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stochastic partial differential equations (SFPDEs) driven by Lévy space-time white noise and fractional
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1. Introduction

In this paper, we consider the stochastic system as follows:

vz, | |
Y ;: D _ At )+ ef(r. Love(r, ) + Neg(r, Cove(m D)L + Neo(r, OB, )
VE(O’ {) = VO({)’ TE J_ = [0’ T]’§ € R»

where (1,¢) € J xR, and € > 0 is a scale parameter. L is the Lévy space-time white noise which is
encompassed within a probability space (Q,.%,P). BY is the fBm defined over J x R characterized by
Hurst parameter H(> %) which is a central Gaussian process. Let f,g,0: J X R — R be continuous
functions. We employ the Fourier transform to establish the u-fractional differential operator A, with
1 < u < 2 (details will be provided in Definition 2.1), for each .%j-measurable mapping vo : R - R
adhering to B [lvo(-)|l5| < co.
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In recent times, interest in the averaging principle has surged, offering a highly effective tool for
simplifying complex systems in reality. The theory of the averaging principle originated in the 18th
century through the contributions of Lagrange and others in perturbation theory. Subsequently,
Krylov and Bogoliubov conducted more comprehensive and detailed examinations [1]. The averaging
principle can either refer to the separation and averaging treatment of slow and fast components in
multi-scale analysis or simply involve the overall averaging of temporal terms, depending on the
specific application context. Scholars from a multitude of disciplines have also widely employed the
averaging principle, with Bodnarchuk, for instance, examining the cable equation’s mild form under a
general stochastic measure [2]. Gao proposed and improved the averaging principle about multiscale
non-autonomous random 2D Navier-Stokes systems [3, 4]. Furthermore, Liu and Cheng examined
three distinct averaging principles applicable to stochastic complex Ginzburg-Landau equations [5].
Another growing area of interest is research into averaging principles of fractional stochastic
differential equations (FSDEs). A key aspect of this study involves investigating the averaging
principle in FSDEs, particularly those with Caputo derivatives, as exemplified in [6-9]. As the
investigation of related issues becomes more complex, Yang et al. focused on deriving the averaging
principle for the Hilfer fractional stochastic evolution equation (HFSEE) driven by Lévy noise and
extended it to Hilbert spaces rather than restricting it to finite-dimensional settings [10]. In a recent
publication, Liu et al. presented a standard form for stochastic differential equations of fractional
order on natural time scales, and they showed that both the convergence interval and the rate of
convergence are contingent upon the fractional order [11]. In conclusion, there has been considerable
progress in recent years in developing the theoretical framework for averaging principles in the
context of FSDEs. Among these, the analysis of equations driven by Lévy noise produces findings
that are very rich. Zhu studied many stochastic equations driven by Lévy noise. Such as the
stabilization problem of stochastic delay differential equations and stochastic nonlinear delay
systems [12, 13]. It is noteworthy that Ahmed and Zhu investigated the averaging principle for Hilfer
fractional stochastic delay differential equations with Poisson jumps [14]. Liu et al. investigated the
convergence of the solution to the Caputo-Hadamard fractional stochastic differential equation to the
solution of the underlying averaged equation as the time scale parameter approaches zero [15].
Moualkia et al. established novel findings on the averaging principle for a class of Caputo
fractional-order stochastic systems with neutral dynamics, subject to Markovian switching, Lévy
noise, variable delays, and time-varying order [16]. Kasinathan et al. aimed to present an averaging
principle for Hilfer fractional stochastic differential pantograph equations [17].

To date, most research on stochastic partial differential equations (SPDEs) of fractional order has
focused on their solution properties. For example, Azerad and Mellouk demonstrated the existence,
uniqueness, and regularity of a class of SPDEs with a fractional Laplacian driven by space-time white
noise in one dimension [18]. Shi and Wang investigated the existence and uniqueness of global mild
solutions for an SFPDE driven by Lévy space-time white noise [19]. Avazzadeh et al. focused on the
fractional Rayleigh—Stokes problem for an edge in a viscoelastic fluid [20]. Gunasekar et al.
conducted an in-depth investigation into a Volterra-Fredholm integro-differential equation that
incorporates Caputo fractional derivatives and is constrained by specific order conditions [21].
Significant prior research has focused on exploring solutions to related problems; however, little
discussion has been dedicated to the averaging principles for dynamical systems integrating SPDEs
and fractional-order derivatives. Therefore, we are committed to continue researching and addressing
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this. Building upon the aforementioned work and to address various complex real-world scenarios,
this paper presents the following contributions:

(i) The existence and uniqueness of solutions for space-fractional stochastic partial differential
equations (SPDEs) driven by combined Lévy noise and fractional Brownian motion are established
using the fixed-point theorem.

(i1) The averaging principle has been extended to space-fractional SPDEs driven by a combination
of Lévy noise and fractional Brownian motion.

The paper is organized as follows. Section 2 introduces key concepts and notations. In Section 3,
we prove the existence and uniqueness of mild solutions for Eq (1.1) in L?(p > 2)-space. The paper’s
primary finding is detailed in Section 4, where it is shown that under suitable conditions, solutions of
SFPDEs can be approximated by those of averaged stochastic systems. In Section 5, an example is
provided to illustrate our main conclusion.

2. Preliminaries

This section compiles key definitions and theorems in fractional differential operators and noise
theory, Additionally. some auxiliary results will be presented to substantiate the proof of our primary
theorem.

According to reference [18], let us consider the specific form of A,.

Definition 2.1. [/8] Let 0 < u < 2 be the order of the spatial fractional derivative. The u-fractional
Laplacian 4, is defined by
fy = —(=o)" = ~(=0° [0 Y.

This is a non-local operator defined via the Fourier transform #:

F (L&) = —IEFF (v)(©),

for £ € R and a function v defined by a given equation.
Then, using the Fourier transform, we can easily see that G,(7, {) is given by:

@@@=?Mﬂ%@=ffmfwﬁzﬂwwmx
R
where (1,¢) € J x R.

We propose some related concepts of fBm with covariance kernel
U on on 2H
Ru(r.¢) = 5@ + ¢ =t = ¢™).

For more details, one can see [22].
Moreover, there is the covariance kernel Ry(t, ¢) that satisfies Ry(t,¢) = fomg Ky(t,r)Ky(s,r)dr,
where the square kernel Ky(7, ) holds for 0 < ¢ < 7, by

2

" N o (T
Ku(7,6) = cu {(z) (T - S‘)H_% - (H - E)S‘Z_Hf i3 (v — S‘)H_% dv
s s
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and ¢2, = (l—ZH)ﬂ(lz—I;H 775> With the Beta function (-, ).

In particular, for H > 3, the expression of Ry(t, ¢) is given by H2H — 1) fOT fog v —ulP" 2 dudpy.
Furthermore, we give a linear operator K}, defined by (K}, x)(s,{) = Ku(T, )x(s,{) + fg T(X(T, 0) -

xic—-¢ ))%(T, ¢) dt, where the operator K}, means an isometry from Hilbert space ¢ to L*(J X R).

In addition, B can be expressed as B([0, 7] X R) = fOT fR Ku(t,)W(ds, do).
Subsequently, we present several concepts related to Lévy noise. Detailed definitions can be found
in [23,24].

Definition 2.2. [23, 24] Consider two o-finite measurable spaces, (E;, &;, ¢;) for i = 1,2. There is a
Poisson-distributed random variable N map from (Ey, &, ¢1) X (E3, Ez, ¢2) X (Q, F,P) to NU{0} U {0},
with associated Poisson noise on (Ey, &1, ¢1), applicable to every A € &, and B € &,,

e~ 1 A)pa(B)lg1(A)e2(B)]

P(N(A,B) = n) = . ;

and each n € NU {0} U {co}. In particular, N(A, B) = oo, holds almost everywhere whenever ¢;(A) = oo
or ¢2(B) = oo. If (E1,E1,¢1) = ([0,0) X R, B([0, ) X R),dt X d{), then the compensated random
martingale measure is defined by

M(A,B,7) = N(J X A, B) — ¢,(J X A)py(B).
Additionally, the following properties are true.

Lemma 2.1. [23, 24] For each (1,A,B) € [0,00) X R X &, ¢1(J X A)p,(B) < oo. In addition, let
¢ E1 X Ey X Q — R be a {%,}.s0-predictable function such that it satisfies:

E[ f f f 61, £, 0)Pea( do) di ds
0 AJB

A stochastic integration procedure follows:

<oo, >0, (A,B) € & X &Es.

RT:fAchb(g,é,Q)M(dQ, d¢, ds),

which is a square-integrable { F,}.o-martingale.

L denotes a Lévy space-time white noise, which includes terms not only controlled by both Poisson
and Gaussian space-time white noise. Consequently, the study will focus on noise incorporating a
Lévy process:

Lemma 2.2. [23,24]

L(ga T) = f wl(T, {,Q)M(d@, g’ T) +f 0)2(7’, {,Q)N(d@, {77-)’
Uy E

2\Up

for some Uy € E, with ¢,(E;\Uy) < oo and on 22¢2(dz) < +oo. In this case, wy, w, : [0, 0)XRXE, —
R are measurable functions; and M and N are Randon-Nikodym derivatives, also called the Poisson
random measure, given by

M(dp, d{, dr)

M(dp,¢,7) = Texdl
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- N(dp, d{, dt)
N(do,{,7) = ——FF—,
(o-&1) = s dg
where (1,{,0) € [0,00) X E; X R.
Further, we give the following remark.

Remark 2.1.

U(r.0) = f (7,0, )02 d2),
ExN\Uy

(,()(T, o, Z) = wl(T’ o, Z)IUO(Z) + wZ(T’ o, Z)IEz\Uo(Z)’
with the set A € &, and its indicator I4(-).
Next, we review some well-known characteristics of G,(7, {).

Lemma 2.3. [25,26] Let u € [0,2]. The transition density of a Lévy stable process is the function
Gu(7, ), which satisfies:
(a) For all (1, {) € [0,00) X R, Gu(1,) 2 0, [ Gu(r.{)d{ = 1.

(b) For all (1,{) € [0,00) X R, G, (1,0) = 7 #G,(1,7750).
© ) LIG (@Ol dldr < o0,1/2<y <1+p

Finally, we present the definition of the Burkholder-Davis-Gundy (B-D-G) inequality.

Lemma 2.4. [24] Let ¢ : [0, 00) X R X E; X Q — R be a measurable function that satisfies Lemma 2.2.
Define the integral process as follows:

{x,: f f f ¢<g,§,g>M(dg,d§,dg),rz0},
0 R JE>

and then, for any T > 0, p > 0, there is a positive constant C,, r such that

T 5
SupE (X.]") < Cy s [ fo f (E(|¢<g,§,@>|p>)’2’m(dg)dgdg] .
R JE,

e

3. Existence and uniqueness results

This section will proof the existence and uniqueness of the mild solutions.
The following equation is a reformulation of Eq (1.1), which makes sense according to Walsh [27]:

b1, ) = fR Gt £ — ovo(0) do
Ve f f Gu(r - 6.0 — 0)r(s.0)B" (dg, do)
Jo Ja 3.1)
+ Efo fRGﬂ(r -6.{-0)f(s,0,ve)dods

+ Ve fo f Gu(t - 6.¢ - 0)8(s, 0, v Lo, §) do ds.
R
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Then, by Lemma 2.2 and Remark 2.1, we can further get
(1.0) = [ Gu(ri¢ = omle)do
+ Ve fo ) fR Gt - .0 - 0)0(s,0)B"(ds, do)
e fo ' fR Gt = .4 — 0)f(s, 0, ve) dods
+ Ve fo ) fR Gu(t —5,{ = 0)8(s,0, v (s, 0) dods

i \/Ej(: fRf Gy(T = 6.¢ = 0)8(5,0,vIw(s, 0. )M(dz, do, d).
E;

In Eq (3.2), the term with BY can be rearranged as follows:

(3.2)

fo fR Gu(t = 6,{ = 0)o(s,0)B" (ds, do) = fo jl; (KyG( — 6. - 0)o(s,0W(ds, do), (3.3)

utilizing the space-time white noise that is discussed in Section 2.
We also assume:

(H,) For (1,0) € J X R and v, u, € R, a positive constant L, exists such that:
lf(r.0,ve) = f(T, L udl” VIg(r, £, ve) — 8(x, {udl” < Lilve — ucl’.
(H,) There is a constant C, such that:

f@ vl VIg(T vl < Cp(1 + |vel”),

for any v, € R.

(H3) For p € (2(:_*1”, +o0) with 4 € (1,2), we have

sup Iy (%, )2 < oo,

re]

sup oz, S < oo,
e

sup
e

flGu(T -6, {-o)ldo < Cyn(t - S
R

2
2

< 00,
D

f |a)(T’ o, Z)|2(P2( dZ)
E;

14
2

The following lemmas and propositions are necessary in order to demonstrate Theorem 3.1.

Lemma 3.1. [23,28] IfH > % then

Li(JxR)C #,

where ¢ is a Hilbert space.
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Let B denote the space of all .%.-adapted processes {v((7, -)};cj, valued in L?(R). The norm in this
domain is defined as

1
Vells := [sup e E [Ive(r, ->||§]] >0, (3.4)

e

where || - ||, is the standard norm on L”(R). Obviously, (B, || - [|z) is a Banach space. Presently, we give
a bounded, closed, and convex subset B C B. Additionally, for each v, € B, we present an operator
represented by S ,;:

ST, 0) = 251: 3,01, 0),
where
5,00(1,0) 1= fR G,(1.¢ = 0)uo(o) do-
Br(ve)(T,0) = eforfRGy(T - 6.{~0)f(s,0,vo) dods,
T,00)(1.0) 1= Ve j; T fR G.(t - ¢, —0)o(s,0B"(ds, do),
T, 00e)(1,0) 1= Ve fo T fR Gu(T ~ 6, { — 0)8(5, 0, v (s, 0) do ds,
BT, 8) = Ve j; " fR fE 2 Gu(t = 6,4 — 0)8(s, 0, vow(s, 0, 2)M(dz, do, ds).

Proposition 3.1. Assume (H,)—(Hs) are satisfied. Let o € L71(J x R) € L*(J X R) when I1<H<1
Then for each p > % and v, € B, it holds that Su(ve) € B.

Proof. Applying Lemma 2.3 and Young’s inequality, we have

I3, @@ O, < 777 f (1,77, ~0)vo(0) do
R

p

®I—=

<7

[Gu1 75 w0

_1 -1
< T H||Gu(1,T750) '1 oG,

< ClvoOll, < oo,

for B llve()ll7| < co.
In view of Lemma 3.1 in [19], % =

% 1—17 + 1 = 1, and hypothesis (H,), we have

E (I3 Ol | < Ce’E

T p

fo (t = &) " If (5,0, ve(s, I, dc]
T P

< C,7€"E [ fo (1 + ve(s, )l dg]
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< Cp TE‘D

1 + sup E|ve(s, 0)ll? ]

re]

< Cpre |1+ Ivels, IR ] < oo,

since v, € B.
We shall subsequently analyze Sz(vg). It can be deduced from Eq (3.3) that

E|IF0a Ol
¢ [2|[ [ @Gt - s.c-onotcomide
R 0 R

<C,é f (5;,Gorx = 6.8 = 0, Ky Guor(r = 5.2 — 0))

P
d¢

d¢

L2(JXR)

< Cye? f”G o(t—-¢.¢ Q)”LH(MR) :
since when H > %, L# (J X R) € . The following may be obtained from hypothesis (H3) and the
Holder inequality:
|Guorx = 6.2 -0

LH (JXR)

T ) pH
= f fIG,l(T -6,.{—0)o(s,0)% do dg]

pH
f f G.(t—¢,{ — o)l lo(s, 0)|7 dgdg]

2H—l pH
f ( f Gur =6, — o)l 2HdQ) ( f o=, ¢ - @)vﬂldg) dg}

[ r 21 pH
1 2 "
<|Cup.n f (r—¢) ( f lo(t = ¢,{ — )77 d@) ds
0 R

T 5 T 7 P
SCu,p,H(f (T—g)_“l’"ZHdS‘) (f f|0’(T—§,{—Q)|2HZ—'de§)
0 R
(0]

< C,u p,T.H ”O-(g’ Q)”LZ(JXR)

IA

IA

The following fact can be used: o € L71(J X R) ¢ L2(J x R) for H > 5. Assuming 1 — i > 0, we

conclude that I(vo)(7,{) € B when p € [2, ).
As for Sﬁ(ve), when % = 117 - % +1=1- % € (0,1], and for p € [2, ), hypothesis (H3) and
Lemma 3.1 in [19] imply

B (1500 )

P

» T 1ol
< CeZE[f =)+ + (s, 0l - Wl ds
0
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T p—1
5 _1_lyr
< Cpe” |1+ IeIIs | sup Itz I U (r — o) #0-D#H e
/ 0

TeJ

< Cpre? sup Wz, oI (1 + Ive(IIE) < oo,

TeJ

-1 1
where 1 o5 >0 and p > 1+ T

For Si(vé), by virtue of Lemma 3.1 in [19] and the hypotheses (H,)—(H3) with % =

1- i € (0, 1] and the B-D-G inequality, for p > 2(::1),

E (1350 Ol |

S

P i 2 2
< Cpet f [ f f Gt = 6,4 — 0)(s, 0, DF (BI1 +Ivels, D x(d2) do dg] d
R 0 R JE,
o ;
)4 _p+2 2
< Cpe? (T—¢) w [ lw(s, 0,2 2(d2) | [1 + Elve(s, 0)I]7 }
| 0 E; %
4 [ T _p+2 2 2 2
<Cper| | (t—¢g)w (s, 0, DN p2(d2) '1 +Eve(s,0"17|, ds
| /O E; 4 2
4 2115 ’ _ 2 r
< C,e? |sup f lw(s, 0, z)lzgoz(dz) - sup ‘1 + Elv(s,0)P17 2] [f (t —¢) mr> dg]
»TEJ_ E, 14 eJ 2 0

f (s, 0.Pea(d|| |(1+1Ve(E) < co.
E> /d

e

14
< Cpre? [sup

At this point, the concept that S, is an operator from B to itself has been proved. This establishes the
result. O

The next step is to demonstrate that S, : B + B is a contract operator.

Proposition 3.2. In accordance with hypotheses (H,)—(H3), the operator S, represents a contraction
on B. Accordingly, there must be a constant § € (0, 1) such that

IS 4(ve) = S uulls < Slve — uclls,  for veuc € B.

Proof. We will address each component of the operator S, individually.
First, let vg, u be the initial values of the {.%#,},»0-adapted random fields v, u, € B with the condition
that vy = uy, and it is easy to get that ||5l11(ve)(7, S)— 3}1(u€)(r, g)”g <0.
Consider Sz(ve), assuming that the hypotheses (H;)—(H3) are fulfilled. Through Lemma 3.1 in [19],
noted =1 -3 41 =1-2 and we first have
rp p p
2[[520a ) - T ol

p

<CE

fo (T=¢) 7 1f(5.0.ve) — (5. 0. ul, ds
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T p
_lr
<C, [f (t—¢) # Ellve — udll, dg] .
0
Then, consider the norm on B, and we can get
|37va.§) = Tr(u(T. 9|2
= supe "B [0 ) - Bt o)

re]

i _n@=¢) _l=r _nms P
< CSUPE[f e 7 (1—¢) me 7|vls,0) —uls, 0l dg]
0

reJ

T —n¢ p i _n@=¢) _1-r 17%1 p-1
<Csup| [ ™ Blvee )~ uels, My ds || [ (e w9 F) T ds
red 0 0

= C,T9(p, Dllve — ucllg,

where

T n(r=¢) I-r 17%1 -
9p, 1) = [ f (e‘T(r - g)‘?) dg] :
0

and p > 1,

0.0 | [/ (e o ¥ q

-(p—l)mﬂ +00 o p-1
:_7T_f g
| 77 0

p(-r)
Hp-1)

which yields from m =

p-1

= »(p;m#r(m +1) "
Then, one finds |
|920a(. ¢) = T2 5,
<C,T? (p;m%ﬁl‘(m +1) " Ve — utelle

< 5”ve - uE”Ba

where ¢ € (0, 1) is achieved by choosing 1 > 0 that is large enough.

In the sequel, consider J Z(Vf). Similarly, use the B-D-G inequality again, and we have the following

conclusion:

|30 ) = T 9)|;
q@w%M$mmﬂ—$@mwm

TeJ

< Cpfg Sup e_m f (f f (Ele(T - g’g - Q)w(g’ O, Z)
re] R\JO JRJE,
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X [8(5.0.ve) — 8(5. 0. )P @x(dz) dods)” di

p T 2ns
< Cpe? supe™ f ( f f Gy (T = ¢, { — 0)w(s, 0, Pe
e R 0 R JVE,

X (€ SElve — ul")? pa(dz) do ds)’ df

< Cpe sup f ( f f f e‘”gElve—uEI”wz(dz)deg)
e JR 0 R JVE;
p=2

T 2p  _2(r=9) P
x(f f f IG.(T =6, { —0)w(s,0,2)|72e " y(dz) deS‘) d¢
0 R JE,

E
< Cp,T62902(E2)”vE - uellg

X sup f f f f G = 6. — 0)w(s, 0, D¢ "oy (dz) do dg dl
TeJ JR JO R JE,

< 6||Ve - ue”p’

where 6 € (0, 1) is obtained by selecting a large enough n > 0.
Since Sz and 3;‘; are both contractions on B, it is evident that they can similarly arrive at the same
conclusion. O

Based on the previously mentioned analysis, we deduce the following conclusion.

Theorem 3.1. Assuming conditions (Hy)-(H3) hold. Eq (1.1) has a unique mild solution

2(u+1
et Oirgessce: For each p € (L5, +oo),

sup Ive(, )lI2 < oo,
e

Proof. Because Propositions 3.1 and 3.2 hold on set {v. € B : v(0) = vy}, we can determine that
Eq (1.1) has a unique solution v, € B by applying the fixed point theorem. O

4. The averaging principle

This section provides a detailed derivation demonstrating that the process weakly converges to its
limiting behavior as the scale parameter € tends to zero.

We aim to develop an averaging equation for approximating purposes. The solution v can be written
as

W5, ) = fR Gt — 0volo) do
- f f Gt - ¢.¢ — 0T (0)B" (s, do)
Jo Js ) @.1)
e fo fR Gu(t — 6.0 - 0)f(0.7) dods

i e fo f 2(0.M)L(o, ¢) do ds,
R
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where
1 T
a(o) = T fo o(s,0)ds,
_ 1 T
f(Q,V)=Tf f(s,0,v)dg,
0

1T _
g(Q,V) = Tf g(g,Q,V)dg
0

(H4) There exist _positive bounded functions K;(¢) for any 7 € J,/ € R, with i = 1,2, 3, ensuring that
the functions o, f, g exhibit specific properties:

1 T
- f f lo(s,0) — o (o)l dods < Ki(1),
TJo Jr

1 (T -
;fo fRIf(g,Q,él)—f(Q,é“l)I”deS‘SKz(T)(l+|§1|”),

1 T
- fo fR 18(5.0.01) — 50, 0P dods < Kx(@)(1 + 14,1,

when 7 — oo, K;(1) — 0.
Now, we present our main result.

Theorem 4.1. Given that (H,)—(Hy) hold, for each p € (Zifjl”, +oo), there is

lirr& sup Elve(r,0) = (7, {)I” = 0.

e

Proof. Making use of Minkowski’s inequality, one can get

SupElve(r, §) = (7, HI”

e

= SUPE‘ \/Efo fRGu(T -6, - 0)(o(s,0) — o(0)) B"(ds, do)

e

+ef(; fRGy(T—g,g_Q)(f(§,Q,ve)—f(g’g,‘—,)) do dg
Ve fo fR Gt = 6,2 - 0) (8(6,0,v2) — B> 0,7) ¥(s: 0) do ds

T \/Efo f f Gu(T = 6,{ — 0)w(s,0,72) (8(5,0,ve) — 8(s,0, V) M(dz, do, ds)I’
R JE,

P
-1 2
< 47 e2 supE

e

fo L G.(t-¢,{ - 0) (0(s,0) — () B (ds, do)

p
+47 P supE
el

fo fR Gu(r = 6.L —0) (f(s.0.v0) — (s.0.7)) dods

P
-1 2
+4" ez supE

e

fo fR Gut-¢,0-0)(g(s,0,ve) — 8(5,0, V) Y(s,0)do dg
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+47'e> supE

D f fqu(T_§,§—Q)w(§,Q,Z)
e/ 0 R JE,

X (8(s,0,ve) = 8(s,0,v)) M(dz, do, ds)I”
= 417—]6%11 + 4p—lep12 + 4p—1€§13 + 4p_l€g14.

Now, we calculate every term in the aforementioned equation independently.
For the term /,, adopting the method in Proposition 3.1, and using Holder’s inequality, the following
estimation can be obtained:

T p
h=mmEb£~£GAT—9§—QM0@¢O—F@DBWd9dm
Tel
T p
=supE fo fR K'Gu(r =6, —0) (0(s,0) —0(0)) W(ds, do)
Te
< sup C, (K'Gu(t = 5,4 = 0) (0°(5,0) = 7)), K* Gl = 6,{ = 0) (0(s,0) — 5(@)))32( )
Tel
=supC, (Gﬂ(f —6:{=0)(0(5,0) = 0(0),Gu(t = 6,0 = 0) (0(s,0) - 5(9)))5,
Tel
s2?qugf—g§—gxa@¢o—E@»Mh&m
T n pH
::wpq{l:lgGAr—gé—gxa@¢»—6@»Vc@dﬁ
TeJ
T 1 . pH
Ssqn%(i:lgGAr—gz—gﬂHMﬂggy—E@»wtwdﬂ
TeJ
T i : pPH
< C,T""" sup fo (fR |Gt = 5.2 = 0)|" (o (5.0) =TI d@) dg
Te)
T p pH-1
<C, T sup fo ( fR (o (s, 0) - T (@) dg) ( fR Gu(r = 6,0 — o)™ dg) ds.
Te

Under the assumption 1 — ﬁ{ + i > 0,let S = ==, and using hypothesis (H3), we have

flcm—g,g—g)
R
< osz|G#(Se,§—Q)|”‘L"1 do

__r 11
< CHaH - € HPH-D T pT

P
pH-1 d
0

Then, applying Lemma 2.1 (c) and (H,), there is
L <C-T*PH. e(”H—”(_W*ﬁ“)Kl(T) <C-T*PH.¢,
where y = (pH = 1) (= + 5 + 1),

AIMS Mathematics Volume 10, Issue 4, 9013-9033.



9026

For the second term /,, consider Minkowski’s inequality and Holder’s inequality, and we can obtain

p

I, =supE fo fRG“(T - 6.0 -0 (f(s.0.v) - flo. V) dods

reJ

T P
<717! supEf dg
e 0

[[Gur=s.c-0) (16000~ Fie.) do

p

<2 trrt suPEf fGﬂ(T - 6. {—0)(f(s,0,ve) — f(5,0,V)) do| dg
el 0 R
. _ P
+2r7irr! sur_JEf fGy(T - 6.0 0)(f(s.0.%) — flo, ")) do| ds
el 0 R
=: D + .

Holder’s inequality is applied, and we have

p
ds

Ly <277'LF supEf fG#(T -6.{ -0 If(s,0.,vd) — f(s,0,V)| do
0 R

e

T p-1
<2riph sup]Ef (f Gu(t = 6. { = o) d@) flf(g, 0,ve) = f(s,0. V)" dods
0 \Jr E

e

S2”_1Tp_1LfCﬂ,HsupEf(T—g)_iflve—\_/lp dodg
0 R

e

< L12”_1L’1’C,1,HT”_/% supEf flvg—ilp do dg.
0o Jr

M= e
Next, (H4) may be used to get

T p—1
by <2777 sup B f ( f Gyt —6.¢ — )P dQ)
0 R

e

< [ |fs.0m~Fon| dods

T N _ —
< 2P—1TP—1CM7H SupEf (T - g) # f‘f(g’ o, V) - f(Q’ V)' dQ dg
C 0 R

Te)

_ 1 ’ = P
<-E 72° 'CuuT? “supEf f‘f(S‘,Q,V)—f(Q,V)' dodg
0 R

M= re]
< H 010,y TP sup Ko(7) (1 + E[5P)
H= 1 e
__H*
u—1
where P; = sup,.; K»(7) (1 + EJP).
For the term I3, keep Minkowski’s inequality in mind. Assuming Holder’s inequality is applied, we
have

271 C,y TP Py,

P
I; =supE

reJ

fo fR Gu(t-¢,0-0)(g(s,0,ve) — g0, V) Y(s,0) dodgs
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P
<T"'supE Gu(t = 6.0 - 0)I3(s.0,ve) — 80 VIY(s,0) do| ds
TeJ R
T P
< 27T supE f f Gu(T = 6.{ ~0)I8(s.0.v) — 8(5, 0. MIY(s.0)do| ds
e 0 R
T p
+2r ! supEf fGﬂ(T - 6.¢ - 0)g(s,0,7) — g0 VY(s, 0) do| ds
Tes 0 R
=: I3 + Ix.
Using Holder’s inequality again and considering (H3), we get
T P
Ly <2771 SUI_)Ef fGy(T - 6.0 —0)18(s,0,ve) — 8(s, 0,V Y(s,0) do| dg
teJ 0 R

P
3

<2riph SUPEf (f G, (T - 9(—9)& dQ) )
e 0 R

2
X fR 18(s,0.vo) — g(s, 0, )" dg( f (s, 0)I° dg) ds

<2rirrirre stupEf(T )=y ”flve—VI” dp(flw(c,g)l d@) dg

Te)
< HP=D goipre, T supE f f ve =" do ( f W (s.0)l* dg) ds
/J(p - 3) + 3 reJ 0 R R

wp-3) ., T f . f -
< —— 2 2CLPC yTH 5P supE ve = V|’ dodg,
up-3+3 R )

which is the same as I,,. Therefore, according to I5,, one can show that

P 2
T -3 p=3 P
Iy <2177 supE f ( [1Guc-sc-017 dg) [ tets.e.7 -0, dg( [ wis.on dg) ds
R R R

e

. 2
_3 _ _ — p
<2777 'C, y sup E f (T — Q)ir f lg(s,0,v) — 20, V) do ( f (s, 0)|2 dg) dg
0 R R

reJ

-3 ’ ’
< B0 yric,yrais s [ [ lss.om - ger dg( [ wis.on dg) ds
0 Jr R

u(p—3)+3 el
< 0D e, s [ [ .o - s dods
< #(’;(Pi—;)3+)32”‘1C¢C#,HTﬂ<;3>+” sup Ki() (1 + B
) /é?vi—&zp_lcwcu,ﬂﬂ”’z”wpz,

where P, = sup,.; K3(7) (1 + EJ?).

For the last term, note Minkowski’s inequality:
p
Iy =supE

re]

fo fR f Gyt —¢6,{ - 0)w(s,0,2) (g(s,0,ve) — 8(0,v)) M(dz, do, ds)
E;
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- P
<2"supE f f f Gu(t = 6. — 0)w(s,0,2) (8(5, 0, ve) = 8(5,0,V)) M(dz, do, ds)
Tel 0 RJVE,
; P
+27 supE f f f Gt = 5, L = 0)(s, 0,2) (2(s, 0,7) — B0, ) M(dz, do, ds)
TeJ R JE;
=: 141 + 142.

Uing Lemma 2.2 and the B-D-G inequality, we can present

Iy <277'Cprsup ( f f ElGu(t = ¢, { - 0)w(s,0,2)
E>

e

X [g(6.0,v0) — g(s, 0, DI pa( d2) do ds)’

S 2p—l C‘p,TlJll7 Sup (f f |G/1(T - g’ 5 - Q)(L)(g, Q’ Z)lz X (Elvé - ‘7|P)%()02( dZ) dQ dg)
0 R JE,

re]

p
2

g 2
<277'Cp 7L sup (f f Gt = 6.{ 0P f (s, 0, Pea( d2)Elve - T17)7F do dg)
0 R E,

reJ

T _ 2 %
< 2P‘1CP,TL€)C¢2(E2) sup (f f Gu(t—¢,{ - Q)lz X (Blve = v") do dS’)
TeJ R
p=2

— T » 2
<2775 C, L Ca(Ey) sup f ( f Gt - 5. - 07 dQ) f Elve -V’ dods
0 R R

e

< ZP_IT%C,,,TCMHL?CQDZ(EZ) supf (t - g‘)_%2 fEIvG —VWdodg
0 R

TeJ

2 - "
< oI C, 1 C L Coy(Es) supE f f Ive — 31 do ds.
2u—p-2 e Jo Jr

From condition (Hy), employing the same method as in /1, we can get

4

I <277'C rsup( f f fE EIG.(t -6, - 0)w(s,0,2)[g(5,0,V) — g(Q,V)]I”)wz(dz)deg)

TeJ
14
2

< 2"7'Cpr sup ( f f IG,u(7 — 6, ¢ — 0)w(s, 0,2 (Elg(s, 0. V) — (o, DIP)F @a( dz) do dg)
E

reJ
P

< 271C, 7 sup ( fo fR Gulr = 6.C — )P f (5, 0, DPes(d2)(Elg(s, 0,7) — 50, D)} do dg)
E;

e

IS

< 2771Cp 1 Cpa(Er) SUP( fo L Gu(t - 5. — ) (Blg(s.0.7) — 2(0.D)I")? do d)

TeJ
p-2

p=2 T 2p_ 2 — — —
<2775 C,7Cps(E>) sup f ( f G (T —¢,¢ — o) d@) f Elg(s,0,v) — g0, V)If dods
0 R

reJ R

p=2 T _»ng —_ — —_
< 2" CprCunCopa(Ey) sup f (T—¢) = f Elg(s.0.v) — glo. MI" dods
0 R

reJ
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2 o w=bp=2 T -, _
< H it CprCuuCpr(Ey)supE f f lg(s,0,V) — g0, VI dods
2u-p-2 N
2 iy
< —H 7", 1 CnCon(Es) sup Ka(T) (1 + EfP)
2/.1 - p- 2 re]
2u (u=1)p-2
< —" T3 C, 1 CuyCor(Es)Ps,
2/.1 —p- > H p. T u,H ()02( 2) 3

where P3 = sup_.; Ks3(7) (1 + E[v|?).
Now, substituting the above analysis, we have

sup Eve(r, §) = v(r, O

Te]

< @.02167/4'g + 32261) + 336'[) SupEf flve - vlp deS
0 R

reJ

)4 —
< 2177 + 256 + 25€” supE|lve — V||P,
reJ
where we denote that

9, =4r7'C,ConT* K (D),

-3

2u (u=1)p=2
+mT # CprCunCor(Er)Ps |,
9, = gr! [LC ST+ Mcwc TP
p—1" up-3)+3 77"
2 (u=bp-2
+ﬁT ez Cp,Tcﬂ,Hcgoz(Ez)].

Thus, the calculations above lead to

— Qle”g + Q26p
E e\l - s P <
Srlg) ve(t,{) — V(7,0 1~ Drer

and then, as € — 0, we have

lim sup Elve(r, &) = (7, O)I" = 0.

reJ
This completes the proof. O
5. Example and analysis
Recalling L, M, N defined in Lemma 2.1 and Eq (3.2), we consider the equation below:
a € ] . 1 P .
vend) _ Ae(T, &) + €a1v(T, ) cos*(T) + Ve | 27 sin*(tve(r, O) | —— | M(do,¢,7)
07' Uy 1 + 52
P (R - ot (5.1)
+ 27* sin*(T)ve(7, ) 5| N(do, ¢, ) + Veay sin*(t)ve(r, OB,
ExN\Uyp I+ é
Vf(()’ g) = vO(g)’ TE [Oa 7[]7{ € R
AIMS Mathematics
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P p
In the above, a,, are constants, w;(7,{,z) = (ﬁ) Z, W(1,{,2) = (ﬁ) , for p € (2(‘”1) +oo), and

€ (1,2). Then e
W Ol =( f f (7, 0. Da( d2)
R [JE\U

= Cprra(Ex\Up)

< 00,

Y
dx)

and

(SIS
[S1pS]

f (7, 0, )P a(d2)

E>

f [w1(7, 0, D11y (2) + Wa(T, 0, D05 (D)) p2( )

E

< f ( f T2, 0)2(d2) + f S, §,g>¢z<dz>) dx)
R Uy ExN\Uy

< Cynv (902(E2\U0)+ f 22902(dZ))
Uy

(S
[STpS}

2
P

< 00,

So (H;)—(H3) are satisfied, and we can conclude that Theorem 3.1 holds.
Next, take T = 7 and

_ I as_
7o) = - f o(s.0)ds = =,
T Jo 2

a

_ 1 (™
flo,v) = —f f(s.0.v)ds = =,
T Jo 2

_ 1 (7 _ _
glo,v) = —f g(s,0,v)ds = 7'V.
T Jo

All of the assumptions (H;) to (Hy) listed in Theorem 4.1 can be easily verified. As a result, Eq (5.1)’s
averaged equation could be written as follows:

ov(r,{)
or

P
= 80(1,0) + %EV(T,§)+ Ve . ZSV(T,{)(ﬁV) M(do, ¢, 7)
(5.2)

R W
+L2\U0ZV(T’§)(1+§) N(de,{,7) + \/EQV(T,Z)B ,

v(0, ) = vo(2), Te[0,n],¢ €R.

6. Conclusions
Our research focuses on the averaging principle of SFPDEs driven by Lévy space-time white noise
and fBm. First, using the fixed point theorem, the existence and uniqueness of the mild solution are

proven. Through rigorous mathematical derivation, we obtain convergence estimates for v,
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converging to v. We have found convergence to the limit process as the scale parameter € approaches
zero. The averaging principle proposed in this study eliminates temporal dependence by averaging the
time component 7 in nonlinear functions, thereby significantly reducing computational complexity
and simplifying the application of such equations in practical modeling scenarios.

Focusing on practical applications, the long-range dependence of fBm confers unique modeling
and prediction advantages across various fields, such as image processing, control systems, and, for
instance, long-memory processes in signal processing, high-frequency financial volatility modeling,
etc. In particular, the original equation can be approximated using the simplified equation obtained by
averaging, while retaining its dynamic characteristics as much as possible. This significantly reduces
the computational difficulty in solving more similar practical problems of the above kind. Moreover,
we explicitly highlight the computational challenges as a direction for future research.
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