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Abstract: We consider transient nearest-neighbor random walks X := {Xn}n≥0 on the half-line, whose
transition probabilities are state-dependent with certain asymptotic perturbations. This is a specific
case of Lamperti’s random walks. Let Mt := max{Xi, 0 ≤ i ≤ t} be the maximum process of X, and
Tn := inf{t ≥ 0, Xt = n} be its inverse process. Hong&Yang (2019) provided the law of large numbers
for Tn. In this paper, we study the large deviations for Mt and Tn with speeds less than n. This indicates
that the perturbations slow down the random walk.
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1. Introduction

Consider a nearest-neighbor random walk defined as follows. X = {Xn}n≥0 is a Markov chain on
N = {0, 1, 2, · · · } with X0 = 0 and for n ≥ 1, the transition probabilities are

pi := P(Xn+1 = i + 1 | Xn = i) = 1 − P(Xn+1 = i − 1 | Xn = i) =

1, if i = 0,
1
2 +

B
iα , if i ≥ 1,

(1.1)

where α, B > 0. This random walk X describes the motion of particles that starts at zero, moves on
the nonnegative integers, and goes away from 0 with a larger probability than in the direction of 0.
Obviously, B

iα goes to 0 as i → ∞. This means that the state 0 has a repelling power that decreases as
the particle moves away from 0 (see [4]). This is a special case of the so-called Lamperti’s random
walk [7, 9].

The transience and recurrence for X are well-known results in the literature (e.g., Chung [3]). For
i ≥ 1, denote

ρi =
1 − pi

pi
.
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Theorem A ([3]) The random walk X defined in (1.1) is transient if and only if
∞∑

n=1

n∏
i=1

ρi < ∞.

However, this criterion does not explicitly reveal the transient/recurrent classification for sequences
of the form B

iα . Lamperti ([7, 9]) proved a more general theorem regarding the recurrence and transience
of real nonnegative processes. Here we explicitly characterize the types of B

iα sequences and discuss
their implications for the transience and recurrence of the random walk X. These results also follow
straightforwardly from Theorem A.
Transience criterion. For sufficiently large i:
·When 0 < α < 1, the random walk X is transient if B > 0 and recurrent if B < 0.
·When α = 1, the random walk X is transient if B > 1

4 and recurrent if B ≤ 1
4 .

Numerous studies have investigated the limiting behavior of X depending on the sequence B
iα . Lam-

perti [8] established the weak convergence of X to a Bessel process. The law of the iterated logarithm
for X was provided in [1, 12]. In [13], Voit proved the law of large numbers for X, which we restate
here in our specific framework.
Theorem B ([13]) If Ei =

B
iα , where 0 < α < 1 and B > 0, then

lim
n→∞

Xn

n1/(1+α) = [2B(1 + α)]1/(1+α) almost surely.

There is a minor mistake in [13] about the limit value. Hong&Yang [6] gave the correct form and
provided the limit of Tn, which is defined as follows.

For n ≥ 0, denote
Tn = inf{t ≥ 0, Xt = n}. (1.2)

Theorem C ([6]) If 0 < α < 1 and B > 0, then

lim
n→∞

Tn

n1+α =
1

2B(1 + α)
almost surely.

On this basis, we investigate the large deviations for the sequences of hitting times {Tn, n ≥ 1}.
Additionally, for t ∈ N, let

Mt = max{Xi, 0 ≤ i ≤ t}

be the maximum of the random walk X up to time t. Note that Tn defined in (1.2) is the inverse process
of Mt. Observing the relationship between Mt and Tn, we study the limit theorems and large deviations
for Mt.

The paper is organized as follows. Section 2 presents the main results. Section 3 provides auxiliary
results required for the proofs. The proofs of the main theorems are contained in Section 4.

2. Main results

This section presents the main results of the paper. It is divided into three parts. The first part
establishes the law of large numbers for Mt, and the second part addresses the large deviation principles
for Tn. Finally, we derive the large deviation principles for Mt.

AIMS Mathematics Volume 10, Issue 4, 8777–8793.



8779

Theorem 2.1. (Law of Large Numbers for Mt) When 0 < α < 1 and B > 0, we have

lim
n→∞

Mn

n1/(1+α) = [2B(1 + α)]1/(1+α) almost surely.

Po-Ning Chen [2] established a generalization of the Gärtner–Ellis Theorem for arbitrary random
sequences. All subsequent definitions in this section are adapted from reference [2].

Definition 2.1. Define

Λn(λ) =
1

n1−α log E exp(λn1−α Tn

n1+α )

and
Λ(λ) := lim sup

n→∞
Λn(λ), Λ(λ) := lim inf

n→∞
Λn(λ).

The sup-large deviation rate function of {Tn}
∞
n=0 is defined as

Λ
∗
(x) = sup

{λ∈R, Λ(λ)>−∞}

{λx − Λ(λ)}, (2.1)

and the inf-large deviation rate function is defined as

Λ∗(x) = sup
{λ∈R, Λ(λ)>−∞}

{λx − Λ(λ)}. (2.2)

Actually, we have Λ(λ) ≥ Λ(λ) > −∞ for every λ ∈ R (see Property 3.2). So the ranges of
the supremum operations in (2.1) and (2.2) are always {λ ∈ R}. Hence, Λ

∗
(x) and Λ∗(x) are always

defined.

Definition 2.2. Define the sup-Gärter–Ellis set as

G
△
=

⋃
{λ∈R, Λ(λ)>−∞}

G (λ)

where

G (λ) △= {x ∈ R : lim sup
t↓0

Λ(λ + t) − Λ(λ)
t

≤ x ≤ lim inf
t↓0

Λ(λ) − Λ(λ − t)
t

}.

Define the inf-Gärter–Ellis set as
G
△
=

⋃
{λ∈R, Λ(λ)>−∞}

G (λ)

where

G (λ) △= {x ∈ R : lim sup
t↓0

Λ(λ + t) − Λ(λ)
t

≤ x ≤ lim inf
t↓0

Λ(λ) − Λ(λ − t)
t

}.

Let us briefly remark on the sup-Gärter–Ellis set defined above. The definitions of G and G are
special cases of Definitions 3.4 and 3.5 in [2], which only require h(x) = x. By Property 3.2, we can
see that Λ

′
(λ) and Λ′(λ) exist for |λ| ≤ 2B2. So it can be derived that {x = Λ

′
(λ) : |λ| ≤ 2B2} ⊂ G and

{x = Λ′(λ) : |λ| ≤ 2B2} ⊂ G .
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Theorem 2.2. (Large Deviation Principles for Tn)
(1) For any closed set F ⊂ R, we have

lim sup
n→∞

1
n1−α log P

{ Tn

n1+α ∈ F
}
≤ − inf

x∈F
Λ
∗
(x) (2.3)

and
lim inf

n→∞

1
n1−α log P

{ Tn

n1+α ∈ F
}
≤ − inf

x∈F
Λ∗(x). (2.4)

(2) For any (a, b) ⊂ G , we have

lim sup
n→∞

1
n1−α log P

{ Tn

n1+α ∈ (a, b)
}
≥ − inf

x∈(a,b)
Λ
∗
(x).

(3) For any (a, b) ⊂ G , we have

lim inf
n→∞

1
n1−α log P

{ Tn

n1+α ∈ (a, b)
}
≥ − inf

x∈(a,b)
Λ∗(x).

Theorem 2.3. (Large Deviation Principles for Mt) Define

I(x) = x1−αΛ
∗
(

1
x1+α ),

I(x) = x1−αΛ∗(
1

x1+α ).

Then,
(1) for any closed set F ⊂ R,

lim sup
n→∞

1

n
1−α
1+α

log P
(

Mn

n
1

1+α

∈ F
)
≤ − inf

x∈F
I(x),

and

lim inf
n→∞

1

n
1−α
1+α

log P
(

Mn

n
1

1+α

∈ F
)
≤ − inf

x∈F
I(x),

(2) for any open set G,

lim inf
n→∞

1

n
1−α
1+α

log P
(

Mn

n
1

1+α

∈ G
)
≥ − inf

x∈G∩{v, 1
v1+α ∈G

o∩G
o
}

I(x),

where G o and G
o

represent the interior of G and G respectively.

3. Preliminaries

Property 3.1. Λ
∗
(x) and Λ∗(x) are the sup- and inf-large deviation rate functions of {Tn}

∞
n=0 respec-

tively. Denote x = 1
2B(1+α) , then

(1) Λ
∗
(x) and Λ∗(x) are always defined;

(2) Λ
∗
(x) and Λ∗(x) are both convex rate function;

(3) Λ
∗
(x) is continuous over {x ∈ R : Λ

∗
(x) < ∞}. Likewise, Λ∗(x) is continuous over {x ∈ R : Λ∗(x) <

∞};
(4) Λ

∗
(x) = Λ∗(x) = 0.
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Before proving Property 3.1, we provide some preparatory works.
Lemma A ([11], Lemma 17) Let p = (pi)i∈Z and q = (qi)i∈Z such that

pi ≤ qi, ∀i ∈ Z.

Then we can construct the random walks {Xn, n ∈ N} and {Yn, n ∈ N}, respectively associated with p
and q, and starting from any common point d ∈ Z, such that

∀n ∈ N, Xn ≤ Yn almost surely.

In [14], Ke Zhou provided explicit expressions for the generating functions of hitting times of the
skip-free Markov chain on Z+. The chain’s upward jumps are restricted to unit size; moreover, it starts
at state 0 and is absorbed by state d. The result relevant to our case is stated as follows.

Assume that the random walk defined in 1.1 is absorbed by state d and that pi ≡ p ∈ (0, 1) for
1 ≤ i ≤ d − 1. We denote this random walk as X∗. Let P be the transition probability matrix of X∗, and
let τd−1,d denote the hitting time of state d when starting from state d − 1.

Lemma B ([14]) Denote fd−1(s) as the generating function of τd−1,d; then we have

fd−1(s) = ps
det [Ad−1(s)]
det [Ad(s)]

where matrix Ai(s) is the first i rows and first i lines of Id+1 − P for i = d − 1, d. Id+1 is (d + 1) × (d + 1)
unit matrix.

Actually, Lemma B can be derived from the proof of Theorem 1.1 in [14]. Specifically, we have

fd−1(s) =
φd(s)
φd−1(s)

,

where φd(s) is a symbol defined in [14], representing the generating function of the hitting time from
state 0 to state d. We omit further details here.

Lemma 3.1. Let q = 1 − p; we have

det [Ad−1(s)]
det [Ad(s)]

=
(ηd−3 − βd−3)g3(s) − (ηd−3β − ηβd−3)g2(s)
(ηd−2 − βd−2)g3(s) − (ηd−2β − ηβd−2)g2(s)

(3.1)

where η, β are the roots of equation x2 − x + pqs2 = 0, and g2(s) = 1 − s2q, g3(s) = 1 − s2q − pqs2.

Proof. We will prove this result using mathematical induction. We can easily calculate that
det [A2(s)] = 1 − s2q = g2(s) and det [A3(s)] = 1 − s2q − pqs2 = g3(s). Clearly, (3.1) holds for
d = 3. Assume (3.1) is also hodes for d = k. To calculate det [Ak+1(s)], we expand along the last row
and obtain

det [Ak+1(s)] = det [Ak(s)] − pqs2 det [Ak−1(s)].

By the quadratic formula, we have

β =
1 −

√
1 − 4pqs2

2
, η =

1 +
√

1 − 4pqs2

2
,
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satisfying ηβ = pqs2 and η + β = 1. Therefore, for d = k + 1, we have

det [Ak(s)]
det [Ak+1(s)]

=
det [Ak(s)]

det [Ak(s)] − ηβ det [Ak−1(s)]
=

1

1 − ηβ det [Ak−1(s)]
det [Ak(s)]

=
1

1 − ηβ (ηk−3−βk−3)g3(s)−(ηk−3β−ηβk−3)g2(s)
(ηk−2−βk−2)g3(s)−(ηk−2β−ηβk−2)g2(s)

=
(ηk−2 − βk−2)g3(s) − (ηk−2β − ηβk−2)g2(s)

(ηk−2 − βk−2 − ηk−2β + ηβk−2)g3(s) − (ηk−2β − ηβk−2 − ηk−2β2 + η2βk−2)g2(s)

=
(ηk−2 − βk−2)g3(s) − (ηk−2β − ηβk−2)g2(s)
(ηk−1 − βk−1)g3(s) − (ηk−1β − ηβk−1)g2(s)

,

that is to say, (3.1) is true for d = k + 1. In conclusion, (3.1) is true for all d. This completes the
inductive step. □

The assumptions 0 < α < 1, B > 0 will be used throughout the paper. Recall the definition of Tn in
(1.2); let

τi = Ti − Ti−1, for i ≥ 1. (3.2)

Lemma 3.2. For λ ≤ 2B2, we have

Ee
λ

n2α τi → 1, as n→ ∞

uniform about 1 ≤ i ≤ n.

Proof. By Lemma A, let p(1) = (p1, p2, · · · , pi−1) and p(2) = (pi, · · · , pi) be (i−1)-dimensional vectors.
Obviously, for every 1 ≤ j ≤ i − 1, p j > pi. We construct the random walks {X(1)

n }n∈N and {X(2)
n }n∈N,

associated with p(1) and p(2) respectively , starting from i−1, reflected at 0, and absorbed at i, such that

∀n ∈ N, X(1)
n ≥ X(2)

n almost surely.

For j = 1, 2, denote τ( j)
i = inf{n ∈ N, X( j)

n = i} as the passage time of X( j) starting from i− 1 and ending
at i. Then

τ(1)
i ≤ τ

(2)
i almost surely.

implying Esτ
(1)
i ≤ Esτ

(2)
i . By Lemma B and Lemma 3.1, the generating function of τ(2)

i is:

fi−1(s) = Esτ
(2)
i = spi

det[Ai−1(s)]
det[Ai(s)]

= spi
(ηi−3 − βi−3)g3(s) − (ηi−3β − ηβi−3)g2(s)
(ηi−2 − βi−2)g3(s) − (ηi−2β − ηβi−2)g2(s)

= spi

1 + ηg2(s)−g3(s)
g3(s)−βg2(s)γ

i−3

η + β ηg2(s)−g3(s)
g3(s)−βg2(s)γ

i−3
, (3.3)

where η, β are the roots of equation x2 − x + piqis2 = 0, and

g3(s) = 1 − s2qi − piqis2,

AIMS Mathematics Volume 10, Issue 4, 8777–8793.
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g2(s) = 1 − s2qi,

γ =
β

η
.

By the definitions of Xn in (1.1) and τi in (3.2), the random variables τ(1)
i and τi share the same

distribution. Consequently, their generating functions Esτi = Esτ
(1)
i ≤ Esτ

(2)
i . Letting s = e

λ

n2α and
considering sufficiently large n large enough, we employ the representation τ(2)

i from (3.3) to derive
that

Ee
λ

n2α τ
(2)
i ≤ Ee

λ

n2α τ
(2)
n = spn

1 + ηg2(s)−g3(s)
g3(s)−βg2(s)γ

n−3

η + β ηg2(s)−g3(s)
g3(s)−βg2(s)γ

n−3
, for ∀ 1 ≤ i ≤ n.

Hence, to finish the proof of the lemma, we just need to verify that Ee
λ

n2α τ
(2)
n → 1, as n→ ∞. To ensure

the existence of η, β, we require

s2 = e
2λ

n2α ≤
1

4pnqn
,

where pn = 1 − qn =
1
2 +

B
nα . In other words,

λ ≤
1
2

log
1

[(1 − 4B2

n2α )
n2α

4B2 ]4B2
↓ 2B2.

Now,

γ =
β

η
=

1 −
√

1 − 4pnqne
2λ

n2α

1 +
√

1 − 4pnqne
2λ

n2α

∼ 1 −
2
√

4B2 − 2λ
nα

, as n→ ∞,

so limn→∞ γ
n−3 = 0.

Additionally, note that as n→ ∞,

·s = e
λ

n2α → 1,

·pn =
1
2
+

B
nα
→

1
2
,

·qn = 1 − pn →
1
2
.

From this, we can conclude that

η =
1 +

√
1 − 4pnqne

2λ
n2α

2
→

1
2
, β =

1 −
√

1 − 4pnqne
2λ

n2α

2
→

1
2
, as n→ ∞.

Similarly, we have

ηg2(s) − g3(s)
g3(s) − βg2(s)

=
η(1 − s2qn) − (1 − s2qn − pnqns2)
(1 − s2qn − pnqns2) − β(1 − s2qn)

→ constant, as n→ ∞.

Hence, for λ ≤ 2B2,
Ee

λ

n2α τ
(2)
n → 1, as n→ ∞.

□

AIMS Mathematics Volume 10, Issue 4, 8777–8793.
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Lemma 3.3. When |λ| ≤ 2B2, the series

∞∑
j=1

λ j

j!
(2 j − 3)!!

(4B2)
2 j−1

2

are convergent.

Proof. Indeed,
(2( j + 1) − 3)!!

( j + 1)!
/

(2 j − 3)!!
j!

→ 2, as j→ ∞.

Therefore, when | λ4B2 | <
1
2 , i.e., |λ| < 2B2, the series

∞∑
j=1

λ j

j!
(2 j − 3)!!

(4B2)
2 j−1

2

converges.

When λ = 2B2,

j[1 − (
(2B2) j+1

( j + 1)!
(2( j + 1) − 3)!!

(4B2)
2( j+1)−1

2

)/(
(2B2) j

j!
(2 j − 3)!!

(4B2)
2 j−1

2

)] = j(
3

2 j + 2
)→

3
2
≥ r > 1, as j→ ∞.

By the label discriminant, we can conclude that the series
∞∑
j=1

(2B2) j

j!
(2 j−3)!!

(4B2)
2 j−1

2
is convergent.

Similarly, when λ = −2B2, the series
∞∑
j=1

(−2B2) j

j!
(2 j−3)!!

(4B2)
2 j−1

2
is also convergent. □

Lemma 3.4. Suppose 0 < α < 1; then we have

−∞ <

∞∑
j=1

λ j

j!
L( j) = Λ(λ) ≤ Λ(λ) =

∞∑
j=1

λ j

j!
U( j) < ∞

for |λ| ≤ 2B2, where

L( j) := lim inf
n→∞

1
n1+(2 j−1)α

n∑
i=1

E(τi) j,

U( j) := lim sup
n→∞

1
n1+(2 j−1)α

n∑
i=1

E(τi) j.

Proof. Recalling that the random variables τi, i ≥ 1, defined in (3.2), are independent, we observe that
for any fixed λ ≤ 2B2, the following holds:

Λn(λ) =
1

n1−α log E exp(λn1−α Tn

n1+α ) =
1

n1−α log E exp(
λ

n2α

n∑
i=1

τi)

=
1

n1−α

n∑
i=1

log(1 + Ee
λ

n2α τi − 1)

AIMS Mathematics Volume 10, Issue 4, 8777–8793.
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∼
1

n1−α

n∑
i=1

(Ee
λ

n2α τi − 1)

=
1

n1−α

n∑
i=1

(
∞∑
j=1

E( λn2ατi) j

j!
)

=
1

n1−α

∞∑
j=1

1
j!

(
λ

n2α ) j
n∑

i=1

E(τi) j

=

∞∑
j=1

λ j

j!
1

n1+(2 j−1)α

n∑
i=1

E(τi) j.

Hence,
∞∑
j=1

λ j

j!
L( j) = lim inf

n→∞
Λn(λ) = Λ(λ) ≤ Λ(λ) = lim sup

n→∞
Λn(λ) =

∞∑
j=1

λ j

j!
U( j),

where,

L( j) := lim inf
n→∞

1
n1+(2 j−1)α

n∑
i=1

E(τi) j,

U( j) := lim sup
n→∞

1
n1+(2 j−1)α

n∑
i=1

E(τi) j.

Furthermore, by (3.3), we obtain

E(
τ(2)

n

n2α ) j = f ( j)
n−1(0) ∼

(2 j − 3)!!

(4B2)
2 j−1

2

1
nα
, as n→ ∞.

Consequently, for all 1 ≤ i ≤ n, it follows that

1
n1+(2 j−1)α

n∑
i=1

E(τi) j ≤
nE(τ(2)

n ) j

n1+(2 j−1)α =
E(τ(2)

n ) j

n(2 j−1)α →
(2 j − 3)!!

(4B2)
2 j−1

2

, as n→ ∞.

Hence, L( j) ≤ U( j) ≤ (2 j−3)!!

(4B2)
2 j−1

2
.

By Lemma 3.3, we have −∞ < Λ(λ) ≤ Λ(λ) < ∞ for |λ| ≤ 2B2. □

Proposition 3.1. For j = 1, 2, L( j) = U( j).

Proof. For j = 1, we have

lim
n→∞

n∑
i=1

Eτi

n1+α = lim
n→∞

ETn

n1+α =
1

2B(1 + α)
,

AIMS Mathematics Volume 10, Issue 4, 8777–8793.
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so, L(1) = U(1) = 1
2B(1+α) .

For j = 2, we have

lim
n→∞

n∑
i=1

E(τi)2

n1+3α = lim
n→∞

VarTn +
n∑

i=1
(Eτi)2

n1+3α =
1

4B3(1 + 3α)
. (3.4)

By Proposition 2.1 [6],

lim
n→∞

Eτn

nα
=

1
2B
.

Hence,

lim
n→∞

n∑
i=1

(Eτi)2

n1+2α =
1

4B2(1 + 2α)
. (3.5)

According to Theorem1.2 [6],

lim
n→∞

Var(Tn)
n1+3α =

1
4B3(1 + 3α)

. (3.6)

The combination of (3.4, 3.5, and 3.6) yields:

lim
n→∞

n∑
i=1

E(τi)2

n1+3α =
1

4B3(1 + 3α)
.

Hence, L(2) = U(2) = 1
4B3(1+3α) . □

Property 3.2. Λ
′
(λ) and Λ′(λ) exist for |λ| ≤ 2B2.

Proof. By Lemma 3.4, Λ(λ) and Λ(λ) can be expressed as power series when |λ| ≤ 2B2. According to
the properties of power series, it follows that Λ

′
(λ) and Λ′(λ) exist for |λ| ≤ 2B2. □

Proposition 3.2. For every λ ∈ R, Λ(λ) ≥ Λ(λ) > −∞.

Proof. Since for every n ≥ 0, Tn is non-negative, we have Λ(λ) > −∞ for every λ ∈ R+. Let DΛ
△
= {λ :

Λ(λ) > −∞}, and let Do
Λ

be the interior of DΛ. By Lemma 3.4, we know that 0 ∈ Do
Λ

, so there exists
λ0 < 0 such that Λ(λ0) > −∞. Hence, for every λ < λ0, by Jensen’s inequality we have the following:

E exp(λn1−α Tn

n1+α ) = E[exp(λ0n1−α Tn

n1+α )]
λ
λ0 ≥ [E exp(λ0n1−α Tn

n1+α )]
λ
λ0 .

So,

Λ(λ) = lim inf
n→∞

1
n1−α log E exp(λn1−α Tn

n1+α )

≥
λ

λ0
lim inf

n→∞

1
n1−α log E exp(λ0n1−α Tn

n1+α ) =
λ

λ0
Λ(λ0) > −∞.

Hence, we have Λ(λ) ≥ Λ(λ) > −∞ for every λ ∈ R. □
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The proof of Property 3.1
By Proposition 3.2, it follows that Λ

∗
(x) and Λ∗(x) are always defined. Properties (2) and (3) follow

from the results in [2]. Specifically, x = 1
2B(1+α) is the limiting value of Tn

n1+α as stated in Theorem C. The
idea of the proof of (4) comes from Lemma2.2.5 in [5]. For all λ ∈ R, by Jensen’s inequality,

Λ(λ) = lim sup
n→∞

1
n1−α log E exp(λn1−α Tn

n1+α )

≥ lim sup
n→∞

1
n1−αE log[exp(λn1−α Tn

n1+α )]

= lim sup
n→∞

1
n1−αE(λn1−α Tn

n1+α ) = λ lim sup
n→∞

ETn

n1+α = λx,

Since Λ(0) = 0, we obtain Λ
∗
(x) = sup

{λ∈R}

{λx − Λ(λ)} = 0. Similarly, we also have Λ∗(x) = 0. □

Proposition 3.3. For all x ≥ x

Λ
∗
(x) = sup

{λ≥0}
{λx − Λ(λ)}, Λ∗(x) = sup

{λ≥0}
{λx − Λ(λ)}

is a non-decreasing function. Similarly, for all x ≤ x,

Λ
∗
(x) = sup

{λ≤0}
{λx − Λ(λ)}, Λ∗(x) = sup

{λ≤0}
{λx − Λ(λ)}

is a non-increasing function.

Proof. For every x ≥ x and every λ < 0,

λx − Λ(λ) ≤ λx − Λ(λ) ≤ Λ
∗
(x) = 0,

so Λ
∗
(x) = sup

{λ≥0}
{λx − Λ(λ)}. This also implies the monotonicity of Λ

∗
(x) on (x,∞), since for every

λ ≥ 0, the function λx − Λ(λ) is nondecreasing as a function of x.

For every x ≤ x and every λ > 0,

λx − Λ(λ) ≤ λx − Λ(λ) ≤ Λ
∗
(x) = 0,

so Λ
∗
(x) = sup

{λ≤0}
{λx − Λ(λ)}. This also implies the monotonicity of Λ

∗
(x) on (−∞, x), since for every

λ ≤ 0, the function λx − Λ(λ) is nonincreasing as a function of x.

Similarly, we can also obtain analogous properties for Λ∗(x). □

4. Proof of main results

Proof of Theorem 2.1
Let kn be the unique (random) integers such that

Tkn ≤ n ≤ Tkn+1, (4.1)
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Since Tkn represents the time when the random walk first reaches position kn, and Tkn ≤ n, the
maximum position Mn must satisfy Mn ≥ kn. Similarly, because n ≤ Tkn+1 and the definition of Tkn+1,
it follows that Mn ≤ kn + 1. Therefore, we conclude kn ≤ Mn ≤ kn + 1. Hence,

kn

n
1

1+α

≤
Mn

n
1

1+α

≤
kn + 1

n
1

1+α

.

Note that Theorem C states that limn→∞
Tkn

(kn)1+α = limn→∞
Tkn+1

(kn)1+α =
1

2B(1+α) . As a consequence, divid-
ing both sides of inequality (4.1) by (kn)1+α yields limn→∞

n
(kn)1+α =

1
2B(1+α) . Thus,

[2B(1 + α)]1/(1+α) ≥ lim sup
n→∞

Mn

n
1

1+α

≥ lim inf
n→∞

Mn

n
1

1+α

≥ [2B(1 + α)]1/(1+α).

The proof is completed.

Proof of Theorem 2.2
The idea originates from the proof of Cramér’s Theorem in [5] and Theorem 3 in [10]. Let F be a
non-empty closed set. Note that (2.3) holds trivially if

inf
x∈F
Λ
∗
(x) = 0.

Assume instead that
inf
x∈F
Λ
∗
(x) > 0.

Since Λ
∗
(x) = 0 (see Property 3.1), x must lie in the open set Fc. Let (x−, x+) denote the union of all

open intervals (a, b) ⊂ Fc containing x. Observe that x− < x+ and at least one of x− or x+ must be finite
(since F is non-empty).
(1) If x− is finite and x+ = +∞, then x− ∈ F ⊂ (−∞, x−). Consequently,

Λ
∗
(x−) ≥ inf

x∈F
Λ
∗
(x).

For every λ ≤ 0,

P(
Tn

n1+α ∈ F) ≤ P(
Tn

n1+α ∈ (−∞, x−]) = P(
Tn

n1+α − x− ≤ 0) = E[I Tn
n1+α −x−≤0]

≤ E[exp{n1−αλ(
Tn

n1+α − x−)}] = exp{−n1−αλx−}E exp{n1−αλ
Tn

n1+α }.

Observe that the random variable exp{n1−αλ( Tn
n1+α − x−)} ≥ 1 on the set { Tn

n1+α − x− ≤ 0}, f or λ ≤ 0, we
used Chebyshev’s inequality in the last inequality above. Next, by taking the logarithm on both sides
of the above inequality and considering the upper limit with proper scaling, we obtain

lim sup
n→∞

1
n1−α log P

{ Tn

n1+α ∈ F
}
≤ lim sup

n→∞

1
n1−α log P(

Tn

n1+α ∈ (−∞, x−])

≤ lim sup
n→∞

1
n1−α log{exp{−n1−αλx−}E exp{n1−αλ

Tn

n1+α }}
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= −λx− + lim sup
n→∞

1
n1−α log E exp{n1−αλ

Tn

n1+α }

= −(λx− − Λ(λ)). (4.2)

The above inequality holds for all λ ≤ 0; consequently,

lim sup
n→∞

1
n1−α log P

{ Tn

n1+α ∈ F
}
≤ lim sup

n→∞

1
n1−α log P(

Tn

n1+α ∈ (−∞, x−])

≤ inf
λ≤0
{−(λx− − Λ(λ))} = − sup

λ≤0
{λx− − Λ(λ)} = −Λ

∗
(x−)

≤ − inf
x∈F
Λ
∗
(x), (4.3)

where the last equality follows from Proposition 3.3. The final inequality holds trivially since x− ∈ F.

By a similar argument, if x+ is finite and x− = −∞, then

lim sup
n→∞

1
n1−α log P

{ Tn

n1+α ∈ F
}
≤ lim sup

n→∞

1
n1−α log P(

Tn

n1+α ∈ [x+,∞))

≤ −Λ
∗
(x+) ≤ − inf

x∈F
Λ
∗
(x) (4.4)

(2) If x−, x+ are all finite, then x−, x+ ∈ F, and x− < x < x+.

1
n1−α log P

{ Tn

n1+α ∈ F
}
≤

1
n1−α log P

{ Tn

n1+α ∈ (−∞, x−] ∪ [x+,∞)
}

≤
1

n1−α log max{2P(
Tn

n1+α ≤ x−), 2P(
Tn

n1+α ≥ x+)}

≤
log 2
n1−α +max{

1
n1−α log P(

Tn

n1+α ≤ x−),
1

n1−α log P(
Tn

n1+α ≥ x+)},

Combining (4.3) with (4.4), we obtain

lim sup
n→∞

1
n1−α log P

{ Tn

n1+α ∈ F
}

≤ max{lim sup
n→∞

1
n1−α log P(

Tn

n1+α ≤ x−), lim sup
n→∞

1
n1−α log P(

Tn

n1+α ≥ x+)}

≤ − inf
x∈F
Λ
∗
(x). (4.5)

In summary, we have completed the proof of (2.3). The proof of (2.4) follows by taking the limit
inferior in (4.2), (4.3), (4.4) and (4.5).

The large deviations lower bound of Tn (statements (2) and (3) in Theorem 2.2) follow directly
from Theorem3.5-3.6 in [2] with h(x) = x; therefore, we omit the details here.

Proof of Theorem 2.3
Let v0 = (2B(1 + α))

1
1+α , which is the limit value of Mn/n

1
1+α in Theorem 2.1. For every v > v0, i.e.

1
v1+α <

1
v1+α

0
= 1

2B(1+α) = x, note that

P
(

Mn

n
1

1+α

≥ v
)
= P

(
Mn ≥ n

1
1+α v

)
≤ P

(
T
⌊n

1
1+α v⌋
≤ n

)
= P

 T
⌊n

1
1+α v⌋

(⌊n
1

1+α v⌋)1+α
≤

n

(⌊n
1

1+α v⌋)1+α

 .
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The event Mn ≥ n
1

1+α v implies that the random walk has reached n
1

1+α v before time n, and thus

{Mn ≥ n
1

1+α v} ⊂ {T
⌊n

1
1+α v⌋
≤ n},

where ⌊x⌋ denotes the greatest integer less than or equal to x, and ⌈x⌉ denotes the smallest integer
greater than or equal to x. Taking logarithms on both sides of the inequality and taking the upper limit
with proper scaling yields

lim sup
n→∞

1

(⌊n
1

1+α v⌋)1−α
logP

(
Mn

n
1

1+α

≥ v
)

≤ lim sup
n→∞

1

(⌊n
1

1+α v⌋)1−α
log P

 T
⌊n

1
1+α v⌋

(⌊n
1

1+α v⌋)1+α
≤

n

(⌊n
1

1+α v⌋)1+α


≤ −Λ

∗
(

1
v1+α ),

where the last inequality follows from (4.3), noting that limn→∞
n

(⌊n
1

1+α v⌋)1+α
= 1

v1+α and the continuity of

−Λ
∗
(x) (see Property 3.1). Multiplying both sides by v1−α gives

lim sup
n→∞

1

n
1−α
1+α

log P
(

Mn

n
1

1+α

≥ v
)
≤ −v1−αΛ

∗
(

1
v1+α ) = −I(v).

Next, we derive an upper bound for P(Mn/n
1

1+α ≤ v), where v < v0 (i.e., 1
v1+α >

1
v1+α

0
= x). Observe

that

P(
Mn

1
n1+α

≤ v) ≤ P(Mn ≤ n
1

1+α v) ≤ P(T
⌈n

1
1+α v⌉
≥ n),

Thus, (4.4) implies

lim sup
n→∞

1

⌈n
1

1+α v⌉1−α
log P(

Mn

n
1

1+α

≤ v)

≤ lim sup
n→∞

1

⌈n
1

1+α v⌉1−α
log

P(
T
⌈n

1
1+α v⌉

⌈n
1

1+α v⌉1+α
≥

n

⌈n
1

1+α v⌉1+α
)


≤ −Λ

∗
(

1
v1+α )

Consequently,

lim sup
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

≤ v) ≤ −v1−αΛ
∗
(

1
v1+α ) = −I(v). (4.6)

The remainder of the proof follows similarly to the large deviations upper bound for Tn (Theorem 2.2).
We have completed the proof of part (1) in Theorem 2.3.

Next, we consider the large deviation lower bound for Mn. For v < v0 (i.e., 1
v1+α > x) satisfying

1
v1+α ∈ G

o
, there exists a neighborhood ( 1

v1+α − δ,
1

v1+α + δ) ⊂ G
o
. For any 0 < ϵ < δ/2, we have

P(
Mn

n
1

1+α

< v) = P(Mn < n
1

1+α v) ≥ P(T
⌊n

1
1+α v⌋
> n)
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≥ P(
T
⌊n

1
1+α v⌋

⌊n
1

1+α v⌋
1+α >

n

⌊n
1

1+α v⌋
1+α )

≥ P(
T
⌊n

1
1+α v⌋

⌊n
1

1+α v⌋
1+α >

1
v1+α + ϵ)

for sufficiently large n. By Theorem 2.2, we obtain

lim sup
n→∞

1

(⌊n
1

1+α v⌋)1−α
log P(

Mn

n
1

1+α

< v)

≥ lim sup
n→∞

1

(⌊n
1

1+α v⌋)1−α
log P(

T
⌊n

1
1+α v⌋

⌊n
1

1+α v⌋
1+α >

1
v1+α + ϵ)

≥ − inf
x∈( 1

v1+α +ϵ,
1

v1+α +2ϵ)
Λ
∗
(x)

≥ −Λ
∗
(

1
v1+α +

3
2
ϵ)

Since 1
v1+α ∈ G

o
, Λ
∗
( 1

v1+α ) < ∞, and Λ
∗
(x) is continuous at 1

v1+α (see (3) in Property 3.1), letting ϵ → 0
yields

lim sup
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

< v) ≥ −v1−αΛ
∗
(

1
v1+α ) = −I(v).

Combining this with (4.6), we conclude

lim sup
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

< v) = lim sup
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

≤ v) = −I(v). (4.7)

Similarly, for v < v0, satisfying 1
v1+α ∈ G o, we have

lim inf
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

< v) = lim inf
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

≤ v) = −I(v) (4.8)

Hence, for any v with 1
v1+α ∈ G

o
∩ G o, there exists a neighborhood ( 1

v1+α − δ,
1

v1+α + δ) ⊂ G
o
∩ G o.

Assume v < v0 (the case v > v0 is analogous). Choose δ1 < δ and δ2 < δ, combining (4.7) with (4.8),
we obtain

−I(v + δ2) = lim inf
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

< v + δ2) > lim sup
n→∞

1

n
1−α
1+α

log P(
Mn

n
1

1+α

≤ v − δ1) = −I(v − δ1). (4.9)

Hence, for any ϵ′ > 0 and sufficiently large n,

P(
Mn

n
1

1+α

< v + δ2) ≥ exp{−n
1−α
1+α (I(v + δ2) + ϵ′)}

P(
Mn

n
1

1+α

≤ v − δ1) ≤ exp{−n
1−α
1+α (I(v − δ1) − ϵ′)}

Thus,

P(v + δ2 >
Mn

n
1

1+α

> v − δ1)
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= P(
Mn

n
1

1+α

< v + δ2) − P(
Mn

n
1

1+α

≤ v − δ1)

≥ exp{−n
1−α
1+α (I(v + δ2) + ϵ′)} − exp{−n

1−α
1+α (I(v − δ1) − ϵ′)}

= exp{−n
1−α
1+α (I(v + δ2) + ϵ′)}{1 − exp{−n

1−α
1+α (I(v − δ1) − I(v + δ2) − 2ϵ′)}}

Since I(v − δ1) > I(v + δ2) (by (4.9)); choosing ϵ′, δ1, and δ2 such that I(v − δ1) − I(v + δ2) − 2ϵ′ > 0
yields

lim inf
n→∞

1

n
1−α
1+α

log P(v + δ2 >
Mn

n
1

1+α

> v − δ1) ≥ −I(v + δ2) − ϵ′.

By the continuity I(v), for any ϵ > 0, we can choose δ2 sufficiently small such that I(v + δ2) < I(v) + ϵ.
Consequently,

lim inf
n→∞

1

n
1−α
1+α

log P(v + δ2 >
Mn

n
1

1+α

> v − δ1) ≥ −I(v) − ϵ − ϵ′.

Since ϵ and ϵ′ are arbitrary, we conclude

lim inf
n→∞

1

n
1−α
1+α

log P(v + δ2 >
Mn

n
1

1+α

> v − δ1) ≥ −I(v).

5. Conclusions

In recent years, random walks with asymptotic perturbations in transition probabilities have received
widespread attention from scholars. These perturbations bring many new phenomena to random walks.
For transient near-critical random walks, Voit [13] established the law of large numbers for the random
walks, showing that the escape velocity of such processes is significantly slower than that of simple
random walks. Building on this foundation, we derive large deviation principles for such random walks
and demonstrate that their velocity order is substantially sublinear in n. This result further indicates
that asymptotic perturbations reduce the wandering speed of random walks.
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