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Abstract: Estimating the population mean with accuracy is frequently challenged by uncertain
and inaccurate data in survey sampling. This study presents some efficient classes of estimators
for estimating the indeterminate population mean using neutrosophic ranked set sampling (NRSS).
The study establishes the bias and mean squared error (MSE) of the suggested estimators and
compares their performance with the existing neutrosophic estimators. Analytical comparisons show
considerable efficiency benefits over the existing neutrosophic estimators. Simulation research and
executions on real-life datasets confirm the accuracy of the proposed neutrosophic estimators when
dealing with uncertainty. The findings highlight the potential of proposed NRSS estimators as a
powerful tool for population mean estimation by providing new insights into statistical methodologies
for uncertain and imprecise situations.
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1. Introduction

The use of auxiliary information in sampling surveys significantly improves the accuracy of an
estimator because it provides additional information that is directly associated with the variable of
interest. When auxiliary variables are appropriately utilized, they help minimize the variance or mean
square error of the estimator, resulting in lesser standard errors and more precision in parameter
estimations. For instance, in survey sampling, auxiliary variables such as population means, totals,
or variances, which are often accessible, may be integrated into estimation methods utilizing ratio,
regression, or logarithmic estimators. These methods utilize the association between the study and
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auxiliary variables to modify and elevate the estimation process. One may adjust the potential biases
and produce more accurate outcomes by aligning the estimator with the auxiliary information. Several
studies are available in the literature for the estimation of parameters based on auxiliary information. [1]
utilized the auxiliary information and introduced the ratio estimator for population mean. [2] developed
a product estimator for population mean using the auxiliary information. Several modified ratio
estimators were introduced by [3], employing the coefficient of variation as auxiliary information.
Some transformed auxiliary variables were used by [4] to estimate the population mean. [5] suggested
the estimation of finite population distribution functions utilizing auxiliary information in both simple
and stratified random sampling. [6] proposed a two-fold utilization of auxiliary information to estimate
the finite population mean under stratified random sampling. [7] proposed the robust regression-type
estimators to improve the mean estimation of sensitive variables utilising auxiliary information. [8]
evaluated the performance of ratio-exponential-log-type estimators with two auxiliary variables. [9]
designed the quantile regression-ratio-type estimators for mean estimation utilizing complete and
partial auxiliary data. [10] suggested an enhanced estimation of population mean using simple
random sampling. [11] proposed the novel logarithmic imputation procedures based on multi-auxiliary
information under RSS. These studies emphasize advances in estimation methodologies, the use of
auxiliary information, novel sampling strategies, and robust estimators to a meliorate the accuracy and
efficiency in the population parameter estimation.

In survey sampling, the conventional sampling strategies frequently struggle with data that are
unclear, vague, or imprecise. These complexities are increasingly encountered in real-life issues, where
uncertain or indeterminate information arises due to ambiguous definitions, measurement errors, or
inconsistent observations. New strategies that surpass the traditional statistical frameworks are required
to address these issues. Neutrosophic logic was first introduced by [12], which is based on three
components, such as truth, indeterminacy, and falsity. This adaptable structure is perfect for handling
uncertain or indeterminate data, which makes it a perfect tool for contemporary statistical problems.
In the context of survey sampling, [13] firstly introduced the neutrosophic ratio type estimators for
uncertain population mean estimation under SRS. To improve the population mean estimation under
uncertainty, a generalized neutrosophic estimator was developed by [14] using SRS. [15] introduced
the neutrosophic estimators under uncertainty using two-phase sampling, while [16] proposed the
neutrosophic factor-type exponential estimators for enhanced population mean estimation with the use
of auxiliary data. For the estimation of the confined population mean, [17] suggested a neutrosophic
robust ratio-type estimator. [18] suggested using robust parameters of the auxiliary variable to estimate
the neutrosophic finite median.

The classical ranked set sampling (RSS) relies on accurate ranking, which may not be practicable
in real-life situations, including uncertain or incomplete knowledge. Neutrosophic ranked set
sampling (NRSS) is important for enhancing data collection and analysis, especially when handling
imprecise or uncertain information. NRSS incorporates neutrosophic logic to handle uncertainty,
incompleteness, and indeterminacy in ranking algorithms. This method improves sampling efficiency,
generates more representative datasets, and increases the reliability and validity of statistical
conclusions, making it important in environmental research, quality control, and social sciences. Very
limited studies on NRSS are available in the literature for estimating the population parameters. For
the very first time, [19] introduced the concept of NRSS and computed the uncertain population mean
using the generalized estimators. Later on, [20] proposed neutrosophic estimators for population mean
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under NRSS. To efficiently estimate the indeterminate population mean, this paper introduces some
efficient class of estimators under NRSS, which is an improved optimization strategy.

The RSS methodology has been thoroughly investigated and proven to be a more efficient option
than SRS methodology in situations where accurate measurements are difficult, costly, or time-
consuming. This is partly because RSS utilizes supplementary population information in the form
of ranks, resulting in more accurate estimates with fewer measurements. However, while handling
imprecise, inconsistent, or inconclusive data, which is common in a neutrosophic context, measuring
issues become much more apparent. The statistical literature contains different kinds of neutrosophic
data, including quantitative neutrosophic data, which is based on a number existing in an unknown
interval [p, q]. This unknown interval [p, q] based on neutrosophic numbers can be expressed in
different forms. We have taken the neutrosophic interval values as WrssN = WrssL + WrssU IrssN

with IrssN ∈ [IrssL, IrssU], N is here for the neutrosophic number. This shows that the notations utilized
for neutrosophic data are in an interval form, WrssN ∈ [p, q], where ‘p’ and ‘q’ are lower and upper
values of the neutrosophic data.

The NRSS methodology is based on selecting mN ∈ [mL,mU] bivariate random samples of size
mN ∈ [mL,mU] units from a population of size N. The ranking is performed within each sample on
the auxiliary variable xN ∈ [xL, xU] associated with the study variable yN ∈ [yL, yU]. Following [12],
the ranking of neutrosophic numbers can easily be done. In the NRSS, from the first set, choose
the first smallest unit and consider it as the first measurement unit, and discard the rest of the units
of the set. Similarly, from the second set, choose the second smallest unit and consider it as the
second measurement unit, and discard the rest of the units of the set. Continuing this process, from
the mth

N set, choose the mth
N smallest unit and consider it as the mth

N measurement unit, and discard the
rest of the units of the set. This process completes a cycle. If this whole cycle is iterated r times,
then this yields a neutrosophic ranked set sample of size nN = mNr ∈ [nL, nU]. In the extraction of
NRSS data, there is a total of m2

Nr units, but only nN = mNr ∈ [nL, nU] units are required for actual
computation. Let X j(i)N ∈ [X j(i)L, X j(i)U], Y j[i]N ∈ [Y j[i]L, Y j[i]U]; j = 1, 2, ..., r; i = 1, 2, ...,mN , be the pair
of neutrosophic bivariate quantified sets of the ith units in the jth cycle. The ‘[]’ and ‘()’ used in the
subscript of variables yN and xN , respectively, denote the imperfect and perfect ranking of the units.

Let a finite population (U=U1, U2,...,UN) be based on N identifiable units from which a neutrosophic
sample of size nN ∈ [nL, nU] is randomly selected. Let yN(i) be the ith observation of the sample
for the neutrosophic study variable yN expressed as yN(i) ∈ [yL, yU], whereas corresponding to the
neutrosophic study variable, data on the neutrosophic auxiliary variable xN are expressed as xN(i)
∈ [xL, xU]. Let ȳ[n]N ∈ [ȳ[n]L, ȳ[n]U] and x̄(n)N ∈ [x̄(n)L, x̄(n)U] be the neutrosophic ranked set sample
means corresponding to the neutrosophic population means ȲN ∈ [ȲL, ȲU] and X̄N ∈ [X̄L, ȲU] for
the neutrosophic study and auxiliary variables yN and xN , respectively. The neutrosophic variation
coefficients of variables yN and xN are denoted as CyN ∈ [CyL , CyU ] and CxN ∈ [CxL , CxU ], respectively.
The neutrosophic correlation coefficient between the neutrosophic variables xN and yN is denoted by
ρxyN ∈ [ρxyL , ρxyU ]. The neutrosophic skewness and kurtosis coefficients for xN are denoted by β1(xN)
∈ [β1(xL), β1(xU)] and β2(xN) ∈ [β2(xL), β2(xU)], respectively.

To obtain neutrosophic BiasN ∈ [BiasL, BiasU] and neutrosophic MS EN ∈ [MS EL, MS EU] of the
neutrosophic estimators, we take neutrosophic error terms together with their expectations as
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e0N =
(ȳ[n]N − ȲN)

ȲN
,

e1N =
(x̄(n)N − X̄N)

X̄N
,

E(e0N) = E(e1N) = 0,

E(e2
0N) =

C2
yN

nN
−

1
m2

Nr

mN∑
i=1

(µy[i]N − ȲN)2

Ȳ2
N

= V0N ,

E(e2
1N) =

C2
xN

nN
−

1
m2

Nr

mN∑
i=1

(µx(i)N − X̄N)2

X̄2
N

= V1N ,

E(e0Ne1N) =
ρxyNCxNCyN

nN
−

1
m2

Nr

mN∑
i=1

(µx(i)N − X̄N)(µy[i]N − ȲN)

X̄NȲN
= V01N ,



(1.1)

where e0N ∈ [e0L, e0U], e1N ∈ [e1L, e1U], ȳ[n]N =
∑mN

i=1 y[i]N/mNr, x̄(i)N =
∑mN

i=1 x(i)N/mNr, C2
xN

= σ2
xN
/X̄2

N ,
C2

yN
= σ2

yN
/Ȳ2

N , ρxyN = σxyN/σxNσyN , σ2
xN
∈ [σ2

xL
, σ2

xU
], σ2

yN
∈ [σ2

yL
, σ2

yU
], and σxyN ∈ [σxyL , σxyU ].

The coming section offers an extensive review of the available and adapted neutrosophic estimators
under NRSS together with their properties. The proposed class of neutrosophic estimators and their
properties are established in Section 3. Section 4 contains analytical comparisons, a comprehensive
simulation study based on a hypothetically drawn population, and the applications of the proposed
estimators based on a neutrosophic real data sets. The results are discussed in Section 5. The article
ends with the conclusions in Section 6.

2. Existing estimators

In survey sampling, many times, the neutrosophic auxiliary information is not available. In such
cases, the sample mean ȳ[n]N =

∑mN
i=1 y[i]N/mNr of the neutrosophic study variable serves as an unbiased

estimate of the neutrosophic population mean ȲN . The variance of the sample mean ȳ[n]N is given under
NRSS as

V(ȳ[n]N) = Ȳ2
NV0N .

Employing neutrosophic auxiliary data and following [19, 21], the neutrosophic ratio estimator trN for
population mean ȲN under NRSS was prescribed as

trN = ȳ[n]N

(
X̄N

x̄(n)N

)
.

The bias and MSE of the estimator trN are given by

Bias(trN ) = ȲN(V1N − V01N),
MS E(trN ) = Ȳ2

N(V0N + V1N − 2V01N).
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Following [22], we prescribe the neutrosophic regression estimator tlrN for the population mean ȲN

under NRSS as

tlrN = ȳ[n]N + βN(X̄N − x̄(n)N),

where βN is the neutrosophic regression coefficient of yN on xN . The bias and MSE of the estimator tlrN

are given by

Bias(tlrN ) = 0,
MS E(tlrN ) = Ȳ2

NV0N + β2
N X̄2

NV1N − 2βNȲN X̄NV01N .

The minimum MSE of the estimator tlrN at the optimum value of βN(opt) = ȲNV01N/X̄NV1N is given by

min.MS E(tlrN ) = Ȳ2
N

(
V0N −

V2
01N

V1N

)
.

Referring to the work of [23], we prescribe the neutrosophic logarithmic estimator for ȲN under
NRSS as

tbkN = ȳ[n]N

(
1 + log

x̄(n)N

X̄N

)ηN

,

where ηN is a suitably chosen scalar. The bias and MSE of the estimator tbkN are given as

Bias(tbkN ) = ȲN

(
1 −

V1N

2
+ V01N

)
,

MS E(tbkN ) = Ȳ2
N(V0N + V1N + 2V01N).

The minimum MSE of the estimator tbkN at the optimum value of ηN(opt) = −V01N/V1N is given by

min.MS E(tbkN ) = Ȳ2
N

(
V0N −

V2
01N

V1N

)
.

Inspired by [19], [24] utilized different neutrosophic auxiliary information and introduced some ratio-
type estimators under NRSS as

tvs1N = ȳ[n]N

(
X̄N + CxN

x̄(n)N + CxN

)
,

tvs2N = ȳ[n]N

(
X̄N + β2(xN)

x̄(n)N + β2(xN)

)
,

tvs3N = ȳ[n]N

(
β2(xN)X̄N + CxN

β2(xN)x̄(n)N + CxN

)
,

tvs4N = ȳ[n]N

(
CxN X̄N + β2(xN)

CxN x̄(n)N + β2(xN)

)
.

The bias and MSE of the estimators tvsiN , i = 1, 2, 3, 4, are given by

Bias(tvsiN ) = ȲNλiN(λiNV1N − V01N),

AIMS Mathematics Volume 10, Issue 4, 8946–8964.



8951

MS E(tvsiN ) = Ȳ2
N

(
V0N + λ2

iNV1N − 2λiNV01N

)
,

where λ1N = X̄N/(X̄N + CxN ), λ2N = X̄N/(X̄N + β2(xN)), λ3N = β2(xN)X̄N/(β2(xN)X̄N + CxN ), and
λ4N = CxN X̄N/(CxN X̄N + β2(xN)).
To estimate the population mean ȲN under indeterminacy, [20] suggested the following neutrosophic
estimator under NRSS as

tsk1N = ȳ[n]N(g1N + 1) + ȳ[n]Ng2N log
(

x̄(n)N

X̄N

)
,

where g1N and g2N are suitably chosen scalars. The bias and MSE of the estimator tsk1N are given by

Bias(tsk1N ) = ȲN

{
g1N + g2N

(
V01N −

1
2

V1N

)}
,

MS E(tsk1N ) = Ȳ2
N

(
L1 + g2

1N M1 + g2
2N N1 + 2g1N L1 + 2g2NO1 + 2g1Ng2N E1

)
,

where L1 = V0N , M1 = (1 + V0N), N1 = V1N , O1 = V01N , and P1 = 2V01N −
1
2V1N .

The minimum MSE of the estimator tsk1N at the optimum values of g1N = (O1P1 − L1N1)/(M1N1 − P2
1),

g2N = (L1P1 − O1M1)/(M1N1 − P2
1) is given as

min.MS E(tsk1N ) = Ȳ2
N

{
L1 −

M1O2
1 + L2

1N1 − 2L1O1P1

(L1N1 − P2
1)

}
.

Further, to efficiently estimate the population mean ȲN under indeterminacy, [20] also suggested two
more neutrosophic estimators for ȲN under NRSS as

tsk2N = g3N ȳ[n]N + g4N ȳ[n]N exp
(

X̄N − x̄(n)N

X̄N + x̄(n)N

) (
1 + log

x̄(n)N

X̄N

)
,

tsk3N = g5N ȳ[n]N + g6N ȳ[n]N

(
X̄

x̄(n)N

)
exp

(
X̄N − x̄(n)N

X̄N + x̄(n)N

)
.

where g3N , g4N , g5N , and g6N are suitably chosen neutrosophic scalars. The bias and MSE of the
estimators tski , i = 2, 3, are given by

Bias(tsk2N ) = ȲN

{
g3N + g4N

(
1 +

1
2

V01N −
5
8

V1N

)
− 1

}
,

Bias(tsk3N ) = ȲN

{
g5N + g6N

(
1 +

15
8

V2
1N −

3
2

V01N

)
− 1

}
,

MS E(tsk2N ) = Ȳ2
N

(
1 + g2

3N L2 + g2
4N M2 + 2g3Ng4N N2 − 2g3NO2 − 2g4N P2

)
,

MS E(tsk3N ) = Ȳ2
N

(
1 + g2

5N L3 + g2
6N M3 + 2g5Ng6N N3 − 2g5NO3 − 2g6N P3

)
,

where

L2 = 1 + V0N , M2 = 1 + V0N − V1N + 2V01N , N2 =

(
1 + V0N −

5
8

V1N + V01N

)
,
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O2 = 1, P2 = 1 −
5
8

V1N +
1
2

V01N , L3 = 1 + V0N , M3 = (1 + V0N + 6V1N − 6V01),

O3 = 1, N3 =

(
1 + V0N +

15
8

V1N − 3V01

)
, and P3 =

(
1 +

15
8

V1N −
3
2

V01

)
.

The minimum MSE of the estimators tskiN , i = 2, 3, at the optimal values of g3N

= (M2O2 − N2P2)/(L2M2 − N2
2 ), g4N = (P2L2−N2O2)/(L2M2−N2

2 ), g5N = (O3M3−N3P3)/(L3M3−N2
3 )

and g6N = (L3P3 − N3O3)/(L3M3 − N2
3 ) is given by

min.MS E(tskiN ) = Ȳ2
N

{
1 −

(LiP2
i + MiO2

i − 2NiOiPi)
(LiMi − N2

i )

}
.

3. Proposed classes of estimators

The purpose of proposing the efficient classes of estimators under NRSS is due to the limits of the
existing traditional estimators in handling the uncertainty and imprecision inherent in real-life data.
The traditional estimation approaches fail to produce efficient estimates in the presence of uncertain or
inconsistent data. Moreover, most of the existing estimators utilizing the NRSS framework were found
to be inefficient or perform poorly due to their inability to properly utilize the additional information
furnished by NRSS. We achieve improved efficiency under uncertain environments by proposing the
following efficient classes of estimators utilizing NRSS.

ta1N =

[
ϕ1N ȳ[n]N + δ1N ȳ[n]N

{
X̄N

θx̄(n)N + (1 − θ)X̄N

}g] (
1 + log

x̄(n)N

X̄N

)ηN

,

ta2N =
{
ϕ2N ȳ[n]N + δ2N

(
x̄(n)N − X̄N

)} (
1 + log

x̄(n)N

X̄N

)ηN

,

where ϕiN , i = 1, 2, δiN , and ηN are the suitably chosen neutrosophic scalars. Also, g and θ are constants
taking real values to generate different estimators.

Theorem 3.1. The bias, MSE, and minimum MSE of the proposed estimators taiN , i = 1, 2 at the
optimum values ϕiN(opt) = (BiN DiN−CiN EiN)/(AiN BiN−C2

iN) and δiN(opt) = (AiN EiN−CiN DiN)/(AiN BiN−

C2
iN) are given up to first-order approximation as follows:

Bias(taiN ) = ȲN(ϕiN DiN + δiN EiN − 1),

MS E(taiN ) = Ȳ2
N

(
1 + ϕ2

iN AiN + δ2
iN BiN + 2ϕiNδiNCiN − 2ϕiN DiN − 2δiN EiN

)
,

min.MS E(taiN ) = Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
,

where

A1N = 1 + V0N + 2ηN(ηN − 1)V1N + 4ηNV01N ,

B1N = 1 + V0N +
(

2η2
N − 2ηN + g2θ2 + g(g + 1)θ2 − 4ηNgθ

)
V1N + 4(ηN − gθ)V01N ,

C1N = 1 + V0N +
(

2η2
N − 2ηNgθ − 2ηN +

g(g+1)
2 θ2

)
V1N + 2(2ηN − gθ)V01N ,
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D1N = 1 +

(
η2

N

2
− ηN

)
V1N + ηNV01N ,

E1N = 1 +

(
η2

N

2
− ηN − ηNgθ +

g(g + 1)
2

θ2
)

V1N + (ηN − gθ)V01N ,

A2N = 1 + V0N + 2ηN(ηN − 1)V1N + 4ηNV01N ,

B2N =
V1N

R2
N

,

C2N =
1

RN
(2ηNV1N + V01N),

D2N = 1 +

(
η2

N

2
− ηN

)
V1N + ηNV01N ,

E2N =
ηNV1N

RN
,

RN =
ȲN

X̄N
.

Proof. Refer to Appendix A. �

4. Analytical comparisons

Analytical comparisons of the MSEs of proposed and available estimators under NRSS are crucial
for determining their relative efficiency. Such comparisons produce a clear quantitative estimate of
the accuracy and precision of the estimators under different settings. The proposed estimators may
outperform by exhibiting lower MSEs, which validates their theoretical benefits and practical usability.
The comparison also illustrates the conditions in which the proposed estimators excel, providing useful
insights for opting the best estimator for real-life applications, especially while handling uncertainty in
the context of NRSS.

i. The proposed estimators taiN , i = 1, 2, outperform the neutrosophic sample mean ȳ[n]N , when

min.MS E(taiN ) < V(ȳ[n]N)

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

NV0N

1 −
(AiN E2

iN + BiN D2
iN − 2CiN DiN EiN)

(AiN BiN −C2
iN)

< V0N

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)
> 1 − V0N .

ii. The proposed estimators taiN , i = 1, 2, outperform the neutrosophic ratio estimator trN , when

min.MS E(taiN ) < MS E(trN )

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

N(V0N + V1N − 2V01N)
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(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)
> 1 − (V0N + V1N − 2V01N).

iii. The proposed estimators taiN , i = 1, 2, outperform the neutrosophic regression estimator tlrN , when

min.MS E(taiN ) < min.MS E(tlrN )

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

N

(
V0N −

V2
01N

V1N

)
(AiN E2

iN + BiN D2
iN − 2CiN DiN EiN)

(AiN BiN −C2
iN)

> 1 −
(
V0N −

V2
01N

V1N

)
.

iv. The proposed estimators taiN , i = 1, 2, outperform the neutrosophic estimators tvsiN , i = 1, 2, 3, 4,
envisaged by [19], when

min.MS E(taiN ) < MS E(tvsiN )

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

N

(
V0N + λ2

iNV1N − 2λiNV01N

)
(AiN E2

iN + BiN D2
iN − 2CiN DiN EiN)

(AiN BiN −C2
iN)

> 1 −
(
V0N + λ2

iNV1N − 2λiNV01N

)
.

v. The proposed estimators taiN , i = i = 1, 2, outperform the neutrosophic estimator tsk1N envisaged
by [20], when

min.MS E(taiN ) < min.MS E(tsk1N )

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

N

{
L1 −

M1O2
1 + L2

1N1 − 2L1O1P1

(L1N1 − P2
1)

}
(AiN E2

iN + BiN D2
iN − 2CiN DiN EiN)

(AiN BiN −C2
iN)

> 1 −
{

L1 −
M1O2

1 + L2
1N1 − 2L1O1P1

(L1N1 − P2
1)

}
.

vi. The proposed estimators taiN , i = 1, 2, outperform the neutrosophic estimator tsk2N envisaged
by [20] when

min.MS E(taiN ) < min.MS E(tsk2N )

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

N

{
1 −

L2P2
2 + M2O2

2 − 2N2O2P2

(L2M2 − N2
2 )

}
(AiN E2

iN + BiN D2
iN − 2CiN DiN EiN)

(AiN BiN −C2
iN)

>
L2P2

2 + M2O2
2 − 2N2O2P2

(L2M2 − N2
2 )

.

vii. The proposed estimators taiN , i = 1, 2, outperform the neutrosophic estimator tsk3N envisaged
by [20], when

min.MS E(taiN ) < min.MS E(tsk3N )

Ȳ2
N

{
1 −

(AiN E2
iN + BiN D2

iN − 2CiN DiN EiN)
(AiN BiN −C2

iN)

}
< Ȳ2

N

{
1 −

L3P2
3 + M3O2

3 − 2N3O3P3

(L3M3 − N2
3 )

}
(AiN E2

iN + BiN D2
iN − 2CiN DiN EiN)

(AiN BiN −C2
iN)

>
L3P2

3 + M3O2
3 − 2N3O3P3

(L3M3 − N2
3 )

.
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The above efficiency conditions will further be evaluated through a simulation study and a real
data illustration.

4.1. Simulation study

In this section, a simulation study is conducted to evaluate the performance of the neutrosophic
estimators by artificially generating a population from neutrosophic normal (NN) distribution using
R-Software. For this population, an artificial dataset of size N=1000 was constructed by assuming
that xN ∼ NN([14, 18], [49, 81]) and yN ∼ NN([10, 12], [36, 64]) with different correlations among
auxiliary and study variables ρxyN ∈ [(0.2, 0.3), (0.4, 0.5), (0.6, 0.7), (0.8, 0.9)]. From this population, a
neutrosophic ranked set sample of size nN = (12, 12) is drawn with set size mN = [3, 3] and number
of cycles r = 4. The necessary descriptive statistics are computed for this dataset. With 5000
iterations, the simulated dataset enabled the estimation of MS EN ∼ [MS EL,MS EU] along with
relative efficiency (RE) REN ∼ [REL,REU], indicating the comparative performance of the proposed
and existing neutrosophic estimators. The MS EN ∼ [MS EL,MS EU] and REN ∼ [REL,REU] are
computed by utilizing the following formulas:

MS EN(T ∗) =
1

5, 000

5,000∑
i=1

(T ∗i − ȲN)2, (4.1)

REN =
MS EN(ȳ[n]N)
MS EN(T ∗)

. (4.2)

where T ∗ = ȳ[n]N , trN , tlrN , tbkN , tvsiN , i = 1, 2, 3, 4, tskiN , i = 1, 2, 3, and taiN , i = 1, 2.
The simulated MS EN and REN are reported in Tables 1 and 2, respectively, for different values of

correlation coefficient ρxyN . These MS EN and REN values are presented by bar diagrams in Figures 1
and 2, respectively.

Table 1. MS EN ∈ [MS EL,MS EU] of neutrosophic estimators using neutrosophic
normal population.

ρxyN

Estimators (0.2, 0.3) (0.4, 0.5) (0.6, 0.7) (0.8, 0.9)
ȳ[n]N (3.090, 5.499) (3.086, 5.442) (3.044, 5.344) (2.973, 5.183)
trN (4.221, 6.874) (3.945, 6.368) (3.622, 5.817) (3.278, 5.225)
tlrN (2.796, 4.943) (2.742, 4.772) (2.620, 4.504) (2.440, 4.127)
tbkN (2.796, 4.943) (2.742, 4.772) (2.620, 4.504) (2.440, 4.127)
tvs1N (4.124, 6.773) (3.859, 6.279) (3.546, 5.741) (3.210, 5.159)
tvs2N (4.430, 7.085) (4.132, 6.552) (3.789, 5.976) (3.424, 5.361)
tvs3N (5.281, 7.582) (4.801, 6.554) (4.205, 6.191) (4.298, 6.837)
tvs4N (4.708, 7.347) (4.388, 6.785) (4.018, 6.177) (3.626, 5.532)
tsk1N (2.702, 4.735) (2.651, 4.579) (2.537, 4.334) (2.369, 3.986)
tsk2N (2.689, 4.708) (2.634, 4.543) (2.516, 4.292) (2.345, 3.940)
tsk3N (2.689, 4.708) (2.634, 4.543) (2.516, 4.292) (2.345, 3.940)
ta1N (2.685, 4.697) (2.629, 4.531) (2.510, 4.277) (2.339, 3.924)
ta2N (2.686, 4.699) (2.630, 4.533) (2.511, 4.279) (2.340, 3.925)
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Table 2. REN ∈ [REL,REU] of neutrosophic estimators using neutrosophic
normal population.

ρxyN

Estimators (0.2, 0.3) (0.4, 0.5) (0.6, 0.7) (0.8, 0.9)
ȳ[n]N (1.000, 1.000) (1.000, 1.000) (1.000, 1.000) (1.000, 1.000)
trN (0.731, 0.799) (0.782, 0.854) (0.840, 0.918) (0.907, 0.991)
tlrN (1.105, 1.112) (1.125, 1.140) (1.161, 1.186) (1.218, 1.255)
tbkN (1.105, 1.112) (1.125, 1.140) (1.161, 1.186) (1.218, 1.255)
tvs1N (0.749, 1.168) (0.799, 0.866) (0.858, 0.930) (0.926, 1.004)
tvs2N (0.697, 0.776) (0.746, 0.830) (0.803, 0.894) (0.868, 0.966)
tvs3N (0.585, 0.725) (0.642, 0.830) (0.723, 0.863) (0.691, 0.758)
tvs4N (0.656, 0.748) (0.703, 0.802) (0.757, 0.865) (0.820, 0.936)
tsk1N (1.143, 1.161) (1.164, 1.188) (1.199, 1.233) (1.254, 1.300)
tsk2N (1.148, 1.168) (1.171, 1.197) (1.209, 1.245) (1.267, 1.315)
tsk3N (1.148, 1.168) (1.171, 1.197) (1.209, 1.245) (1.267, 1.315)
ta1N (1.151, 1.171) (1.174, 1.201) ( 1.213, 1.251) (1.271, 1.321)
ta2N (1.150, 1.170) (1.173, 1.201) (1.212, 1.250) (1.271, 1.320)
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Figure 1. Diagrams of the neutrosophic estimators for the MS EN of Table 1.
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Figure 2. Diagrams of the neutrosophic estimators for the REN of Table 2.

4.2. Real data applications

Executing real-world data applications in any study greatly increases its relevance and effect. The
use of real-world data helps to evaluate the theoretical results in practical contexts and demonstrates
their usefulness and robustness under realistic conditions. In this study, we have used two different
real-world indeterminate data sets.

Stock price data is related to indeterminate data due to the uncertainty and imprecision associated
with the financial markets. The data set 1 is based on the daily price of the stock ‘Moderna’, which
can be obtained from the publicly available website https://finance.yahoo.com/quote/MRNA/history/.
The neutrosophic survey variable yN ∈ [yL, yU] is the varying price of the stock on each day from 1
September 2020 to 1 September 2021, while the neutrosophic auxiliary variable xN ∈ [xL, xU] is the
varying price of the stock on each day from 1 September 2019 to 1 September 2020.

The sample registration system (SRS) offers accurate yearly estimates for natural growth rate,
birth rate, death rate, and other fertility and mortality indicators at national and subnational
levels. Every year, the office of the Registrar General of India (RGI) conducts a large-
scale demographic census throughout all states and union territories. The data set 2 is
based on the SRS bulletin 2020, which can be obtained from the publicly available website
https://censusindia.gov.in/nada/index.php/catalog/42687. In this data, the neutrosophic survey variable
yN ∈ [yL, yU] is the natural growth rate for the year 2020 for India, while the neutrosophic auxiliary
variable xN ∈ [xL, xU] is the birth rate for the year 2020 for India.
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The descriptive values of both data sets are given in Table 3. Utilizing these descriptive values, the
MS EN and REN are calculated for both data sets and reported in Table 4. The REN is calculated using
the following formula:

REN =
MS E(ȳ[n]N)
MS E(T ∗)

. (4.3)

Table 3. Descriptive values of datasets 1 and 2.

Neutrosophic parameters Dataset 1 Dataset 2
N 252 36
nN (12, 12) (12, 12)
ȲN (162.973, 174.228) (9.755, 11.766)
X̄N (35.940, 38.762) (14.708, 17.938)
CyN (0.547, 0.559) (0.353, 0.372)
CxN (0.603, 0.607) (0.225, 0.239)
ρxyN (0.829, 0.804) ( 0.965, 0.955)
β1(xN) (0.642, 0.622) (0.675, 0.552)
β2(xN) (1.778, 1.817) (2.591, 2.239)

Table 4. MS EN and REN of the neutrosophic estimators for real datasets.

Dataset 1 Dataset 2
Estimators (MS EL, MS EU) (REL, REU) (MS EL, MS EU) (REL, REU)

ȳ[n]N (662.606, 789.791) (1.000, 1.000) (0.975, 1.562) (1.000, 1.000)
trN (122.853, 200.171) (5.393, 3.945) (0.173, 0.244) (5.608, 6.382)
tlrN (118.482, 190.140) (5.592, 4.153) (0.067, 0.084) (14.421, 18.578)
tbkN (118.482, 190.140) (5.592, 4.153) (0.067, 0.084) (14.421, 18.578)
tvs1N (121.274, 197.652) (5.463, 3.995) (0.180, 0.253) (5.413, 6.162)
tvs2N (119.278, 193.859) (5.555, 4.074) (0.243, 0.325) (3.998, 4.800)
tvs3N (121.916, 198.731) (5.434, 3.974) (0.176, 0.248) (5.531, 6.282)
tvs4N (118.509, 191.542) (5.591, 4.123) (0.428, 0.546) (2.274, 2.861)
tsk1N (117.842, 189.971) (5.622, 4.157) (0.064, 0.078) (15.121, 19.990)
tsk2N (114.796, 183.967) (5.772, 4.293) ( 0.067, 0.083) (14.441, 18.616)
tsk3N (114.796, 183.967) (5.772, 4.293) (0.067, 0.083) (14.441, 18.616)
ta1N (111.247, 179.592) (5.956, 4.397) (0.064, 0.078) (15.234, 20.025)
ta2N (88.456, 156.815) (7.490, 5.036) (0.063, 0.077) (15.725, 20.037)

From the results of Table 4, it can be seen that the proposed neutrosophic estimators taiN , i = 1, 2,
perform better than the neutrosophic mean estimator ȳ[n]N , the neutrosophic ratio estimator trN , the
neutrosophic regression estimator tlrN , the neutrosophic logarithmic estimator tbkN , the neutrosophic
ratio type estimators tvsiN , i = 1, 2, 3, 4, suggested by [19], and the [20] estimators by minimum MS EN

and maximum REN .
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5. Interpretation of results

The efficiency conditions obtained under analytical comparison show that the proposed
neutrosophic estimators dominate the existing neutrosophic estimators. These conditions have been
evaluated through a simulation study carried out on artificially generated uncertain data. Furthermore,
these conditions are evaluated by two real-life applications: One involving the analysis of stock
market data to evaluate the financial trends and decision-making processes and the other utilizing the
demographic data to examine patterns and insights related to population dynamics and social behaviors.
These results are interpreted in the following points:

(i) Table 1 contains the simulated MS EN of the neutrosophic estimators, from which it can be seen
that the MS EN of the proposed neutrosophic estimators taiN , i = 1, 2, is minimum compared to
the neutrosophic ratio estimator trN , the neutrosophic regression estimator tlrN , the neutrosophic
logarithmic estimator tbkN , [19] estimators tvsiN , i = 1, 2, 3, 4, and [20] estimators tskiN , i = 1, 2, 3,
for passably chosen values of ρxyN . This shows the outperformance of the proposed class of
neutrosophic estimators over the existing neutrosophic estimators. Moreover, the MS EN values
of the proposed neutrosophic estimators taiN , i = 1, 2, decrease as the correlation coefficient ρxyN

increases. This dominance can easily be seen from Figure 1.
(ii) The simulated REN of the neutrosophic estimators is given in Table 2, which shows that the REN

of the proposed neutrosophic estimators taiN , i = 1, 2, is higher compared to the neutrosophic ratio
estimator trN , the neutrosophic regression estimator tlrN , the neutrosophic logarithmic estimator
tbkN , the modified neutrosophic ratio estimators tvsiN , i = 1, 2, 3, 4, proposed by [19], and the [20]
estimators tskiN , i = 1, 2, 3, for passably chosen values of ρxyN . This shows the outperformance
of the proposed class of neutrosophic estimators over the existing neutrosophic estimators.
Additionally, the REN values of the proposed neutrosophic estimators taiN , i = 1, 2, increase
as the correlation coefficient ρxyN increases. This dominance can easily be seen from Figure 2.

(iii) Lastly, the real data findings of the neutrosophic estimators are given by MS EN and REN in
Table 4 for both datasets. From Table 4, for both datasets, the proposed neutrosophic estimators
taiN , i = 1, 2, obtain the least MS EN and the highest REN compared to the existing neutrosophic
estimators. This shows that the proposed class of neutrosophic estimators is more efficient than
the existing neutrosophic estimators.

6. Conclusions

Neutrosophic ranked set sampling is an extension of the traditional ranked set sampling. By
introducing neutrosophic logic into the RSS framework, we effectively addressed the inherent
uncertainties and imprecisions in ranking units that frequently occur in real-world scenarios. It is
particularly useful when ranking errors occur due to vague or incomplete information, enhancing
sampling efficiency in uncertain environments.

In this article, we proposed some efficient classes of estimators for estimating the indeterminate
population mean using NRSS. The bias and MSE expressions of the proposed estimators were reported
up to first-order approximation. The analytical comparisons of the proposed estimators with the
existing competitors demonstrated the outperformance of the proposed estimators. The theoretical
results were exemplified with the simulation study and real data illustrations. The simulation and real
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data findings showed that the proposed neutrosophic estimators outperform the existing neutrosophic
estimators in terms of reduced MS EN and maximum REN when dealing with uncertain data. The
strength of this study is that the proposed estimators established a substantial improvement in the
statistical techniques for indeterminate population mean estimation, providing a valuable tool for
survey practitioners.

Future research might broaden the proposed work by investigating different scenarios of
neutrosophy and applying it to real-world case studies in areas including environmental science, health,
and social sciences.
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Appendix A

Proof of Theorem 3.1.

Proof. Take the proposed estimator ta1N as

ta1N =

[
ϕ1N ȳ[n]N + δ1N ȳ[n]N

{
X̄N

θx̄(n)N + (1 − θ)X̄N

}g] (
1 + log

x̄(n)N

X̄N

)ηN

.

Using the notations defined in (1.1), we rewrite the proposed estimator ta1N as

ta1N = ȲN(1 + e0N)
{ (
ϕ1N + δ1N

[
X̄N

θX̄N (1+e1N )+(1−θ)X̄N

]g)
×

[
1 + log X̄N (1+e1N )

X̄N

]ηN
}

= ȲN(1 + e0N)
[ {
ϕ1N + δ1N

(
1

θ+θe1N+1−θ

)g}
×

{
1 + log (1 + e1N)

}ηN
]

= ȲN(1 + e0N)
{
ϕ1N + δ1N(1 + θe1N)−g} {1 + log(1 + e1N)

}ηN .

Expanding the right side expression, multiplying out and neglecting the error terms with power greater
than two, we get

ta1N = ȲN(1 + e0N)


[
ϕ1N + δ1N

(
1 − gθe1N +

g(g+1)
2 θ2

Ne2
1N

)][
1 +

(
ηNe1N − ηNe2

1N +
η2

N
2 e2

1N

)]  .
Simplifying and subtracting ȲN both side, we get

ta1N − ȲN = ȲN


ϕ1N

{
1 + e0N + ηNe1N +

(
η2

N
2 − ηN

)
e2

1N + ηNe0Ne1N

}
+

δ1N


1 + e0N + (ηN − gθ)e1N

+

(
η2

N
2 − ηN − ηNgθ +

g(g+1)
2 θ2

)
e2

1N

+(ηN − gθ)e0Ne1N

 − 1


. (6.1)
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Taking expectation both side to (6.1), we get

Bias(ta1N ) = ȲN


ϕ1N

{
1 + ( η

2
N
2 − ηN)V0N + ηNV01N

}
+δ1N

 1 +

(
η2

N
2 − ηN − ηNgθ +

g(g+1)
2 θ2

)
V1N

+(ηN − gθ)V01N

 − 1

 .
Again, squaring both side to (6.1) and taking expectation, we get the MSE of the proposed class
of estimators

MS E(ta1N ) = Ȳ2
N



1 + ϕ2
1N {1 + V0N + 2ηN(ηN − 1)V1N + 4ηNV01N}

+δ2
1N

 1 + V0N +

(
2η2

N − 2ηN + g2θ2

+g(g + 1)θ2 − 4ηNgθ

)
V1N

+4(ηN − gθ)V01N


+2ϕ1Nδ1N

 1 + V0N +

(
2η2

N − 2ηNgθ − 2ηN

+
g(g+1)

2 θ2

)
V1N

+2(2ηN − gθ)V01N


−2ϕ1N

{
1 +

(
η2

N
2 − ηN

)
V1N + ηNV01N

}
−2δ1N

 1 +

(
η2

N
2 − ηN − ηNgθ +

g(g+1)
2 θ2

)
V1N

+(ηN − gθ)V01N




=

(
1 + ϕ2

1N A1N + δ2
1N B1N + 2ϕ1Nδ1NC1N − 2ϕ1N D1N − 2δ1N E1N

)
, (6.2)

where,

A1N = 1 + V0N + 2ηN(ηN − 1)V1N + 4ηNV01N ,

B1N = 1 + V0N +
(

2η2
N − 2ηN + g2θ2 + g(g + 1)θ2 − 4ηNgθ

)
V1N + 4(ηN − gθ)V01N ,

C1N = 1 + V0N +
(

2η2
N − 2ηNgθ − 2ηN +

g(g+1)
2 θ2

)
V1N + 2(2ηN − gθ)V01N ,

D1N = 1 +

(
η2

N

2
− ηN

)
V1N + ηNV01N ,

E1N = 1 +

(
η2

N

2
− ηN − ηNgθ +

g(g + 1)
2

θ2
)

V1N + (ηN − gθ)V01N .

The optimal values of ϕ1N and δ1N can be determined by minimizing (6.2) as

ϕ1N(opt) =
(B1N D1N −C1N E1N)

(A1N B1N −C2
1N)

and δ1N(opt) =
(A1N E1N −C1N D1N)

(A1N B1N −C2
1N)

.

Putting the above optimum values ϕ1N(opt) and δ1N(opt) in (6.2), we get

min.MS E(ta1N ) = Ȳ2
N

{
1 −

(A1N E2
1N + B1N D2

1N − 2C1N D1N E1N)

(A1N B1N −C2
1N)

}
. (6.3)

�
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The outline of the derivation of proposed estimator ta2N can be done on the similar lines.
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