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Abstract: We consider transient nearest-neighbor random walks X := {X),},>0 on the half-line, whose
transition probabilities are state-dependent with certain asymptotic perturbations. This is a specific
case of Lamperti’s random walks. Let M, := max{X;, 0 < i < t} be the maximum process of X, and
T, := inf{r > 0, X, = n} be its inverse process. Hong& Yang (2019) provided the law of large numbers
for T,,. In this paper, we study the large deviations for M, and 7T, with speeds less than n. This indicates
that the perturbations slow down the random walk.
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1. Introduction

Consider a nearest-neighbor random walk defined as follows. X = {X,},50 is a Markov chain on
N ={0,1,2,---} with Xy = 0 and for n > 1, the transition probabilities are

1, if i =0,
pii= Py =1+ 11X, =)= 1= PXp =i=11X,=0=1", ' (1.1)
§+i;, lleI,

where a, B > 0. This random walk X describes the motion of particles that starts at zero, moves on
the nonnegative integers, and goes away from O with a larger probability than in the direction of 0.
Obviously, l% goes to 0 as i — oo. This means that the state 0 has a repelling power that decreases as
the particle moves away from O (see [4]). This is a special case of the so-called Lamperti’s random
walk [7, 9].

The transience and recurrence for X are well-known results in the literature (e.g., Chung [3]). For
i > 1, denote

_I-p
pi

Pi
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Theorem A ([3]) The random walk X defined in (1.1) is transient if and only if

> []a<e
n=1 i=1

However, this criterion does not explicitly reveal the transient/recurrent classification for sequences
of the form iﬁ;. Lamperti ([7, 9]) proved a more general theorem regarding the recurrence and transience
of real nonnegative processes. Here we explicitly characterize the types of l% sequences and discuss
their implications for the transience and recurrence of the random walk X. These results also follow
straightforwardly from Theorem A.

Transience criterion. For sufficiently large i:
- When 0 < @ < 1, the random walk X is transient if B > 0 and recurrent if B < 0.
- When « = 1, the random walk X is transient if B > %, and recurrent if B < ‘1—‘.

Numerous studies have investigated the limiting behavior of X depending on the sequence l%. Lam-
perti [8] established the weak convergence of X to a Bessel process. The law of the iterated logarithm
for X was provided in [1, 12]. In [13], Voit proved the law of large numbers for X, which we restate
here in our specific framework.

Theorem B ([13]) If E; = l%, where 0 < @ < 1 and B > 0, then

. X,
lim ) — [2B(1 + &))" almost surely.
n—oo N (04

There is a minor mistake in [13] about the limit value. Hong& Yang [6] gave the correct form and
provided the limit of 7, which is defined as follows.
For n > 0, denote
T, =inf{t > 0, X, = n}. (1.2)

Theorem C ([6]) IfO < a < 1 and B > 0, then

T, 1
lim

oo plta 2B(1+a) almost surely.

On this basis, we investigate the large deviations for the sequences of hitting times {7,,n > 1}.
Additionally, for ¢ € N, let

M, =max{X;, 0<i<t}

be the maximum of the random walk X up to time . Note that 7, defined in (1.2) is the inverse process
of M,. Observing the relationship between M, and T, we study the limit theorems and large deviations
for M,.

The paper is organized as follows. Section 2 presents the main results. Section 3 provides auxiliary
results required for the proofs. The proofs of the main theorems are contained in Section 4.

2. Main results
This section presents the main results of the paper. It is divided into three parts. The first part
establishes the law of large numbers for M,, and the second part addresses the large deviation principles

for T,,. Finally, we derive the large deviation principles for M,.
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Theorem 2.1. (Law of Large Numbers for M;) When O < @ < 1 and B > 0, we have

. M,
lim —=— = [2B(1 + )]V almost surely.
n—oo n a

Po-Ning Chen [2] established a generalization of the Gértner—Ellis Theorem for arbitrary random
sequences. All subsequent definitions in this section are adapted from reference [2].
Definition 2.1. Define
1 l-a T”
A, () = i log Eexp(An ~“——)

n1+oz

and _
A(D) :=limsup A, (1), A(Q) :=liminf A, ().

n—oo

The sup-large deviation rate function of {7} is defined as

A= sup {lx—AQ), 2.1)
{AeR, A(2)>—co}

and the inf-large deviation rate function is defined as

A= sup {dx- AW (2.2)
{A€R, A(D)>—o0}

Actually, we have A(1) > A(1) > —oo for every A € R (see Property 3.2). So the ranges of

the supremum operations in (2.1) and (2.2) are always {4 € R}. Hence, K*(x) and A"(x) are always
defined.

Definition 2.2. Define the sup-Gdrter—Ellis set as
7= ) 9w
{A€R, A()>—o0}

where

7 AA+1) - A A=A -t
F() 2 (xR : limsup (+z ()sthmwinf @ t( ),
tl0 t

Define the inf-Gdrter—Ellis set as
g= ) 9w

{A€R, A(D)>—c0}

where

AA+1) - A A - A -t
g(ﬂ)é{xeRzlimsup_( Z A SXSIirnui)nf_( ) t_( )}
tl0 t

Let us briefly remark on the sup-Girter—Ellis set defined above. The definitions of & and ¢ are
special cases of Definitions 3.4 and 3.5 in [2], which only require 4(x) = x. By Property 3.2, we can
see that X/(/l) and A’(Q) exist for |A| < 2B2. So it can be derived that {x = X’(/l) | < 2B%) C 4 and
{x=AN@:1<2B*}cY.
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Theorem 2.2. (Large Deviation Principles for 7))
(1) For any closed set F C R, we have

1 T, —
limsup —— log P{ 2 € F} < ~inf & () 23)
n—s00 n'ta xeF
and 1 T
liminf — log P { - F} < —inf A*(x). 2.4)
n—oo  pl- nlto xeF —

(2) For any (a,b) C S?, we have

1 T,
hmsup—logP{— € (a, b)} > - 1nf A (x).

n—oo

(3) For any (a,b) C ¢, we have

I T,
hmlnf—logP{— € (a, b)} >~ inf A'().

n—oo ab)

Theorem 2.3. (Large Deviation Principles for M,) Define

T(x) = ¥ A ( 1m)
1) = XA (o).
X

Then,
(1) for any closed set F C R,

: 1 M,
limsup —— log P|—— € F| <

n—oo nl+a

SN —
|
s
m
=4
~I
~
=
N

and

liminf — log P ( F) < —inf I(x)
n—eo  pn Tre n T xeF ™
(2) for any open set G,
M, )
liminf — log P( — € G) > — inf 1(x),
n—eo  p 1+a nT+a xeGN{y, - e%”ﬂ?o}

P yl+a

— _
where 4° and G represent the interior of 4 and 4 respectively.
3. Preliminaries

Property 3.1. K*(x) and N'(x) are the sup- and inf-large deviation rate functions of {T,} ", respec-

. -_ 1
tively. Denote x = IB(5a) then

(1) K*(x) and N*(x) are always defined;

(2) N (x) and N*(x) are both convex rate function;

(3) K*(x) is continuous over {x € R : K*(x) < oo}. Likewise, A*(x) is continuous over {x € R : A*(x) <
oo},

(AN @ =AG =
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Before proving Property 3.1, we provide some preparatory works.
Lemma A ([11], Lemma 17) Let p = (p;)icz and q = (g;)icz Such that

pi < qi, Vi€

Then we can construct the random walks {X,,n € N} and {Y,,n € N}, respectively associated with p
and q, and starting from any common point d € Z, such that

VneN, X, <Y, almost surely.

In [14], Ke Zhou provided explicit expressions for the generating functions of hitting times of the
skip-free Markov chain on Z*. The chain’s upward jumps are restricted to unit size; moreover, it starts
at state 0 and is absorbed by state d. The result relevant to our case is stated as follows.

Assume that the random walk defined in 1.1 is absorbed by state d and that p; = p € (0, 1) for
1 <i<d-1. We denote this random walk as X*. Let P be the transition probability matrix of X*, and
let 7,1 4 denote the hitting time of state d when starting from state d — 1.

Lemma B ([14]) Denote f;_,(s) as the generating function of T4- 4, then we have
det [Ag-1(s)]
det [A4(s)]

where matrix A;(s) is the first i rows and first i lines of I;;1 — Pfori=d —1,d. I;;;is(d+1)X(d+1)
unit matrix.

Ja-1(s) = ps

Actually, Lemma B can be derived from the proof of Theorem 1.1 in [14]. Specifically, we have

@a(s)

Ja1(8) = i ()

where ¢,(s) is a symbol defined in [14], representing the generating function of the hitting time from
state O to state d. We omit further details here.

Lemma 3.1. Let g = 1 — p; we have

det [Az—1(s)] _ 3 = B g3(s) — "B — B ) ga(s)
det[Ay(s)] (¥ = Bi2)gs(s) — (9728 — nB9=2)ga(s)

where 1, 8 are the roots of equation x*> — x + pqs* = 0, and g,(s) = 1 — s%q, g3(s) = 1 — s’°q — pqs°.

(3.1

Proof. We will prove this result using mathematical induction. We can easily calculate that
det[Ay(s)] = 1 — s?°q = g»(s) and det[A3(s)] = 1 — s>q — pgs® = gs(s). Clearly, (3.1) holds for
d = 3. Assume (3.1) is also hodes for d = k. To calculate det [A;,(s)], we expand along the last row
and obtain

det [A1(8)] = det [Ax(s)] — pgs” det [Ag_i(5)].

By the quadratic formula, we have

1—1-4pgs* 1+ 1-4pqs?

ﬁ: 2 ,T]— 2 s
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satisfying 8 = pgs* and 7 + 8 = 1. Therefore, for d = k + 1, we have

det[Ai(s)] det [Ax(s)] 1
det[Ags1(s)]  det[Ax(s)] — B det [Ag_i(s)] 1 - ,Bdgzt[?/ikég])]
1

| e e
TP 23 ()- (2B nB)gals)

~ (72 = B2)g3(s) = 1B = nB*)gals)

C (7 = B = 2B 4+ B D)gs(s) — (F 2B — B — f 2B + 2B )ga(s)
2= BD)ga(s) — (B - B )ga(s)

C =B Dga(s) — 1B — B ga(s)

that is to say, (3.1) is true for d = k + 1. In conclusion, (3.1) is true for all d. This completes the
inductive step. O

The assumptions 0 < @ < 1, B > 0 will be used throughout the paper. Recall the definition of 7, in
(1.2); let
T, = Tl‘ - T,‘_l, fori> 1. (32)

Lemma 3.2. For 1 < 2B?, we have
Eea I, asn— oo

uniform about 1 <i < n.

Proof. By Lemma A, let p = (py, p2,--- , pi-1) and p® = (p;,- - , p;) be (i—1)-dimensional vectors.
Obviously, for every 1 < j <i-1, p; > p;. We construct the random walks {X,Sl)},leN and {X,(f)}neN,
associated with p" and p® respectively , starting from i — 1, reflected at 0, and absorbed at i, such that

VneN, X" > X® almost surely.

For j = 1,2, denote 7 = inf{n € N, X\ = i} as the passage time of X'/ starting from i — | and ending
ati. Then

T(.l) < T(.Z) almost surely.

implying E st < EsT By Lemma B and Lemma 3.1, the generating function of T(Z)

EsT @ _ . det[A;_(5)]
det[A(s)]
_ sp(n"‘3 —B83(5) — B — B )ga(s)
{772 = B2)ga(s) — (2B — Bi2)ga(s)

182(5)=83(5) . i-3
1+ 83(s) ﬁgz(s)7

ng2(s)—g3(s)
B ne?

fiz1(s)

sp- 3.3)

2 — x + pigis* = 0, and

where 7, 8 are the roots of equation x
g3(s) = 1 = s’q; = pigis”,

AIMS Mathematics Volume 10, Issue 4, 8777-8793.
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g:(s) =1 - s%q;,
B
y="=.
n

By the definitions of X, in (1.1) and 7; in (3.2), the random variables TEI) and 7; share the same

. . . . . . (1) (2) . 4
distribution. Consequently, their generating functions Es” = Es < Es% . Letting s = e~ and
considering sufficiently large n large enough, we employ the representation 7'52) from (3.3) to derive

that
1 n82(s)—g3(s) . n-3
(2)

83(5)—Pga(s)
ng2(s)—g3(s)
B pen?

1 () A
Eena’i < Eena™ = Spn

, forV1<i<n.

.2
Hence, to finish the proof of the lemma, we just need to verify that Ee*™ — 1, as n — oo. To ensure
the existence of 7, 8, we require

2 2 1
ST = enZa S s
4pngn
where p, =1-g¢g, = % % In other words,
1 1
A< 3 log 1 2B%

4B\
[(1 = 55) |45

20
B 11— 1-4p.g,e 2 4B — 22

Now,

y=== , SN — 00,
n 20 n®
1+ 1 -4p,g.e™
s0 lim,_,, " = 0.
Additionally, note that as n — oo,
5= et > 1,
1 N B 1
Pn=a e 7y
) 1
=1- — —.
q DPn >
From this, we can conclude that
[ 24 [ 24
1+ 1- 4pn£1ne”2(y 1 1 - 1 - 4anne"2‘y 1
1= 2 ~ oy hE 2 T asnTmee

Similarly, we have

nga(s) = 83(s) _ 11 = 5°qa) = (1 = 5°Gn = Pudn5’)
g3(s) _ﬁgZ(s) (1 - SZQn - annsz) _ﬁ(l - San)
Hence, for 1 < 2B,

— constant, as n — 0o,

1 (2
Ee™ — 1, asn — oo.

O
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Lemma 3.3. When || < 2B, the series
A (2 j=3)
; i @By
are convergent.

Proof. Indeed,
QG+ D=3 2j-3)!

— 2, as j — oo.

(+ D! J!

Therefore, when | 45| < 3, i.e., |4] < 2B?, the series
i U (2j-3)!
J' 4By

converges.
When 1 = 2B2,
i - ((2]32)]'Jrl QG+ D=3 (2B*/ (2j-3)! iy 3 )5 25 r> 1. as j— ool
(j+ D! (432)2””) ! J! (432)2’" 2j+2 2 -

By the label discriminant, we can conclude that the series Z @sy M

, 1s convergent.
=1 @)

§ (28%)] Q)= Sl

Similarly, when A = —2B?, the series :
a0 un

is also convergent. O

Lemma 3.4. Suppose 0 < a < 1; then we have

Sy ¥} _ 2/
—00 < Zl TLD =AW AW = ), FU() < o0

J=1

for|A| < 2B, where
. .. 1 - ;
L(j) := hnm_)glf R ETCy= Z E(t)),
i=1

1 - .
N oe— 14 - A\
U@y = 111:1 Sollp e ,-_El E(;).

Proof. Recalling that the random variables 7;, i > 1, defined in (3.2), are independent, we observe that
for any fixed A < 2B, the following holds:

1 T, 1 PERS
A, = — logEeXp(/ln W) = i logEeXp(@ Z 7))
i=1

1 < P
== Z log(1 + Ee™ — 1)
i=1

AIMS Mathematics Volume 10, Issue 4, 8777-8793.



8785

1 < _
7 2 E

i=1

E(&Ty
:HIQZZ nzT

i=1 j=1

= Z il n1+<2] Da ZE(T’)J

j=1
Hence,
oA — . oA
Z TL(]) = liminf A,(1) = A(1) < A(1) = limsup A,(1) = Z TU(])’
N ] n—oo n—oo ” ]
J=1 j=1
where,
L(j) := liminf _ Z E(t;)’
J) .= Hmir 1+2j-Da - i)
Y 1 < j
U@y := hfnn_)s‘:)lp T e 21 E(T;).
Furthermore, by (3.3), we obtain
Y 2j-3)N 1
5y = £5,0) ~ Gi=D L snow.
( (432) 5 n(
Consequently, for all 1 < i < n, it follows that
)y (2)yj i "
nEGYY EGDY (2j-3)
n1+(2] Da le l) nl+Qj-Da n@j-Ha (4B2)% » Asn — 00
Hence, L(j) < U(j) < 5y
(4B2)z
By Lemma 3.3, we have —oo < A(1) < A(Q) < oo for || < 2B2. O

Proposition 3.1. For j = 1,2, L(j) = U()).

Proof. For j =1, we have

ET;
En 1
lim = = lim = ,
n—o0 nl n—oo I’l1+a 2B(1 +a’)

AIMS Mathematics Volume 10, Issue 4, 8777-8793.
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so, L(1)=U(1) =
For j =2, we have

1
2B(1+a) "

3 E(1;)? VarT, + Y. (ET:)? 1
.=l . i=1
l}l—{lgo nl+3a - r}l—{{)lo nl+3a = 4B3(1 4+ 30,)' (3‘4)
By Proposition 2.1 [6],
! ET, 1
im = —.
n—oo N 2B
Hence,
(B’ |
lim = = . 3.5
o a2 41+ 2a) (3-5)
According to Theorem1.2 [6],
. Var(T,) 1
1 = . 3.6
s ale 4RI + 3a) (36)
The combination of (3.4, 3.5, and 3.6) yields:
Y E(1)?
.=l 1
lim = .
n—oo pltda 4B3(1 + 3a)
Hence, L(2) = UQ2) = m. o

Property 3.2. A (1) and N (Q) exist for || < 2B2.

Proof. By Lemma 3.4, A(1) and A(1) can be expressed as power series when |4 < 2B%. According to
the properties of power series, it follows that X/(/l) and A’(A) exist for || < 2B O
Proposition 3.2. For every A € R, AQ) > A(A) > —oo.

Proof. Since for every n > 0, T, is non-negative, we have A(1) > —oo for every 1 € R*. Let &, 2
A(A) > —oco}, and let Z{ be the interior of 5. By Lemma 3.4, we know that 0 € 27, so there exists
Ao < 0 such that A(1y) > —oco. Hence, for every A < Ay, by Jensen’s inequality we have the following:

P lew In 4 lea In 4
E exp(An W) = E[exp(don W)] W > [Eexp(don e )],
So,
LIRS 1 I-a T"
A(A) = liminf —— log E exp(4n )
n—oo pl-@ nl+a
A 1 T, A
> — liminf — log E exp(don'™ ) = —A(4y) > —o0.
0 n—o nl-«a nl+ta /10—
Hence, we have A1) > A(1) > —oo for every A € R. O

AIMS Mathematics Volume 10, Issue 4, 8777-8793.
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The proof of Property 3.1

By Proposition 3.2, it follows that K*(x) and A"(x) are always defined. Properties (2) and (3) follow
from the results in [2]. Specifically, x = 577— 3(1 1s the limiting value of I a5 stated in Theorem C. The
idea of the proof of (4) comes from Lemma2 2 51in [5]. For all A € R, by Jensen’s inequality,

T
l-a n
)

1
A1) = lim sup —— log Eexp(An

n—oo

1+a

1 T,
> lim sup —E log[exp(An'~*—)]
n

n—oo

1 T,
= lim sup —E(/l I-a m) =

n—oo n—oo

Since A(0) = 0, we obtain A (X) = sup{AX — A(1)} = 0. Similarly, we also have A*(%) = 0. O
{1eR}

Proposition 3.3. Forall x > x

A'(x) = sup{dx = A(D)}, A*(x) = sup{dx — A(D)}
{1=0} {1=0}

is a non-decreasing function. Similarly, for all x < X,

A (x) = sup{dx — A(D)}, A*(x) = sup{dx — A(Q))

{A<0} {A<0}
is a non-increasing function.

Proof. For every x > X and every A < 0,
“AD S AZ-AD <A ® =0
SO X*(x) = sup{dx — X(/l)}. This also implies the monotonicity of X*(x) on (x, 00), since for every

{10}
A > 0, the function Ax — A(1) is nondecreasing as a function of x.

For every x < X and every 4 > 0,
“AD S AZ-AD <A ®=0
SO K*(x) = sup{dx — K(/l)}. This also implies the monotonicity of K*(x) on (—oo, x), since for every

{1<0}
A <0, the function Ax — A(A) is nonincreasing as a function of x.

Similarly, we can also obtain analogous properties for A*(x). O
4. Proof of main results

Proof of Theorem 2.1
Let k, be the unique (random) integers such that

Ty, <n < Ty, (4.1)

AIMS Mathematics Volume 10, Issue 4, 8777-8793.
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Since T, represents the time when the random walk first reaches position k,, and T, < n, the

maximum position M, must satisfy M, > k,. Similarly, because n < T} . and the definition of T} .,
it follows that M,, < k, + 1. Therefore, we conclude k, < M, <k, + 1. Hence,

ky M, k +1
<

1 1
nT+a ni+e nl-Hr

Note that Theorem C states that lim,,_, (,{Tﬁ = lim, e (z"’;,ﬂq =3 3(11 rol As a consequence, divid-
ing both sides of inequality (4.1) by (k,)!*® yields lim,,_,, (k,,;l”“ = 23(1 ool Thus,
M,
[2B(1 + @)]""*® > lim sup > liminf > [2B(1 + a)]"/179,
n—oo n l+(r n—oo n l+zr

The proof is completed.

Proof of Theorem 2.2
The idea originates from the proof of Cramér’s Theorem in [S] and Theorem 3 in [10]. Let F be a
non-empty closed set. Note that (2.3) holds trivially if

inf A (x) =

xeF
Assume instead that

inf A (x) > 0.
xeF

Since K*(E) = 0 (see Property 3.1), x must lie in the open set F¢. Let (x_, x,) denote the union of all
open intervals (a, b) C F¢ containing X. Observe that x_ < x, and at least one of x_ or x, must be finite
(since F is non-empty).

(1) If x_ is finite and x, = 400, then x_ € F' C (—o0, x_). Consequently,

A(x) > inf A (x).
For every 4 <0,

T,
€ (—OO,X—]) = P(

n1+1

eF)<P(

1+y

(n1+l —X-= 0) E[I%—X_SO]

T,
— x_)}] = exp{-n n'"Ax }E expin Dy p—

n1+a

< E[exp{n 1= "/1( ).

1+a
Observe that the random variable exp{n'~ "/l( —# — x_)} > 1 on the set { ,1’” —x_ <0}, for A <0, we
used Chebyshev’s inequality in the last mequahty above. Next, by takmg the logarithm on both sides
of the above inequality and considering the upper limit with proper scaling, we obtain

. 1 T, ) 1 T,
lim sup i logP{nl—m € F} < lim sup i log P(W € (=00, x_])

n—oo n—oo

1
< lim supFlog{exp{ n'=Ax_ }E exp{n 1= “/l ~1

n—oo

nl+a

AIMS Mathematics Volume 10, Issue 4, 8777-8793.
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1 T,
= —Ax_ +limsup —log E exp{nl_“/lT}
oo N @ nl+a
= —(lx_ — AD)). 4.2)
The above inequality holds for all 1 < 0; consequently,

n

1 T,
€ F} < lim sup - log P(T € (=00, x_])
n'-« n'te

n—oo

1
limsup ——log P {
n (¢4

n—oo

n1+a
< inf{—-(Ax_ — A))} = — supfdx_ — A} = —A (x_)
1<0 A<0

< —inf A (x), (4.3)

xeF

where the last equality follows from Proposition 3.3. The final inequality holds trivially since x_ € F.

By a similar argument, if x, is finite and x_ = —oo, then
. 1 T, ) 1 T,
lim sup — logP{ - € F} < limsup ——log P(—— € [x;, ®))
n—ooo N n n—oo N n
<A (x) < - ing A (x) 4.4)
X€

(2) If x_, x, are all finite, then x_, x, € F, and x_ < X < x,.
1

nl—a

T, 1 T,
logP{ € F} <=4 logP{ —— € (=00, x_] U [x4, oo)}
n'te n'-« nlta
1 T, T,
< o log max{2P(n]—+a < x_),2P(n]—+a > x,))

< log2

T,
nl+a

1 T,
+ max{——Ilog P(—— < x.) > x.)},
(04 n (04

o log P(

nl-a *pl-a

Combining (4.3) with (4.4), we obtain

: 1 T,
hmsupl—_logP{ n EF}
n-¢ n e

n—oo

T, . 1 T,
log P( T < x_), lim sup - log P(_1+ > x,)}
(04 n (04 n - n (04

n—o0

1
< max{limsup —
n

n—oo

< —infA (%) (4.5)

xeF

In summary, we have completed the proof of (2.3). The proof of (2.4) follows by taking the limit
inferior in (4.2), (4.3), (4.4) and (4.5).

The large deviations lower bound of 7, (statements (2) and (3) in Theorem 2.2) follow directly
from Theorem3.5-3.6 in [2] with A(x) = x; therefore, we omit the details here.

Proof of Theorem 2.3
Let vo = (2B(1 + a/))ll*a, which is the limit value of M,,/nﬁ in Theorem 2.1. For every v > vy, i.e.

L« L =-_1 _ =% note that

yl+ae vy 2B(1+a)

1
Tra n
[nT+av] <

1< l’l) = P( n = 1 .
Ty (lnmev)+e — (lnmav])l+e

1

M, 1
P( > v) = P(M, > nvov) < P(T
nli+a
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The event M, > nvay implies that the random walk has reached ntay before time 7, and thus
(M, >n™v) (T o <n),
|lnT+av

where | x] denotes the greatest integer less than or equal to x, and [x] denotes the smallest integer
greater than or equal to x. Taking logarithms on both sides of the inequality and taking the upper limit
with proper scaling yields

1 M,
hm sup ———logP|——2>v
(Lnmsvly=e \nrs

1 T 1
[nT+av] n
<11msup— ogP[ 1 < 1
(Lnmev )i (lnmavl+e  (Inmav])ie
— 1
<-A (m),
where the last inequality follows from (4.3), noting that lim,,_, +1 = vm, and the continuity of
(InT+av)i+e
—A (x) (see Property 3.1). Multiplying both sides by v!~¢ gives
1 M, -
lim sup —— logP( > v) < —vITA( 1+a) —I(v).
n—oo  Nl+a n 1+a

Next, we derive an upper bound for P(M,, /nl+w <v), where v < vy (i.e., vl+a > Vllm = x). Observe

0
that

M,
P(= <v) < P(M, < ntav) < P(T, o 2,

Thus, (4.4) implies

1 M
lim sup ——— log P(—;

<v)
n—o0 rnmv]l_a ni+e
T .
< limsup ————1o rlnlmv] > ln
=00 |’n|mv'|1 - ['nmv'llﬂz rnmv'llﬂx
— 1
<-A (V1+a)
Consequently,
1 _
lim sup logP( L <) < VTR ) = ~1). (4.6)
n—oo n1+af n1+(r

The remainder of the proof follows similarly to the large deviations upper bound for 7, (Theorem 2.2).
We have completed the proof of part (1) in Theorem 2.3.
Next, we consider the large deviation lower bound for M,. For v < v, (i.e., v%, > X) satisfying

ﬁ € ?0, there exists a neighborhood (vllﬂ, -0, vllw +0) C <’ For any 0 < € < 6/2, we have

M,
" <) = P(M, < n¥ev) > P(T )

1 T
nTa LnTsay

P(
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> P [nTa v) n
- 1 1+a 1 1+a
|[nTav] |nTav]
TL Tia | 1
nl+ay
2 P(I_ 1 J1+a pl+a * E)
Nni+ay

for sufficiently large n. By Theorem 2.2, we obtain

1 M,
lim sup ————log P(—— <)

e (vl pte
. 1 Tl_nﬁ v] 1
> lim sup — log P( v o 16
n—oo (l_n I+a VJ) - an‘/J \%
> inf A (x)
xe(ﬁ+e,ﬁ+26)
— 1 3
2 _A ( 1+a 56)

Since v1+ € ?0, K*(ﬁ) < oo, and K*(x) is continuous at vﬁ (see (3) in Property 3.1), letting e — 0
yields

1 M, — 1 —
lim sup —— log P(—~ <v) = —v' A (=) = —1(v).
n—oo NT+a ni+e pita
Combining this with (4.6), we conclude
M, i M, -
lim sup —— log P(—— < v) = limsup — log P(—— <v) = —I(v). 4.7
n—oo ni+a ni+a n—oo ni+ae ni+a

L€ ¢’ we have

M, . 1 M,
<v) = liminf — log P(—

nli+a ni+a

Similarly, for v < vy, satisfying —

lim inf —— log P(— <v)=-IV) (4.8)

n—0 T Nni+a

Hence, for any v with vﬁ cd n ¢°, there exists a neighborhood (vllm -0, vﬁ +0) C 7’ n 9°.
Assume v < v, (the case v > v is analogous). Choose ¢; < ¢ and 9, < ¢, combining (4.7) with (4.8),
we obtain

M,
1

M, ) -
— log P(—— < v+ 6,) > limsup — log P( <v-0,)=-I(v-46,). 4.9

ni+e ni+a n—oo Nl+a Nni+a

—I(v +6,) = liminf

Hence, for any € > 0 and sufficiently large n,

M, Y
P(=2 < v +6y) > expl-nm (I(v + 65) + €)

nl+a

Mn la —
P(—= <v—=0)) <exp{-n" (v —6) — €)}

nl+a

Thus,

Mﬂ
Py +6,>——>v—10)

nl+a
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M, M,
= P(— <v+68,) - P(

1 1
nT+e ni+a

> exp{—nt (I(v + 6,) + €)} — exp{-nte(I(v — &) — €)}
= exp{—nT+ (I(v + 65) + € )}1 — exp{-nT (I(v — 6,) — [(v + &,) — 2€)}}

SV—61)

Since I(v — &) > I(v + 6,) (by (4.9)); choosing €',6;, and ¢, such that I(v-6y) - Iv+06,)—2€ >0
yields

liminf ——log P(v + 6, > —-

=00 e ni+a

>y —01) > —!(V+(52)—€’.

By the continuity /(v), for any € > 0, we can choose ¢, sufficiently small such that I(v + 8,) < I(v) + €.
Consequently,

>y—01)>-Iv)—e—-¢€.

n
-«

liminf ——log P(v + 6, > —

n—0o ni+a ni+a

Since € and €’ are arbitrary, we conclude

liminf — log P(v + 6, > —-

n—0  pTia ni+e

>v—=201) = -1v).

5. Conclusions

In recent years, random walks with asymptotic perturbations in transition probabilities have received
widespread attention from scholars. These perturbations bring many new phenomena to random walks.
For transient near-critical random walks, Voit [13] established the law of large numbers for the random
walks, showing that the escape velocity of such processes is significantly slower than that of simple
random walks. Building on this foundation, we derive large deviation principles for such random walks
and demonstrate that their velocity order is substantially sublinear in n. This result further indicates
that asymptotic perturbations reduce the wandering speed of random walks.
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