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1. Introduction

Let Y, and Y, represent real Hilbert spaces with the inner product (-, -) and induced norm || - ||.
Define Q; and Q, as nonempty, closed, convex subsets of Y; and Y,, respectively. This paper
addresses the task of finding a unified solution for the split generalized equilibrium problem,
variational inequality problem, and fixed point problem, focusing on a finite family of e-strict
pseudo-contractive and nonexpansive mappings within real Hilbert spaces. These problems are
commonly encountered in a wide range of mathematical models, where equilibrium and fixed-point
conditions play a crucial role. Notable examples include applications in game theory, as seen in
Nash’s foundational work [24], image reconstruction [12, 17], network optimization in
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telecommunications, public infrastructure planning [27], and the analysis of Nash equilibria in
strategic decision-making [25]. The variational inequality problem (VIP) involves finding an element
s* € Q such that

(As*,v—s") >0, YveQ, (1.1)

where A : Q) — Y is a nonlinear mapping, as introduced by Hartman and Stampacchia [13].
In 1994, Blum and Oettli [3] introduced and studied the following equilibrium problem (EP): finding
s* € Q; that satisfies
fils*,v) =20, VveQy, (1.2)

where f; : Q1 X0, — Ris abifunction, with the solution set denoted by Sol(EP(1.2)). EP(1.2) has been
widely studied and extended in multiple directions over the past two decades due to its importance. For
details on existence and iterative solution approximations, see [9,10,29,31] and the references therein.
Censor et al. [7] introduced the split feasibility problem (SFP) for finite-dimensional Hilbert spaces,
primarily for applications in phase retrieval and medical imaging, defined as:

Find s* € Q; such that Bs™ € Q»,

where B : Y| — Y, is a bounded linear operator.

We introduce the split generalized equilibrium problem (SGEP) as follows. Let f;, ¢, : Q; X Q; —
R, j = 1,2, be non-linear bifunctions, with B : Y; — Y, as a bounded linear operator. SGEP aims to
find s* € Q; that satisfies

Hi( )+ 1, 8) = di(s7,5) 20, VYveQ, (1.3)

such that
t" = Bs" € Q, solves fr(t",u) + ¢r(u,t*) — ¢(t", 1) >0, VYue€ Q. (1.4)

If ¢1, > = 0, SGEP becomes split equilibrium problem (SEP) as:
fis*,v) >0, VveQy, (1.5)

such that
1" = Bs" € Q, solves Hr(t"',u) >0, Yue Q,. (1.6)

We note that SGEP generalizes the multiple-set split feasibility problem and includes split
variational inequalities as a special case, which further extends split zero problems and split
feasibility problems for the existence and iterative approaches (see, e.g., [5,8, 11,15,20]).

The fixed point problem (in short, FPP) foramap 7 : Q; — Q; isto find v € Q; such that Tv = v.
The fixed point set of T is denoted by Fix(T) and Fix(T) = {v € Q; : v = Tv}. Fixed point theory is a
cornerstone of mathematics, with applications in solving equations, optimization, and modeling in pure
and applied sciences. The study of fixed points in the moduli spaces of vector bundles over algebraic
curves is fundamental in understanding the geometry of these spaces, see [1]. It is foundational to
fields like topology (Brouwer’s theorem), analysis (Banach’s contraction principle), and mathematical
physics (e.g., Hitchin integrable systems and mirror symmetry). Fixed points also play a vital role in
economics and game theory, such as in Nash equilibria, see [2, 14,24, 34].
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Korpelevich [16] introduced the extragradient iterative method in Hilbert space Y, for solving
VIP (1.1):
vo € O,
on = Po, (v, — aAv,), 1.7)
Vne1 = Po, (v — @AQn),
where @ > 0, A : Q; — Y, is a monotone and Lipschitz continuous mapping, and P, denotes the

metric projection onto Q. Under certain conditions, this sequence converges to a solution of VIP (1.1).
In 2006, Nadezkhina and Takahashi [21] introduced a modified form of (1.7) as follows::

v € O,
u, = Po, (v, — r,Av,), (1.8)
Vp+1 = ﬁnvn + (1 _Bn)TPQ|(Vn - rnAMn)-

By setting appropriate conditions on control sequences, they examined the weak convergence of the
generated sequence toward a common solution of Fix(7") and VIP (1.1).

In the same year, Nadezhkina and Takahashi [22] proposed an alternative extragradient approach.
This method combined the hybrid method [23] with the extragradient iterative approach [16] and was
formulated as:

vo € 01,

On = Po, (v = 1,Avy),

3n = vy T (1 - a’n)TPQl(Vn - rnAQn),
P, ={ve Q3 —vIP<lv, -2zl
On={veQi:(vy—z,x—v,) 20},

Vntl = PanQ,,Vo-

(1.9)

Using specific control sequences, they demonstrated the strong convergence of this iterative sequence
to a common solution of Fix(7) and VIP (1.1). For additional generalizations of the iterative
method (1.9), refer to [6].

Notably, only a few strong convergence theorems exist for extragradient iterative methods, other
than the hybrid extragradient approach. Therefore, our primary objective is to develop a novel
extragradient method distinct from the hybrid type.

A mapping S : Q; — Y is defined as an e-strict pseudo-contractive if there exists € € [0, 1) such
that:

ISvi = Svall® < vy = val P + €ll(1 = S)vi = (T = S)vall®,  ¥vi,v, € Qi (1.10)
When € = 0, the mapping S is termed nonexpansive, and when € = 1, it is termed pseudo-contractive.
S is saild to be strongly pseudo-contractive if I g € (0,1)  with
(Svi — Svy,v; — va) < 7llvi — wll’>, Yvi,v2 € Q;. Thus, the e-strict pseudo-contractive class lies

between the nonexpansive and pseudo-contractive mappings. Note that the class of strongly
pseudo-contractive mappings is independent from e-strict pseudo-contractive (for more, see [4]). It is
obvious that for real Hilbert space Y, (1.10) is equivalent to

1-€
(Svi = Svy,vi =) < vy = mal* - —— =S - — S, Vv, v e Q. (1.11)

Moreover, iterative approaches for strict pseudo-contractive are less advanced than those for
nonexpansive mappings, despite Browder and Petryshyn’s early work in 1967 [4]. This gap may be
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due to the additional term on the right-hand side of (1.10), which complicates the convergence
analysis for algorithms that locate a fixed point of the strict pseudo-contractive S. However, strict
pseudo-contractive offer stronger applications than nonexpansive mappings for solving inverse
problems (see [30]). This motivates the development of iterative methods to find a common solution
to SGEP((1.3) and (1.4)) and fixed-point problems for nonexpansive mappings, as well as for a finite
family of e-strict pseudo-contractive mappings. For further reading, refer to [19, 33] and the
references therein.

Inspired by previous contributions (e.g., [11,15,22,33]), we propose a viscosity-based extragradient
iterative approach for approximating solutions to split generalized equilibrium, variational inequality,
and fixed point problems involving nonexpansive and e-strict pseudo-contractive mappings in Hilbert
space. We discuss strong convergence and highlight specific results derived from our theorems, along
with numerical analysis to demonstrate the significance of our findings.

This paper is structured as follows: Section 2 covers foundational concepts, lemmas, and
assumptions. In Section 3, we present main results, numerical analyses, and graphical illustrations.
Section 4 provides an interpretation of our findings.

2. Preliminaries

In this section, we compile key concepts and results needed for the presentation of this work. We
denote strong and weak convergence by — and —, respectively.
For any v, € Y| 9 a unique nearest point to v; in Q; denoted by Py, v, such that

vi = Povill < llvi = vall, Vv € Q.

The operator Py, is called the metric projection of Y; onto Q;. This projection is nonexpansive and
satisfies
2
(vi = v, Po,vi = Po,v2) 2 ||Pg,vi — Po,wall”, Vv, vy €Y.

Additionally, Py, v; is characterized by Py, v, € Q) and
(vi = Po,vi,va = Pov1) £0, Vv, € Q.
This implies that
Vi = vall> > lvi = Po,vill* + lIva = PovillP,  Vvi € Yy, Vv € Q).
In a real Hilbert space Y7, it is known that
1Bv1 + (1 = Bwall> = BIMiIZ + (1 = B)lall® = B(1L = B)llvy = val’, Yvi, v, € Yiand B € [0,1]; (2.1)

and
Vi +vall? < (il + 202, vy + ), Yvi, v € V). (2.2)

Lemma 2.1. [18] Let {b,} be a sequence of nonnegative real numbers with a subsequence {b,} such
that b,, < b,,, for all i € N. Then, there exists a non-decreasing sequence {m;} C N such that
lim;_,., m; = oo and, for all sufficiently large j € N, the following hold:

bu; <b and b; < by,,.

Mijy]

Moreover, m; is the largest number n in the set {1,2,3, ..., j} such that b, < b.,.
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Lemma 2.2. [19] Assume that D is a strongly positive, self-adjoint, and bounded linear operator
on a Hilbert space Y, with a positive coefficienty > 0 and 0 < p < ||D||™'. Then, it follows that
Il —pD|l <1-py.

Assumption 2.1. Let fi,¢; : Q1 X Q1 — R be bimappings satisfying the following conditions:
(D) fivi,v) =0, Vv €Qy;

(2) fi is monotone, i.e.,
i, v2) + fi(va,v1) £0, Vv, v € Oy

(3) For each v, € Qy, vi — fi1(v1,vy) is weakly upper semicontinuous,

(4) For each v, € Q1, v, — fi1(v1,vy) is convex and lower semicontinuous,
(5) ¢1(.,.) is weakly continuous and ¢,(.,v,) is convex;,

(6) ¢, is skew-symmetric, i.e.,

G1(vi,vi) — d1(vi,v2) + d1(v2,v2) — d1(va,v1) 20, Vv, € Q.

Now, we define Fﬁ’wl) 1Y) — Q; by

1
FU9(w) = (v € Q1 1 fivi,v2) + d1(va, v1) — d1(vi, 1) + —(2=vi,vi =w) 20, Y €01}, (23)

where r is a positive real number.
Lemma 2.3. [28] Let fi, ¢, satisfy Assumption 2.1. Suppose that for eachw € Y and for each v, € Qj,
there exist a bounded subset D,, C Q, and w,, € Q; such that for any v, € Q; \ D,,,

1
fiva,wy) + d1(wy,, v2) — @1 (v, v2) + ;<Wv1 -V, —2) < 0.

Let the mapping FUH pe defined by (2.3). Then, the following properties hold:

(i) Fﬁf L0 () s nonempty for each w € Y;;
(i) FY-90 g single-valued;
(iii) FYV is a firmly nonexpansive mapping, i.e., for all wy,w, € Y1,

IF00w1) = FROwo)lP < (F (w) = B (w), wy = wa)s

(iv) Fix(FY"") = Sol(GEP(1.3));
(v) Sol(GEP(1.3)) is closed and convex.

Further, suppose f>, ¢, : 0> X Q> — R satisfies Assumption 2.1. For s > 0 and v; € Y,, define the

mapping FY*% : Y, — Q, as follows:

1
FP2)(v)) = {vy € Qs 1 r(vi,v3) + $2(v3,v2) — $a(va, v2) + E<V3 =V, = V1) 20, Yvz € Or). (24)

It follows that FY>% is nonempty, single-valued, and firmly nonexpansive, Fix(F{>%) =
Sol(GEP(1.4)), and Sol(GEP(1.4)) is closed and convex.
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Lemma 2.4. [28] Let f; and ¢, satisfy Assumption 2.1 and let FY 9 be defined by (2.3). Then, for
vi,V2 € Y1 and ry,r, > 0, we have

] - |y — 7] ]
IFL#0 () = 00l < Hlva = vill + =——=IIF () = vl
2

Lemma 2.5. [35] LetS : Q| — Y, be a €-strictly pseudo-contractive mapping. Then, Fix(S) is closed
convex and it yields that Priys) is well defined.

Lemma 2.6. [26] For any u,v,w € Y|, we have
llowe +yv + puwl? = ollull® + YIVIP + ulwll® = oyl = I = pyllv = wil* = ol — wiP,

where o, vy, u € [0, 1) witho +y+u=1.
Lemma 2.7. [33] For each i = 1,2,3,...,N, where N is a natural number, consider S; : Q1 — Y,

to be a €-strictly pseudo-contractive mapping for some 0 < ¢ < 1 with ﬂﬁ.\ilFix(S ) # 0. Let {é:,'};bil

N N
be a positive sequence with 21 ", = 1. Then, ZlfiSi : Q1 = Y, is e-strictly pseudo-contractive with
= 1=

N
coefficient € = max € and Fix(}, &S;) = NiL Fix(S)).
<i<

i=1

Lemma 2.8. [32] Assume that {a,} is a sequence of nonnegative real numbers such that
aney < (1 =yn)an + 6, n 20,
where {y,} is a sequence in (0, 1) and {0,} is a sequence in R such that
Q) 3 7= oo;

(ii) limsup j—" <0or 3 |6, < +oo.
n— oo " n=1
Then, lim a, = 0.

n—oo

3. Results

Suppose f;,¢; : Q; X Q; — Rfor j = 1,2 are nonlinear bifunctions, and B : Y} — Y, is a bounded
linear operator. Let A : Q; — Y| be a o-inverse strongly monotone mapping and 2 : Q1 — Q; a
o-contraction mapping. Additionally, assume 7 : Q; — Y; is a nonexpansive mapping, and for each
i=1,2,3,...N, let §; : Q; — Y; be an ¢-strictly pseudo-contractive mapping. Let {ft’.l};ki1 be a finite

N
sequence of positive numbers satisfying »’ £’ = 1. The algorithm we propose is as follows:
i=1
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Algorithm 3.1.

Initialization: Given v, € Q.

Iterative steps: Iterate v, using the following procedure:
Step 1. Compute:
{ 30 = Fil 0 + 1B (F = DBv,), }
on = Pg,(3n — @,A3),
and calculate the next iterate

N
Vel = ﬂnh(vn) + (1 _ﬁn)PQl [V, + YnTQn + Uy Z é:?sivn], n>1,
i=1

where Fﬁ{' 9V is defined by (2.3). Set n := n + 1 and move o Step 1.

We consider control parameters in our main theorem as:

(1) Bn, O s Vs Mn € (0’ 1) and Op+Y,+Uu, = 1’
n—oo n=1

oo N
-1
(ii1) lel & = & < +oo,
n=l1i=
iv) 0<¢<o0,<c<l1, limo, =¢

(v) n€(0, %), L is the spectral radius of B*B and B* is the adjoint of B,
(vi) a, €(0,20).

These parameters play a crucial role in the convergence and behavior of our algorithm, providing
flexibility and adaptability across iterations.

Theorem 3.1. Let Q and Q, be non-empty closed convex subsets of Hilbert spaces Y, and Y,
respectively. Let fj,¢; : Q; X Q; — R, where j = 1,2, be non-linear bifunctions that satisfy
Assumption 2.1, and B : Y| — Y, be a bounded linear operator. Let A : Q1 — Yy and h : Q1 — Q; be
a o-inverse strongly monotone mapping and 6-contraction mapping, respectively. Further, assume
that T : Q, — Y, is a nonexpansive mapping and for eachi = 1,2,3,..,N, S, : Q; — Y, is a ¢-strict
N
pseudo-contractive mapping. Let {€'}}. be a finite sequence of positive numbers with Y, & = 1.
i=1
Assume Q := N Fix(S;) N Fix(T) N Sol(SGEP(1.3 — 1.4)) N Sol(VIP(1.1)) # 0. Then, the
sequence {v,} generated by Algorithm 3.1 converges strongly to v € C, where v = Poh(V).

For convenience, we split the proof of our main Theorem 3.1 into some lemmas as follows:

Lemma 3.1. The sequences {v,}, {3,}, and {0,} generated by iterative Algorithm 3.1 are bounded.

N

Proof. We claim that {v,} is bounded. We set s, = o,v, + ¥, 70, + u, 2, &S v, Let 5™ € Q. Using the
i=1

concept of non-expansivity of / — a,A and T , we compute

llow =8Il = 11Pg,3n — @uA3) — 57l
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IA

”(I - anA)3n - (I - CynA)S*”
13, — s*1I, (3.1)

IA

and thus
ITo, — sl < llon — s7II.

We calculate

I3, = s'IF = IIF/*(v, + nB*(F? — DBv,) — 5|
< |va +nB*(FS>* — DBv,) - 5*|
< ”Vn - S*“Z + UZHB*(F%Z#’Z) _ I)an”2

+2n(v, — 8%, B (F>% — I)Bv,).
Thus, we have

13, = sIP < v = $°IP + ((F*? = DBv,,, BB*(F>* — Bv,)
+2n(v, — 5", B*(F** — DBv,). (3.2)

Thus,
P ((FP*) — 1)Bv,,, BB (F* — DBy,

< L ((F>* = DBy, (F* = DBv,)
= L [I(FY>% — DBv,|I*. (3.3)

Assume that IT := 2n(v, — 5", B*(Fﬁ{z’m) — I)Bv,,), and we have

I 20(vy = 8%, B*(F>% — )Bv,)
2B, = §"), (F9 — Bv,)
20(B(v, — s%) + (F — DBy,

— (F*% — D)Bv,, (F** — D)Bv,)
2{(F/>*) By, - Bs*, (F*) — )By,)

= IF2* = DBy, I}

IA

1
20{SNFL = DBy, = F ~ DBy

IA

~nllF>* — DBv, . 34
By (3.2)—(3.4), we get
130 = 8°1* < v = 571> + (L — DIFY>* — DBy, |I*. (3.5)

As 7 € (0, 1), we have
130 = s7I1 < v = 571l

We compute

18:Ai) + (1 = Bu)Pg,sn = 57l

||Vn+l - S*”
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< Ballh(vy) = 5711+ (1 = BIIPg, s, — 57|
< Ballh(vy) = 571+ (1 = B)lls, — 7. (3.6)
Now,
h(v,) = sl < (IA(v,) = A + [|A(s™) = 7]
< Ollve =S¥l + lAGs™) = 57l (3.7)

N

Setting G, = ) &'S; and using Lemma 2.7, we observe that the mapping G, : Q1 — Y is e-strictly
i=1

pseudo-contractive with € = 1max € and Fix(G,) = ﬂ?i Fix(§ ;). Thus, by Lemma 2.6, we estimate

<i<N

lsa = s I = Nowvn + ¥uT0n + pnGuva — s°II°
= Nlown = 5 + ¥u(Ton = 5°) + (G, — I
= ollva = S*IP + yallTon = S*IP + allG vy — 57117
= 0Vl = ToullP = Yattall TOw = Guvall* = Tattallvy — Gyl
< aulve = S IP + yallon = S°IP + pa(llve = s*1P + €llv, = Goall®)

= Yl = ToullP = YuttallTow = Gavall® = Tuttallvee = Govall® (3.8)
= (00 + Yn + Ve = I = ttu(0 = Ve = Gl

— 0 Yulva = Toull? = Yuttal Ton — Guvll?
= v = S*IP = (o — Ollve = Gvall®

- O-n')/nllvn - TQn”2 - )/nlln”TQn - Gnvn”2 (39)

that implies
s, = 5"l < v = 571I. (3.10)

Thus, by (3.6), (3.7), and (3.10), we have

A

Vet = 8711 < Bulollve = s7I + lIA(s™) = s7(I] + (1 = Bo)llv, — 57l
[1 =81 = )]lls, — ™Il + Balla(s™) — s7|I.

IA

By induction, we get
* * 1 * *
Vae1 — 8711 < max{|lvo — 57l 1—_5llh(s Y =5y, Yn2x1,

which shows that {v,} is bounded and hence, {3,} and {0,} are also bounded. O

Lemma 3.2. For eachn > 1, prove that lim |[v,; =v,|| = 0, lim [|(FY> =1)Bv,|| = 0, lim |3, v,|| = 0,

and lim ||o, — 3,|| = 0. Also, show that the sequence {v,} strongly converges to s*, where s* = Pqh(s™).

Proof. As s* € Q, therefore we compute

1B, (h(v) = 5%) + (1 = B)(Pg, 50 = s)II°
(1 = BIPg, 1 = s"IP + 2(Bu(h(vs) = 87), Vis1 — 57

2
||Vn+1 - S*”

IA
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< (L=BlIsy = S*IP + 2B(h(v,) = 5, Vi1 — 7). (3.11)
Also, we estimate

(h(vy) = 8", Vps1 — 87 (h(vy) = 8", v, = ") + (V) = 87, Vst = V)

IA

M
lA(vy) = R(sONV, — ™| + 7llvn+1 — V|l + (A(v,) = 5", v, — 57)

IA

M
Sllv, — s*|I* + ?anﬂ —Vull + (A(vy) = 5", v, — 57, (3.12)

where M = sup ||A(v,) — s*||. Using (3.9), (3.11), and (3.12), we have

Vet = 1P < (1= Ba(1 =26V = $* 1P + BuM|IViat = vall + 2B,(h(v,)) = 5%, v — 57)

= ptn(o = 1 = BlIvw = Gavill* = (1 = B ullve — Toull?

— (1 = Bu)Yuttall TOn = Guvull® (3.13)
Vit = s 1P < (1= Bal =20V = "I + BuM Vi1 = vl

+ 2B, (h(vy) = 5", v, = 57). (3.14)

Set g, = ||v, — s*||*. Consider the two cases on {g,} as:
Case 1. For every n > m, where m, € N, consider the sequence {g,} as decreasing, therefore it must be
convergent. Applying the conditions in (3.13), we get

lim ||v, — To,|ll =0, lim||To,—-G,v,]|=0, and lim ||v, — G,v,|| = 0. (3.15)
Notice that {v,} is bounded, therefore 1 a subsequence {v, } of {v,} with v,, — p € O, and satisfies

lim sup¢A(s™) — 57, v, — s7) = lim(h(s") — 5%, v,; — 7). (3.16)
Jj—oo

Define H, = k,v + (1 — «,)G,,v, ¥Yv € Oy and k, € [5,1). Applying Lemma 2.5, H, : Q; — Y; is
nonexpansive and we have
”Vn - ann” = ”Vn - (Knvn + (1 - Kn)Gnvn)”
= ”(Kn + (1 - (Kn)vn) - (Knvn + (l - Kn)Gnvn)”
= (1 _Kn)”vn _Gnvn”-

Thus,
lim [|v, = H,v,|| = 0. (3.17)
Applying the given conditions, we may consider that &' — & asn — oo, Yi. By Lemma 2.7, the map
N
G: 0 — Y withGv = (_Z &Si)v, Yv € Oy, is e-strict pseudo-contractive and Fix(G) = ﬂﬁlFix(S,-).

i=1
Applying Lemma 2.7, given the conditions and boundedness of v,, we get

”Vn - Gvn” < ”Vn - Gnvn” + ”Gnvn - GV,,”
N
< = Gavall + D 1! = &lIS wall
i=1
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and thus
lim ||[v, — Gv,|| = 0. (3.18)

As
”Gnvn - Gvn” < ”Gnvn - vn” + ”vn - GVn”,

this yields by (3.14) and (3.18) that
lim ||G,v, — Gv,|| = 0. (3.19)

Again, we notice that the map H = v+ (1 —1)Gv, Vv e Qyandt € [0, 1), and FixH = FixG. Thus, we
obtain

”Vn - an” < ”vn - HnVnH + ”ann - an”
< ”Vn - annH + ”Knvn + (1 - Kn)ann -t - (1 - Z‘)GV”
< ”Vn - HnVnH + |Kn - t”lvn - Gvn” + (1 - Kn)”HnVn - an”-

Applying (3.17)-(3.19), we have
lim ||v, — Hv,|| = 0.

As v, € 0y, therefore
||Vn+l - vn” Sﬁn“hvn - Vn” + (1 _ﬂn)[o-n”TQn - vn” +,un||Vn - Gnvn”]
Using the given conditions and (3.14), we get

lim [[vy41 = vill = 0. (3.20)

Applying (3.11) and (3.12), we estimate

* * * M
Vart = ' 1P < (1= Bllsw = 5™ + 2B[611v, — 571> + ?Hvrﬁl = valll. (3.21)

Using (3.1), (3.5), and (3.8), we compute

s, = s*IF < (L =y lva = "I + Yallw — 5°I (3.22)
< e = 517 + n(Ln = Dy, lIFS>% = DBy, |, (3.23)
By (3.21) and (3.23), we get
WVasr = S 1P < (L= BIIve = s*IIP + (L = DA = B)yall(F>* = DB, |I*
+20B,llve = S*IP + MBullvaar — val
n(1 - Lnp)(1 —ﬁn)ynll(F§f2’¢2) —DBv,|F < vy = ST = Ve = 5°IP
+ 26ﬁnllvn - S*Hz + Mﬁn”vnﬂ - Vn”
< (v = S+ vaer = STIDIVR = Vil

2
+ 26,8nllvn - S*” + M,Bn“vnﬂ - Vn”
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Applying the given condition and (3.20), we get
lim [|(FY>%* - )Bv,|| = 0. (3.24)

Next, we compute

I3 0 + nB*(F ) = DBv,) = 5°I°
30+ 0B (F2 ) = DBvy) = FJ Vs
Gn = 8",V + B (F** — DBy, - 5%)

2
113, — 571l

IA

IA

1 * k *
S0 = S + v + 0B L — DBy, = 5°IP
—11Gu = 87 = [va + nB*(F** = DBy, — 5"}

l £ *
= Sl = P + v = 571
— l130 = va = B (F* = 1By, |}

1 * *
= Sl = 5P+ v, = 571

= [I3s = vall® + 7 IIB*(F>% — DBy, |
= 273 = Vi B2 = D)Bv,)1}.
Thus,
130 = $* 11> < v = 5°1P = 1130 = vall* + 271lBz — v ICFY> = DBy, . (3.25)
Using (3.22) and (3.25) in (3.21), we get

, \ M
WVaer = s*I12 < (1 =Bollsy — s*IF + 2B,[6]Iv, — s°|I* + S et = vall

< (1=B)A =ylve = s IF + (1 = Byallve = 5°IIP
- 7n(1 _,Bn)||3n - Vn”2
+2n(1 = B)YallB(z, — vIII(FY>? = DB, ||

I'n

. M
+ Zﬁn[éllvn - “2 + ?”VrHl - Vn”]

Sl Yn(l _ﬁn)||3n - vn||2 < ||vn - S*llz - ||Vn+1 - S*llz
+2n(1 = B)Yall Bzn = vllFY>% = DBy, |
. M
+ zﬁn[éllvn - ”2 + E”Vn+1 - vn”]
< (e = S+ [Vasr = STIDIVE = Vol

+ 277(1 _ﬁn)ynllB(Zn - Vn)””(FEf{Z’M) - I)an”

M
+ 2Bl6llve = 571 + o Vit = valll- (3.26)

Applying the given conditions, (3.20) and (3.24) in (3.26), we get

lim [j3, = v,l| = 0. (3.27)
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Further, we estimate

low = 5T = 11PoyGr — @nA3) = Poy(s" — anAs))IP
< {on = 5", Gn — @uA3,) = (5" — @, As™))
< Sl 5P +11Gs ~ 2,430
(5" = @A = 100 = 30) + (A3, — ASHIP)
< S lllon = ST + 1= 5P = @ = 30 + A3, — AP

< ||3n - S*Hz - ”Qn - 3n||2 - 0/,2,||A3n - AS*”2
+ 2an<Qn - 3n,A3n - AS*>

1380 = $*I1* = llow = 3all* + 2ullon — 34llllA3, — As”|
”vn - S*H2 - ”Qn - 3n||2 + 2a’n”Qn - 3n|”|A3n - AS*” (328)

IA

IA

From (3.8), we obtain

k112
IIs, — 57|

IA

Talve = 5° 117 + Yullow = s*1F + pallve = 117 + proellve — Govall?
(1 - )/n)llvn - S*Hz + yn”Qn - S*”2 _ﬂn(o-n - E)llvn - Gnvnllz' (329)

IA

From (3.21) and (3.29), we estimate

2
Vi1 = 571

which implies

(1 = B)Yn@n(20 — @,)||A3, — As™|?

AIMS Mathematics

IA

IA

IA

IA

IA

(1 =BIIA = ylve = S I + allon = 517 = (o = OV = Goyall’]

+ 28,16 = 517 + Z s =il

(1 =B)A = y)lve = s I + (1 = B)yalPo,Gn — @4A3,) — P, (s* — 2, As™)]

— (1 = Ba(n = Ollvw = Guvul* + 2B,[6lv, — s*|1* + %Ilvnu —vall]

(1 =B)A = y)lve = s I + (1 = BIyalllzn — 5 + @ul@, — 201143, — As™|F°]
— (1 = Bta(oy = Olva = Guvull® + 2B,[61Iv, — s*IP + %llvm = vlll

(1 =B)A = y)lva = sIP + (1 = B)yallve = 5°IP + (@, — 201143, — As"|]
— (1 = B0 = OlVe = Guvall® + 2B,[61Iv, — s°I1* + %anﬂ — vall]

e = 8" + (1 = B)ynaa(a, — 20)|1A3, — As"|*

, M
- (1 _IBn),un(O-n - G)llvn - (;nvn”2 + 2ﬁn[5”vn - S*”z + ?llvnﬁ—l - vn”],

2 2 2
< W = SN = Va1 = S°II° = (1 = B)pn(oy = E)lIvi, — Guvill
M
2
+ 2Bu[6llv, = s"II° + ?”Vnﬂ — vl
< (ve = S+ vner = S IV = Vil

- (1 _ﬁn)/-ln(a-n - E)HVn - Gnvn”2
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M
+ 2Bl6llve = 5717 + 7 Vot = valll- (3.30)

Applying the given conditions, (3.15) and (3.20) in (3.30), we obtain

lim [|A3, — As"|| = 0. (3.31)

Using (3.11), (3.12), (3.28), and (3.29), we compute

2
Va1 = s7I17 <

2
|

IA

== (1 _ﬁn)yn”Qn — 3

IA

(1 =B)A = ylva = 517 + (1 = B)yallve = $°I = llow — 3l
+ 2a,llon — 3allllA3, — As™IIT + (1 = Bunellvy — Gyl

+ 28,01l = S°IIP + BuMVisr = vall + 2B,(h(v,) = 5%, v, — 57)
IV = $* 1P = [Ivaer = 5711

+2(1 = B)Yaallon = 3allllA3, — AsIl + (1 = Bopaellvy — Gyl
+ 2B,0l1ve = S + BuM| Vst = vall + 2B, (h(v) = 5%, vy — 5%)
(e = 51 + Vasr = 7 IDIVe = vl

+2(1 = B)Yaallon = 3allllA3, — AsIl + (1 = B)puellvy — Gyl
+ 2B,46llva = S*IP + BuMVyi1 — vl

+ 2B,(h(v,) — s*, v, — 57).

Applying the given conditions, (3.14), (3.20), and (3.31), we get

lim [lo, = 3,I1 = 0.

Now, we show that s* € Fix(H) = Fix(G) = Fix(G,) = ﬂilFix(S i)- Let s* ¢ Fix(H). Asv,, — 5" and
s* # Hs*, then by the Opial condition, we obtain

liminf [[v,; — 57|
]—)00

A

liminf ||v,, — Hs"||
J—)OO :
< liminf[lv,, — Hv, || + |Hv,, - Hs'|]
J—)OO ;

< liminf |jv,; — ™1, (3.32)

which contradicts to our supposition. Hence, s* € Fix(H) = Fix(G) = Fix(G,) = ﬂilFix(S -
By (3.14), we observe that {v,} and {o,} have the same asymptotic behavior, and therefore 9 a
subsequence {o,;} of {0,} with o,, — s*. Again from (3.14) and the opial condition we have that
s* € Fix(T). Next, we prove that s* € Sol(SGEP(1.3 — 1.4)). Set 7, := v, + nB*((F*** — I)Bv,. Then,
3, = F&f"”l)rn. For any v € Oy, we get

1
fl(an’ V) + ¢1(V’ ?m) - ¢1(3n’ 311) + T_<v — 3ns3n — Tn) = 0

1
¢1(V, 311) - ¢1(3n, Sn) + r_<v — 33 — Tn) = fl(va 3n)

S ¢1(V’ 3n1) - ¢1(3nj’ Sn]-) + <V - Snja

AIMS Mathematics

3nj - Tnj

)

\%

Ji(v, 3n;). (3.33)

nj
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Assume w¢ := (1 —¢)s* +¢v, Vg€ (0,1]. Asv,s* € Oy, therefore w, € Q;. Hence, by (3.33)

0 < fl(wg’ 3n1) - (]51((1);, 3nj) + ¢1(3n/-’ Snj)

Sy = v, (EP® DBy,
- <w§_3nj’ ’ +UB >

. ry.
nj nj

Using the given conditions (3.24) and (3.27), we get

¢l(w§9 S*) - ¢1(S*9 S*) < fl(wga S*)'

Thus,

)
I

Silwg, wg)

sfilwg,v) + (1 = ¢)fi(wg, s¥)

Sfi(wg,v) + (1 = 9)[d1(we, 57) — d1(s™, 57)]
Sfilwe,v) + (1 = ¢)s[d1(v, s*) — ¢1(s™, 57)]
Silwg,v) + (1 = )[p1(v, s*) — d1(s™, 57)].

vV IV IVl

Assuming ¢ — 0, we obtain

fl(S*9 V) + ¢1(V, S*) - ¢I(S*9 S*) > 0, Yv e Ql-

This implies that s* € Sol(GEP(1.3)). Further, we prove that Bs* € Sol(GEP(1.4)). As ||z, — v/l —
0, zz — s asn — co and {v,} is bounded and, 7 a subsequence {v,;} of {v,} with v,, — " and
Bv,, — Bs" because B is a bounded linear operator.
Set gn; = Bv,; — F§{2’¢2)anj. Using (3.24), we get lim g,,, = 0 and Bv,,; — g, = Fi‘f’@)Bv,,j. Applying
=00

Lemma 2.3, we get

fZ(BVn_/ — Yn;» V) + ¢1(V, 3n_;) - ¢1(3n_/’ 3n_/)

1
+ _<V - (anj - qnj)’ (anj - an) - anj> 2 0’ Vv e Ql' (334)

nj

Taking the limit superior in (3.34) as j — oo, using the concept of upper semicontinuity in the first
argument of f>, and applying the given conditions, we get

fZ(BS*aV) + ¢](V, S*) - (pl(S*’ S*) > 0’ Vv € Qla

which implies Bs* € Sol(GEP(1.3)). Thus, s* € Sol(SGEP(1.3 — 1.4)).

Next, we show that s* € Sol(VIP(1.1)). As lim, .« [[3, — 0.l = 0, 3 {3,,} and {o,} subsequences
of {3,} and {0,} with 3,, — s* and g,,, — s*. |

Let

| A(s) + Ng,(s%), if s* € Oy,
N”‘{Q if s* ¢ 0,

where Ny (s*) == {t € ¥} : (s —v,t) > 0, YVt € Q,} is the normal cone to Q; at s* € Y,. Hence,
A is maximal monotone and 0 € As* & s* € Sol(VIP(1.1)). Let (s*,w) € graph(A). Then, w €
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As* = As* + Np,(s*) and hence w — As™ € Ny, (s*). Thus, (s* —t,w — As*) > 0, VYt € Q). Since,
on = Py, (3, — @,A3,) and 5™ € Q,, therefore

<(3n - a’nA?)n) —OnsOn — S*> > 0
Q" L A3y > 0, VpeQ.

n

— <t — Ons
As{p—t,w—Ap) >0, forall p € QO and 0,, € O, monotonicity of A, we obtain

(P=0npW) 2 (P~ 0n;»AS")

Ql’l_,‘ 3}1_,‘

> (P —0n AP =P — On;s + A3p;)

nj
= AP = Onj» AP — A3y;) + (P — Onj» AOn; — A3n;)
On; — 3n;
—{p = Qnjp ——)
nj

an - 3nj

2 <p - an’Aan - A3n1> - <p - anw >'

Taking j — oo and by the continuity of A, we get (p — s*,w) > 0. As A is maximal monotone,
s* € A7'(0) and hence s* € Sol(VIP(1.1)). Hence, s* € Q.
As s* = Pqh(s*), therefore by (3.16)

lim sup¢h(s™) = 57, v, — s*) = lim(h(s") = 5", v,, = ") < 0. (3.35)
Jj—ooo

n—oo

Applying the given conditions, (3.13), (3.20), (3.35), and Lemma 2.8, we obtain ¢, — 0 as n — oo.
Hence, {v,} strongly converges to s* = Pqh(s").

Case 2. Consider {g,;} to be a subsequence of {g;} with ¢;, < ¢;,,,, ¥j = 0. Then followed by
Lemma 2.1, construct a nondecreasing sequence {m,} C N with m, — oo, ast — oo and max{q,,, q,} <

qm,.,» Yt. Asr, € [c,d] C (O, o™, t>0, 0,7, € (0,1) with the given condition and (3.13), and we
get

lim v, = Tynll =0, lim||Ty,, — Gy vml =0, and lim|v,, — G, vl = 0.

t—o0 t—o0 —oo

By applying the same steps as in Case 1, we get

lim sup(h(s™) — 5%, vy, — 57) < 0.

t—00

As {v,} is bounded and }LI?O’B’ = 0, we obtain from (3.15), (3.17), and (3.20) that
tim [[v,, = vl = 0.
AS g, < qm,,,» Vt, we obtain from (3.14) that
(1 =20)qm,., < MV, = Vil + 2¢h(5™) = 5", v, — 7).

Taking t — oo, we get g,,,, — 0. As g, < qm,,,» Vt, therefore g, — 0 ast — oo. Thus,v, - 0 ast —
co. Hence, we have proved that the sequence {v,} strongly converges to s* = Pqh(s™). O
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Following this approach, we present several remarks that stem from the conclusions of
Theorem 3.1. These remarks provide a concise overview of the theoretical results and pave the way
for broader exploration and application of the proposed iterative scheme across various mathematical
and computational settings.

Remark 3.1. Let T = I, where I is the identity mapping and €; = 0, that is, S; is a finite family of
nonexpansive mappings in Theorem 3.1. Then, Q := Fix(S;) N Sol(SGEP(1.3 — 1.4)) N Sol(VIP(1.1)) #
0.

Remark 3.2. Let B = I, where I is the identity mapping, Y1 = Y,, Q1 = Q», fi = f», and ¢1 = ¢, in
Theorem 3.1. Then, Q := ﬂilFix(Si) N Fix(T) N Sol(GEP(1.3)) N Sol(VIP(1.1)) # 0.

4. Numerical example

We now provide examples to illustrate the main theorem.

Example 4.1. Let Y, = Y, = Rand Q; = O, = [0, +00). Define the mappings: fi(vi,v;) = vi(va —

vi), Yvi, vy € Q1 fo(th, 1) = 1i(ty — 1), Y, 1 € Qo and ¢1(vi,v2) = ¢r(vi,v2) = viva, Yvi,vo € Oy It
is straightforward to verify that the functions fi, f>, ¢1, and ¢, satisfy the conditions of Assumption 2.1.
Now, consider the additional mappings: h(v) = 3, Av = 3v, v € Qy; B(s) = %s, seY; T(v)=4, ve
Q1, and S;(v) = —(1 +i)v, v e Qy, i = 1,2,3. These mappings can also be easily checked to satisfy
the requirements of Theorem 3.1. The execution of the algorithms involves specific parameter settings.
Letry =1, a,={1}, n=14, B =13} 02 =07+ %, 7, =02-2 4, =01+% and {&} = (3}.

Under these configurations, the sequence produced by Algorithm 3.1 converges to g = {0} € Q.

The computations and graphical visualizations for this algorithm were carried out using MATLAB
R2015a on a standard HP laptop featuring an Intel Core i7 processor and 8 GB of RAM. The stopping
criterion is set as |[v,4; — vl < 107'°. Various initial points v, are tested, and the results are
summarized in Tables 1 and 2, where we also compare our findings with those in [16, 21].
Additionally, the convergence behavior is illustrated in Figures 1 and 2. Upon analyzing the figures
and the table, on taking distinct initial points, we observe that our proposed algorithm tends to
complete tasks more quickly, typically measured in seconds, compared to other methods. However, it
is challenging to identify a clear trend from these results.
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Table 1. Comparison of our main results for initial point v; = 0.9.

No. of iterations Main Theorem Korpelevich [16] Nadezkhina et al. [21]
cpu time (in seconds) cpu time (in seconds) cpu time (in seconds)

1 0.180000 0.684000 0.705600

2 0.062481 0.519840 0.544723

3 0.023582 0.395078 0.418347

4 0.009167 0.300260 0.320454

5 0.003614 0.228197 0.245083

6 0.001436 0.173430 0.187244

7 0.000574 0.131807 0.142947

8 0.000230 0.100173 0.109069

9 0.000092 0.076132 0.083183

10 0.000037 0.057860 0.063419

11 0.000015 0.043974 0.048337

12 0.000006 0.033420 0.036833

13 0.000002 0.025399 0.028061

14 0.000001 0.019303 0.021374

15 0.000000 0.014671 0.016279

Table 2. Comparison of our main results for initial point v; = 2.1.

No. of iterations Main Theorem Korpelevich [16] Nadezkhina et al. [21]
cpu time (in seconds) cpu time (in seconds) cpu time (in seconds)

1 0.420000 1.500000 1.560000

2 0.145790 0.900000 0.990000

3 0.055024 0.684000 0.760320

4 0.021390 0.519840 0.582405

5 0.008433 0.395078 0.445423

6 0.003351 0.300260 0.340304

7 0.001338 0.228197 0.259797

8 0.000536 0.173430 0.198225

9 0.000215 0.131807 0.151180

10 0.000087 0.100173 0.115260

11 0.000035 0.076132 0.087849

12 0.000014 0.057860 0.066941

13 0.000006 0.043974 0.050999

14 0.000002 0.033420 0.038846

15 0.000001 0.025399 0.029585

16 0.000000 0.019303 0.022529
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Figure 1. Convergence of {v,} at v; = 0.9.
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Figure 2. Convergence of {v,} atv; = 2.1.

Example 4.2. Let Y| = Y, = |, be real Hilbert spaces, where I, consists of square-summable infinite
sequences of real numbers. Define Q1 = O, = {w € I, : |w|| < 3}. The mappings are defined as
follows: fi(u,v) = (4v + Su)(v — u), fo(u,v) = 2v + 3u)(v — u), where Yu = {uy,uy, ..., u,,...},v =
{vi, V2, ...; Vy, ...}. The norm and inner product on l, are defined by: ||u|| = (Z Iujlz)%, {u,vy = 2 uv;.

j=1 j=1
Additional mappings are given as: ¢1(u,v) = (5v —4u)u, ¢,(u,v) = 3v —2u)u. It is straightforward to

verify that the functions fi, f>, ¢1, and ¢, satisfy the conditions of Assumption 2.1. Now, consider the
additional mappings: h(u) = %u, Au = 10u, u € Qy; B(s) = %s, se Y, T = %u, u € Qy, and
Si(v) = mu, u e Q, i = 1,2,3. These mappings can also be verified to satisfy the requirements
of Theorem 3.1. The execution of the algorithms involves specific parameter settings. Let r, = 1,
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an—{13 7,ﬁ,,— 10” L o,=07+ 2,)/,,—02 2,,u,,—0.1+%,ana’{§;’}:{%}. Under these
conﬁgumtlons, the sequence produced by Algorithm 3.1 converges to g = {0} € QL.

The computations and graphical visualizations for this algorithm were carried out using MATLAB
R2015a on a standard HP laptop featuring an Intel Core i7 processor and 8 GB of RAM. The stopping
criterion is set to ||[Vus1 — val| < 10710, Several initial points v, are tested, and the convergence behavior
is illustrated in Figures 3 and 4.

0.7 T
s \ain Theorem
i Korpelevich [16]
0.6 - = Nadezkhina et al. [21] | |
05 4
w 0.4 1
[0}
S
g
03 r 1
0.2 4
0.1 4
~
-~
0 I | §~-- e oy mm owm owm
0 5 10 15 20 25

Number of iterations

Figure 3. Convergence of {v,} at initial point v; = {0.7,0.7,...,0.7, ...}.
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= 02r |
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~
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Figure 4. Convergence of {v,} at initial point v; = {0.4,0.4, ...,0.4, ...}.

Application in optimization problems: We explore the application of our algorithms to optimization
problems. Let M; : O — Rand M, : O, — R be two functions. Define fi(u;,v;) = M;(v;) —
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Mi(uy), Yuy, vy € Q1, and fo(ur,v2) = Mo(v2) — My(u,), Yu,, v, € Q2. The objective is to determine
u € Q1 such that

Fi(w) < Fi(u*), Yu" € Q1 4.1)

and ensure that
v =Bu € Q, solves Fr(v) < F,(v¥), Yv' € Q,. 4.2)

Denote the solution set of these optimization problems (4.1) and (4.2) by I" and assume that I" # 0. It
1s straightforward to verify that Assumption 2.1, 1 — 4, hold. Consequently, we have I' = Q.

5. Conclusions

In this paper, we proposed a viscosity-based extragradient iterative algorithm for solving the split
generalized equilibrium problem, the variational inequality problem, and the fixed point problem for a
finite family of e-strict pseudo-contractive and a nonexpansive mapping in Hilbert space. The strong
convergence of the algorithm was established under appropriate assumptions. To demonstrate the
practical applicability of the proposed algorithm, we presented results in the form of two
comprehensive tables and four illustrative figures. These include comparisons with existing methods
and a detailed analysis of convergence behavior, highlighting the effectiveness and efficiency of our
approach.

This study extends and unifies various well-known results in the literature, offering a versatile tool
for tackling a range of problems in optimization and computational mathematics.

However, the algorithm has certain limitations. Its convergence heavily depends on precise
parameter tuning, which may pose challenges in practical applications. Additionally, the framework is
currently restricted to Hilbert spaces, limiting its generalization to Banach spaces or other settings.
Despite these limitations, the results presented in this paper extend and unify numerous previously
established outcomes in this particular research domain.
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