|

where
éfj) = {v €&: red(v);) = w, red(vy) # w (Jw| < k < i)}.
Then, since
Ev ﬂéfj) ={ve E:0(v) ¢ U &N 82’?,
beA\{a")

we have

1(Ey N ED) = qu- p(ED).
Therefore,

pE) =p(| |, nED)

i=|w|
= a0 ED
i=|w|

= qo - w(&y).

O

AIMS Mathematics Volume 10, Issue 4, 9034-9041.



9040

4. Proof of the main results

In this section we prove Theorem 2.1. Denote

Pv4p

a

5a = PaYa and ﬁab =

Let P = (pay).- By Lemma 3.2 and Lemma 3.3, we obtain the following.

Proposition 4.1. Forall w = wy - - - w, € I'*, we have

ﬂred([w]) = 5w05w0w1 tr ﬁwn_lw,p

The above proposition implies that s = u. Therefore, we obtain v = v. By Lemma 3.1, we have
x = {x. It remains to show the following lemma. Notice that /gy, £ and & all depend only on A and p.

Lemma 4.1. We have
hRW = gh

Proof. Let @ = {¢u}apea be an IFS with inverses t_llat satisfies the separation condition. Then, by
Proposition 2.2 and Proposition 2.3 we obtain hgy = (h. O
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