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Abstract: This work studies a fractional model in the context of the fractal-fractional operator
involving a power law kernel for waste plastic in the ocean consisting of waste plastic material,
marine debris, and reprocessing. The novelty of this study lies in utilizing the fractal-fractional
framework to analyze the behavior of the proposed model and derive qualitative theoretical results. We
investigated the equilibrium points and analyzed their stability using the basic reproduction number.
We examined the global stability of possible equilibrium points, as well as their unstable conditions.
The sensitivity analysis can also help to better understand the model’s dynamics better. The existence
and uniqueness of results were studied by utilizing Banach’s contraction mapping principle, while
Ulam’s stability for the proposed model was also investigated. Furthermore, we derived the numerical
algorithms by utilizing four different techniques, including the decomposition, Adams-Bashforth,
Newton polynomial, and predictor-corrector methods. By providing the input factor values, we
illustrated the graphic numerical simulations to enhance our understanding of the waste plastic process
and optimize the control strategies. Moreover, we compare ordinary, fractional, and fractal-fractional
derivatives in the sense of the Caputo type with the reported real data of 70 years.
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1. Introduction

Marine debris is currently a major environmental concern. It consists of human-made waste
that has been purposefully or unintentionally dumped into oceans, rivers, and other vast bodies of
water. There are many types of marine debris, but the most common type is plastic. Plastic is now
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widely used in everyday objects like plastic bags, water bottles, and food containers and in large-
scale industries like consumer goods production and the electronics and automotive industries. It
is made from chemical compounds known as polymers, synthesized by chemicals primarily derived
from petroleum and natural gas. Its advantages include being lightweight, durable, water-resistant,
hygienic, cheap producing cost, and versatile in its applications. Plastic containers and products
significantly impact both environmental productivity and worldwide economic growth. However, even
though plastics offer numerous advantages, the ecological impact and the need for responsible use
must also be considered. Due to the large amount of plastic manufactured, as well as its durability and
resistance to degradation, plastic has become a serious environmental issue, resulting in plastic waste
in the environment, particularly in the ocean. When plastic garbage is not suitably handled, it can have
severe consequences for ecosystems, sea animals, and human health. Plastic disposal and degradation
are lengthy processes influenced by various factors, including the type of plastic and environmental
conditions. Many countries have programs to limit plastic use, including developing plastic reusable
technologies. Recycling plastic is one key potential solution for reducing waste plastic. It involves
several key steps to transform discarded plastic items into new products.

Mathematical models are popularly utilized in the areas of natural sciences, engineering, and social
science to simulate natural phenomena in real-world problems. Many researchers are interested in
topics where plastic waste problems are being modeled with the goal of reducing the large amounts
of garbage in the environment, a mounting crisis. With the help of mathematical models, researchers
can better comprehend and address the complicated issue of waste plastic, resulting in more effective
solutions and sustainable practices. Some works of literature on the waste plastic issue have been
studied and published, such as Nuwairan et al. [1] who applied an artificial neural network method and
the Levenberg-Marquardt backpropagation characteristic to study the nonlinear mathematical form for
the management of waste plastic on the ocean (WPO) surface. Chaturvedi et al. [2] used mathematical
modeling to analyze the pollution of plastic waste and its effect on the ocean system. To anticipate
yearly plastic production volume and waste generation, Addor et al. [3] created a basic cyclical
dynamic closed model that reflects the whole plastic life cycle. Their works used the Laplace transform
technique as the solution methodology and predicted the values of global plastic yearly production and
waste generation by specialized techniques. Lzadi et al. [4] investigated and studied the model of an
ocean waste plastic management system.

Fractional calculus is a field of mathematical analysis that differs from and builds on the capabilities
of traditional calculus. It generalizes the ideas of differentiation and integration to arbitrary orders,
whereas traditional calculus deals with integer orders. With the restriction of integer-order operations,
the analysis of mathematical models utilizing fractional derivatives rather than traditional derivatives
yields more realistic and meaningful insights that are easier to comprehend because it allows any
rational number as an order. Fractional derivatives give a powerful instrument for simulating and
analyzing systems with memory and hereditary properties. It can describe heredity phenomena in
the dynamical system, making it popularly applicable in various domains, including mathematics,
physics, engineering, biology, medicine, and finance. Several fractional operators have been invented,
each with unique properties and applications, such as Riemann-Liouville (RL), Caputo, Hadamard,
Caputo-Fabrizio, Katugampola, Hilfer, and (k, ψ)-Hilfer proportional [5–10]. Recently, Atangana [11]
introduced the concept of fractal-fractional (FF) operators, which integrate principles from both
fractional and fractal calculus. These operators can be formulated using various kernel functions,
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including the power law, the exponential law, and the Mittag-Leffler function. A key feature of fractal-
fractional order differential equations is their ability to transform both the order and the dimension
of a system into arbitrary rational values, thereby providing a more comprehensive framework for
modeling complex real-world phenomena. The role of fractional operators has incredibly impactful
real-world applications in many fields, such as engineering, biology, physics, and medicine. For
various examples of fractional calculus applications with different areas of study, the reader may
refer to [12–15] and its references. Moreover, according to the review of several articles on waste
plastic in the ocean, there is not much direct research on this topic corresponding with fractional-
order operators. Here, we introduce some related works: Nuwairan et al. [16] studied numerical
investigation for a fractional order in the sense of RL of the management of waste plastic in the
ocean. Joshi et al. [17] studied a model under the Caputo fractional derivative operator for the plastic
waste model to understand the effect of burned plastic and reused plastic on air pollution. Priya and
Sabarmathi [18] applied the Atangana-Baleanu-Caputo derivative operator for the model of micro-
plastic pollution in soil and its impact on the nutrient cycle. Parsamanesh and Izadi [19] established
the global stability and bifurcations in a model for the WPO model. Ulam stability is an efficient tool
for offering insights into the strength of mathematical models. It ensures the existence of an exact
solution close to the approximate one in cases where finding exact solutions may be computationally
complicated or infeasible. Ulam’s stability originated in 1940 by a mathematician named Ulam and
was later developed by Hyers in 1941 and extended by Rassias in 1978 [20–22]. Ulam stability is
currently classified into numerous forms, including Ulam-Hyers (UH) stability, Ulam-Hyers-Rassias
(UHR) stability, generalized UH (GUH) stability, generalized UHR (GUHR) stability, and others.

Inspired by the above discussion, this study aims to employ the FFP operator with a power-
law kernel to effectively capture the memory and hereditary characteristics inherent in fractional-
order differential equations. These properties are crucial for modeling complex system behaviors,
particularly in the context of plastic waste and recycling dynamics. By integrating FFP order systems
into our newly developed model, we seek a more realistic approach to ecological processes, leveraging
past data to enhance predictive accuracy and improve the interpretation of long-term environmental
impacts. To the best of our knowledge, no existing mathematical model has yet applied the FFP
operator to the study of plastic waste in the ocean, as presented in [1]. The highlight of this study is the
investigation of the model, which shows how the considered model may be controlled and stabilized.
To achieve this aim, we first find the equilibrium points and analyze the stability of the proposed model.
The existence and uniqueness of results are investigated, as well as various Ulam stabilities are used to
examine the stability of the solutions. Furthermore, we employ four numerical methods to derive the
numerical schemes, including the decomposition technique, the Adams-Bashforth method, the Newton
polynomial method, and the predictor-corrector method. The development of control strategies for the
proposed model is guided by observations derived from illustrative graphical numerical simulations.
Therefore, this research will contribute to dynamic behavior analysis and theoretical conclusions in the
following perspectives and structures: Section 1 presents the introduction, background, and literature
review. Section 2 shows two subsections of the basic concepts of the FFP operator used in the model
and the determination of the proposed model. The model analysis in the context of the positivity
and boundedness of the solution and the stability of the equilibrium points (EPs) using the basic
reproduction number (BRN) are examined in Section 3. The sensitivity analysis is also analyzed in
this section. In Section 4, the existence and uniqueness of the solution are investigated via Banach’s
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fixed-point theorem. Section 5 proves the UH stability and UHR stability of the proposed model. In
Section 6, the numerical scheme is verified to obtain the numerical simulations shown graphically in
Section 7. Finally, the significant findings of our investigation are concluded in the last part.

2. Basic materials and preliminaries

2.1. Mathematical materials

Here, we gives some essential definitions of the FFP operators of the proposed model under study.
For more details, see [11, 23–26].

Definition 2.1 ( [11, 23]). Suppose that x(t) is a continuous function in (a, b). Then, the FFP integral
of x(t) of order α in the RL sense is defined as:

FFP
0 I

α,β
t x(t) =

β

Γ(α)

∫ t

0
(t − s)α−1sβ−1x(s)ds, α, β ∈ (n − 1, n], n ∈ N. (2.1)

If β = 1, Eq (2.1) can be reduced to

RL
0 I

α
t x(t) =

1
Γ(α)

∫ t

0
(t − s)α−1x(s)ds. (2.2)

Definition 2.2 ( [11, 23]). Suppose that x(t) is a continuous function. Then, the fractal (Hausdorff)
derivative of x(t) with respect to tβ (fractal dimension) is defined as

dx(s)
dsβ

= lim
t→s

x(t) − x(s)
tβ − sβ

.

Definition 2.3 ( [11, 23]). Suppose that x(t) is a continuous function which is fractal differentiable in
(a, b) via α ∈ (n − 1, n], n ∈ N. Then, the FFP derivative of x(t) of α and β ∈ (n − 1, n] in the RL sense
with the power law kernel defined as

FFPRL
0 D

α,β
t x(t) =

1
Γ(n − α)

d
dtβ

∫ t

0
(t − s)n−α−1x(s)ds.

If β = 1 and n = 1, Eq (2.3) can be reduced to

RL
0 D

α
t x(t) =

1
Γ(1 − α)

d
dt

∫ t

0
(t − s)−αx(s)ds =

d
dt

(
RL
0 I

1−α
t x(t)

)
. (2.3)

Definition 2.4 ( [11, 23]). Suppose that x(t) is a continuous function which is fractal differentiable in
(a, b) with α ∈ (n − 1, n], n ∈ N. Then, the FFP derivative of x(t) of α and β ∈ (n − 1, n] in the Caputo
sense with the power law kernel defined as

FFPC
0 D

α,β
t x(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1 dx(s)

dsβ
ds. (2.4)

If β = 1 and n = 1, Eq (2.4) can be reduced to

C
0D

α
t x(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αx′(s)ds = RL

0 I
1−α
t

(
dx(t)

dt

)
. (2.5)
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In addition, putting n = 1 into (2.4), Eq (2.4) can be re-written as follows:

FFPC
0 D

α,β
t x(t) =

1
βtβ−1

C
0D

α
t x(t). (2.6)

Next, we present the important properties of Definition 2.4, which are used in this paper.

Property 2.5. Assume that x, y : [a, b] → R are such that FFPC
0 D

α,β
t x(t) and FFPC

0 D
α,β
t y(t) exist almost

everywhere and ki ∈ R, i = 1, 2. Then, FFPC
0 D

α,β
t

[
x(t) ± y(t)

]
exist almost everywhere, and

FFPC
0 D

α,β
t

[
k1x(t) ± k2y(t)

]
= k1

FFPC
0 D

α,β
t x(t) ± k2

FFPC
0 D

α,β
t y(t).

Proof. By applying Definition 2.4, we omit the proof. �

The stability study of nonlinear differential systems in the context of the FFP Caputo derivative
operator is related to the following definitions.

Definition 2.6. The constant x∗ is an equilibrium of FFP differential system FFPC
0 D

α,β
t x(t) = f (t, x(t)) if

and only if f (t, x∗) = 0 for all t ≥ 0.

The following lemma extends the Volterra-type Lyapunov function to fractional-order systems [24]
and uses an inequality to approximate the FFP derivatives in the Caputo sense of the function.

Lemma 2.7. Assume that x(t) ∈ R+ is a continuous and differentiable function. For any t ≥ t0, then

FFPC
0 D

α,β
t

[
x(t) − x∗ − x∗ ln

(
x(t)
x∗

)]
≤

(
1 −

x∗

x(t)

)
FFPC
0 D

α,β
t x(t), x∗ ∈ R+, α, β ∈ (0, 1).

Proof. Using Property 2.5, yields that

FFPC
0 D

α,β
t x(t) − FFPC

0 D
α,β
t x∗ − x∗FFPC

0 D
α,β
t

[
ln

x(t)
x∗

]
≤

(
x(t) − x∗

x(t)

)
FFPC
0 D

α,β
t x(t).

Since FFPC
0 D

α,β
t (C) = 0, where C is an arbitrary constant, one has

x(t)FFPC
0 D

α,β
t x(t) − x∗x(t)FFPC

0 D
α,β
t

[
ln

x(t)
x∗

]
≤ (x(t) − x∗) FFPC

0 D
α,β
t x(t). (2.7)

Using (2.7), implies that
FFPC
0 D

α,β
t x(t) − x(t)FFPC

0 D
α,β
t

[
ln

x(t)
x∗

]
≤ 0. (2.8)

From Definition 2.2, we get

dx(t)
dtβ

=
x′(t)
βtβ−1 and

d
dtβ

[
ln

x(t)
x∗

]
=

x′(t)
βtβ−1x(t)

. (2.9)

Using Definition 2.2 with properties (2.9), inequality (2.8) can be obtained as

1
Γ(1 − α)

∫ t

0

dx(s)
dsβ

(t − s)−αds −
x(t)

Γ(1 − α)

∫ t

0

d
dsβ

[
ln

x(s)
x∗

]
(t − s)−αds
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=
1

Γ(1 − α)

∫ t

0

x′(s)
βsβ−1 (t − s)−αds −

x(t)
Γ(1 − α)

∫ t

0

x′(s)
βsβ−1x(s)

(t − s)−αds

=
1

Γ(1 − α)

∫ t

0

(
x(s) − x(t)

x(s)

)
x′(s)

βsβ−1(t − s)α
ds ≤ 0. (2.10)

Setting x(t)w(s) = x(s) − x(t), we have x(t)w′(s) = x′(s). From inequality (2.10), we get

1
Γ(1 − α)

∫ t

0
x(t)

(
1 −

1
w(s) + 1

)
w′(s)

βsβ−1(t − s)α
ds ≤ 0.

Using the technique of integrating by parts in the last integral, implies that

1
Γ(1 − α)

∫ t

0
x(t)

(
1 −

1
w(s) + 1

)
w′(s)

βsβ−1(t − s)α
ds

=

[(
s1−β(t − s)−α

Γ(1 − α)

) (
x(t)

(
w(s) − ln(w(s) + 1)

))]s=t

s=0

−
1

Γ(1 − α)

∫ t

0

( αs
t − s

+ 1 − β
) x(t)

sβ(t − s)α
(
w(s) − ln(w(s) + 1)

)
ds

=

[(
s1−β(t − s)−α

Γ(1 − α)

) (
x(t)

(
w(s) − ln(w(s) + 1)

))]
s=t

−
1

Γ(1 − α)

∫ t

0

( αs
t − s

+ 1 − β
) x(t)

sβ(t − s)α
(
w(s) − ln(w(s) + 1)

)
ds ≤ 0. (2.11)

It is easy to see that the first term of (2.11) has hesitancy at time s = t. Next, we show the synonymous
limit:

lim
s→t

[(
s1−β(t − s)−α

Γ(1 − α)

) (
x(t)

(
w(s) − ln(w(s) + 1)

))]
=

1
Γ(1 − α)

lim
s→t

 x(s) − x(t) − x(t) ln x(s)
x(t)

sβ−1(t − s)α

 .
Applying L’Hopital’s rule, inequality (2.11) can be reduced to

−
1

Γ(1 − α)

∫ t

0

( αs
t − s

+ 1 − β
) x(t)

(
w(s) − ln(w(s) + 1)

)
sβ(t − s)α

ds ≤ 0,

or

−

∫ t

0

(
αs

t − s
+ 1 − β

) (
x(s) − x(t) − x(t) ln x(s)

x(t)

)
sβ(t − s)αΓ(1 − α)

ds ≤ 0. (2.12)

It is easy to see that (2.12) holds. The proof is done. �

Remark 2.8. For the family of the Volterra-type Lyapunov function, that is,

L(x1, x2, . . . , xn) =

n∑
i=1

ci

(
xi − x∗i − x∗i ln

xi

x∗i

)
,

we have the following property:

FFPC
0 D

α,β
t L(x1, x2, . . . , xn) ≤

n∑
i=1

ci

(
1 −

x∗i
xi(t)

)
FFPC
0 D

α,β
t xi(t).
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Proof. The proof is straightforward by applying Property 2.5 and Lemma 2.7. �

Definition 2.9 ( [25]). The Laplace transform of a function x(t), t ≥ 0, is given as follows:

L {x(t)} = X(s) =

∫ ∞

0
e−stx(t)dt. (2.13)

By applying Definition 2.9, we obtain that

L
{
tµ−1Eα,µ (−δtα)

}
=

sα−µ

sα + δ
where Eα,µ(t) =

∞∑
k=0

tk

Γ(kα + µ)
,

and

L
{
C
0D

α
t x(t)

}
= sαX(s) −

n−1∑
j=0

sα− j−1x( j)(0).

Definition 2.10 ( [26]). The β-Laplace transform of a function x : [0,∞)→ R is provided by

Lβ {x(t)} =

∫ ∞

0
Eβ(−s, t)x(t)dβt =

∫ ∞

0
exp

(
−s

tβ

β

)
x(t)dβt, β ∈ (0, 1]. (2.14)

2.2. The fractal-fractional-order extension of the FFP-WPO model

This section refers to the integer order of the WPO model presented in [1], which studied the
management of waste plastic on the ocean surface. This model is classified into three compartments:
waste plastic material (W(t)), marine debris (M(t)), and reprocessing or recycling (R(t)), which is given
as 

dW(t)
dt

= Λ − (γ + bM(t)) W(t) + µR(t),

dM(t)
dt

= (bW(t) − a) M(t),

dR(t)
dt

= aM(t) + γW(t) − (µ + θ) R(t),

(2.15)

under the positive conditions W(0) = W0 ≥ 0, M(0) = M0 ≥ 0, R(0) = R0 ≥ 0. The descriptions of
unknown parameters are as follows: b denotes the waste rate to become marine, a denotes the marine
debris rate to recycle, Λ denotes the new waste rate, which is to be reproduced, θ denotes the recycled
waste rate to be lost, µ denotes the recycled waste rate to be reproduced as new waste, and γ denotes the
waste rate to be recycled directly without using marine debris. The relation diagram of the population
flow among these compartments is shown in Figure 1.
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Figure 1. The diagram of the proposed WPO model (2.15).

A summary of probable alterations and transmissions between compartments W, M, and R as
provided in Table 1.

Table 1. All potential transmissions and their rates for compartments W, M, and R as shown
in Figure 1.

Change/Transmission Rate
Compartment W
Reproduction of new waste. +Λ

Converting the waste into marine debris. −bMW
Direct recycling of the waste. −γW
Reproduction of the new waste from recycled materials. +µR
Compartment M
Converting the marine debris from the waste. +γW
Recycling the marine debris. −aM
Compartment R
Recycling the waste. +γW
Recycling the materials from the marine debris. +aM
Changing the recycled materials to the waste. −µR
The recycled materials to be lost. −θR

Here, we further develop the WPO model (2.15) utilizing the FFP derivative operator with the power
law kernal FFPC

0 D
α,β
t as follows:

FFPC
0 D

α,β
t W(t) = Λ − (γ + bM(t)) W(t) + µR(t),

FFPC
0 D

α,β
t M(t) = (bW(t) − a) M(t),

FFPC
0 D

α,β
t R(t) = aM(t) + γW(t) − (µ + θ) R(t),

(2.16)

with the conditions W(0) = W0 ≥ 0, M(0) = M0 ≥ 0, R(0) = R0 ≥ 0. The model (2.16) is called the
FFP-WPO model.
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3. Foundation analysis

This part discusses the positivity, boundedness, and equilibria analysis of the FFP-WPO
model (2.16).

3.1. Positivity and boundedness

To prove the positivity of the considered model, we set

R3
+ = {G ∈ R3 : G ≥ 0 and G(t) = (W(t),R(t),M(t))T }. (3.1)

Theorem 3.1. A solution G of the FFP-WPO model (2.16) exists and bounded in R3
+. Furthermore,

the solution will be non-negative.

Proof. Obviously, for the time interval (0,∞), the solution for the FFP-WPO model (2.16) exists. From
this model, we have 

FFPC
0 D

α,β
t W(t) = Λ + µR(t) ≥ 0,

FFPC
0 D

α,β
t M(t) = bM(t)W(t) ≥ 0,

FFPC
0 D

α,β
t R(t) = aM(t) + γW(t) ≥ 0.

(3.2)

Since all of the parameters and initial conditions of the proposed model are positive in R3
+, then, for all

t ≥ 0, the solutions are all non-negative. That is to say, if we start with initial data in R3
+, the solutions

will remain in R3
+. Now, we provide V(t) = 2W(t) + 2M(t) + R(t). From the FFP-WPO model (2.16),

we obtain
FFPC
0 D

α,β
t V(t) = 2Λ − γW − aM − (θ − µ)R ≤ 2Λ − ρV(t), (3.3)

where 0 < ρ ≤ min{γ2 ,
a
2 , θ − µ}. By using relation (2.6), Eq (3.3) can rewritten in the following form:

C
0D

α
t V(t) ≤ βtβ−1(2Λ − ρV(t)). (3.4)

Applying Definition 2.9 in (3.4) yields that

V(t) = Eα,1(−ρtα)V(0) + 2ΛΓ(β + 1)tβ+α−1Eα,β+α(−ρtα). (3.5)

Thus, limt→∞ V(t) ≤ 2Λ/ρ. Hence, the feasible region for the FFP-WPO model (2.16) is given as

Ω =

{
G := (W,M,R) ∈ R3,G ≥ 0 and V(t) ≤

2Λ

ρ

}
,

and this proves the boundedness of the solution of the FFP-WPO model (2.16). �

3.2. Equilibria and stability of the FFP-WPO model (2.16)

In this subsection, we investigate EPs of the FFP-WPO model (2.16) and analyze their stability. By
setting the right side of three equations is zero, the system has two possible EPs. They are:

• The boundary equilibrium point (BEP) or marine debris-free equilibrium: E∗0 =
(

Λ(µ+θ)
θγ

, 0, Λ
θ

)
exist

for all parametric values.

AIMS Mathematics Volume 10, Issue 4, 8827–8872.



8836

• The interior equilibrium point (IEP) or marine debris-included equilibrium: E∗1 =(
a
b ,

(µ+θ)bΛ−aγθ
θba , Λ

θ

)
exist if P0 := bΛ(µ+θ)

aγθ > 1 where P0 is BRN, which is computed by the dominating
eigenvalue of the next-generation matrix [27].

Theorem 3.2. If P0 < 1, then the marine debris-free equilibrium E∗0 is locally asymptotically stable
(LAS) with necessary and sufficient conditions

|arg(λi)| >
ηπ

2
, i = 1, 2, 3, (3.6)

otherwise it is unstable.

Proof. The Jacobian matrix J at E∗0 is defined by

J(E∗0) =


−γ −

bΛ(µ+θ)
θγ

µ

0 bΛ(µ+θ)
θγ
− a 0

γ a −µ − θ

 . (3.7)

Then, the eigenvalues associated with the Jacobian matrix computed around E∗0 are

λ1 =
bΛ(µ + θ)

θγ
− a, λ2,3 =

1
2

(
−(µ + θ + γ) ±

√
(µ + θ + γ)2 − 4(γ(µ + θ) + µγ)

)
.

From our assumption P0 < 1, implies that λ1 < 0. It is also easy to see that λ2 < 0 and λ3 < 0. Since all
eigenvalues have negative real parts, this assures condition (3.6) is satisfied for any η ∈ (0, 1]. Hence,
E∗0 is LAS. �

Theorem 3.3. If P0 > 1, then the marine debris-included equilibrium E∗1 is LAS, otherwise it is
unstable.

Proof. The Jacobian matrix J at E∗1 is defined by

J(E∗1) =


−γ − C −a µ

C 0 0
γ a −µ − θ

 , where C =
bΛ(µ + θ) − aγθ

θa
> 0. (3.8)

Note that if P0 > 1, then C > 0. The characteristic equation at E∗1 is obtained as follows:

λ3 + a2λ
2 + a1λ + a0 = 0, (3.9)

where a2 = µ+θ+γ+C, a1 = (γ+C)(µ+θ)−γµ+aC, and a0 = aCθ. It is easy to see that ai > 0, i = 1,
2, 3, and a1a2 > a0. By the Routh-Hurwitz criteria [28], we can conclude that all real eigenvalues and
all real parts of the complex conjugate eigenvalues of (3.9) are negative. Therefore, E∗1 is LAS. �

Theorem 3.4. The marine debris-free equilibrium E∗0 is globally asymptotically stable (GAS) if P0 ≤ 1,
otherwise it is unstable.

AIMS Mathematics Volume 10, Issue 4, 8827–8872.
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Proof. Let us consider the positive definite Lyapunov function L0(t) provided by

L0(t) =
W∗

0

γ
ψ

(
W(t)
W∗

0

)
+

M∗
0

a
ψ

(
M(t)
M∗

0

)
+

R∗0
µ + θ

ψ

(
R(t)
R∗0

)
, (3.10)

where ψ(u) = u − ln(u) − 1, for all u > 0. Acting the operator FFPC
0 D

α,β
t on (3.10), we have

FFPC
0 D

α,β
t L0(t) =

W∗
0

γ
FFPC
0 D

α,β
t

[
ψ

(
W(t)
W∗

0

)]
+

M∗
0

a
FFPC
0 D

α,β
t

[
ψ

(
M(t)
M∗

0

)]
+

R∗0
µ + θ

FFPC
0 D

α,β
t

[
ψ

(
R(t)
R∗0

)]
=

1
γ

FFPC
0 D

α,β
t

[
W(t) −W∗

0 ln
(
W(t)
W∗

0

)
−W∗

0

]
+

1
a

FFPC
0 D

α,β
t

[
M(t) − M∗

0 ln
(

M(t)
M∗

0

)
− M∗

0

]
+

1
µ + θ

FFPC
0 D

α,β
t

[
R(t) − R∗0 ln

(
R(t)
R∗0

)
− R∗0

]
.

Using Lemma 2.7, we get

FFPC
0 D

α,β
t L0(t)

≤
1
γ

(
1 −

W∗
0

W(t)

)
FFPC
0 D

α,β
t W(t) +

1
a

(
1 −

M∗
0

M(t)

)
FFPC
0 D

α,β
t M(t) +

1
µ + θ

(
1 −

R∗0
R(t)

)
FFPC
0 D

α,β
t R(t)

≤
1
γ

(
1 −

W∗
0

W(t)

) [
Λ − (γ + bM(t)) W(t) + µR(t)

]
+

1
a

(
1 −

M∗
0

M(t)

)
[(bW(t) − a) M(t)]

+
1

µ + θ

(
1 −

R∗0
R(t)

) [
aM(t) + γW(t) − (µ + θ) R(t)

]
. (3.11)

Since E∗0 = (W∗
0 ,M

∗
0,R

∗
0), we can write the following relationship between each point:

Λ − bM∗
0W∗

0 + µR∗0 = γW∗
0 , bW∗

0 M∗
0 = aM∗

0, aM∗
0 + γW∗

0 = (µ + θ) R∗0. (3.12)

Substituting (3.12) into (3.11), implies that

FFPC
0 D

α,β
t L0(t) ≤ −

{
(W(t) −W∗

0)2

W(t)
+

(M(t) − M∗
0)2

M(t)
+

(R(t) − R∗0)2

R(t)

}
.

Then, FFPC
0 D

α,β
t L0(t) ≤ 0. Clearly, FFPC

0 D
α,β
t L0(t) = 0 if and only if W(t) = W∗

0 , M(t) = M∗
0, and

R(t) = R∗0. Hence, the largest invariant set contained in {(W,M,R)|FFPC
0 D

α,β
t L0(t) = 0} is the singleton

{E∗0}. By LaSalle’s invariance principle [29], we deduce that E∗0 is GAS for P0 ≤ 1. �

Theorem 3.5. The marine debris-included equilibrium E∗1 is GAS if P0 > 1, otherwise it is unstable.

Proof. Let us consider the positive definite Lyapunov function L1(t) provided by

L1(t) =
W∗

1

γ
ψ

(
W(t)
W∗

1

)
+

M∗
1

a
ψ

(
M(t)
M∗

1

)
+

R∗1
µ + θ

ψ

(
R(t)
R∗1

)
, (3.13)

where ψ(u) = u − ln(u) − 1, for all u > 0. Acting the operator FFPC
0 D

α,β
t on (3.13), we have

FFPC
0 D

α,β
t L1(t) =

W∗
1

γ
FFPC
0 D

α,β
t

[
ψ

(
W(t)
W∗

1

)]
+

M∗
1

a
FFPC
0 D

α,β
t

[
ψ

(
M(t)
M∗

1

)]
+

R∗1
µ + θ

FFPC
0 D

α,β
t

[
ψ

(
R(t)
R∗1

)]
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=
1
γ

FFPC
0 D

α,β
t

[
W(t) −W∗

1 ln
(
W(t)
W∗

1

)
−W∗

1

]
+

1
a

FFPC
0 D

α,β
t

[
M(t) − M∗

1 ln
(

M(t)
M∗

1

)
− M∗

1

]
+

1
µ + θ

FFPC
0 D

α,β
t

[
R(t) − R∗1 ln

(
R(t)
R∗1

)
− R∗1

]
.

Using Lemma 2.7, we get

FFPC
0 D

α,β
t L1(t)

≤
1
γ

(
1 −

W∗
1

W(t)

)
FFPC
0 D

α,β
t W(t) +

1
a

(
1 −

M∗
1

M(t)

)
FFPC
0 D

α,β
t M(t) +

1
µ + θ

(
1 −

R∗1
R(t)

)
FFPC
0 D

α,β
t R(t)

≤
1
γ

(
1 −

W∗
1

W(t)

) [
Λ − (γ + bM(t)) W(t) + µR(t)

]
+

1
a

(
1 −

M∗
1

M(t)

)
[(bW(t) − a) M(t)]

+
1

µ + θ

(
1 −

R∗1
R(t)

) [
aM(t) + γW(t) − (µ + θ) R(t)

]
. (3.14)

Since E∗1 = (W∗
1 ,M

∗
1,R

∗
1), we can write the following relationship between each point:

Λ − bM∗
1W∗

1 + µR∗1 = γW∗
1 , bW∗

1 M∗
1 = aM∗

1, aM∗
1 + γW∗

1 = (µ + θ) R∗1. (3.15)

Inserting (3.15) into (3.14), implies that

FFPC
0 D

α,β
t L1(t) ≤ −

{
(W(t) −W∗

1)2

W(t)
+

(M(t) − M∗
1)2

M(t)
+

(R(t) − R∗1)2

R(t)

}
.

Then, FFPC
0 D

α,β
t L1(t) ≤ 0. Clearly, FFPC

0 D
α,β
t L1(t) = 0 if and only if W(t) = W∗

1 , M(t) = M∗
1, and

R(t) = R∗1. Hence, the largest invariant set contained in {(W,M,R)|FFPC
0 D

α,β
t L1(t) = 0} is the singleton

{E∗1}. By LaSalle’s invariance principle [29], we deduce that E∗1 is GAS for P0 > 1. �

3.3. Sensitivity analysis

Understanding the relevance of the distinct factors related to transmission will aid in decision on the
optimal control strategies. Primarily, waste plastic transmission is involved in the basic reproduction
number (P0) and sensitivity forecasts, and thus these parameters have a significant influence on P0.
Sensitivity analysis is used to study the effect of the parameters on the FFP-WPO model (2.16). This
approach measures each variable’s sensitivity using a metric known as the normalized sensitivity index.
It is critical to establish which parameters are the most sensitive, as little changes can have a significant
influence on model dynamics. We compute the sensitivity indices of P0 for its variables (Λ, γ, b, µ, a,
and θ) as the value P0 has a significant influence on the model’s behavior. To calculate the normalized
sensitivity index (ΓP0

ω ), follow these steps [30]:

ΓP0
ω =

∂P0

∂ω
×
ω

P0
,

where ω ∈ {Λ, γ, b, µ, a, θ} and P0 := (bΛ(µ + θ))/(aγθ). If the sign of Γ
P0
ω is positive (ΓP0

ω > 0), then
the parameter ω has a positive impact on P0. This yields that the value of P0 increases if the value of
ω increases. On the other hand, if the sign of Γ

P0
ω is negative (ΓP0

ω < 0), then the parameter ω has a
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negative impact on P0 (reverse impact). This implies that the value of P0 decreases if the value of ω
increases. In addition, the magnitude of Γ

P0
ω represents the fraction of changes in P0 due to ω. So, the

elasticity index for establishing the sensitivity of P0 of each parameter is computed as

Γ
P0
Λ

=
∂P0

∂Λ
×

Λ

P0
=

b(µ + θ)
aγθ

×
Λ

P0
= 1, ΓP0

γ =
∂P0

∂γ
×
γ

P0
= −

bΛ(µ + θ)
aγ2θ

×
γ

P0
= −1,

Γ
P0
b =

∂P0

∂b
×

b
P0

=
Λ(µ + θ)

aγθ
×

b
P0

= 1, ΓP0
µ =

∂P0

∂µ
×
µ

P0
=

bΛ

aγθ
×
µ

P0
=

µ

µ + θ
< 1,

ΓP0
a =

∂P0

∂a
×

a
P0

= −
bΛ(µ + θ)

a2γθ
×

a
P0

= −1, Γ
P0
θ =

∂P0

∂θ
×

θ

P0
= −

bΛµ

aγθ2 ×
θ

P0
= −

µ

µ + θ
> −1.

According to the aforementioned data, increasing the parameters Λ, b, and µ will proportionally
have the greatest impact on the number of marine debris M(t) in the ocean. On the other hand,
increasing the parameters γ, a, and θ will have the reverse impact on the number of marine debris
M(t) in the ocean. The parameter θ represents the pace at which recycled materials R(t) are taken from
the ocean’s plastic waste management system. Less recycled material means less material returned
to plastic waste management, which minimizes the reproduction of marine trash. According to the
normalized sensitivity index, the parameter θ has an inverse connection with P0, and increasing its
rate reduces the amount of marine debris. Figure 2 shows a comparison of these parameters using the
values Λ = 0.35, b = 0.2, µ = 0.3, θ = 0.3, a = 0.6, and γ = 0.4.

b a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. Sensitivity indices for parameters of the FFP-WPO model (2.16).

4. Qualitative results

4.1. Existence and uniqueness result

An analysis of the FFP-WPO model (2.16) will be performed by applying Banach’s contraction
mapping principle [31]. First, the Banach space on [0,T ] for all continuous real-valued functions is
given by X = C([0,T ] × R3,R) under the norm ‖U‖ = ‖(W,M,R)‖ = ‖W‖ + ‖M‖ + ‖R‖, where W, M,

AIMS Mathematics Volume 10, Issue 4, 8827–8872.



8840

R ∈ X and ‖W‖ = supt∈[0,T ] |W(t)| =W∗, ‖M‖ = supt∈[0,T ] |M(t)| =M∗, and ‖R‖ = supt∈[0,T ] |R(t)| = R∗.
Next, assume G ∈ X and U ∈ C([0,T ],R). The FFP-WPO model (2.16) can be presented as FFPC

0 D
α,β
t U(t) = G(t,U(t)), t ∈ [0,T ], α ∈ (0, 1],

U(0) = U0,
(4.1)

where

U =


W(t)
M(t)
R(t)

 , U(0) =


W(0)
M(0)
R(0)

 =


W0

M0

R0

 , G(t,U(t)) =


G1(t,W)
G2(t,M)
G3(t,R)

 =


Λ − (γ + bM) W + µR

(bW − a) M
aM − µR + γW − θR

 . (4.2)

Applying Definitions 2.9 and 2.10 to (4.1), implies that

L
{

FFPC
0 D

α,β
t U(t)

}
= L {G(t,U(t))} ,

1
β

(
sLβ {U(t)} − U(0)

)
= Lβ

{
L−1

{
s1−αL {G(t,U(t))}

}}
,

U(t) = U(0) +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G(t,U(t))}

}}}
. (4.3)

From Problem (4.1), Eq (4.3) can be represented in the integral form

W(t) = W0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W(t))}

}}}
, (4.4)

M(t) = M0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G2(t,M(t))}

}}}
, (4.5)

R(t) = R0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G3(t,R(t))}

}}}
. (4.6)

Next, we provide an operator Q : X → X where Q = (Q1,Q2,Q3). In consideration of (4.4)–(4.6),
it follows that

(Q1W)(t) = W0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W(t))}

}}}
,

(Q2M)(t) = M0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G2(t,M(t))}

}}}
,

(Q3R)(t) = R0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G3(t,R(t))}

}}}
.

Next, we convert the FFP-WPO model (2.16) to the fixed-point problem, that is, U = QU, which
will be applied later with a fixed point theory to prove that the FFP-WPO model (2.16) has a solution.

Theorem 4.1. Assume G ∈ X, corresponding with the assumption (H1) as follows:

(H1) There is a constant Lmax
G

= max
{
LG1 , LG2 , LG3

}
> 0 such that

|Gi(t,W1(t),M1(t),R1(t)) − Gi(t,W2(t),M2(t),R2(t))|

≤ LGi (|W1(t) −W2(t)| + |M1(t) − M2(t)| + |R1(t) − R2(t)|) , (4.7)

where i = 1, 2, 3, W j, M j, R j ∈ X, j = 1, 2, and t ∈ [0,T ].
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If
βTα+β−1Lmax

G < (α + β − 1)Γ(α), (4.8)

then the FFP-WPO model (2.16) has a unique solution.

Proof. Define a bounded, closed, and convex subset Dr := {(W,M,R) ∈ X : ‖(W,M,R)‖X ≤ r} with a
radius r given as

r ≥
(
Kmax

0 +
βTα+β−1Gmax

∗

(α + β − 1)Γ(α)

) 1 − βTα+β−1Lmax
G

(α + β − 1)Γ(α)

−1

,

where Kmax
0 = max{|W0|, |M0|, |R0|} and Gmax

∗ = max{G∗1, G∗2, G∗3}. Let supt∈[0,T ] |Gi(s, 0)| = G∗i < +∞,
i = 1, 2, 3. The process is separated into two parts.

Step I. We prove that QDr ⊂ Dr.
For any W, M, R ∈ Dr and t ∈ [0,T ], we have

|(Q1W)(t)| ≤ |W0| + βL−1
β

{
1
s
Lβ

{
L−1

{
s1−αL {|G1(t,W(t))|}

}}}
≤ |W0| + βL−1

β

{
1
s
Lβ

{
L−1

{
s1−αL {|G1(t,W(t)) − G1(t, 0)| + |G1(t, 0)|}

}}}
≤ |W0| + βL−1

β

{
1
s
Lβ

{
L−1

{
s1−αL {1}

}}} (
LG1r + G∗1

)
≤ |W0| + βL−1

β

{
1
s
Lβ

{
L−1 {

s−α
}}} (

LG1r + G∗1
)

≤ |W0| + βL−1
β

{
1
s
Lβ

{
tα−1

Γ(α)

}} (
LG1r + G∗1

)
≤ |W0| +

β

Γ(α)
β
α−1
β Γ

(
β + α − 1

β

)
L−1
β

{
1

s2+ α−1
β

} (
LG1r + G∗1

)
≤ |W0| +

β

Γ(α)
β
α−1
β Γ

(
β + α − 1

β

)
tα+β−1

β
α+β−1
β Γ

(
1 +

α+β−1
β

) (
LG1r + G∗1

)
≤ |W0| +

βTα+β−1
(
LG1r + G∗1

)
(α + β − 1)Γ(α)

.

This yields that,

‖Q1W‖X ≤ |W0| +
βTα+β−1

(
LG1r + G∗1

)
(α + β − 1)Γ(α)

.

In the same procedure, we also have

‖Q2M‖X ≤ |M0| +
βTα+β−1

(
LG2r + G∗2

)
(α + β − 1)Γ(α)

and ‖Q3R‖X ≤ |R0| +
βTα+β−1

(
LG3r + G∗3

)
(α + β − 1)Γ(α)

.

Then,

‖(QU)(t)‖ ≤ Kmax
0 +

βTα+β−1
(
Lmax
G

r + Gmax
∗

)
(α + β − 1)Γ(α)

.
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Hence, QDr ⊂ Dr.
Step II. We show that Q is a contraction.
Let W j, M j, R j ∈ Dr, j = 1, 2, for t ∈ [0,T ]. This yields that

|(Q1W1)(t) − (Q1W2)(t)| ≤ βL−1
β

{
1
s
Lβ

{
L−1

{
s1−αL {|G1(t,W1(t)) − G1(t,W2(t))|}

}}}
≤ LG1 ‖W1 −W2‖X

βTα+β−1

(α + β − 1)Γ(α)
.

Then,

‖Q1W1 − Q1W2‖X ≤
βTα+β−1LG1

(α + β − 1)Γ(α)
‖W1 −W2‖X .

In the same way, we obtain that

‖Q2M1 − Q2M2‖X ≤
βTα+β−1LG2

(α + β − 1)Γ(α)
‖M1 − M2‖X , ‖Q3R1 − Q3R2‖X ≤

βTα+β−1LG3

(α + β − 1)Γ(α)
‖R1 − R2‖X .

Since Q = (Q1,Q2,Q3) and Lmax
G

= max
{
LG1 , LG2 , LG3

}
> 0, we have

‖Q(W1,M1,R1) − Q(W2,M2,R2)‖X ≤
βTα+β−1LG3

(α + β − 1)Γ(α)
‖U1(t) − U2(t)‖X.

Under the inequality βTα+β−1Lmax
G

< (α + β − 1)Γ(α), we can summarize that Q is a contraction.
Then, Q has a fixed point. Hence, the FFP-WPO model (2.16) has a unique solution. �

4.2. Ulam’s stability results

Now, we give some sufficient criteria of the Ulam stability for the FFP-WPO model (2.16). The
definitions of these types and some necessary remarks are given below.

Definition 4.2. The FFP-WPO model (2.16) is said to be UH stable if there are positive numbers
εi > 0, (i = 1, 2, 3) such that, for every κi > 0, (i = 1, 2, 3), and each solution (W∗,M∗,R∗) ∈ X
satisfying ∣∣∣FFP

0 D
α,β
t W∗(t) − G1(t,W∗(t))

∣∣∣ ≤ κ1, t ∈ [0,T ], (4.9)∣∣∣FFP
0 D

α,β
t M∗(t) − G2(t,M∗(t))

∣∣∣ ≤ κ2, t ∈ [0,T ], (4.10)∣∣∣FFP
0 D

α,β
t R∗(t) − G3(t,R∗(t))

∣∣∣ ≤ κ3, t ∈ [0,T ], (4.11)

there is a solution (W,M,R) ∈ X of the FFP-WPO model (2.16) under

‖W(t) −W∗(t)‖X ≤ ε1κ1, t ∈ [0,T ], (4.12)
‖M(t) − M∗(t)‖X ≤ ε2κ2, t ∈ [0,T ], (4.13)
‖R(t) − R∗(t)‖X ≤ ε3κ3, t ∈ [0,T ], (4.14)

where Gi(t, ·) for i = 1, 2, 3, are given by (4.2).
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Definition 4.3. The FFP-WPO model (2.16) is said to be GUH stable if there are functions Ξi(t) ∈
C(R+,R+), with Ξi(0) = 0, (i = 1, 2, 3), such that for every κi > 0, (i = 1, 2, 3), and for each solution
(W∗,M∗,R∗) ∈ X satisfying∣∣∣FFP

0 D
α,β
t W∗(t) − G1(t,W∗(t))

∣∣∣ ≤ κ1Ξ1(t), t ∈ [0,T ], (4.15)∣∣∣FFP
0 D

α,β
t M∗(t) − G2(t,M∗(t))

∣∣∣ ≤ κ2Ξ2(t), t ∈ [0,T ], (4.16)∣∣∣FFP
0 D

α,β
t R∗(t) − G3(t,R∗(t))

∣∣∣ ≤ κ3Ξ3(t), t ∈ [0,T ], (4.17)

there is a solution (W,M,R) ∈ X of the FFP-WPO model (2.16) under

‖W(t) −W∗(t)‖X ≤ Ξ1(κ1), t ∈ [0,T ], (4.18)
‖M(t) − M∗(t)‖X ≤ Ξ2(κ2), t ∈ [0,T ], (4.19)
‖R(t) − R∗(t)‖X ≤ Ξ3(κ3), t ∈ [0,T ], (4.20)

where Gi(t, ·), i = 1, 2, 3, are given by (4.2).

Definition 4.4. The FFP-WPO model (2.16) is said to be UHR stable with respect to Ξi(t) ∈
C([0,T ],R+) if there exist constants Λi ∈ R

+, (i = 1, 2, 3), such that for every κi > 0, (i = 1, 2, 3),
and for each solution (W∗,M∗,R∗) ∈ X satisfying inequalities (4.15)–(4.17), respectively, there is a
solution (W,M,R) ∈ X of the FFP-WPO model (2.16) under

‖W(t) −W∗(t)‖X ≤ Λ1κ1Ξ1(t), t ∈ [0,T ], (4.21)
‖M(t) − M∗(t)‖X ≤ Λ2κ2Ξ2(t), t ∈ [0,T ], (4.22)
‖R(t) − R∗(t)‖X ≤ Λ3κ3Ξ3(t), t ∈ [0,T ], (4.23)

where Gi(t, ·), i = 1, 2, 3, are given by (4.2).

Definition 4.5. The FFP-WPO model (2.16) is said to be GUHR stable with respect to Ξi(t) ∈
C([0,T ],R+) if there exist constants Λi ∈ R

+, (i = 1, 2, 3), such that for each solution (W∗,M∗,R∗) ∈ X
satisfying ∣∣∣FFP

0 D
α,β
t W∗(t) − G1(t,W∗(t))

∣∣∣ ≤ Ξ1(t), t ∈ [0,T ], (4.24)∣∣∣FFP
0 D

α,β
t M∗(t) − G2(t,M∗(t))

∣∣∣ ≤ Ξ2(t), t ∈ [0,T ], (4.25)∣∣∣FFP
0 D

α,β
t R∗(t) − G3(t,R∗(t))

∣∣∣ ≤ Ξ3(t), t ∈ [0,T ], (4.26)

there is a solution (W,M,R) ∈ X of the FFP-WPO model (2.16) under

‖W(t) −W∗(t)‖X ≤ Λ1Ξ1(t), t ∈ [0,T ], (4.27)
‖M(t) − M∗(t)‖X ≤ Λ2Ξ2(t), t ∈ [0,T ], (4.28)
‖R(t) − R∗(t)‖X ≤ Λ3Ξ3(t), t ∈ [0,T ], (4.29)

where Gi(t, ·) for i = 1, 2, 3, are given by (4.2).

Remark 4.6. Let W∗, M∗, R∗ ∈ X be the solutions of inequalities (4.9)–(4.11), respectively, if and only
if there exists χW(0) = 0, χM(0) = 0, and χR(0) = 0 satisfying
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(i) |χW(t)| ≤ κ1, |χM(t)| ≤ κ2, |χR(t)| ≤ κ3;
(ii) FFP

0 D
α,β
t W∗(t) = G1(t,W∗(t)) + χW(t), FFP

0 D
α,β
t M∗(t) = G2(t,M∗(t)) + χM(t), FFP

0 D
α,β
t R∗(t) =

G3(t,R∗(t)) + χR(t).

Remark 4.7. Let W∗, M∗, R∗ ∈ X be the solutions of inequalities (4.15)–(4.17), respectively, if and
only if there exists φW(0) = 0, φM(0) = 0, and φR(0) = 0 satisfying

(i) |φW(t)| ≤ κ1Ξ1(t), |φM(t)| ≤ κ2Ξ2(t), |φR(t)| ≤ κ3Ξ3(t);
(ii) FFP

0 D
α,β
t W∗(t) = G1(t,W∗(t)) + φW(t), FFP

0 D
α,β
t M∗(t) = G2(t,M∗(t)) + φM(t), FFP

0 D
α,β
t R∗(t) =

G3(t,R∗(t)) + φR(t).

Theorem 4.8. If all assumptions in Theorem 4.1 hold, then the FFP-WPO model (2.16) is UH stable
as well as GUH stable.

Proof. Suppose that W∗ ∈ X is a solution of (4.9) and κ1 ∈ R
+. By applying Remark 4.6, we get FFP

0 D
α,β
t W∗(t) = G1(t,W∗(t)) + χW(t),

W∗(0) = W∗
0 ≥ 0.

(4.30)

So, the solution to (4.30) is provided as follows:

W∗(t) = W∗
0 +L−1

β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W∗(t))}

}}}
+L−1

β

{
β

s
Lβ

{
L−1

{
s1−αL {χW(t)}

}}}
.

Let W ∈ X be a unique solution of the FFP-WPO model (2.16). Then,

W(t) = W0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W(t))}

}}}
.

Hence,∣∣∣∣∣W∗(t) −W∗
0 − L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W∗(t))}

}}}∣∣∣∣∣ ≤ βL−1
β

{
1
s
Lβ

{
L−1

{
s1−αL {|χW(t)|}

}}}
≤ κ1βL

−1
β

{
1
s
Lβ

{
L−1

{
s1−αL {1}

}}}
≤

βTα+β−1κ1

(α + β − 1)Γ(α)
. (4.31)

Under the condition in Theorem 4.1 and inequality (4.31), one has

|W∗(t) −W(t)| ≤
∣∣∣∣∣W∗(t) −W0 − L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W(t))}

}}}∣∣∣∣∣
≤

∣∣∣∣∣W∗(t) −W∗
0 − L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W∗(t))}

}}}∣∣∣∣∣
+βL−1

β

{
1
s
Lβ

{
L−1

{
s1−αL {|G1(t,W∗(t)) − G1(t,W(t))|}

}}}
≤

βTα+β−1

(α + β − 1)Γ(α)
(
κ1 +LG1 |W

∗(t) −W(t)|
)
.
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Then,

‖W∗ −W‖X ≤
βTα+β−1κ1

(α + β − 1)Γ(α)

(
1 −

βTα+β−1LG1

(α + β − 1)Γ(α)

)−1

.

Taking a constant

ε1 :=
βTα+β−1

(α + β − 1)Γ(α)

(
1 −

βTα+β−1LG1

(α + β − 1)Γ(α)

)−1

,

yields that ‖W∗ −W‖X ≤ ε1κ1. In the same way, we obtain

‖M∗ − M‖X ≤ ε2κ2 and ‖R∗ − R‖X ≤ ε3κ3,

where

εi :=
βTα+β−1

(α + β − 1)Γ(α)

(
1 −

βTα+β−1LGi

(α + β − 1)Γ(α)

)−1

, i = 2, 3.

Hence, by Definition 4.2, the FFP-WPO model (2.16) is UH stable. Additionally, by setting Ξi(κi) =

εiκi with Ξi(0) = 0 for i = 1, 2, 3, by Definition 4.3, the FFP-WPO model (2.16) is GUH stable. �

Before proving this, we provide the following sufficient assumption:

(H2) There are increasing functions Ξi ∈ C([0,T ],R+) and constants ηi ∈ R
+, i = 1, 2, 3, such that for

t ∈ [0,T ],

L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {Ξi(t)}

}}}
≤ ηiΞi(t).

Theorem 4.9. If all assumptions in Theorem 4.1 are satisfied and (H2) holds, then the FFP-WPO
model (2.16) is UHR stable as well as GUHR stable.

Proof. Suppose that W∗ ∈ X is a solution of (4.15) and κ1 ∈ R
+. Applying Remark 4.6, yields FFP

0 D
α,β
t W∗(t) = G1(t,W∗(t)) + φW(t),

W∗(0) = W∗
0 ≥ 0.

(4.32)

Then, the solution to (4.32) is as follows:

W∗(t) = W∗
0 + βL−1

β

{
1
s
Lβ

{
L−1

{
s1−αL {G1(t,W∗(t))}

}}}
+ βL−1

β

{
1
s
Lβ

{
L−1

{
s1−αL {φW(t)}

}}}
.

Let W ∈ X be a unique solution of the FFP-WPO model (2.16). Then,

W(t) = W0 +L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W(t))}

}}}
.

Hence,∣∣∣∣∣W∗(t) −W∗
0 − L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W∗(t))}

}}}∣∣∣∣∣ ≤ L−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {|φW(t)|}

}}}
≤ κ1L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {Ξ1(t)}

}}}
≤ κ1η1Ξ1(t). (4.33)
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Under the condition in Theorem 4.1 and inequality (4.33), one has

|W∗(t) −W(t)| ≤
∣∣∣∣∣W∗(t) −W0 − L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W(t))}

}}}∣∣∣∣∣
≤

∣∣∣∣∣W∗(t) −W∗
0 − L

−1
β

{
β

s
Lβ

{
L−1

{
s1−αL {G1(t,W∗(t))}

}}}∣∣∣∣∣
+βL−1

β

{
1
s
Lβ

{
L−1

{
s1−αL {|G1(t,W∗(t)) − G1(t,W(t))|}

}}}
≤ κ1η1Ξ1(t) +

βTα+β−1LG1

(α + β − 1)Γ(α)
|W∗(t) −W(t)| .

Then,

‖W∗ −W‖X ≤ κ1η1Ξ1(t)
(
1 −

βTα+β−1LG1

(α + β − 1)Γ(α)

)−1

.

Taking a constant

Λ1 := η1

(
1 −

βTα+β−1LG1

(α + β − 1)Γ(α)

)−1

yields that ‖W∗ −W‖X ≤ Λ1κ1Ξ1. In the same way, we obtain

‖M∗ − M‖X ≤ Λ2κ2Ξ2 and ‖R∗ − R‖X ≤ Λ3κ3Ξ3,

where

Λi := ηi

(
1 −

βTα+β−1LGi

(α + β − 1)Γ(α)

)−1

, i = 2, 3.

Hence, by Definition 4.4, the FFP-WPO model (2.16) is UHR stable. Additionally, by setting Ξi(t) =

κiΞi(t) with Ξi(0) = 0 for i = 1, 2, 3, by Definition 4.5, the FFP-WPO model (2.16) is GUHR stable. �

5. Numerical algorithms

5.1. Numerical method based on the decomposition technique

This section derives the numerical schemes for finding the approximate solution of the FFP-
WPO model (2.16) by applying the decomposition formula for the FFP derivative operator. We will
proceed in the same way as in [32, 33]. We show that the fractal-fractional Caputo derivative can
be approximated using just the first-order derivative of a function x(t). We can consider a system of
N + 1 ordinary differential equations with the initial conditions of N + 1 conditions. A sequence (xN),
for N ∈ N, of the solutions will converge to the solution of the fractal-fractional Caputo problem. The
advantage of this technique is that, by replacing the fractal-fractional derivative with the expansion that
only uses ordinary derivatives, we no longer have a fractal-fractional differential equation, but rather
a system of ordinary differential equations. The solution to this system, xN , clearly depends on N.
However, the sequence xN converges to the solution of the system of the fractal-fractional differential
equations in a neighborhood of the initial point.
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Theorem 5.1. Assume that N is a positive number and f ∈ AC2([a,T ],R). Let

AN =

N∑
i=0

Γ (i + α − 1)
Γ(2 − α)Γ (α − 1) i!

, BN,i =
Γ (i + α − 1)

Γ(2 − α)Γ (α − 1) (i − 1)!
, (5.1)

andVi : [a,T ]→ R be functions defined by

Vi(t) =

∫ t

a

(s − a)i−1s1−β

β
f ′(s)ds. (5.2)

Then,

FFPC
0 D

α,β
t x(t) = EN(t) +

ANt1−β(t − a)1−α

β
f ′(t)

−
1

Γ(2 − α)

N∑
i=1

BN,i(t − a)1−α−iVi(t), (5.3)

where lim
N→∞
EN(τ) = 0 for t ∈ [a,T ].

Proof. By applying Definition 2.4 for α ∈ (0, 1], we obtain that

FFPC
0 D

α,β
t x(t) =

1
Γ(1 − α)

∫ t

a
(t − s)−α

dx(s)
dsβ

ds. (5.4)

Let u =
dx(s)
dsβ

and dv = (t − s)−αds. Using the integration by parts method, yields that

FFPC
0 D

α,β
t x(t) =

a1−β(t − a)1−α f ′(a)
βΓ(2 − α)

+
1

Γ(2 − α)

∫ t

a
(t − s)−α+1 d

ds

[
dx(s)
dsβ

]
ds. (5.5)

Applying the generalized binomial theorem, it follows that

(t − s)1−α = (t − a)1−α
(
1 −

s − a
t − a

)1−α

= (t − a)1−α
∞∑

i=0

Γ (i + α − 1)
Γ (α − 1) i!

( s − a
t − a

)i
. (5.6)

Plugging (5.6) into (5.5), it follows that

FFPC
0 D

α,β
t x(t) = EN(t) +

a1−β(t − a)1−α f ′(a)
βΓ(2 − α)

+
1

Γ(2 − α)

∫ t

a
(t − a)1−α

N∑
i=0

Γ (i + α − 1)
Γ (α − 1) i!

( s − a
t − a

)i d
ds

[
dx(s)
dsβ

]
ds,

where

EN(t) =
1

Γ(2 − α)

∫ t

a
(t − a)1−α

∞∑
i=N+1

Γ (i + α − 1)
Γ (α − 1) i!

( s − a
t − a

)i d
ds

[
dx(s)
dsβ

]
ds.
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Hence, by direct calculation, we get
FFPC
0 D

α,β
t x(t)

= EN(t) +
a1−β(t − a)1−α f ′(a)

βΓ(2 − α)
+

(t − a)1−α

Γ(2 − α)

N∑
i=0

Γ (i + α − 1)
Γ (α − 1) i!(t − a)i

∫ t

a
(s − a)i d

ds

[
dx(s)
dsβ

]
ds

= EN(t) +
a1−β(t − a)1−α f ′(a)

βΓ(2 − α)
+

(t − a)1−α

Γ(2 − α)

∫ t

a

d
ds

[
dx(s)
dsβ

]
ds

+
(t − a)1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!(t − a)i

∫ t

a
(s − a)i d

ds

[
dx(s)
dsβ

]
ds

= EN(t) +
t1−β(t − a)1−α f ′(t)

βΓ(2 − α)
+

(t − a)1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!(t − a)i

∫ t

a
(s − a)i d

ds

[
dx(s)
dsβ

]
ds.

Let u = (s − a)i and dv = d
ds

[
dx(s)
dsβ

]
ds. Using the integration by parts method, it follows that

FFPC
0 D

α,β
t x(t) = EN(t) +

t1−β(t − a)1−α f ′(t)
βΓ(2 − α)

+
(t − a)1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!(t − a)i

t1−β(t − a)i f ′(t)
β

−
(t − a)1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!(t − a)i

∫ t

a
i(s − a)i−1 dx(s)

dsβ
ds

= EN(t) +

1 +

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!

 t1−β(t − a)1−α f ′(t)
βΓ(2 − α)

−
(t − a)1−α

Γ(2 − α)

N∑
i=1

Γ (i + α − 1)
Γ (α − 1) i!(t − a)i

∫ t

a

i(s − a)i−1s1−β

β

dx(s)
ds

ds.

Since Γ(x + α) ∼ Γ(x)xα and s/t < 1,

∞∑
i=N+1

Γ (i + α − 1)
i!

( s
t

)i
≤

∞∑
i=N+1

Γ (i + α − 1)
i!

≤

∞∑
i=N+1

iα−2 ≤

∞∫
N

sα−2ds ≤
Nα−1

1 − α
. (5.7)

Then, the right side of the above inequality (5.7) tends to zero for all t ∈ (0,T ) as N → ∞. �

Next, we will utilize Theorem 5.1 to achieve the approximate solution of the FFP-WPO
model (2.16). Hence,

FFPC
0 D

α,β
t W(t) =

ANt1−β(t − a)1−α

β
W ′(t) −

1
Γ(2 − α)

N∑
i=1

BN,i(t − a)1−α−iVWi(t),

FFPC
0 D

α,β
t M(t) =

ANt1−β(t − a)1−α

β
M′(t) −

1
Γ(2 − α)

N∑
i=1

BN,i(t − a)1−α−iVMi(t),

FFPC
0 D

α,β
t R(t) =

ANt1−β(t − a)1−α

β
R′(t) −

1
Γ(2 − α)

N∑
i=1

BN,i(t − a)1−α−iVRi(t), (5.8)

and
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VWi(t) =
1
β

∫ t

a
(s − a)i−1s1−βW ′(s)ds,

VMi(t) =
1
β

∫ t

a
(s − a)i−1s1−βM′(s)ds,

VRi(t) =
1
β

∫ t

a
(s − a)i−1s1−βR′(s)ds,

where AN and BN,i are provided by (5.1).

5.2. Numerical method based on the Adams-Bashforth technique

The Adams-Bashforth method is a powerful numerical integration approach that is widely utilized
to solve differential equations [34]. Its higher-order accuracy and efficiency make it especially well-
suited for approximating dynamic system solutions. We used the Adams-Bashforth method to obtain
accurate and reliable numerical solutions for the FFP-WPO model (2.16). By using Definition 2.1 in
the FFP-WPO model (2.16), we have the following results:

W(t) = W0 +
β

Γ(α)

t∫
0

sβ−1(t − s)α−1G1(s,W)ds, (5.9)

M(t) = M0 +
β

Γ(α)

t∫
0

sβ−1(t − s)α−1G2(s,M)ds, (5.10)

R(t) = R0 +
β

Γ(α)

t∫
0

sβ−1(t − s)α−1G3(s,R)ds. (5.11)

We rewrite (5.9)–(5.11) at t = tn+1 = (n + 1)h with h = T/N, which gives

W(tn+1) = W0 +
β

Γ(α)

tn+1∫
0

sβ−1(tn+1 − s)α−1G1(s,W)ds, (5.12)

M(tn+1) = M0 +
β

Γ(α)

tn+1∫
0

sβ−1(tn+1 − s)α−1G2(s,M)ds, (5.13)

R(tn+1) = R0 +
β

Γ(α)

tn+1∫
0

sβ−1(tn+1 − s)α−1G3(s,R)ds. (5.14)

By using the approximation of the integrals in (5.12)–(5.14), we have that

W(tn+1) = W0 +
β

Γ(α)

n∑
j=1

t j+1∫
t j

sβ−1(tn+1 − s)α−1G1(s,W)ds, (5.15)
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M(tn+1) = M0 +
β

Γ(α)

n∑
j=1

t j+1∫
t j

sβ−1(tn+1 − s)α−1G2(s,M)ds, (5.16)

R(tn+1) = R0 +
β

Γ(α)

n∑
j=1

t j+1∫
t j

sβ−1(tn+1 − s)α−1G3(s,R)ds. (5.17)

Applying two-step Lagrange interpolation polynomials via h = t j+1 − t j for the term sβ−1G1(s,W),
yields

LW
j (s) =

s − t j−1

h
tβ−1

j G1(t j,W j) −
s − t j

h
tβ−1

j−1G1(t j−1,W j−1), (5.18)

LM
j (s) =

s − t j−1

h
tβ−1

j G2(t j,M j) −
s − t j

h
tβ−1

j−1G2(t j−1,M j−1), (5.19)

LR
j (s) =

s − t j−1

h
tβ−1

j G3(t j,R j) −
s − t j

h
tβ−1

j−1G3(t j−1,R j−1). (5.20)

Plugging (5.18)–(5.20) into (5.15)–(5.17), we get

W(tn+1) = W0 +
βhα

Γ(α + 2)

n∑
j=1

[
Φ1(n, j)tβ−1

j G1(t j,W j) − Φ2(n, j)tβ−1
j−1G1(t j−1,W j−1)

]
,

M(tn+1) = M0 +
βhα

Γ(α + 2)

n∑
j=1

[
Φ1(n, j)tβ−1

j G2(t j,M j) − Φ2(n, j)tβ−1
j−1G2(t j−1,M j−1)

]
,

R(tn+1) = R0 +
βhα

Γ(α + 2)

n∑
j=1

[
Φ1(n, j)tβ−1

j G3(t j,R j) − Φ2(n, j)tβ−1
j−1G3(t j−1,R j−1)

]
,

where Φ1(n, j) and Φ2(n, j) are provided by

Φ1(n, j) = (n + 1 − j)α(n − j + 2 + α) − (n − j)α(n − j + 2 + 2α),
Φ2(n, j) = (n + 1 − j)α+1 − (n − j)α(n − j + 1 + α).

5.3. Numerical method based on the newton polynomial technique

We describe a Newton’s polynomial-based approximation method for numerically calculating the
solutions of the FFP-WPO model (2.16). Newton’s polynomials are used in interpolation because
they are implicit and useful for estimating functions based on a collection of provided data points.
Newton’s polynomials provide a versatile technique to describe complicated interactions inside the
FFP-WPO model (2.16) when modeling and analyzing it. By using the polynomial interpolation
approach, we may create a continuous function that roughly represents the system’s behavior, allowing
for a more thorough and in-depth comprehension of its dynamics. To the best of our knowledge, the
concept was initially presented by Atangana and Araz in [35]. Using the approximation of the integrals
in (5.12)–(5.14), we have that

W(tn+1) = W0 +
β

Γ(α)

n∑
j=2

t j+1∫
t j

sβ−1(tn+1 − s)α−1G1(s,W)ds, (5.21)

AIMS Mathematics Volume 10, Issue 4, 8827–8872.



8851

M(tn+1) = M0 +
β

Γ(α)

n∑
j=2

t j+1∫
t j

sβ−1(tn+1 − s)α−1G2(s,M)ds, (5.22)

R(tn+1) = R0 +
β

Γ(α)

n∑
j=2

t j+1∫
t j

sβ−1(tn+1 − s)α−1G3(s,R)ds. (5.23)

Applying the newton polynomial for the term sβ−1G1(s,W) yields

PW
j (s) = tβ−1

j−2G1(t j−2,W j−2) +
s − t j−2

h

[
tβ−1

j−1G1(t j−1,W j−1) − tβ−1
j−2G1(t j−2,W j−2)

]
+

(s − t j−1)(s − t j−2)
2h2

[
tβ−1

j G1(t j,W j) − 2tβ−1
j−1G1(t j−1,W j−1) + tβ−1

j−2G1(t j−2,W j−2)
]
, (5.24)

PM
j (s) = tβ−1

j−2G2(t j−2,M j−2) +
s − t j−2

h

[
tβ−1

j−1G2(t j−1,M j−1) − tβ−1
j−2G2(t j−2,M j−2)

]
+

(s − t j−1)(s − t j−2)
2h2

[
tβ−1

j G2(t j,M j) − 2tβ−1
j−1G2(t j−1,M j−1) + tβ−1

j−2G2(t j−2,M j−2)
]
, (5.25)

PR
j (s) = tβ−1

j−2G3(t j−2,R j−2) +
s − t j−2

h

[
tβ−1

j−1G3(t j−1,R j−1) − tβ−1
j−2G3(t j−2,R j−2)

]
+

(s − t j−1)(s − t j−2)
2h2

[
tβ−1

j G3(t j,R j) − 2tβ−1
j−1G3(t j−1,R j−1) + tβ−1

j−2G3(t j−2,R j−2)
]
. (5.26)

Plugging (5.24)–(5.26) into (5.21)–(5.23), we get

W(tn+1) = W0 +
βhα

Γ(α + 1)

n∑
j=2

Ω1(n, j)tβ−1
j−2G1(t j−2,W j−2)

+
βhα

Γ(α + 2)

n∑
j=2

Ω2(n, j)
(
tβ−1

j−1G1(t j−1,W j−1) − tβ−1
j−2G1(t j−2,W j−2)

)
+

βhα

2Γ(α + 3)

n∑
j=2

Ω3(n, j)
(
tβ−1

j G1(t j,W j) − 2tβ−1
j−1G1(t j−1,W j−1) + tβ−1

j−2G1(t j−2,W j−2)
)
,

M(tn+1) = M0 +
βhα

Γ(α + 1)

n∑
j=2

Ω1(n, j)tβ−1
j−2G2(t j−2,M j−2)

+
βhα

Γ(α + 2)

n∑
j=2

Ω2(n, j)
(
tβ−1

j−1G2(t j−1,M j−1) − tβ−1
j−2G2(t j−2,M j−2)

)
+

βhα

2Γ(α + 3)

n∑
j=2

Ω3(n, j)
(
tβ−1

j G2(t j,M j) − 2tβ−1
j−1G2(t j−1,M j−1) + tβ−1

j−2G2(t j−2,M j−2)
)
,

R(tn+1) = R0 +
βhα

Γ(α + 1)

n∑
j=2

Ω1(n, j)tβ−1
j−2G3(t j−2,R j−2)

+
βhα

Γ(α + 2)

n∑
j=2

Ω2(n, j)
(
tβ−1

j−1G3(t j−1,R j−1) − tβ−1
j−2G3(t j−2,R j−2)

)
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+
βhα

2Γ(α + 3)

n∑
j=2

Ω3(n, j)
(
tβ−1

j G3(t j,R j) − 2tβ−1
j−1G3(t j−1,R j−1) + tβ−1

j−2G3(t j−2,R j−2)
)
,

where Ω1(n, j), Ω2(n, j), and Ω3(n, j) are given by

Ω1(n, j) = (n − j + 1)α − (n − j)α,
Ω2(n, j) = (2α − j + n + 3)(n − j + 1)α − (3α − j + n + 3)(n − j)α,
Ω3(n, j) =

[
2(n − j)2 + (3α + 10)(n − j) + 2α2 + 9α + 12

]
(n − j + 1)α

−
[
2(n − j)2 + (5α + 10)(n − j) + 6α2 + 9α + 12

]
(n − j)α.

5.4. Numerical method based on the predictor-corrector technique

This part illustrates the numerical scheme for the FFP-WPO model (2.16), which was created using
the predictor-corrector technique. It is among the most efficient, reliable, and accurate methods for
numerically solving fractal-fractional differential equations in the Caputo sense. To build the predictor-
corrector approach for the proposed problem, we will use the same procedure as in [36,37] with certain
adjustments. Applying the approximation of the integrals in (5.12)–(5.14), we have that

W(tn+1) = W0 +
β

Γ(α)

n∑
j=0

t j+1∫
t j

sβ−1(tn+1 − s)α−1G1(s,W)ds, (5.27)

M(tn+1) = M0 +
β

Γ(α)

n∑
j=0

t j+1∫
t j

sβ−1(tn+1 − s)α−1G2(s,M)ds, (5.28)

R(tn+1) = R0 +
β

Γ(α)

n∑
j=0

t j+1∫
t j

sβ−1(tn+1 − s)α−1G3(s,R)ds. (5.29)

Approximating the function sβ−1G1(s,W) by piece-wise linear interpolation gives

JWj (s) = tβ−1
j G1(t j,W j) +

tβ−1
j+1G1(t j+1,W j+1) − tβ−1

j G1(t j,W j)

t j+1 − t j
(s − t j), (5.30)

JMj (s) = tβ−1
j G2(t j,M j) +

tβ−1
j+1G2(t j+1,M j+1) − tβ−1

j G2(t j,M j)

t j+1 − t j
(s − t j), (5.31)

JRj (s) = tβ−1
j G3(t j,R j) +

tβ−1
j+1G3(t j+1,R j+1) − tβ−1

j G3(t j,R j)

t j+1 − t j
(s − t j). (5.32)

Plugging (5.30)–(5.32) into (5.27)–(5.29), we get

Wn+1 = W0 +
βhα

Γ(α + 2)

n∑
j=0

Ξ1(n, j)tβ−1
j G1(t j,W j) +

βhα

Γ(α + 2)
tβ−1
n+1G1(tn+1,WP

n+1), (5.33)

Mn+1 = M0 +
βhα

Γ(α + 2)

n∑
j=0

Ξ1(n, j)tβ−1
j G2(t j,M j) +

βhα

Γ(α + 2)
tβ−1
n+1G2(tn+1,MP

n+1), (5.34)
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Rn+1 = R0 +
βhα

Γ(α + 2)

n∑
j=0

Ξ1(n, j)tβ−1
j G3(t j,R j) +

βhα

Γ(α + 2)
tβ−1
n+1G3(tn+1,RP

n+1). (5.35)

Repeating the above process for W(t),M(t), and R(t), implies that

WP
n+1 = W0 +

βhα

Γ(α + 1)

n∑
j=0

Ξ2(n, j)tβ−1
j G1(t j,W j),

MP
n+1 = M0 +

βhα

Γ(α + 1)

n∑
j=0

Ξ2(n, j)tβ−1
j G2(t j,M j),

RP
n+1 = R0 +

βhα

Γ(α + 1)

n∑
j=0

Ξ2(n, j)tβ−1
j G3(t j,R j),

where Ξ1(n, j) and Ξ2(n, j) are given by

Ξ1(n, j) =

 nα+1 − (n − α)(n + 1)α, i f j = 0,

(n − j + 2)α+1 − 2(n − j + 1)α+1 + (n − j)α+1, i f 0 < j ≤ n,
Ξ2(n, j) = (n − j + 1)α − (n − j)α.

6. Numerical simulations and discussion

This section presents the numerical simulations of the approximate solution for the FFP-WPO
model (2.16) using the given numerical techniques in Section 5. By using a sensitivity analysis
(Section 3.3) of the BRN (P0), we now investigate the impact of each parameter on the dynamics
of the FFP-WPO model (2.16). The parameter values utilized in the numerical simulations are used
in [1, 2, 4] for the FFP-WPO model (2.16). The approximate solutions have been investigated for
various fractional-orders, fractal-dimensions, and parameters.

6.1. Impact of the fractional-order derivative on the FFP-WPO model (2.16)

6.1.1. The marine debris-free equilibrium point E∗0
Set α = 0.83, 0.87, 0.91, 0.95, 0.99 and β = 0.99 with the given parameters b = 0.15, a = 0.65,

Λ = 0.36, µ = 0.40, γ = 0.41, and θ = 0.15, and the initial conditions (W0,M0,R0) = (2, 1.5, 1). Then,
Theorem 3.4 is satisfied. We expect that the marine debris-free equilibrium point E∗0 = (W∗

0 ,M
∗
0,R

∗
0) =

(3.2195, 0, 2.4) is GAS, which means that the solutions of the FFP-WPO model (2.16) should tend to
the marine debris-free equilibrium point E∗0. In Figures 3–5, the dynamical behavior of the management
of waste plastic in the ocean is presented when P0 = 0.7430 < 1. At this stage, the marine
debris-free equilibrium (E∗0) is such that the amount of marine debris is zero. Additionally, Figure 3
(Figure 3a– 3d) depicts the dynamical behavior of the waste plastic material W(t). When α (fractional-
order) grows from 0.83 to 0.99 and β (fractal-dimension) is 0.99, the process quickly increases from the
start and finally converges to a stable state at the point W∗

0 ≈ 3.2195. Figure 4 (Figure 4a–4d) depicts
the dynamical behavior of the marine debris M(t). When α grows from 0.83 to 0.99 and β = 0.99, the
process quickly decreases from the start and finally converges to a stable state at M∗

0 = 0. Figure 5
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(Figure 5a– 5d) depicts the dynamical behavior of the reprocessing or recycling R(t). When α grows
from 0.83 to 0.99 and β = 0.99, the process quickly increases from the start and finally converges to a
stable state at R∗0 = 2.4.
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Figure 3. Numerical simulations of W(t) for the FFP-WPO model (2.16) using four
numerical techniques.
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Figure 4. Numerical simulations of M(t) for the FFP-WPO model (2.16) using four
numerical techniques.
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Figure 5. Numerical simulations of R(t) for the FFP-WPO model (2.16) using four numerical
techniques.

Using the four different numerical schemes, i.e., the decomposition, Newton polynomial, Adams-
Bashforth, and predictor-corrector methods, Figure 6 illustrates comparisons of simulation results
using four techniques for three compartments: waste plastic material W(t) (Figure 6a), marine debris
M(t) (Figure 6b), and reprocessing or recycling R(t) (Figure 6c) where α = β = 0.99. To compare
the results of the four numerical techniques for the three state compartments, we show some numerical
results in Table 2. It can be observed that the graphical simulations and numerical results of these
four numerical techniques are quite comparable with little difference. In addition, we also show a
comparison of the results between the classical derivative, the fractional derivative, and the fractal-
fractional derivative for the FFP-WPO model (2.16) in Figure 7 and Table 3.
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Figure 6. Conducting a comparison of the simulation results for the FFP-WPO model (2.16)
using four numerical techniques.

Table 2. Numerical results for the FFP-WPO model (2.16) with a = 0.65, Λ = 0.36, µ =

0.40, γ = 0.41, b = θ = 0.15, (W0,M0,R0) = (2, 1.5, 1), and α = β = 0.99.

Method (Day) 1 20 40 60 80 100
Waste plastic material W(t)
Decomposition 1.82604 3.01710 3.16166 3.19998 3.21151 3.21532
Newton polynomial 1.82386 3.01591 3.16124 3.19976 3.21137 3.21522
Adams-Bashforth 1.82546 3.01663 3.16141 3.19981 3.21139 3.21523
Predictor-corrector 1.82553 3.01663 3.16141 3.19981 3.21139 3.21523
Marine debris M(t)
Decomposition 1.03499 0.01752 0.00340 0.00191 0.00137 0.00107
Newton polynomial 1.05967 0.01782 0.00350 0.00198 0.00142 0.00111
Adams-Bashforth 1.04031 0.01770 0.00349 0.00198 0.00142 0.00111
Predictor-corrector 1.04038 0.01770 0.00349 0.00198 0.00142 0.00111
Recycling R(t)
Decomposition 1.78054 2.25196 2.35490 2.38563 2.39480 2.39769
Newton polynomial 1.75212 2.25134 2.35465 2.38552 2.39474 2.39765
Adams-Bashforth 1.77453 2.25178 2.35478 2.38556 2.39475 2.39765
Predictor-corrector 1.77437 2.25177 2.35478 2.38556 2.39475 2.39765
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Figure 7. Comparison of the classical model, the Caputo-fractional model, and the Caputo-
fractal-fractional model.

Table 3. Comparing numerical results between the classical model, the Caputo-fractional
model, and the Caputo-fractal-fractional model.

Method (Day) 1 20 40 60 80 100
Waste plastic material W(t)
Classical 1.82395 3.04112 3.17561 3.20932 3.21779 3.21737
Caputo-fractional 1.82605 3.02548 3.16647 3.20221 3.21246 3.21574
Caputo-fractal-fractional 1.82604 3.01710 3.16166 3.19998 3.21151 3.21532
Marine debris M(t)
Classical 1.03624 0.00959 0.00026 0.0001 2.95 × 10−7 1.04 × 10−8

Caputo-fractional 1.03503 0.01622 0.00325 0.00186 0.00134 0.00105
Caputo-fractal-fractional 1.03499 0.01752 0.00340 0.00191 0.00137 0.00107
Recycling R(t)
Classical 1.78135 2.26242 2.36594 2.39046 2.39660 2.40120
Caputo-fractional 1.78048 2.25716 2.35878 2.38747 2.39557 2.39801
Caputo-fractal-fractional 1.78054 2.25196 2.35490 2.38563 2.39480 2.39769
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6.1.2. The marine debris-included equilibrium point E∗1

Set α = 0.83, 0.87, 0.91, 0.95, 0.99 and β = 0.99 with the given parameters b = 0.75, a = 0.50,
Λ = 0.66, θ = 0.05, µ = 0.40, and γ = 0.21, and the initial conditions (W0,M0,R0) = (2, 1.5, 1).
Then, Theorem 3.5 is satisfied. We obtain that the marine debris-included equilibrium point E∗1 =

(W∗
1 ,M

∗
1,R

∗
1) = (0.6667, 11.6, 13.2) is GAS, which implies that the solutions of the FFP-WPO

model (2.16) should move to the marine debris-included equilibrium point E∗1. In Figures 8–10, the
dynamical behavior of the management of waste plastic in the ocean is shown when P0 = 42.4286 > 1.
In addition, Figure 8 (Figure 8a–8d) depicts the dynamical behavior of the waste plastic material W(t).
When α increases from 0.83 to 0.99 and β is 0.99, the process quickly increases from the start and
finally converges to a stable state at W∗

1 = 0.6667.
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Figure 8. Numerical simulations of W(t) for the FFP-WPO model (2.16) using four
numerical techniques.

Figure 9 (Figure 9a–9d) depicts the dynamical behavior of the marine debris M(t). When α

increases from 0.83 to 0.99 and β is 0.99, the process quickly decreases from the start and finally
increasing converges to a stable state at M∗

0 = 11.6.
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Figure 9. Numerical simulations of M(t) for the FFP-WPO model (2.16) using four
numerical techniques.

Figure 10 (Figure 10a–10d) depicts the dynamical behavior of the reprocessing or recycling R(t).
When α increases from 0.83 to 0.99 and β is 0.99, the process quickly increases from the start and
finally converges to a stable state at R∗0 = 13.2.
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(b) Newton Polynomial Technique
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(c) Adam-Bashforth Technique
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(d) Predictor-Corrector Technique

Figure 10. Numerical simulations of R(t) for the FFP-WPO model (2.16) using four
numerical techniques.

Using the four different numerical algorithms, Figure 11 illustrates comparisons of simulation
results using four techniques for three groups: W(t) (Figure 11a), M(t) (Figure 11b), and R(t)
(Figure 11c), respectively, under α = β = 0.99. To compare the results of the four numerical techniques
for the three state compartments, we show some numerical results in Table 4.
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Figure 11. Conducting a comparison of the simulation results for the FFP-WPO model (2.16)
using four numerical techniques.
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Table 4. Numerical results for the FFP-WPO model (2.16) with b = 0.75, a = 0.50, Λ =

0.66, θ = 0.05, µ = 0.40, γ = 0.21, (W0,M0,R0) = (2, 1.5, 1), and α = β = 0.99.

Method (Day) 1 20 40 60 80 100
Waste plastic material W(t)
Decomposition 0.88905 0.70260 0.68241 0.67496 0.67140 0.66950
Newton polynomial 0.92173 0.70273 0.68245 0.67499 0.67142 0.66951
Adams-Bashforth 0.89588 0.70264 0.68243 0.67497 0.67141 0.66951
Predictor-corrector 0.89596 0.70264 0.68243 0.67497 0.67141 0.66951
Marine debris M(t)
Decomposition 2.48739 5.83541 8.08821 9.43897 10.25836 10.75914
Newton polynomial 2.46019 5.82516 8.08129 9.43406 10.25475 10.75642
Adams-Bashforth 2.48165 5.83259 8.08574 9.43676 10.25640 10.75743
Predictor-corrector 2.48161 5.83259 8.08573 9.43676 10.25640 10.75743
Recycling R(t)
Decomposition 1.71808 6.39971 9.05486 10.64860 11.61577 12.20700
Newton polynomial 1.67651 6.38762 9.04668 10.64279 11.61151 12.20378
Adams-Bashforth 1.70907 6.39636 9.05192 10.64598 11.61345 12.20497
Predictor-corrector 1.70902 6.39636 9.05192 10.64598 11.61345 12.20497

It can be observed that the graphical simulations and numerical results of these four numerical
techniques are quite comparable with little difference. In addition, we also show a comparison of the
results between the classical derivative, the fractional derivative, and the fractal-fractional derivative
for the FFP-WPO model (2.16) in Figure 12 and Table 5.

Table 5. Comparing numerical results between the classical model, the Caputo-fractional
model, and the Caputo-fractal-fractional model.

Method (Day) 1 20 40 60 80 100
Waste plastic material W(t)
Classical 0.88729 0.70023 0.68106 0.67419 0.67042 0.66880
Caputo-fractional 0.88913 0.70151 0.68159 0.67436 0.67097 0.66918
Caputo-fractal-fractional 0.88905 0.70260 0.68241 0.67496 0.67140 0.66950
Marine debris M(t)
Classical 2.48918 6.01042 8.35404 9.71332 10.50359 10.96254
Caputo-fractional 2.48732 5.92417 8.21720 9.56732 10.36861 10.84681
Caputo-fractal-fractional 2.48739 5.83541 8.08821 9.43897 10.25836 10.75914
Recycling R(t)
Classical 1.71538 6.60659 9.36937 10.97338 11.90551 12.44737
Caputo-fractional 1.71800 6.50420 9.20699 10.80007 11.74592 12.31050
Caputo-fractal-fractional 1.71808 6.39971 9.05486 10.64860 11.61577 12.20700
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Figure 12. Comparison of the classical model, the Caputo-fractional model, and the Caputo-
fractal-fractional model.

6.2. Impact of the waste rate to become marine (b) on the FFP-WPO model (2.16).

Set α = 0.95, β = 0.99, and (W0,M0,R0) = (2, 1.5, 1) with the given parameters Λ = 0.36, γ = 0.41,
a = 0.65, µ = 0.40, θ = 0.15, and b ∈ [0.15, 0.60]. Figure 13 demonstrates the influence of the
parameter b on the FFP-WPO model (2.16). If the parameter b increases from 0.15 to 0.60, the stability
of the equilibrium point E∗0 will move to the point E∗1. Furthermore, increasing the value of b by 5%
from 0.15 to 0.60 (60 different values) causes the marine debris (M) quantity to shift away from zero
and become positive.
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Figure 13. Numerical simulations of W(t), M(t), and R(t) for the FFP-WPO model (2.16)
with α = 0.95, β = 0.99, Λ = 0.36, γ = 0.41, a = 0.65, µ = 0.40, θ = 0.15, and b ∈
[0.15, 0.60].

6.3. Impact of the marine debris rate to recycle (a) on the FFP-WPO model (2.16)

Set α = 0.95, β = 0.99, and (W0,M0,R0) = (2, 1.5, 1) with the given parameters Λ = 0.36, γ = 0.41,
b = 0.15, µ = 0.40, θ = 0.15, and the parameter a ∈ [0.10, 0.70]. Figure 14 demonstrates the influence
of the parameter a on the FFP-WPO model (2.16). If the parameter a increases from 0.10 to 0.70,
the stability of the equilibrium point E∗1 is unstable, while the equilibrium point E∗0 becomes E∗1 stable.
Additionally, increasing the value of a by 5% from 0.10 to 0.70 (60 different values) causes the marine
debris (M) quantity to approach zero.
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Figure 14. Numerical simulations of W(t), M(t), and R(t) for the FFP-WPO model (2.16)
with α = 0.95, β = 0.99, Λ = 0.36, γ = 0.41, b = 0.15, µ = 0.40, θ = 0.15, and a ∈
[0.10, 0.70].

6.4. Comparison of the simulation results on the FFP-WPO model (2.16) with reported real data

Next, we compare the simulation results with reported real data for 70 years from 1954 to 2024 [38]
in Figure 15.
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Figure 15. Comparing the integer-order, fractional-order Caputo, fractal-fractional-order
Caputo, and the reported real data for the marine debris M(t) of the FFP-WPO model (2.16).

Taking the given parameters b = 0.20, a = 0.28, Λ = 0.66, θ = 0.15, µ = 0.45, and γ = 0.35 and the
initial conditions (W0,M0,R0) = (2, 0.0004, 1), then Theorem 3.5 is satisfied. We obtain that the marine
debris-included equilibrium point E∗1 = (W∗

1 ,M
∗
1,R

∗
1) ≈ (1.40, 7.68, 4.40) is GAS, which implies that

the solutions of the FFP-WPO model (2.16) should move to the marine debris-included equilibrium
point E∗1. Figure 15 displays the comparison behavior for the integer-order (α = 1.00, β = 1.000),
fractional-order Caputo (α = 0.54, β = 1.000), fractal-fractional-order Caputo (α = 0.54, β = 0.916),
and the reported real data of the marine debris compartment. Then, the FFP-WPO model (2.16) fits
the reported real data better for α = 0.54 and β = 0.916. It is worth mentioning that fractional-order
and fractal-order can have various values to give numerical results close to the reported real data. By
taking use of this option, we may achieve a very close fit. Across all patients, it appears that the FFP-
WPO model (2.16) is effective in predicting the majority of reported real data points, particularly those
occurring early in the series.

7. Conclusions

This paper studied a developed mathematical ocean waste plastic management model through
the FFP operators in the context of the power law kernel. Waste pollution of the ocean is a crisis
produced by humans, endangering the ecology and aquatic life of the ocean and even disrupting rivers.
The population class was categorized into three sub-classes to construct the proposed model. An
approximation of the FFP derivative of α ∈ (0, 1) and β ∈ (0, 1) in the Caputo sense was analyzed
in Lemma 2.7. The obtained result allowed the application of methods formulating the Volterra-type
Lyapunov functions in FFP systems. The positivity of the solutions for the FFP-WPO model (2.16)
was demonstrated. The two equilibrium points, namely, the boundary equilibrium E∗0 and the interior
equilibrium E∗1 points, as well as the basic reproduction number P0, were established. If P0 < 1 with
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the necessary and sufficient conditions (3.6) satisfied, then the marine debris-free equilibrium point E∗0
is LAS, which in the amount of marine debris is zero. The marine debris-included equilibrium point
E∗1 is LAS if P0 > 1, and otherwise it is unstable, which corresponds to positive amounts of marine
debris. By creating Lyapunov functionals, E∗0 is GAS when P0 < 1, while E∗1 is GAS when P0 > 1.
Based on the aforementioned mathematical conclusions, we conclude that the memory of the FFP
derivative does not affect equilibrium stability. The existence and uniqueness proofs of the FFP-WPO
model (2.16) apply well-known fixed-point theorems to analyze the solution’s qualitative properties.
Furthermore, the stability analysis was carried out, utilizing both the UH and UHR principles and
their generalization. Finally, the numerical schemes for the FFP-WPO model (2.16) were allowed to
utilize four numerical methods, such as the decomposition, Adams-Bashforth, newton polynomial, and
predictor-corrector methods. Based on graphical simulations, we demonstrate that the fractional order
and the fractal dimension affect convergence speed and time to equilibria (Figures 3–14). A small
difference in the fractional order and fractal dimension was discovered to cause a little change in the
proposed model’s dynamical behavior. In terms of graphical simulations and the behavior of system
dynamics, the four numerical methods were essentially comparable, with just minor differences. There
are notable distinctions between integer-order derivatives and fractal-fractional-order derivatives.
Applying the proposed numerical scheme, we have shown various numerical results offered for
different fractal and fractional orders corresponding to reported real data. The model’s sensitivity was
assessed by computing the normalized sensitivity index for each parameter corresponding to BRN.
The sensitivity analysis results of BRN presented the parameters Λ, b, and µ relating directly to P0,
while the parameters γ, a, and θ inversely relate to P0. The number of marine debris in the ocean
M(t) can be decreased (or controlled) by contemplating arrangements that create a decrease in the
parameters with a direct impact or an increase in the parameters with the opposite effect on P0. To
manage marine debris, it was shown that reducing waste to marine (b) and new waste (Λ) or boosting
recycling rates (a and γ) are the most effective measures. This information may be used to better
develop strategies and plans for controlling marine waste in the ocean. The mathematical study of
the proposed model is important because it provides a quantitative index (BRN) for understanding the
asymptotic behavior of the oceanic waste recycling system. Furthermore, such an analysis determines
the strength of the effect of each model parameter, as components in this cycle,causing us to act more
compulsively to modify the conditions that affect the most essential elements. The fractal-fractional
model was simulated against data using a different set of fractal and fractional order values, and it was
discovered that altering both fractal and fractional orders provided a satisfactory match to the reported
real data (Figure 15). The limitation of the proposed model is the assumption about uniform waste
distribution. In the future, the FFP-WPO model (2.16) can be developed to investigate the impacts of
plastic waste disposal on air pollution along with respiratory diseases. We aim to extend this model
by comparing both deterministic and stochastic models. Furthermore, the research should investigate
the role of effecting and reduction control techniques in waste plastic in the ocean. We anticipate that
this study endeavor will benefit researchers in various fields of environmental science and improve the
management of the marine trash problem.
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