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1. Introduction

Let Y1 and Y2 represent real Hilbert spaces with the inner product ⟨·, ·⟩ and induced norm ∥ · ∥.
Define Q1 and Q2 as nonempty, closed, convex subsets of Y1 and Y2, respectively. This paper
addresses the task of finding a unified solution for the split generalized equilibrium problem,
variational inequality problem, and fixed point problem, focusing on a finite family of ϵ-strict
pseudo-contractive and nonexpansive mappings within real Hilbert spaces. These problems are
commonly encountered in a wide range of mathematical models, where equilibrium and fixed-point
conditions play a crucial role. Notable examples include applications in game theory, as seen in
Nash’s foundational work [24], image reconstruction [12, 17], network optimization in
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telecommunications, public infrastructure planning [27], and the analysis of Nash equilibria in
strategic decision-making [25]. The variational inequality problem (VIP) involves finding an element
s∗ ∈ Q1 such that

⟨As∗, v − s∗⟩ ≥ 0, ∀v ∈ Q1, (1.1)

where A : Q1 → Y1 is a nonlinear mapping, as introduced by Hartman and Stampacchia [13].
In 1994, Blum and Oettli [3] introduced and studied the following equilibrium problem (EP): finding

s∗ ∈ Q1 that satisfies
f1(s∗, v) ≥ 0, ∀v ∈ Q1, (1.2)

where f1 : Q1×Q1 → R is a bifunction, with the solution set denoted by Sol(EP(1.2)). EP(1.2) has been
widely studied and extended in multiple directions over the past two decades due to its importance. For
details on existence and iterative solution approximations, see [9,10,29,31] and the references therein.
Censor et al. [7] introduced the split feasibility problem (SFP) for finite-dimensional Hilbert spaces,
primarily for applications in phase retrieval and medical imaging, defined as:

Find s∗ ∈ Q1 such that Bs∗ ∈ Q2,

where B : Y1 → Y2 is a bounded linear operator.
We introduce the split generalized equilibrium problem (SGEP) as follows. Let f j, ϕ j : Q j × Q j →

R, j = 1, 2, be non-linear bifunctions, with B : Y1 → Y2 as a bounded linear operator. SGEP aims to
find s∗ ∈ Q1 that satisfies

f1(s∗, v) + ϕ1(v, s∗) − ϕ1(s∗, s∗) ≥ 0, ∀v ∈ Q1, (1.3)

such that
t∗ = Bs∗ ∈ Q2 solves f2(t∗, u) + ϕ2(u, t∗) − ϕ2(t∗, t∗) ≥ 0, ∀u ∈ Q2. (1.4)

If ϕ1, ϕ2 ≡ 0, SGEP becomes split equilibrium problem (SEP) as:

f1(s∗, v) ≥ 0, ∀v ∈ Q1, (1.5)

such that
t∗ = Bs∗ ∈ Q2 solves f2(t∗, u) ≥ 0, ∀u ∈ Q2. (1.6)

We note that SGEP generalizes the multiple-set split feasibility problem and includes split
variational inequalities as a special case, which further extends split zero problems and split
feasibility problems for the existence and iterative approaches (see, e.g., [5, 8, 11, 15, 20]).

The fixed point problem (in short, FPP) for a map T : Q1 → Q1 is to find v ∈ Q1 such that Tv = v.
The fixed point set of T is denoted by Fix(T) and Fix(T ) = {v ∈ Q1 : v = Tv}. Fixed point theory is a
cornerstone of mathematics, with applications in solving equations, optimization, and modeling in pure
and applied sciences. The study of fixed points in the moduli spaces of vector bundles over algebraic
curves is fundamental in understanding the geometry of these spaces, see [1]. It is foundational to
fields like topology (Brouwer’s theorem), analysis (Banach’s contraction principle), and mathematical
physics (e.g., Hitchin integrable systems and mirror symmetry). Fixed points also play a vital role in
economics and game theory, such as in Nash equilibria, see [2, 14, 24, 34].
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Korpelevich [16] introduced the extragradient iterative method in Hilbert space Y1 for solving
VIP (1.1):

v0 ∈ Q1,

ϱn = PQ1(vn − αAvn),
vn+1 = PQ1(vn − αAϱn),

 (1.7)

where α > 0, A : Q1 → Y1 is a monotone and Lipschitz continuous mapping, and PQ1 denotes the
metric projection onto Q1. Under certain conditions, this sequence converges to a solution of VIP (1.1).

In 2006, Nadezkhina and Takahashi [21] introduced a modified form of (1.7) as follows::

v0 ∈ Q1,

un = PQ1(vn − rnAvn),
vn+1 = βnvn + (1 − βn)T PQ1(vn − rnAun).

 (1.8)

By setting appropriate conditions on control sequences, they examined the weak convergence of the
generated sequence toward a common solution of Fix(T ) and VIP (1.1).

In the same year, Nadezhkina and Takahashi [22] proposed an alternative extragradient approach.
This method combined the hybrid method [23] with the extragradient iterative approach [16] and was
formulated as:

v0 ∈ Q1,

ϱn = PQ1(vn − rnAvn),
zn = αnvn + (1 − αn)T PQ1(vn − rnAϱn),
Pn = {v ∈ Q1 : ∥zn − v∥2 ≤ ∥vn − z∥2},
Qn = {v ∈ Q1 : ⟨vn − z, x − vn⟩ ≥ 0},
vn+1 = PPn∩Qnv0.


(1.9)

Using specific control sequences, they demonstrated the strong convergence of this iterative sequence
to a common solution of Fix(T ) and VIP (1.1). For additional generalizations of the iterative
method (1.9), refer to [6].

Notably, only a few strong convergence theorems exist for extragradient iterative methods, other
than the hybrid extragradient approach. Therefore, our primary objective is to develop a novel
extragradient method distinct from the hybrid type.

A mapping S : Q1 → Y1 is defined as an ϵ-strict pseudo-contractive if there exists ϵ ∈ [0, 1) such
that:

∥S v1 − S v2∥
2 ≤ ∥v1 − v2∥

2 + ϵ∥(I − S )v1 − (I − S )v2∥
2, ∀v1, v2 ∈ Q1. (1.10)

When ϵ = 0, the mapping S is termed nonexpansive, and when ϵ = 1, it is termed pseudo-contractive.
S is said to be strongly pseudo-contractive if ∃ η ∈ (0, 1) with
⟨S v1 − S v2, v1 − v2⟩ ≤ η∥v1 − v2∥

2, ∀v1, v2 ∈ Q1. Thus, the ϵ-strict pseudo-contractive class lies
between the nonexpansive and pseudo-contractive mappings. Note that the class of strongly
pseudo-contractive mappings is independent from ϵ-strict pseudo-contractive (for more, see [4]). It is
obvious that for real Hilbert space Y1, (1.10) is equivalent to

⟨S v1 − S v2, v1 − v2⟩ ≤ ∥v1 − v2∥
2 −

1 − ϵ
2
∥(I − S )v1 − (I − S )v2∥

2, ∀v1, v2 ∈ Q1. (1.11)

Moreover, iterative approaches for strict pseudo-contractive are less advanced than those for
nonexpansive mappings, despite Browder and Petryshyn’s early work in 1967 [4]. This gap may be
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due to the additional term on the right-hand side of (1.10), which complicates the convergence
analysis for algorithms that locate a fixed point of the strict pseudo-contractive S . However, strict
pseudo-contractive offer stronger applications than nonexpansive mappings for solving inverse
problems (see [30]). This motivates the development of iterative methods to find a common solution
to SGEP((1.3) and (1.4)) and fixed-point problems for nonexpansive mappings, as well as for a finite
family of ϵ-strict pseudo-contractive mappings. For further reading, refer to [19, 33] and the
references therein.

Inspired by previous contributions (e.g., [11,15,22,33]), we propose a viscosity-based extragradient
iterative approach for approximating solutions to split generalized equilibrium, variational inequality,
and fixed point problems involving nonexpansive and ϵ-strict pseudo-contractive mappings in Hilbert
space. We discuss strong convergence and highlight specific results derived from our theorems, along
with numerical analysis to demonstrate the significance of our findings.

This paper is structured as follows: Section 2 covers foundational concepts, lemmas, and
assumptions. In Section 3, we present main results, numerical analyses, and graphical illustrations.
Section 4 provides an interpretation of our findings.

2. Preliminaries

In this section, we compile key concepts and results needed for the presentation of this work. We
denote strong and weak convergence by→ and⇀, respectively.

For any v1 ∈ Y1 ∃ a unique nearest point to v1 in Q1 denoted by PQ1v1 such that

∥v1 − PQ1v1∥ ≤ ∥v1 − v2∥, ∀v2 ∈ Q1.

The operator PQ1 is called the metric projection of Y1 onto Q1. This projection is nonexpansive and
satisfies

⟨v1 − v2, PQ1v1 − PQ1v2⟩ ≥ ∥PQ1v1 − PQ1v2∥
2, ∀v1, v2 ∈ Y1.

Additionally, PQ1v1 is characterized by PQ1v1 ∈ Q1 and

⟨v1 − PQ1v1, v2 − PQ1v1⟩ ≤ 0, ∀v2 ∈ Q1.

This implies that

∥v1 − v2∥
2 ≥ ∥v1 − PQ1v1∥

2 + ∥v2 − PQ1v1∥
2, ∀v1 ∈ Y1, ∀v2 ∈ Q1.

In a real Hilbert space Y1, it is known that

∥βv1 + (1 − β)v2∥
2 = β∥v1∥

2 + (1 − β)∥v2∥
2 − β(1 − β)∥v1 − v2∥

2, ∀v1, v2 ∈ Y1 and β ∈ [0, 1]; (2.1)

and
∥v1 + v2∥

2 ≤ ∥v1∥
2 + 2⟨v2, v1 + v2⟩, ∀v1, v2 ∈ Y1. (2.2)

Lemma 2.1. [18] Let {bn} be a sequence of nonnegative real numbers with a subsequence {bni} such
that bni < bni+1 for all i ∈ N. Then, there exists a non-decreasing sequence {m j} ⊂ N such that
lim j→∞m j = ∞ and, for all sufficiently large j ∈ N, the following hold:

bm j ≤ bm j+1 and b j ≤ bm j .

Moreover, m j is the largest number n in the set {1, 2, 3, ..., j} such that bn < bn+1.
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Lemma 2.2. [19] Assume that D is a strongly positive, self-adjoint, and bounded linear operator
on a Hilbert space Y1 with a positive coefficient γ > 0 and 0 < ρ ≤ ∥D∥−1. Then, it follows that
∥I − ρD∥ ≤ 1 − ργ.

Assumption 2.1. Let f1, ϕ1 : Q1 × Q1 → R be bimappings satisfying the following conditions:

(1) f1(v1, v1) = 0, ∀v1 ∈ Q1;
(2) f1 is monotone, i.e.,

f1(v1, v2) + f1(v2, v1) ≤ 0, ∀v1, v2 ∈ Q1;

(3) For each v2 ∈ Q1, v1 → f1(v1, v2) is weakly upper semicontinuous;
(4) For each v1 ∈ Q1, v2 → f1(v1, v2) is convex and lower semicontinuous;
(5) ϕ1(., .) is weakly continuous and ϕ1(., v2) is convex;
(6) ϕ1 is skew-symmetric, i.e.,

ϕ1(v1, v1) − ϕ1(v1, v2) + ϕ1(v2, v2) − ϕ1(v2, v1) ≥ 0, ∀v1, v2 ∈ Q1.

Now, we define 𭟋( f1,ϕ1)
r : Y1 → Q1 by

𭟋( f1,ϕ1)
r (w) = {v1 ∈ Q1 : f1(v1, v2) + ϕ1(v2, v1) − ϕ1(v1, v1) +

1
r
⟨v2 − v1, v1 − w⟩ ≥ 0, ∀v2 ∈ Q1}, (2.3)

where r is a positive real number.

Lemma 2.3. [28] Let f1, ϕ1 satisfy Assumption 2.1. Suppose that for each w ∈ Y1 and for each v1 ∈ Q1,
there exist a bounded subset Dv1 ⊆ Q1 and wv1 ∈ Q1 such that for any v2 ∈ Q1 \ Dv1 ,

f1(v2,wv1) + ϕ1(wv1 , v2) − ϕ1(v2, v2) +
1
r
⟨wv1 − v2, v2 − z⟩ < 0.

Let the mapping 𭟋( f1,ϕ1)
r be defined by (2.3). Then, the following properties hold:

(i) 𭟋( f1,ϕ1)
r (w) is nonempty for each w ∈ Y1;

(ii) 𭟋( f1,ϕ1)
r is single-valued;

(iii) 𭟋( f1,ϕ1)
r is a firmly nonexpansive mapping, i.e., for all w1,w2 ∈ Y1,

∥𭟋( f1,ϕ1)
r (w1) − 𭟋( f1,ϕ1)

r (w2)∥2 ≤ ⟨𭟋( f1,ϕ1)
r (w1) − 𭟋( f1,ϕ1)

r (w2),w1 − w2⟩;

(iv) Fix(𭟋( f1,ϕ1)
r ) = Sol(GEP(1.3));

(v) Sol(GEP(1.3)) is closed and convex.

Further, suppose f2, ϕ2 : Q2 × Q2 → R satisfies Assumption 2.1. For s > 0 and v1 ∈ Y2, define the
mapping 𭟋( f2,ϕ2)

s : Y2 → Q2 as follows:

𭟋( f2,ϕ2)
s (v1) = {v2 ∈ Q2 : f2(v1, v3) + ϕ2(v3, v2) − ϕ2(v2, v2) +

1
s
⟨v3 − v2, v2 − v1⟩ ≥ 0, ∀v3 ∈ Q2}. (2.4)

It follows that 𭟋( f2,ϕ2)
s is nonempty, single-valued, and firmly nonexpansive, Fix(𭟋( f2,ϕ2)

s ) =
Sol(GEP(1.4)), and Sol(GEP(1.4)) is closed and convex.
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Lemma 2.4. [28] Let f1 and ϕ1 satisfy Assumption 2.1 and let 𭟋( f1,ϕ1)
r be defined by (2.3). Then, for

v1, v2 ∈ Y1 and r1, r2 > 0, we have

∥𭟋( f1,ϕ1)
r2

(v2) − 𭟋( f1,ϕ1)
r1

(v1)∥ ≤ ∥v2 − v1∥ +
|r2 − r1|

r2
∥𭟋( f1,ϕ1)

r2
(v2) − v2∥.

Lemma 2.5. [35] Let S : Q1 → Y1 be a ϵi-strictly pseudo-contractive mapping. Then, Fix(S ) is closed
convex and it yields that PFix(S ) is well defined.

Lemma 2.6. [26] For any u, v,w ∈ Y1, we have

∥σu + γv + µw∥2 = σ∥u∥2 + γ∥v∥2 + µ∥w∥2 − σγ∥u − v∥2 − µγ∥v − w∥2 − σµ∥u − w∥2,

where σ, γ, µ ∈ [0, 1] with σ + γ + µ = 1.

Lemma 2.7. [33] For each i = 1, 2, 3, ...,N, where N is a natural number, consider S i : Q1 → Y1

to be a ϵi-strictly pseudo-contractive mapping for some 0 ≤ ϵi < 1 with ∩Ni=1Fix(S i) , ∅. Let {ξi}Ni=1

be a positive sequence with
N∑

i=1
ξn

i=1 = 1. Then,
N∑

i=1
ξiS i : Q1 → Y1 is ϵ-strictly pseudo-contractive with

coefficient ϵ = max
1≤i<N

ϵi and Fix(
N∑

i=1
ξiS i) = ∩Ni=1Fix(S i).

Lemma 2.8. [32] Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑

n=1
γn = ∞;

(ii) lim sup
n→∞

δn
γn
≤ 0 or

∞∑
n=1
|δn| < +∞.

Then, lim
n→∞

an = 0.

3. Results

Suppose f j, ϕ j : Q j × Q j → R for j = 1, 2 are nonlinear bifunctions, and B : Y1 → Y2 is a bounded
linear operator. Let A : Q1 → Y1 be a σ-inverse strongly monotone mapping and h : Q1 → Q1 a
δ-contraction mapping. Additionally, assume T : Q1 → Y1 is a nonexpansive mapping, and for each
i = 1, 2, 3, ...,N, let S i : Q1 → Y1 be an ϵi-strictly pseudo-contractive mapping. Let {ξn

i }
N
i=1 be a finite

sequence of positive numbers satisfying
N∑

i=1
ξn

i = 1. The algorithm we propose is as follows:
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Algorithm 3.1.

Initialization: Given v1 ∈ Q1.

Iterative steps: Iterate vn+1 using the following procedure:
Step 1. Compute: {

zn = 𭟋
( f1,ϕ1)
rn (vn + ηB∗((𭟋

( f2,ϕ2)
rn − I)Bvn),

ϱn = PQ1(zn − αnAzn),

}
and calculate the next iterate

vn+1 = βnh(vn) + (1 − βn)PQ1[σnvn + γnTϱn + µn

N∑
i=1

ξn
i S ivn], n ≥ 1,

where 𭟋( f1,ϕ1)
rn is defined by (2.3). Set n := n + 1 and move to Step 1.

We consider control parameters in our main theorem as:

(i) βn, σn, γn, µn ∈ (0, 1) and σn + γn + µn = 1,

(ii) lim
n→∞
βn = 0,

∞∑
n=1
βn = ∞,

(iii)
∞∑

n=1

N∑
i=1
|ξn

i − ξ
n−1
i | < +∞,

(iv) 0 ≤ ϵi ≤ σn ≤ c < 1, lim
n→∞
σn = c,

(v) η ∈ (0, 1
L ), L is the spectral radius of B∗B and B∗ is the adjoint of B,

(vi) αn ∈ (0, 2σ).

These parameters play a crucial role in the convergence and behavior of our algorithm, providing
flexibility and adaptability across iterations.

Theorem 3.1. Let Q1 and Q2 be non-empty closed convex subsets of Hilbert spaces Y1 and Y2,
respectively. Let f j, ϕ j : Q j × Q j → R, where j = 1, 2, be non-linear bifunctions that satisfy
Assumption 2.1, and B : Y1 → Y2 be a bounded linear operator. Let A : Q1 → Y1 and h : Q1 → Q1 be
a σ-inverse strongly monotone mapping and δ-contraction mapping, respectively. Further, assume
that T : Q1 → Y1 is a nonexpansive mapping and for each i = 1, 2, 3, ...,N, S i : Q1 → Y1 is a ϵi-strict

pseudo-contractive mapping. Let {ξn
i }
N
i=1 be a finite sequence of positive numbers with

N∑
i=1
ξn

i = 1.

Assume Ω := ∩Ni=1Fix(S i) ∩ Fix(T ) ∩ Sol(SGEP(1.3 − 1.4)) ∩ Sol(VIP(1.1)) , ∅. Then, the
sequence {vn} generated by Algorithm 3.1 converges strongly to v̄ ∈ Ω, where v̄ = PΩh(v̄).

For convenience, we split the proof of our main Theorem 3.1 into some lemmas as follows:

Lemma 3.1. The sequences {vn}, {zn}, and {ϱn} generated by iterative Algorithm 3.1 are bounded.

Proof. We claim that {vn} is bounded. We set sn = σnvn + γnTϱn + µn

N∑
i=1
ξn

i S ivn. Let s∗ ∈ Ω. Using the

concept of non-expansivity of I − αnA and T , we compute

∥ϱn − s∗∥ = ∥PQ1(zn − αnAzn) − s∗∥
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≤ ∥(I − αnA)zn − (I − αnA)s∗∥

≤ ∥zn − s∗∥, (3.1)

and thus
∥Tϱn − s∗∥ ≤ ∥ϱn − s∗∥.

We calculate

∥zn − s∗∥2 = ∥𭟋( f1,ϕ1)
rn

(vn + ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn) − s∗∥2

≤ ∥vn + ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn) − s∗∥2

≤ ∥vn − s∗∥2 + η2∥B∗(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2

+ 2η⟨vn − s∗, B∗(𭟋( f2,ϕ2)
rn

− I)Bvn⟩.

Thus, we have

∥zn − s∗∥2 ≤ ∥vn − s∗∥2 + η2⟨(𭟋( f2,ϕ2)
rn

− I)Bvn, BB∗(𭟋( f2,ϕ2)
rn

− I)Bvn⟩

+ 2η⟨vn − s∗, B∗(𭟋( f2,ϕ2)
rn

− I)Bvn⟩. (3.2)

Thus,

η2⟨(𭟋( f2,ϕ2)
rn

− I)Bvn,BB∗(𭟋( f2,ϕ2)
rn

− I)Bvn⟩

≤ Lη2⟨(𭟋( f2,ϕ2)
rn

− I)Bvn, (𭟋( f2,ϕ2)
rn

− I)Bvn⟩

= Lη2∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2. (3.3)

Assume that Π := 2η⟨vn − s∗, B∗(𭟋( f2,ϕ2)
rn − I)Bvn⟩, and we have

Π = 2η⟨vn − s∗, B∗(𭟋( f2,ϕ2)
rn

− I)Bvn⟩

= 2η⟨B(vn − s∗), (𭟋( f2,ϕ2)
rn

− I)Bvn⟩

= 2η⟨B(vn − s∗) + (𭟋( f2,ϕ2)
rn

− I)Bvn

− (𭟋( f2,ϕ2)
rn

− I)Bvn, (𭟋( f2,ϕ2)
rn

− I)Bvn⟩

= 2η
{
⟨𭟋( f2,ϕ2)

rn
Bvn − Bs∗, (𭟋( f2,ϕ2)

rn
− I)Bvn⟩

− ∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2
}

≤ 2η
{1
2
∥(𭟋( f2,ϕ2)

rn
− I)Bvn∥

2 − ∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2
}

≤ −η∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2. (3.4)

By (3.2)–(3.4), we get

∥zn − s∗∥2 ≤ ∥vn − s∗∥2 + η(Lη − 1)∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2. (3.5)

As η ∈ (0, 1
L ), we have

∥zn − s∗∥ ≤ ∥vn − s∗∥.

We compute

∥vn+1 − s∗∥ = ∥βnh(vn) + (1 − βn)PQ1 sn − s∗∥
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≤ βn∥h(vn) − s∗∥ + (1 − βn)∥PQ1 sn − s∗∥

≤ βn∥h(vn) − s∗∥ + (1 − βn)∥sn − s∗∥. (3.6)

Now,

∥h(vn) − s∗∥ ≤ ∥h(vn) − h(s∗)∥ + ∥h(s∗) − s∗∥

≤ δ∥vn − s∗∥ + ∥h(s∗) − s∗∥. (3.7)

Setting Gn =
N∑

i=1
ξn

i S i and using Lemma 2.7, we observe that the mapping Gn : Q1 → Y1 is ϵ-strictly

pseudo-contractive with ϵ = max
1≤i<N

ϵi and Fix(Gn) = ∩Ni=1Fix(S i). Thus, by Lemma 2.6, we estimate

∥sn − s∗∥2 = ∥σnvn + γnTϱn + µnGnvn − s∗∥2

= ∥σn(vn − s∗) + γn(Tϱn − s∗) + µn(Gnvn − s∗)∥2

= σn∥vn − s∗∥2 + γn∥Tϱn − s∗∥2 + µn∥Gnvn − s∗∥2

− σnγn∥(vn − Tϱn∥
2 − γnµn∥Tϱn −Gnvn∥

2 − σnµn∥vn −Gnvn∥
2

≤ σn∥vn − s∗∥2 + γn∥ϱn − s∗∥2 + µn(∥vn − s∗∥2 + ϵ∥vn −Gnvn∥
2)

− σnγn∥(vn − Tϱn∥
2 − γnµn∥Tϱn −Gnvn∥

2 − σnµn∥vn −Gnvn∥
2 (3.8)

= (σn + γn + µn)∥vn − s∗∥2 − µn(σn − ϵ)∥vn −Gnvn∥
2

− σnγn∥vn − Tϱn∥
2 − γnµn∥Tϱn −Gnvn∥

2

= ∥vn − s∗∥2 − µn(σn − ϵ)∥vn −Gnvn∥
2

− σnγn∥vn − Tϱn∥
2 − γnµn∥Tϱn −Gnvn∥

2 (3.9)

that implies
∥sn − s∗∥ ≤ ∥vn − s∗∥. (3.10)

Thus, by (3.6), (3.7), and (3.10), we have

∥vn+1 − s∗∥ ≤ βn[δ∥vn − s∗∥ + ∥h(s∗) − s∗∥] + (1 − βn)∥vn − s∗∥

≤ [1 − βn(1 − δ)]∥sn − s∗∥ + βn∥h(s∗) − s∗∥.

By induction, we get

∥vn+1 − s∗∥ ≤ max{∥v0 − s∗∥,
1

1 − δ
∥h(s∗) − s∗∥}, ∀n ≥ 1,

which shows that {vn} is bounded and hence, {zn} and {ϱn} are also bounded. □

Lemma 3.2. For each n ≥ 1, prove that lim
n→∞
∥vn+1−vn∥ = 0, lim

n→∞
∥(𭟋( f2,ϕ2)

rn −I)Bvn∥ = 0, lim
n→∞
∥zn−vn∥ = 0,

and lim
n→∞
∥ϱn − zn∥ = 0. Also, show that the sequence {vn} strongly converges to s∗, where s∗ = PΩh(s∗).

Proof. As s∗ ∈ Ω, therefore we compute

∥vn+1 − s∗∥2 = ∥βn(h(vn) − s∗) + (1 − βn)(PQ1 sn − s∗)∥2

≤ (1 − βn)∥PQ1 sn − s∗∥2 + 2⟨βn(h(vn) − s∗), vn+1 − s∗⟩
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≤ (1 − βn)∥sn − s∗∥2 + 2βn⟨h(vn) − s∗, vn+1 − s∗⟩. (3.11)

Also, we estimate

⟨h(vn) − s∗, vn+1 − s∗⟩ = ⟨h(vn) − s∗, vn − s∗⟩ + ⟨h(vn) − s∗, vn+1 − vn⟩

≤ ∥h(vn) − h(s∗)∥∥vn − s∗∥ +
M
2
∥vn+1 − vn∥ + ⟨h(vn) − s∗, vn − s∗⟩

≤ δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥ + ⟨h(vn) − s∗, vn − s∗⟩, (3.12)

where M = sup
n
∥h(vn) − s∗∥. Using (3.9), (3.11), and (3.12), we have

∥vn+1 − s∗∥2 ≤ (1 − βn(1 − 2δ))∥vn − s∗∥2 + βnM∥vn+1 − vn∥ + 2βn⟨h(vn) − s∗, vn − s∗⟩

− µn(σn − ϵ)(1 − βn)∥vn −Gnvn∥
2 − (1 − βn)σnγn∥vn − Tϱn∥

2

− (1 − βn)γnµn∥Tϱn −Gnvn∥
2 (3.13)

∥vn+1 − s∗∥2 ≤ (1 − βn(1 − 2δ))∥vn − s∗∥2 + βnM∥vn+1 − vn∥

+ 2βn⟨h(vn) − s∗, vn − s∗⟩. (3.14)

Set qn = ∥vn − s∗∥2. Consider the two cases on {qn} as:
Case 1. For every n ≥ m0 where m0 ∈ N, consider the sequence {qn} as decreasing, therefore it must be
convergent. Applying the conditions in (3.13), we get

lim
n→∞
∥vn − Tϱn∥ = 0, lim

n→∞
∥Tϱn −Gnvn∥ = 0, and lim

n→∞
∥vn −Gnvn∥ = 0. (3.15)

Notice that {vn} is bounded, therefore ∃ a subsequence {vn j} of {vn} with vn j ⇀ p ∈ Q1 and satisfies

lim sup
n→∞

⟨h(s∗) − s∗, vn − s∗⟩ = lim
j→∞
⟨h(s∗) − s∗, vn j − s∗⟩. (3.16)

Define Hn = κnv + (1 − κn)Gnv, ∀v ∈ Q1 and κn ∈ [δ, 1). Applying Lemma 2.5, Hn : Q1 → Y1 is
nonexpansive and we have

∥vn − Hnvn∥ = ∥vn − (κnvn + (1 − κn)Gnvn)∥
= ∥(κn + (1 − (κn)vn) − (κnvn + (1 − κn)Gnvn)∥
= (1 − κn)∥vn −Gnvn∥.

Thus,
lim
n→∞
∥vn − Hnvn∥ = 0. (3.17)

Applying the given conditions, we may consider that ξn
i → ξi as n → ∞, ∀i. By Lemma 2.7, the map

G : Q1 → Y1 with Gv = (
N∑

i=1
ξiS i)v, ∀v ∈ Q1, is ϵ-strict pseudo-contractive and Fix(G) = ∩Ni=1Fix(S i).

Applying Lemma 2.7, given the conditions and boundedness of vn, we get

∥vn −Gvn∥ ≤ ∥vn −Gnvn∥ + ∥Gnvn −Gvn∥

≤ ∥vn −Gnvn∥ +

N∑
i=1

|ξn
i − ξi|∥S ivn∥,

AIMS Mathematics Volume 10, Issue 4, 8753–8776.



8763

and thus
lim
n→∞
∥vn −Gvn∥ = 0. (3.18)

As
∥Gnvn −Gvn∥ ≤ ∥Gnvn − vn∥ + ∥vn −Gvn∥,

this yields by (3.14) and (3.18) that

lim
n→∞
∥Gnvn −Gvn∥ = 0. (3.19)

Again, we notice that the map H = tv+ (1− t)Gv, ∀v ∈ Q1 and t ∈ [δ, 1), and FixH = FixG. Thus, we
obtain

∥vn − Hvn∥ ≤ ∥vn − Hnvn∥ + ∥Hnvn − Hvn∥

≤ ∥vn − Hnvn∥ + ∥κnvn + (1 − κn)Hnvn − tv − (1 − t)Gv∥

≤ ∥vn − Hnvn∥ + |κn − t|∥vn −Gvn∥ + (1 − κn)∥Hnvn − Hvn∥.

Applying (3.17)–(3.19), we have
lim
n→∞
∥vn − Hvn∥ = 0.

As vn ∈ Q1, therefore

∥vn+1 − vn∥ ≤ βn∥hvn − vn∥ + (1 − βn)[σn∥Tϱn − vn∥ + µn∥vn −Gnvn∥].

Using the given conditions and (3.14), we get

lim
n→∞
∥vn+1 − vn∥ = 0. (3.20)

Applying (3.11) and (3.12), we estimate

∥vn+1 − s∗∥2 ≤ (1 − βn)∥sn − s∗∥2 + 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]. (3.21)

Using (3.1), (3.5), and (3.8), we compute

∥sn − s∗∥2 ≤ (1 − γn)∥vn − s∗∥2 + γn∥zn − s∗∥2 (3.22)
≤ ∥vn − s∗∥2 + η(Lη − 1)γn∥(𭟋( f2,ϕ2)

rn
− I)Bvn∥

2. (3.23)

By (3.21) and (3.23), we get

∥vn+1 − s∗∥2 ≤ (1 − βn)∥vn − s∗∥2 + η(Lη − 1)(1 − βn)γn∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2

+ 2δβn∥vn − s∗∥2 + Mβn∥vn+1 − vn∥

η(1 − Lη)(1 − βn)γn∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2 ≤ ∥vn − s∗∥2 − ∥vn+1 − s∗∥2

+ 2δβn∥vn − s∗∥2 + Mβn∥vn+1 − vn∥

≤ (∥vn − s∗∥ + ∥vn+1 − s∗∥)∥vn − vn+1∥

+ 2δβn∥vn − s∗∥2 + Mβn∥vn+1 − vn∥.
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Applying the given condition and (3.20), we get

lim
n→∞
∥(𭟋( f2,ϕ2)

rn
− I)Bvn∥ = 0. (3.24)

Next, we compute

∥zn − s∗∥2 = ∥𭟋( f1,ϕ1)
rn

(vn + ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn) − s∗∥2

≤ ∥𭟋( f1,ϕ1)
rn

(vn + ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn) − 𭟋( f1,ϕ1)
rn

s∗∥2

≤ ⟨zn − s∗, vn + ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn − s∗⟩

=
1
2

{
∥zn − s∗∥2 + ∥vn + ηB∗(𭟋( f2,ϕ2)

rn
− I)Bvn − s∗∥2

− ∥(zn − s∗) − [vn + ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn − s∗]∥2
}

=
1
2

{
∥zn − s∗∥2 + ∥vn − s∗∥2

− ∥zn − vn − ηB∗(𭟋( f2,ϕ2)
rn

− I)Bvn∥
2
}

=
1
2

{
∥zn − s∗∥2 + ∥vn − s∗∥2

− [∥zn − vn∥
2 + η2∥B∗(𭟋( f2,ϕ2)

rn
− I)Bvn∥

2

− 2η⟨zn − vn, B∗(𭟋( f2,ϕ2)
rn

− I)Bvn⟩]
}
.

Thus,
∥zn − s∗∥2 ≤ ∥vn − s∗∥2 − ∥zn − vn∥

2 + 2η∥B(zn − vn)∥∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥. (3.25)

Using (3.22) and (3.25) in (3.21), we get

∥vn+1 − s∗∥2 ≤ (1 − βn)∥sn − s∗∥2 + 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]

≤ (1 − βn)(1 − γn)∥vn − s∗∥2 + (1 − βn)γn∥vn − s∗∥2

− γn(1 − βn)∥zn − vn∥
2

+ 2η(1 − βn)γn∥B(zn − vn)∥∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥

+ 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]

=⇒ γn(1 − βn)∥zn − vn∥
2 ≤ ∥vn − s∗∥2 − ∥vn+1 − s∗∥2

+ 2η(1 − βn)γn∥B(zn − vn)∥∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥

+ 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]

≤ (∥vn − s∗∥ + ∥vn+1 − s∗∥)∥vn − vn+1∥

+ 2η(1 − βn)γn∥B(zn − vn)∥∥(𭟋( f2,ϕ2)
rn

− I)Bvn∥

+ 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]. (3.26)

Applying the given conditions, (3.20) and (3.24) in (3.26), we get

lim
n→∞
∥zn − vn∥ = 0. (3.27)
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Further, we estimate

∥ϱn − s∗∥2 = ∥PQ1(zn − αnAzn) − PQ1(s∗ − αnAs∗)∥2

≤ ⟨ϱn − s∗, (zn − αnAzn) − (s∗ − αnAs∗)⟩

≤
1
2
{∥ϱn − s∗∥2 + ∥(zn − αnAzn)

− (s∗ − αnAs∗)∥2 − ∥(ϱn − zn) + αn(Azn − As∗)∥2}

≤
1
2
{∥ϱn − s∗∥2 + ∥zn − s∗∥2 − ∥(ϱn − zn) + αn(Azn − As∗)∥2}

≤ ∥zn − s∗∥2 − ∥ϱn − zn∥
2 − α2

n∥Azn − As∗∥2

+ 2αn⟨ϱn − zn, Azn − As∗⟩

≤ ∥zn − s∗∥2 − ∥ϱn − zn∥
2 + 2αn∥ϱn − zn∥∥Azn − As∗∥

≤ ∥vn − s∗∥2 − ∥ϱn − zn∥
2 + 2αn∥ϱn − zn∥∥Azn − As∗∥. (3.28)

From (3.8), we obtain

∥sn − s∗∥2 ≤ σn∥vn − s∗∥2 + γn∥ϱn − s∗∥2 + µn∥vn − s∗∥2 + µnϵ∥vn −Gnvn∥
2

≤ (1 − γn)∥vn − s∗∥2 + γn∥ϱn − s∗∥2 − µn(σn − ϵ)∥vn −Gnvn∥
2. (3.29)

From (3.21) and (3.29), we estimate

∥vn+1 − s∗∥2 ≤ (1 − βn)[(1 − γn)∥vn − s∗∥2 + γn∥ϱn − s∗∥2 − µn(σn − ϵ)∥vn −Gnvn∥
2]

+ 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]

≤ (1 − βn)(1 − γn)∥vn − s∗∥2 + (1 − βn)γn[PQ1(zn − αnAzn) − PQ1(s∗ − αnAs∗)]

− (1 − βn)µn(σn − ϵ)∥vn −Gnvn∥
2 + 2βn[δ∥vn − s∗∥2 +

M
2
∥vn+1 − vn∥]

≤ (1 − βn)(1 − γn)∥vn − s∗∥2 + (1 − βn)γn[∥zn − s∗∥2 + αn(αn − 2σ)∥Azn − As∗∥2]

− (1 − βn)µn(σn − ϵ)∥vn −Gnvn∥
2 + 2βn[δ∥vn − s∗∥2 +

M
2
∥vn+1 − vn∥]

≤ (1 − βn)(1 − γn)∥vn − s∗∥2 + (1 − βn)γn[∥vn − s∗∥2 + αn(αn − 2σ)∥Azn − As∗∥2]

− (1 − βn)µn(σn − ϵ)∥vn −Gnvn∥
2 + 2βn[δ∥vn − s∗∥2 +

M
2
∥vn+1 − vn∥]

≤ ∥vn − s∗∥2 + (1 − βn)γnαn(αn − 2σ)∥Azn − As∗∥2

− (1 − βn)µn(σn − ϵ)∥vn −Gnvn∥
2 + 2βn[δ∥vn − s∗∥2 +

M
2
∥vn+1 − vn∥],

which implies

(1 − βn)γnαn(2σ − αn)∥Azn − As∗∥2 ≤ ∥vn − s∗∥2 − ∥vn+1 − s∗∥2 − (1 − βn)µn(σn − ϵ)∥vn −Gnvn∥
2

+ 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]

≤ (∥vn − s∗∥ + ∥vn+1 − s∗∥)∥vn − vn+1∥

− (1 − βn)µn(σn − ϵ)∥vn −Gnvn∥
2
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+ 2βn[δ∥vn − s∗∥2 +
M
2
∥vn+1 − vn∥]. (3.30)

Applying the given conditions, (3.15) and (3.20) in (3.30), we obtain

lim
n→∞
∥Azn − As∗∥ = 0. (3.31)

Using (3.11), (3.12), (3.28), and (3.29), we compute

∥vn+1 − s∗∥2 ≤ (1 − βn)(1 − γn)∥vn − s∗∥2 + (1 − βn)γn[∥vn − s∗∥2 − ∥ϱn − zn∥
2

+ 2αn∥ϱn − zn∥∥Azn − As∗∥] + (1 − βn)µnϵ∥vn −Gnvn∥
2

+ 2βnδ∥vn − s∗∥2 + βnM∥vn+1 − vn∥ + 2βn⟨h(vn) − s∗, vn − s∗⟩

=⇒ (1 − βn)γn∥ϱn − zn∥
2 ≤ ∥vn − s∗∥2 − ∥vn+1 − s∗∥2

+ 2(1 − βn)γnαn∥ϱn − zn∥∥Azn − As∗∥ + (1 − βn)µnϵ∥vn −Gnvn∥
2

+ 2βnδ∥vn − s∗∥2 + βnM∥vn+1 − vn∥ + 2βn⟨h(vn) − s∗, vn − s∗⟩

≤ (∥vn − s∗∥ + ∥vn+1 − s∗∥)∥vn − vn+1∥

+ 2(1 − βn)γnαn∥ϱn − zn∥∥Azn − As∗∥ + (1 − βn)µnϵ∥vn −Gnvn∥
2

+ 2βnδ∥vn − s∗∥2 + βnM∥vn+1 − vn∥

+ 2βn⟨h(vn) − s∗, vn − s∗⟩.

Applying the given conditions, (3.14), (3.20), and (3.31), we get

lim
n→∞
∥ϱn − zn∥ = 0.

Now, we show that s∗ ∈ Fix(H) = Fix(G) = Fix(Gn) = ∩Ni=1Fix(S i). Let s∗ < Fix(H). As vn j ⇀ s∗ and
s∗ , Hs∗, then by the Opial condition, we obtain

lim inf
j→∞

∥vn j − s∗∥ < lim inf
j→∞

∥vn j − Hs∗∥

≤ lim inf
j→∞

[∥vn j − Hvn j∥ + ∥Hvn j − Hs∗∥]

≤ lim inf
j→∞

∥vn j − s∗∥, (3.32)

which contradicts to our supposition. Hence, s∗ ∈ Fix(H) = Fix(G) = Fix(Gn) = ∩Ni=1Fix(S i).
By (3.14), we observe that {vn} and {ϱn} have the same asymptotic behavior, and therefore ∃ a
subsequence {ϱn j} of {ϱn} with ϱn j ⇀ s∗. Again from (3.14) and the opial condition we have that
s∗ ∈ Fix(T ). Next, we prove that s∗ ∈ Sol(SGEP(1.3 − 1.4)). Set τn := vn + ηB∗((𭟋

( f2,ϕ2)
rn − I)Bvn. Then,

zn = 𭟋
( f1,ϕ1)
rn τn. For any v ∈ Q1, we get

f1(zn, v) + ϕ1(v, zn) − ϕ1(zn, zn) +
1
rn
⟨v − zn, zn − τn⟩ ≥ 0

ϕ1(v, zn) − ϕ1(zn, zn) +
1
rn
⟨v − zn, zn − τn⟩ ≥ f1(v, zn)

=⇒ ϕ1(v, zn j) − ϕ1(zn j , zn j) + ⟨v − zn j ,
zn j − τn j

rn j

⟩ ≥ f1(v, zn j). (3.33)
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Assume ως := (1 − ς)s∗ + ςv, ∀ς ∈ (0, 1]. As v, s∗ ∈ Q1, therefore ως ∈ Q1. Hence, by (3.33)

0 ≤ f1(ως, zn j) − ϕ1(ως, zn j) + ϕ1(zn j , zn j)

− ⟨ως − zn j ,
zn j − vn j

rn j

+ ηB∗
((𭟋( f2,ϕ2)

rn j
− I)Bvn j

rn j

⟩.

Using the given conditions (3.24) and (3.27), we get

ϕ1(ως, s∗) − ϕ1(s∗, s∗) ≤ f1(ως, s∗).

Thus,
0 = f1(ως, ως)
= ς f1(ως, v) + (1 − ς) f1(ως, s∗)
≥ ς f1(ως, v) + (1 − ς)[ϕ1(ως, s∗) − ϕ1(s∗, s∗)]
≥ ς f1(ως, v) + (1 − ς)ς[ϕ1(v, s∗) − ϕ1(s∗, s∗)]
≥ f1(ως, v) + (1 − ς)[ϕ1(v, s∗) − ϕ1(s∗, s∗)].

Assuming ς → 0, we obtain

f1(s∗, v) + ϕ1(v, s∗) − ϕ1(s∗, s∗) ≥ 0, ∀v ∈ Q1.

This implies that s∗ ∈ Sol(GEP(1.3)). Further, we prove that Bs∗ ∈ Sol(GEP(1.4)). As ∥zn − vn∥ →

0, zn ⇀ s∗ as n → ∞ and {vn} is bounded and, ∃ a subsequence {vn j} of {vn} with vn j ⇀ s∗ and
Bvn j ⇀ Bs∗ because B is a bounded linear operator.

Set qn j = Bvn j − 𭟋
( f2,ϕ2)
rn Bvn j . Using (3.24), we get lim

j→∞
qn j = 0 and Bvn j − qn j = 𭟋

( f2,ϕ2)
rn Bvn j . Applying

Lemma 2.3, we get

f2(Bvn j − qn j , v) + ϕ1(v, zn j) − ϕ1(zn j , zn j)

+
1

rn j

⟨v − (Bvn j − qn j), (Bvn j − qn j) − Bvn j⟩ ≥ 0, ∀v ∈ Q1. (3.34)

Taking the limit superior in (3.34) as j → ∞, using the concept of upper semicontinuity in the first
argument of f2, and applying the given conditions, we get

f2(Bs∗, v) + ϕ1(v, s∗) − ϕ1(s∗, s∗) ≥ 0, ∀v ∈ Q1,

which implies Bs∗ ∈ Sol(GEP(1.3)). Thus, s∗ ∈ Sol(SGEP(1.3 − 1.4)).
Next, we show that s∗ ∈ Sol(VIP(1.1)). As limn→∞ ∥zn − ϱn∥ = 0, ∃ {zn j} and {ϱn j} subsequences

of {zn} and {ϱn} with zn j ⇀ s∗ and ϱn j ⇀ s∗.
Let

∆(s) =
{

A(s) + NQ1(s∗), if s∗ ∈ Q1,

∅, if s∗ < Q1,

where NQ1(s∗) := {t ∈ Y1 : ⟨s∗ − v, t⟩ ≥ 0, ∀t ∈ Q1} is the normal cone to Q1 at s∗ ∈ Y1. Hence,
∆ is maximal monotone and 0 ∈ ∆s∗ ⇔ s∗ ∈ Sol(VIP(1.1)). Let (s∗,w) ∈ graph(∆). Then, w ∈

AIMS Mathematics Volume 10, Issue 4, 8753–8776.



8768

∆s∗ = As∗ + NQ1(s∗) and hence w − As∗ ∈ NQ1(s∗). Thus, ⟨s∗ − t,w − As∗⟩ ≥ 0, ∀t ∈ Q1. Since,
ϱn = PQ1(zn − αnAzn) and s∗ ∈ Q1, therefore

⟨(zn − αnAzn) − ϱn, ϱn − s∗⟩ ≥ 0

=⇒ ⟨t − ϱn,
ϱn − zn

αn
+ Azn⟩ ≥ 0, ∀p ∈ Q1.

As ⟨p − t,w − Ap⟩ ≥ 0, for all p ∈ Q1 and ϱn j ∈ Q1, monotonicity of A, we obtain

⟨p − ϱn j ,w⟩ ≥ ⟨p − ϱn j , As∗⟩

≥ ⟨p − ϱn j , Ap⟩ − ⟨p − ϱn j ,
ϱn j − zn j

αn j

+ Azn j⟩

= ⟨p − ϱn j , Ap − Azn j⟩ + ⟨p − ϱn j , Aϱn j − Azn j⟩

− ⟨p − ϱn j ,
ϱn j − zn j

αn j

⟩

≥ ⟨p − ϱn j , Aϱn j − Azn j⟩ − ⟨p − ϱn j ,
ϱn j − zn j

αn j

⟩.

Taking j → ∞ and by the continuity of A, we get ⟨p − s∗,w⟩ ≥ 0. As ∆ is maximal monotone,
s∗ ∈ ∆−1(0) and hence s∗ ∈ Sol(VIP(1.1)). Hence, s∗ ∈ Ω.

As s∗ = PΩh(s∗), therefore by (3.16)

lim sup
n→∞

⟨h(s∗) − s∗, vn − s∗⟩ = lim
j→∞
⟨h(s∗) − s∗, vn j − s∗⟩ ≤ 0. (3.35)

Applying the given conditions, (3.13), (3.20), (3.35), and Lemma 2.8, we obtain qn → 0 as n → ∞.
Hence, {vn} strongly converges to s∗ = PΩh(s∗).
Case 2. Consider {qt j} to be a subsequence of {qt} with qt j < qt j+1 , ∀ j ≥ 0. Then followed by
Lemma 2.1, construct a nondecreasing sequence {mt} ⊂ N with mt → ∞, as t → ∞ and max{qmt , qt} ≤

qmt+1 , ∀t. As rt ∈ [c, d] ⊂ (0, σ−1), t ≥ 0, σt, γt, µt ∈ (0, 1) with the given condition and (3.13), and we
get

lim
t→∞
∥vmt − Tymt∥ = 0, lim

t→∞
∥Tymt −Gmtvmt∥ = 0, and lim

t→∞
∥vmt −Gmtvmt∥ = 0.

By applying the same steps as in Case 1, we get

lim sup
t→∞

⟨h(s∗) − s∗, vmt − s∗⟩ ≤ 0.

As {vt} is bounded and lim
t→∞
βt = 0, we obtain from (3.15), (3.17), and (3.20) that

lim
t→∞
∥vmt+1 − vmt∥ = 0.

As qmt ≤ qmt+1 , ∀t, we obtain from (3.14) that

(1 − 2δ)qmt+1 ≤ M∥vmt+1 − vmt∥ + 2⟨h(s∗) − s∗, vmt − s∗⟩.

Taking t → ∞, we get qmt+1 → 0. As qmt ≤ qmt+1 , ∀t, therefore qt → 0 as t → ∞. Thus, vt → 0 as t →
∞. Hence, we have proved that the sequence {vn} strongly converges to s∗ = PΩh(s∗). □
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Following this approach, we present several remarks that stem from the conclusions of
Theorem 3.1. These remarks provide a concise overview of the theoretical results and pave the way
for broader exploration and application of the proposed iterative scheme across various mathematical
and computational settings.

Remark 3.1. Let T = I, where I is the identity mapping and ϵi = 0, that is, S i is a finite family of
nonexpansive mappings in Theorem 3.1. Then, Ω := Fix(S i)∩Sol(SGEP(1.3 − 1.4))∩Sol(VIP(1.1)) ,
∅.

Remark 3.2. Let B = I, where I is the identity mapping, Y1 = Y2, Q1 = Q2, f1 = f2, and ϕ1 = ϕ2 in
Theorem 3.1. Then, Ω := ∩Ni=1Fix(S i) ∩ Fix(T ) ∩ Sol(GEP(1.3)) ∩ Sol(VIP(1.1)) , ∅.

4. Numerical example

We now provide examples to illustrate the main theorem.

Example 4.1. Let Y1 = Y2 = R and Q1 = Q2 = [0,+∞). Define the mappings: f1(v1, v2) = v1(v2 −

v1), ∀v1, v2 ∈ Q1; f2(t1, t2) = t1(t2 − t1), ∀t1, t2 ∈ Q2, and ϕ1(v1, v2) = ϕ2(v1, v2) = v1v2, ∀v1, v2 ∈ Q1. It
is straightforward to verify that the functions f1, f2, ϕ1, and ϕ2 satisfy the conditions of Assumption 2.1.
Now, consider the additional mappings: h(v) = v

5 , Av = 3v, v ∈ Q1; B(s) = 1
2 s, s ∈ Y1; T (v) = v

4 , v ∈
Q1, and S i(v) = −(1 + i)v, v ∈ Q1, i = 1, 2, 3. These mappings can also be easily checked to satisfy
the requirements of Theorem 3.1. The execution of the algorithms involves specific parameter settings.
Let rn = 1, αn = {

1
5 }, η =

1
6 , βn = {

1
10n }, σn = 0.7 + 0.1

n2 , γn = 0.2 − 0.2
n2 , µn = 0.1 + 0.1

n2 , and {ξn
i } = {

1
3 }.

Under these configurations, the sequence produced by Algorithm 3.1 converges to q = {0} ∈ Ω.

The computations and graphical visualizations for this algorithm were carried out using MATLAB
R2015a on a standard HP laptop featuring an Intel Core i7 processor and 8 GB of RAM. The stopping
criterion is set as ∥vn+1 − vn∥ < 10−10. Various initial points v1 are tested, and the results are
summarized in Tables 1 and 2, where we also compare our findings with those in [16, 21].
Additionally, the convergence behavior is illustrated in Figures 1 and 2. Upon analyzing the figures
and the table, on taking distinct initial points, we observe that our proposed algorithm tends to
complete tasks more quickly, typically measured in seconds, compared to other methods. However, it
is challenging to identify a clear trend from these results.
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Table 1. Comparison of our main results for initial point v1 = 0.9.

No. of iterations Main Theorem Korpelevich [16] Nadezkhina et al. [21]
cpu time (in seconds) cpu time (in seconds) cpu time (in seconds)

1 0.180000 0.684000 0.705600
2 0.062481 0.519840 0.544723
3 0.023582 0.395078 0.418347
4 0.009167 0.300260 0.320454
5 0.003614 0.228197 0.245083
6 0.001436 0.173430 0.187244
7 0.000574 0.131807 0.142947
8 0.000230 0.100173 0.109069
9 0.000092 0.076132 0.083183
10 0.000037 0.057860 0.063419
11 0.000015 0.043974 0.048337
12 0.000006 0.033420 0.036833
13 0.000002 0.025399 0.028061
14 0.000001 0.019303 0.021374
15 0.000000 0.014671 0.016279

Table 2. Comparison of our main results for initial point v1 = 2.1.

No. of iterations Main Theorem Korpelevich [16] Nadezkhina et al. [21]
cpu time (in seconds) cpu time (in seconds) cpu time (in seconds)

1 0.420000 1.500000 1.560000
2 0.145790 0.900000 0.990000
3 0.055024 0.684000 0.760320
4 0.021390 0.519840 0.582405
5 0.008433 0.395078 0.445423
6 0.003351 0.300260 0.340304
7 0.001338 0.228197 0.259797
8 0.000536 0.173430 0.198225
9 0.000215 0.131807 0.151180
10 0.000087 0.100173 0.115260
11 0.000035 0.076132 0.087849
12 0.000014 0.057860 0.066941
13 0.000006 0.043974 0.050999
14 0.000002 0.033420 0.038846
15 0.000001 0.025399 0.029585
16 0.000000 0.019303 0.022529
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Figure 1. Convergence of {vn} at v1 = 0.9.
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Figure 2. Convergence of {vn} at v1 = 2.1.

Example 4.2. Let Y1 = Y2 = l2 be real Hilbert spaces, where l2 consists of square-summable infinite
sequences of real numbers. Define Q1 = Q2 = {w ∈ l2 : ∥w∥ ≤ 3}. The mappings are defined as
follows: f1(u, v) = (4v + 5u)(v − u), f2(u, v) = (2v + 3u)(v − u), where ∀u = {u1, u2, ..., un, ...}, v =

{v1, v2, ..., vn, ...}. The norm and inner product on l2 are defined by: ∥u∥ = (
∞∑
j=1
|u j|

2)
1
2 , ⟨u, v⟩ =

∞∑
j=1

u jv j.

Additional mappings are given as: ϕ1(u, v) = (5v− 4u)u, ϕ2(u, v) = (3v− 2u)u. It is straightforward to
verify that the functions f1, f2, ϕ1, and ϕ2 satisfy the conditions of Assumption 2.1. Now, consider the
additional mappings: h(u) = 1

2u, Au = 10u, u ∈ Q1; B(s) = 1
5 s, s ∈ Y1; T (u) = 1

100u, u ∈ Q1, and
S i(v) = 1

2(i+1)u, u ∈ Q1, i = 1, 2, 3. These mappings can also be verified to satisfy the requirements
of Theorem 3.1. The execution of the algorithms involves specific parameter settings. Let rn = 1,
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αn = {
1
13 }, η =

1
7 , βn = {

1
10n }, σn = 0.7 + 0.1

n2 , γn = 0.2 − 0.2
n2 , µn = 0.1 + 0.1

n2 , and {ξn
i } = {

1
3 }. Under these

configurations, the sequence produced by Algorithm 3.1 converges to q = {0} ∈ Ω.
The computations and graphical visualizations for this algorithm were carried out using MATLAB

R2015a on a standard HP laptop featuring an Intel Core i7 processor and 8 GB of RAM. The stopping
criterion is set to ∥vn+1− vn∥ < 10−10. Several initial points v1 are tested, and the convergence behavior
is illustrated in Figures 3 and 4.
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Figure 3. Convergence of {vn} at initial point v1 = {0.7, 0.7, ..., 0.7, ...}.

0 5 10 15 20 25

Number of iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a

lu
e

s

Main Theorem

Korpelevich [16]

Nadezkhina et al. [21]

Figure 4. Convergence of {vn} at initial point v1 = {0.4, 0.4, ..., 0.4, ...}.

Application in optimization problems: We explore the application of our algorithms to optimization
problems. Let M1 : Q1 → R and M2 : Q2 → R be two functions. Define f1(u1, v1) = M1(v1) −
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M1(u1), ∀u1, v1 ∈ Q1, and f2(u2, v2) = M2(v2) − M2(u2), ∀u2, v2 ∈ Q2. The objective is to determine
u ∈ Q1 such that

F1(u) ≤ F1(u∗), ∀u∗ ∈ Q1 (4.1)

and ensure that

v = Bu ∈ Q2 solves F2(v) ≤ F2(v∗), ∀v∗ ∈ Q2. (4.2)

Denote the solution set of these optimization problems (4.1) and (4.2) by Γ and assume that Γ , ∅. It
is straightforward to verify that Assumption 2.1, 1 − 4, hold. Consequently, we have Γ = Ω.

5. Conclusions

In this paper, we proposed a viscosity-based extragradient iterative algorithm for solving the split
generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a
finite family of ϵ-strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The strong
convergence of the algorithm was established under appropriate assumptions. To demonstrate the
practical applicability of the proposed algorithm, we presented results in the form of two
comprehensive tables and four illustrative figures. These include comparisons with existing methods
and a detailed analysis of convergence behavior, highlighting the effectiveness and efficiency of our
approach.

This study extends and unifies various well-known results in the literature, offering a versatile tool
for tackling a range of problems in optimization and computational mathematics.

However, the algorithm has certain limitations. Its convergence heavily depends on precise
parameter tuning, which may pose challenges in practical applications. Additionally, the framework is
currently restricted to Hilbert spaces, limiting its generalization to Banach spaces or other settings.
Despite these limitations, the results presented in this paper extend and unify numerous previously
established outcomes in this particular research domain.
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