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1. Introduction

Recently, nonlinear partial differential equations (PDEs) has become enormously important in pure
and applied mathematics [1]. Advancements in computational technology have opened a new realm
to researchers in the applied sciences [2], and this trend is largely attributable to such developments
in computational technology. The common occurrence of nonlinear PDEs as mathematical models of
complex phenomena has led to the essentially relevant nature of nonlinear PDEs in disciplines like
engineering and mathematical physics [3]. Now as these fields are becoming more and more based on
computational methods, understanding the theory of nonlinear PDEs becomes important. Nonlinear
PDEs play a vital role in modern scientific inquiry, as they have solid mathematical backing and ample
power from modern computing capabilities [4].

Optical solitons in nonlinear materials are a particular area of focus, namely wave packets, which
can retain their properties over a large distance. This article shows the important role these equations
play in the fields of science and in practical applications. For example, optical solitons’ preservation
of their integrity is essential for high-speed data transmission in optical fibers and the functionality of
all optical switches [5]. To enable reliable and effective utilization of modern telecommunications, it is
critical to understand this property, which explains the intense interest in optimizing optical solitons for
these uses. In particular, the exploration of nonlinear PDEs and optical solitons [6] clearly demonstrates
that mathematics and computer technology play an extremely important role in modern scientific
progress, especially in application-related activities and technological innovations [7]. Nonlinear PDEs
are critical for representing a wide range of complex physical phenomena where the relationship among
variables is nonlinear and interactions are complex [8, 9]. Extensive applications of this timeseries
can be found in plasma physics [10], fiber optics [11, 12], mathematical physics, telecommunication
engineering, and optics. Therefore, nonlinear PDEs offer critical insights about the intricate dynamics
of these systems in these fields [13], which enhances progress in both research and technology. As a
result, they are essential for studying and modeling many complex, real world processes. In [14], Tipu
et al. introduced optical soliton wave solutions of the non-linear Kairat-X equation via a new expanded
direct algebraic method. Li et al. [15] studied Riemann–Hilbert problem and interactions of solitons in
three component nonlinear Schrödinger equations.

Analytical methods have been widely employed to solve nonlinear partial differential
equations (NLPDEs). Some commonly used approaches in the literature include the extended
hyperbolic function method [16], The RB Sub-ODE (Reduced Basis Sub-Ordinary Differential
Equation) approach, and the generalized tanh-coth method [17, 18]. Other frequently utilized
techniques are the improved tan(φ2)-expansion technique [19] and the formal linearization
approach [20–24], which have been applied to derive soliton solutions. Furthermore, bi-Hamiltonian
systems of multi-component integrable derivative nonlinear Schrödinger models [25] have been
developed from specific matrix spectral problems. In [26], the author provided multi-soliton solutions,
and breather-like and bound-state solitons for the complex modified Korteweg–de Vries equation in
optical fibers. Nasreen et al. [27, 28] explored exact solutions for various nonlinear models using
different analytical techniques. Another study [29] explored solitary wave solutions to a fractional
model using the improved modified extended tanh-function method. However, soliton dynamics in
dispersive NLSE systems have been extensively studied, with notable contributions from Samir et
al. [31], who utilized the improved modified extended tanh function method to analyze the nonlinearity
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described by Kudryashov’s law. Additionally, Ismael et al. [30] investigated the Nizhnik–Novikov–
Veselov equation, examining the phenomenon of wave interactions. Dynamic systems include research
on both chaotic and periodic orbits; bifurcations denote critical parameter values at which the system’s
behavior suddenly changes. These changes can either enhance or reduce the system’s stability.
Methods such as virtual simulations, iterative mapping, and differential equations help analyze these
dynamics. Key analytical tools include time series analysis, phase space diagrams, Poincaré sections,
Lyapunov exponents, and bifurcation diagrams, all of which provide insights into a system’s evolution,
periodicity, and chaotic behavior; for more details, one can consult [32–38] and the references therein.
Recently, scientists, led by Yang [39], have initiated a profound journey into the realm of ferroelectric
materials to unveil insight into ultra-high piezoelectricity. In [40], the researchers studied this equation
in depth, discovering kink solitons and periodic wave solutions. Wang et al. [41] addressed gaps in the
literature by introducing various solitons with fractional operators. Similarly, [42,43] introduced bright
solitons using the extended tanh technique and the direct extended algebraic approach. This work aims
to fill these gaps using novel techniques and provides additional insight into wave propagation and the
effect of new parameters.

We consider the following Kairat-II equation (K-IIE) [44]:

µκτ − 2µτµκκ − 4µκµκτ + µκκκτ = 0. (1.1)

The system comprises interconnected nonlinear partial differential equations. The real wave function,
µ(κ, τ) varies across both space (κ) and time (τ), reflecting the system’s behavior over these dimensions.

The importance of solitons in optical applications, particularly in fiber optics, is well-established
due to their stability and ability to propagate over long distances without distortion. Among various
soliton models, the Kairat-II (K-II) equation has attracted significant attention for its capacity to
describe complex nonlinear wave phenomena, such as pulse propagation in optical fibers. As an
extension of the classical Korteweg–de Vries (KdV) equation, the K-II equation accounts for additional
nonlinearities and dispersion effects, making it a more accurate model for real-world optical systems.
This equation plays a crucial role in applications such as pulse shaping, optical communication, and
energy transfer in nonlinear media. Compared with simpler models like the standard KdV equation or
the modified Korteweg–de Vries (mKdV) equation, the K-II equation offers a more comprehensive
framework by incorporating higher-order nonlinearities and dispersion, allowing for more precise
descriptions of wave dynamics in optical fibers. By comparing the K-II equation with other models,
we can better understand its advantages and potential limitations, offering a deeper insight into its
significance for modern research in nonlinear optics.

This work explores complex structures across various fields, providing key insights into system
dynamics, stability, and behavior. It uniquely examines nonlinear dynamical equations, independent of
the Kairat-II equation, yet relevant to multiple physical scenarios. Building on previous advancements,
this study employs Kumar–Malik and the extended hyperbolic function method, which offers a versatile
approach to determine both general and specific solutions, including solitary wave solutions such as
the Jacobi elliptic function solution with an elliptic modulus, the trigonometric function solution, the
hyper-trigonometric solution, dark solitons, bright solitons, and periodic, singular, and rational function
solution, etc. These solutions are visualized through two-dimensional (2D) and three-dimensional (3D)
plots and contour diagrams to reflect the relevant constraints accurately. This visualization ensures that
the results are presented clearly and effectively, incorporating realistic parameters. The findings from
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this analysis not only enhance our comprehension of the dynamics but also offer valuable insights for
modeling and designing future technical improvements. Indeed, this research will seek to close the
gap in translation of theoretical developments in physics and engineering and applied mathematics
into practice.

The Kumar–Malik method is particularly well-suited for the K-II equation due to its ability to
systematically generate a wide range of exact solutions by reducing the equation into solvable forms.
While this approach efficiently captures various soliton structures, its applicability is primarily limited
to equations that can be transformed accordingly. Similarly, the extended hyperbolic function method
provides additional solution families but is constrained by its dependence on hyperbolic nonlinearities.
A discussion of the strengths and limitations of these methods is presented, offering insights into their
suitability for solving the K-II equation. However, the soliton solutions obtained in this study have
significant implications for various soliton-based technologies, including optical fiber communication,
plasma physics, and nonlinear wave dynamics. In optical fiber systems, solitons play a crucial role in
maintaining stable signal transmission over long distances with minimal dispersion, making the derived
solutions valuable for improving fiber optic communication models. Similarly, in plasma physics,
these solutions contribute to the understanding of nonlinear wave interactions, which are essential in
designing advanced plasma confinement systems. Furtermore, solitons’ behavior in fluid mechanics
and Bose–Einstein condensates further highlights the relevance of these findings.

The structure of the paper is as follows. Section 2 presents the fundamental algorithms associated
with the methods, which are further subdivided into Subsections 2.1 and 2.2, detailing the Kumar–
Malik method and the extended hyperbolic function technique, respectively. In Section 3, we derive
exact solutions for the nonlinear Kairat-II equation utilizing the aforementioned techniques. Section 4
presents results and discussion. The paper culminates in Section 5.

2. Description of the method

In this section, we outline the two analytical approaches utilized to solve the Kairat-II equation.
Consider the following nonlinear evolution equation for µ(κ, τ):

Π(µ, µκ, µτ, µκκ, µκκ, µττ, ...) = 0, (2.1)

where Π is a polynomial of µ(κ, τ). We also use the wave transformation technique

µ(κ, τ) = Υ(η), η = ω(κ − λτ). (2.2)

Here, with λ as a constant, Eq (2.1) can be reformulated as the following nonlinear ordinary
differential equation:

Λ(Υ,Υ′,Υ′′,Υ′′′,Υ′′′′, ...) = 0. (2.3)

The powers of Υ denote differentiation with respect to η.
Wave transmission techniques are essential for understanding and analyzing the propagation of

waves, such as sound, electromagnetic, and mechanical waves, through various media. These
techniques, widely applied in fields such as physics, engineering, and telecommunications, encompass
methods like transmission line theory, Fourier analysis, and waveguides to study how waves transmit
energy and information. Recent advancements have highlighted improvements in wave transmission
through random media, where symmetry has been shown to enhance transmitted intensity [48]. Such
techniques play a significant role in modern communication, imaging, and geophysical applications.
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2.1. The Kumar–Malik method

The Kumar–Malik method serves as an analytical approach for addressing nonlinear partial
differential equations, proving especially advantageous in situations characterized by nonlinear
behavior. For further details on the Kumar–Malik method, see [45–47]. These studies collectively
enhance the theoretical and practical understanding of nonlinear wave models across diverse scientific
fields. Let us assume that the solution for Eq (2.3) can be expressed in the following form:

Υ(η) = Ξ0 + Ξ1z(η) + Ξ2z(η)2 + ...... + ΞNz(η)N =

N∑
i=0

Ξiz(η)i. (2.4)

The constants Ξi (where i = 1, 2, . . . ,N) remain to be determined, and the function z(η) satisfies the
following first-order ordinary differential equation:

z′(η) =
√
σ1z(η)4 + σ2z(η)3 + σ3z(η)2 + σ4z(η) + σ5, (2.5)

where σ′js( j = 1, 2, 3, 4, 5) are arbitrary constants.
To ascertain N in Eq (2.4), we employ balancing methods, equating the highest-order derivative

with the nonlinear term of the highest degree to establish equilibrium within the equation.
Substituting Eq (2.4) and its derivatives, as defined in Eq (2.5), into Eq (2.3) results in a polynomial

in z(η)z
′

(η). By gathering all coefficients of the various powers and setting them to zero, we
derive a system of equations that involves the unknown parameters λ, Ξ′i s(i = 1, 2, ....,N) and
σ′js( j = 1, 2, 3, 4, 5). Solving this system yields the exact solutions to Eq (2.3). By applying these
solutions in conjunction with the transformation specified in Eq (2.2), we can obtain multiple exact
solutions for the NLPDE represented by Eq (2.1).
Solutions of Eq (2.5)
Case 1. When σ4 =

σ2(4σ1σ3−σ
2
2)

8σ2
1

, σ5 = 0. Consequently, Eq (2.5) possesses the following Jacobi
elliptic solutions:
Subcase 1.1. If σ1 < 0, (4σ1σ3 − σ

2
2) > 0, then

z1(η) = −
σ2

4σ1
±
σ2

4σ1
cn


√
−σ1(4σ1σ3 − σ

2
2)

2σ1
η,

σ2

2
√

4σ1σ3 − σ
2
2

, (2.6)

z2(η) = −
σ2

4σ1
±
σ2

4σ1
dn

 σ2

4
√
−σ1

η,
2
√

(4σ1σ3 − σ
2
2)

σ2

. (2.7)

Subcase 1.2. If σ1 < 0, (4σ1σ3 − σ
2
2) < 0, and (16σ1σ3 − 5σ2

2) < 0, then

z3(η) = −
σ2

4σ1
±

√
−(16σ1σ3 − 5σ2

2)

4σ1
cn


√
σ1(4σ1σ3 − σ

2
2)

2σ1
η,

√
(4σ1σ3 − σ

2
2)(16σ1σ3 − 5σ2

2)

2(4σ1σ3 − σ
2
2)

,
(2.8)
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z4(η) = −
σ2

4σ1
±

√
−(16σ1σ3 − 5σ2

2)

4σ1
dn


√
σ1(16σ1σ3 − 5σ2

2)

4σ1
η,

2
√

(4σ1σ3 − σ
2
2)(16σ1σ3 − 5σ2

2)

16σ1σ3 − 5σ2
2

.
(2.9)

Subcase 1.3. If σ1 < 0, (4σ1σ3 − σ
2
2) > 0, and (16σ1σ3 − 5σ2

2) < 0, then

z5(η) = −
σ2

4σ1
±

√
−(16σ1σ3 − 5σ2

2)

4σ1
nc


√
−σ1(4σ1σ3 − σ

2
2)

2σ1
η,

σ2

2
√

4σ1σ3 − σ
2
2

, (2.10)

z6(η) = −
σ2

4σ1
±

√
−(16σ1σ3 − 5σ2

2)

4σ1
nd

 σ2

4
√
−σ1

η,
2
√

(4σ1σ3 − σ
2
2)

σ2

. (2.11)

Subcase 1.4. If (4σ1σ3 − σ
2
2) > 0, (4σ1σ3 − σ

2
2)(16σ1σ3 − 5σ2

2) > 0, then

z7(η) = −
σ2

4σ1
±
σ2

4σ1
nc


√
σ1(4σ1σ3 − σ

2
2)

2σ1
η,

√
(4σ1σ3 − σ

2
2)(16σ1σ3 − 5σ2

2)

2(4σ1σ3 − σ
2
2)

, (2.12)

z8(η) = −
σ2

4σ1
±
σ2

4σ1
nd


√
σ1(16σ1σ3 − 5σ2

2)

4σ1
η,

2
√

(4σ1σ3 − σ
2
2)(16σ1σ3 − 5σ2

2)

16σ1σ3 − 5σ2
2

. (2.13)

Subcase 1.5. If σ1 > 0, (16σ1σ3 − 5σ2
2) < 0, then

z9(η) = −
σ2

4σ1
±
σ2

4σ1
ns

 σ2

4
√
σ1
η,

√
−(16σ1σ3 − 5σ2

2)

σ2

, (2.14)

z10(η) = −
σ2

4σ1
±

√
−(16σ1σ3 − 5σ2

2)

4σ1
ns


√
−σ1(16σ1σ3 − 5σ2

2)

4σ1
η,

σ2√
−(16σ1σ3 − 5σ2

2)

, (2.15)

z11(η) = −
σ2

4σ1
±

√
−(16σ1σ3 − 5σ2

2)

4σ1
sn

 σ2

4
√
σ1

η,

√
−(16σ1σ3 − 5σ2

2)

σ2

, (2.16)

z12(η) = −
σ2

4σ1
±
σ2

4σ1
sn


√
−σ1(16σ1σ3 − 5σ2

2)

4σ1
η,

σ2√
−(16σ1σ3 − 5σ2

2)

. (2.17)
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The second argument of the Jacobi elliptic functions described above represents its elliptic modulus.
For instance, in sn(η, k), k is the modulus of the elliptic function.
Case 2. When σ4 =

σ2(4σ1σ3−σ
2
2)

8σ2
1

, σ5 =
(4σ1σ3−σ

2
2)2

64σ3
1

. Consequently, Eq (2.5) have hyperbolic and
trigonometric solutions.
Subcase 2.1. If σ1 > 0, (8σ1σ3 − 3σ2

2) < 0, then

z13(η) = −
σ2

4σ1
±

√
−(8σ1σ3 − 3σ2

2)

4σ1
tanh


√
−σ1(8σ1σ3 − 3σ2

2)

4σ1
η

, (2.18)

z14(η) = −
σ2

4σ1
±

√
−(8σ1σ3 − 3σ2

2)

4σ1
coth


√
−σ1(8σ1σ3 − 3σ2

2)

4σ1
η

. (2.19)

Subcase 2.2. If σ1 > 0, (8σ1σ3 − 3σ2
2) > 0, then

z15(η) = −
σ2

4σ1
±

√
(8σ1σ3 − 3σ2

2)

4σ1
tan


√
σ1(8σ1σ3 − 3σ2

2)

4σ1
η

, (2.20)

z16(η) = −
σ2

4σ1
±

√
(8σ1σ3 − 3σ2

2)

4σ1
cot


√
σ1(8σ1σ3 − 3σ2

2)

4σ1
η

. (2.21)

Case 3. When σ4 =
σ2(4σ1σ3−σ

2
2)

8σ2
1

, σ5 =
σ2

2(16σ1σ3−5σ2
2)

256σ3
1

. Consequently, Eq (2.5) have hyperbolic and
trigonometric solutions.
Subcase 3.1. If σ1 < 0, (8σ1σ3 − 3σ2

2) < 0, then

z17(η) = −
σ2

4σ1
±

√
−2(8σ1σ3 − 3σ2

2)

4σ1
sech


√

2σ1(8σ1σ3 − 3σ2
2)

4σ1
η

. (2.22)

Subcase 3.2. If σ1 > 0, (8σ1σ3 − 3σ2
2) > 0, then

z18(η) = −
σ2

4σ1
±

√
2(8σ1σ3 − 3σ2

2)

4σ1
csch


√

2σ1(8σ1σ3 − 3σ2
2)

4σ1
η

. (2.23)

Subcase 3.3. If σ1 > 0, (8σ1σ3 − 3σ2
2) < 0, then

z19(η) = −
σ2

4σ1
±

√
−2(8σ1σ3 − 3σ2

2)

4σ1
sec


√
−2σ1(8σ1σ3 − 3σ2

2)

4σ1
η

, (2.24)

z20(η) = −
σ2

4σ1
±

√
−2(8σ1σ3 − 3σ2

2)

4σ1
csc


√
−2σ1(8σ1σ3 − 3σ2

2)

4σ1
η

. (2.25)
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Case 4. If we substitute σ2 = σ4 = σ5 = 0, σ3 > 0. Thus, we obtain the solution of Eq (2.5) in the
following form:

z21(η) =
4ρσ3(

4ρ2e
√
σ3η − σ1σ3e−

√
σ3η

) . (2.26)

By setting σ1 = −
4ρ2

σ3
, the solution of Eq (2.26) becomes

z22(η) =
σ3

2ρ
sech(−

√
σ3η). (2.27)

By setting σ1 =
4ρ2

σ3
, the solution of Eq (2.26) becomes

z23(η) =
σ3

2ρ
csch(−

√
σ3η). (2.28)

2.2. The extended hyperbolic function technique

In accordance with the extended hyperbolic function method [16], solutions can be represented as
finite series in the following manner:

z
(
η
)

=

N∑
j=0

ϑ jE j, ϑN , 0, (2.29)

where the constant ϑN is included, and Eq (2.29) corresponds to the following nonlinear
differential equation:

E′
(
η
)

= E
√
$1 +$2E2, $1, $2 ∈ <. (2.30)

The value of N can be computed using the balancing rule for ordinary differential equations. By
setting the coefficients of the powers of E equal to zero and applying Eqs (2.3), (2.29), and (2.30),
we derive a system of algebraic equations. Solving this system allows us to determine all the values
of the associated coefficients. The general solutions to the ordinary differential equation (2.30) can
subsequently be classified into several distinct types.
Family 1. When $1 < 0 and $2 > 0, we have

E1
(
η
)

=

√
−$1

$2
sec

(√
−$1

(
η + η0

))
.

Family 2. When $1 > 0 and $2 < 0, we have

E2
(
η
)

=

√
$1

−$2
sech

(√
$1

(
η + η0

))
.

Family 3. When $1 < 0 and $2 < 0, we have

E3
(
η
)

=

√
−$1

$2
csc

(√
−$1

(
η + η0

))
.
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Family 4. When $1 > 0 and $2 = 0, we obtain

E4
(
η
)

= e
√
$1(η+η0).

Family 5. When $1 < 0 and $2 = 0, we obtain

E5
(
η
)

= cos
(√
−$1

(
η + η0

))
+ i sin

(√
−$1

(
η + η0

))
.

Family 6. When $1 = 0 and $2 > 0, we obtain

E6
(
η
)

=
±1

√
$2

(
η + η0

) .
Family 7. When $1 = 0 and $2 < 0, we obtain

E7
(
η
)

=
±i

√
−$2

(
η + η0

) .
Family 8. When $1 > 0 and $2 > 0, we obtain

E8
(
η
)

= −

√
$1

$2
csch

(√
$1

(
η + η0

))
,

where η0 is constant.

3. Application of the methods

The Kairat-II equation can be addressed using the following transformations to derive soliton
solutions for Eq (1.1):

µ(κ, τ) = ϕ(η), η = ω(κ − λ τ), (3.1)

where ϕ(η) characterizes the pulse shape, ω represents the wave number, and λ denotes the wave
velocity. By substituting Eq (3.1) into Eq (1.1), we obtain the following result:

ϕ′′ − 3ω((ϕ′)2)′ + ω2ϕ′′′′ = 0. (3.2)

Integrating Eq (3.2) with respect to η yields

ϕ′ − 3ω(ϕ′)2 + ω2ϕ′′′ + c0 = 0, (3.3)

where c0 represents the real integration constant. Assume ϕ′(η) = φ(η), where φ(η) represents the
real function.

φ − 3ω(φ)2 + ω2φ′′ + c0 = 0. (3.4)
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3.1. The Kumar–Malik method

By applying the homogeneous balancing principle and utilizing Eq (3.4), we have N = 2, according
to the equilibrium between φ2 and φ′′. Thus, the solution can be formulated as

φ(η) = Ξ0 + Ξ1z(η) + Ξ2z(η)2, (3.5)

together with

z′(η) =
√
σ1z(η)4 + σ2z(η)3 + σ3z(η)2 + σ4z(η) + σ5, (3.6)

where Ξ0, Ξ1, and Ξ2 are the constants yet to be determined. By substituting Eqs (3.5) and (3.6) into
Eq (3.4) and setting the coefficients of all powers of zi(η), i = 0, 1, 2, 3, 4 equal to zero, we derive the
following system of algebraic equations:

z0(η) : Ξ0 − 3ωΞ2
0 +

1
2
ω2Ξ1σ4 + 2ω2Ξ2σ5 + c0 = 0,

z1(η) : ω2Ξ1σ3 + 3ω2Ξ2σ4 − 6ωΞ0Ξ1 + Ξ1 = 0,

z2(η) : Ξ2 − 6ωΞ0Ξ2 − 3ωΞ2
1 +

3
2
ω2Ξ1σ2 + 4ω2Ξ2σ3 = 0,

z3(η) : 2ω2Ξ1σ1 + 5ω2Ξ2σ2 − 6ωΞ1Ξ2 = 0,
z4(η) : 6ω2Ξ2σ1 − 3ωΞ2

2 = 0.

(3.7)

Case 1. With the parameters σ4 =
σ2(4σ1σ3−σ

2
2)

8σ2
1

, σ5 = 0, the solution of system (3.5) is

Ξ0 =
16ω2σ1σ3 − 3ω2σ2

2 + 4σ1

24σ1ω
, Ξ1 = ωσ2, Ξ2 = 2ωσ1,

c0 =
256ω4σ2

1σ
2
3 − 144ω4σ1σ

2
2σ3 + 21ω4σ4

2 − 16σ2
1

192ωσ2
1

.

(3.8)

Substituting Eq (3.8) into Eq (3.5) yields the following general solution for Eq (1.1):

φ(η) =
16ω2σ1σ3 − 3ω2σ2

2 + 4σ1

24σ1ω
+ ωσ2z(η) + 2ωσ1z(η)2. (3.9)

For the solution of (3.9), we have ϕ′(η) = φ(η) ⇒ ϕ(η) =
∫
φ(η)dη,

ϕ(η) =

∫ 16ω2σ1σ3 − 3ω2σ2
2 + 4σ1

24σ1ω
+ ωσ2z(η) + 2ωσ1z(η)2

dη. (3.10)

Subcase 1.1. If σ1 < 0, (4σ1σ3 − σ
2
2) > 0. The traveling wave solution is given by

µ1 (κ, τ) = −

ησ2ω

(
2
√

4σ1σ3 − σ
2
2 + σ2

)
8σ1

+
4ησ3ω

2 + η

6ω
+

σ2ωE

(
η
√
σ1(σ2

2−4σ1σ3)
2σ1

, σ2

2
√

4σ1σ3−σ
2
2

)
2
√
−σ1

,

(3.11)
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µ2 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 − σ2ωE

(
ησ2

4
√
−σ1

,
2
√
−σ2

2+4σ1σ3

σ2

)
2
√
−σ1

. (3.12)

Subcase 1.2. If σ1 < 0, (4σ1σ3 − σ
2
2) < 0, and (16σ1σ3 − 5σ2

2) < 0. The traveling wave solution is
given by

µ3 (κ, τ) =
η

8σ1

√
(σ2

2 − 4σ1σ3)(5σ2
2 − 16σ1σ3)ω

×

10σ4
2 + 3σ2

2

(√
(σ2

2 − 4σ1σ3)(5σ2
2 − 16σ1σ3) − 24σ1σ3

)
+ 16σ1σ3

(
−

√
(σ2

2 − 4σ1σ3)(5σ2
2 − 16σ1σ3) + 8σ1σ3

)
ω2

+4σ1

√
(σ2

2 − 4σ1σ3)(5σ2
2 − 16σ1σ3)(1 + 4σ2

3ω)
)

− 12σ1(5σ2
2 − 16σ1σ3)(σ2

2 − 4σ1σ3)ω2 E


η
√
σ1(−σ2

2 + 4σ1σ3)

2σ1
,−

√
(σ2

2 − 4σ1σ3)(5σ2
2 − 16σ1σ3)

2σ2
2 − 8σ1σ3

 ,
(3.13)

µ4 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 +

√
5σ2

2 − 16σ1σ3ωE

(
η
√
σ1(−5σ2

2+16σ1σ3)
2σ1

,−
2(σ2

2−4σ1σ3)
√

(σ2
2−4σ1σ3)(5σ2

2−16σ1σ3)

)
4
√
−σ1

.

(3.14)

Subcase 1.3. If σ1 < 0, (4σ1σ3 − σ
2
2) > 0, and (16σ1σ3 − 5σ2

2) < 0. The traveling wave solution is
given by

µ5 (κ, τ) =

η
(
4 +

(9σ2
2+16σ1σ3−48σ1σ3)ω2

σ1

)
24ω

+

√
σ1(σ2

2 − 4σ1σ3)(5σ2
2 − 16σ1σ3)ω

2σ1

8σ1σ3 − σ2(2σ2 +

√
−σ2

2 + 4σ1σ3)cn
(
η
√
σ1(σ2

2−4σ1σ3)
2σ1

, σ2

2
√
−σ2

2+4σ1σ3

)
×

cn


η
√
σ1(σ2

2 − 4σ1σ3)

2σ1
,

σ2

2
√
−σ2

2 + 4σ1σ3

E

η
√
σ1(σ2

2 − 4σ1σ3)

2σ1
,

σ2

2
√
−σ2

2 + 4σ1σ3


−dn


η
√
σ1(σ2

2 − 4σ1σ3)

2σ1
,

σ2

2
√
−σ2

2 + 4σ1σ3

 sn


η
√
σ1(σ2

2 − 4σ1σ3)

2σ1
,

σ2

2
√
−σ2

2 + 4σ1σ3


 ,
(3.15)
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µ6 (κ, τ) =
1

12σ1

(
σ2 − 2

√(
−σ2

2 + 4σ1σ3

))
ω

η (
−σ2 + 2

√
−σ2

2 + 4σ1σ3)
) (

3σ2
2ω

2 − 2σ1

(
1 + 4σ3ω

2
))

+ 6
√
−σ1

(
5σ2

2 − 16σ1σ3

)
ω2E

 ησ2

4
√
−σ1

,
2
√
−σ2

2 + 4σ1σ3

σ2


+

12
√
−σ1

√
−σ2

2 + 4σ1σ3)
(
−5σ2

2 + 16σ1σ3

)
ω2cn

(
ησ2

4
√
−σ1

,
2
√
−σ2

2+4σ1σ3

σ2

)
sn

(
ησ2

4
√
−σ1

,
2
√
−σ2

2+4σ1σ3

σ2

)
σ2dn

(
ησ2

4
√
−σ1

,
2
√
−σ2

2+4σ1σ3

σ2

)
 .

(3.16)

Subcase 1.4. If (4σ1σ3 − σ
2
2) > 0, (4σ1σ3 − σ

2
2)(16σ1σ3 − 5σ2

2) > 0. The traveling wave solution is
given by

µ7 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 − 1

2
√
σ1

(
−σ2

2 + 4σ1σ3

)
×

(
−2σ2

2 + 8σ1σ3 +

√(
5σ2

2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

))
ω

×


η

(
2σ2

2 − 8σ1σ3 +

√(
5σ2

2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

))
4
√
σ1

((
−σ2

2 + 4σ1σ3

))

+ E


η
√
σ1

(
−σ2

2 + 4σ1σ3

)
2σ1

,−

√(
5σ2

2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

)
2
(
σ2

2 − 4σ1σ3

)


−
1

cn
(
η
√
σ1(−σ2

2+4σ1σ3)
2σ1

,−

√
(5σ2

2−16σ1σ3)(σ2
2−4σ1σ3)

2(σ2
2−4σ1σ3)

)

× dn


η
√
σ1

(
−σ2

2 + 4σ1σ3

)
2σ1

,−

√(
5σ2

2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

)
2
(
σ2

2 − 4σ1σ3

)


×sn

 ησ2

4
√
−σ1

,
2
√
−σ2

2 + 4σ1σ3

σ2


 , (3.17)

µ8 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 +
12 √

σ1

((
−5σ2

2 + 16σ1σ3

)) (
−1 +

−2σ2
2+8σ1σ3

√
(5σ2

2−16σ1σ3)(σ2
2−4σ1σ3)

)
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×

σ2
2ω

−E

η
√
σ1

(
−5σ2

2 + 16σ1σ3

)
4σ1

,
−2

(
σ2

2 − 4σ1σ3

)
√(

5σ2
2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

)


−
2
(
σ2

2 − 4σ1σ3

)
√(

5σ2
2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

)
dn

(
η
√
σ1(−5σ2

2+16σ1σ3)
4σ1

,
−2(σ2

2−4σ1σ3)
√

(5σ2
2−16σ1σ3)(σ2

2−4σ1σ3)

)

× cn


η
√
σ1

(
−5σ2

2 + 16σ1σ3

)
4σ1

,
−2

(
σ2

2 − 4σ1σ3

)
√(

5σ2
2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

)


×sn


η
√
σ1

(
−5σ2

2 + 16σ1σ3

)
4σ1

,
−2

(
σ2

2 − 4σ1σ3

)
√(

5σ2
2 − 16σ1σ3

) (
σ2

2 − 4σ1σ3

)


 . (3.18)

Subcase 1.5. If σ1 > 0, (16σ1σ3 − 5σ2
2) < 0. The traveling wave solution is given by

µ9 (κ, τ) = −
σ2ω

2
√
σ1
×

cs

 ησ2

4
√
σ1
,

√
5σ2

2 − 16σ1σ3

σ2

 dn

 ησ2

4
√
σ1
,

√
5σ2

2 − 16σ1σ3

σ2


+η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 + E

 ησ2

4
√
σ1
,

√
5σ2

2 − 16σ1σ3

σ2


 , (3.19)

µ10 (κ, τ) =
1

24σ1ω

(
4ησ1 + η

(
9σ2

2 − 32σ1σ3

)
ω2 − 12ω2

√
σ1

(
5σ2

2 − 16σ1σ3

)

×

cs


η
√
σ1

(
5σ2

2 − 16σ1σ3

)
4σ1

,
σ2√

5σ2
2 − 16σ1σ3

 dn


η
√
σ1

(
5σ2

2 − 16σ1σ3

)
4σ1

,
σ2√

5σ2
2 − 16σ1σ3


+E


η
√
σ1

(
5σ2

2 − 16σ1σ3

)
4σ1

,
σ2√

5σ2
2 − 16σ1σ3



 , (3.20)

µ11 (κ, τ) =

ησ2

(
−2σ2 +

√
5σ2

2 − 16σ1σ3

)
ω

8σ1
+
η
(
1 + 4σ3ω

2
)

6ω

−

√
5σ2

2 − 16σ1σ3E

(
ησ2

4
√
σ1
,

√
5σ2

2−16σ1σ3

σ2

)
2
√
σ1

, (3.21)
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µ12 (κ, τ) =

ησ2

(
−2σ2 +

√
5σ2

2 − 16σ1σ3

)
ω

8σ1
+
η
(
1 + 4σ3ω

2
)

6ω
−

σ2ωE

(
η
√
σ1(5σ2

2−16σ1σ3)
4σ1

, σ2√
5σ2

2−16σ1σ3

)
2
√
σ1

.

(3.22)

Case 2. When σ4 =
σ2(4σ1σ3−σ

2
2)

8σ2
1

, σ5 =
(4σ1σ3−σ

2
2)2

64σ3
1

, and the Eq (2.5) has hyperbolic and
trigonometric solutions

Ξ0 =
16ω2σ1σ3 − 3ω2σ2

2 + 4σ1

24ωσ1
, Ξ1 = ωσ2, Ξ2 = 2ωσ1,

c0 =
64ω4σ2

1σ
2
3 − 48ω4σ1σ

2
2σ3 + 9ω4σ4

2 − 16σ2
1

192σ2
1ω

.

(3.23)

Substituting Eq (3.23) into Eq (3.5) yields the following general solution for Eq (1.1):

φ(η) =
16ω2σ1σ3 − 3ω2σ2

2 + 4σ1

24σ1ω
+ ωσ2z(η) + 2ωσ1z(η)2. (3.24)

For the solution of (3.24), we have ϕ′(η) = φ(η) ⇒ ϕ(η) =
∫
φ(η)dη

ϕ(η) =

∫ 16ω2σ1σ3 − 3ω2σ2
2 + 4σ1

24σ1ω
+ ωσ2z(η) + 2ωσ1z(η)2

dη. (3.25)

Subcase 2.1. If σ1 > 0, (8σ1σ3 − 3σ2
2) < 0. The traveling wave solution is given by

µ13 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 −
√

3σ2
2 − 8σ1σ3ω

2
√
σ1

tanh


η
√

3σ2
2 − 8σ1σ3

4
√
σ1

 , (3.26)

µ14 (κ, τ) = η

 1
6ω

+
σ2

2ω

8σ1
−
σ3ω

3

 −
√

3σ2
2 − 8σ1σ3ω

2
√
σ1

coth


η
√

3σ2
2 − 8σ1σ3

4
√
σ1

 . (3.27)

Subcase 2.2. If σ1 > 0, (8σ1σ3 − 3σ2
2) > 0. The traveling wave solution is given by

µ15 (κ, τ) = η

 1
6ω

+
σ2

2ω

8σ1
−
σ3ω

3

 +

√
−3σ2

2 + 8σ1σ3ω

2
√
σ1

tan


η
√
−3σ2

2 + 8σ1σ3

4
√
σ1

 , (3.28)

µ16 (κ, τ) = η

 1
6ω

+
σ2

2ω

8σ1
−
σ3ω

3

 −
√
−3σ2

2 + 8σ1σ3ω

2
√
σ1

cot


η
√
−3σ2

2 + 8σ1σ3

4
√
σ1

 . (3.29)
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Case 3. When σ4 =
σ2(4σ1σ3−σ

2
2)

8σ2
1

, σ5 =
σ2

2(16σ1σ3−5σ2
2)

256σ3
1

, and the Eq (2.5) has hyperbolic and
trigonometric solutions:

Ξ0 =
16ω2σ1σ3 − 3ω2σ2

2 + 4σ1

24ωσ1
, Ξ1 = ωσ2, Ξ2 = 2ωσ1,

c0 =
64ω4σ2

1σ
2
3 − 48ω4σ1σ

2
2σ3 + 9ω4σ4

2 − 4σ2
1

48σ2
1ω

.

(3.30)

Substituting Eq (3.30) into Eq (3.5) yields the following general solution for Eq (1.1):

φ(η) =
16ω2σ1σ3 − 3ω2σ2

2 + 4σ1

24σ1ω
+ ωσ2z(η) + 2ωσ1z(η)2. (3.31)

For the solution of (3.31), we have ϕ′(η) = φ(η) ⇒ ϕ(η) =
∫
φ(η)dη

ϕ(η) =

∫ 16ω2σ1σ3 − 3ω2σ2
2 + 4σ1

24σ1ω
+ ωσ2z(η) + 2ωσ1z(η)2

dη. (3.32)

Subcase 3.1. If σ1 < 0, (8σ1σ3 − 3σ2
2) < 0. The traveling wave solution is given by

µ17 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 −
√
−3σ2

2 + 8σ1σ3ω
√

2σ1
tanh


η
√
−3σ2

2 + 8σ1σ3

2
√

2σ1

 . (3.33)

Subcase 3.2. If σ1 > 0, (8σ1σ3 − 3σ2
2) > 0. The traveling wave solution is given by

µ18 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 −
√
−3σ2

2 + 8σ1σ3ω
√

2σ1
coth


η
√
−3σ2

2 + 8σ1σ3

2
√

2σ1

 . (3.34)

Subcase 3.3. If σ1 > 0, (8σ1σ3 − 3σ2
2) < 0. The traveling wave solution is given by

µ19 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 +

√
3σ2

2 − 8σ1σ3ω
√

2σ1
tan


η
√

3σ2
2 − 8σ1σ3

2
√

2σ1

 , (3.35)

µ20 (κ, τ) = η

 1
6ω
−
σ2

2ω

4σ1
+

2σ3ω

3

 −
√

3σ2
2 − 8σ1σ3ω
√

2σ1
cot


η
√

3σ2
2 − 8σ1σ3

2
√

2σ1

 . (3.36)

Case 4. By substituting σ2 = σ4 = σ5 = 0, σ3 > 0. We then obtain the solution of Eq (2.5) in the
following form:

Ξ0 =
4ω2σ3 + 1

6ω
, Ξ1 = 0, Ξ2 = 2ωσ1, c0 =

16ω4σ2
3 − 1

12ω
. (3.37)
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Substituting Eq (3.37) into Eq (3.5) yields the following general solution for Eq (1.1):

φ(η) =
4ω2σ3 + 1

6ω
+ 2ωσ1z(η)2. (3.38)

For the solution of (3.38), we have ϕ′(η) = φ(η) ⇒ ϕ(η) =
∫
φ(η)dη with

ϕ(η) =

∫ 4ω2σ3 + 1
6ω

+ 2ωσ1z(η)2

dη, (3.39)

µ21 (κ, τ) =
4σ1σ

3
2
3ω

−4e2
√
σ3ηρ2 + σ1σ3

+ η

 1
6ω
−
σ2

2ω

8σ1
+

2σ3ω

3

 − 2σ2ω tanh−1
(

e2√σ3ηρ
√
σ1σ3

)
√
σ1

, (3.40)

µ22 (κ, τ) = η

 1
6ω
−
σ2

2ω

8σ1
+

2σ3ω

3

 +

σ2
√
σ3ω tanh−1

(
sinh

(
η
√
σ3

))
2ρ

+
σ1σ

3
2
3ω tanh

(
η
√
σ3

)
2ρ2 , (3.41)

µ23 (κ, τ) = η

 1
6ω
−
σ2

2ω

8σ1
+

2σ3ω

3

 − √σ3ω

2ρ2

(
σ1σ3 coth

(
η
√
σ3

))
+ ρσ2

− log

cosh
η√σ3

2




+ log

sinh
η√σ3

2

 . (3.42)

3.2. The extended hyperbolic function technique

In accordance with the homogeneous balancing principle, by applying Eq (3.4) and considering the
Equation N + 2 = 2N, we determine that N = 2 on the basis of the equilibrium between φ2 and φ′′.
Thus, the solution can be formulated as

φ(η) = ϑ0 + ϑ1E(η) + ϑ2E(η)2. (3.43)

To find the derivative of Eq (3.43), we substitute it into Eq (3.4) along with Eq (2.30) and compare
the coefficients of E(η); this process results in a system of equations. Solving this system yields the
following solution:

E0(η) : −3ωϑ2
0 + c0 + ϑ0 = 0,

E1(η) : ω2$1ϑ1 − 6ωϑ0ϑ1 + ϑ1 = 0,
E2(η) : 4ω2$1ϑ2 − 6ωϑ0ϑ2 − 3ωϑ2

1 + ϑ2 = 0,
E3(η) : 2ω2$2ϑ1 − 6ωϑ1ϑ2 = 0,
E4(η) : 6ω2$2ϑ2 − 3ωϑ2

2 = 0.

(3.44)

Using the Maple program, we applied it to uncover a solution for the given system, leading to a
practical result.
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Solution set.

ϑ0 =
4ω2$1 + 1

6ω
, ϑ1 = 0, ϑ2 = 2ω$2, c0 =

16ω4$2
1 − 1

12ω
. (3.45)

By substituting Eq (3.45) into Eq (3.43), we obtain the following general solution for Eq (1.1):

φ(η) =
4ω2$1 + 1

6ω
+ 2ω$2E(η)2. (3.46)

For the solution of (3.46), we have ϕ′(η) = φ(η) ⇒ ϕ(η) =
∫
φ(η)dη with

ϕ(η) =

∫ 4ω2$1 + 1
6ω

+ 2ω$2E(η)2

 dη. (3.47)

Family 1. When $1 < 0 and $2 > 0, the traveling wave solution is given by

µF1 (κ, τ) =
η

6ω
+

2η$1ω

3
− 2
√
$1ω tanh

(
η
√
$1 + η0

√
$1

)
. (3.48)

Family 2. When $1 > 0 and $2 < 0, the traveling wave solution is given by

µF2 (κ, τ) =
η

6ω
+

2η$1ω

3
− 2
√
$1ω tanh

(
η
√
$1 + η0

√
$1

)
. (3.49)

Family 3. When $1 < 0 and $2 < 0, the traveling wave solution is given by

µF3 (κ, τ) =
η

6ω
+

2η$1ω

3
− 2
√
$1ω coth

(
(η + η0)

√
$1

)
. (3.50)

Family 4. When $1 > 0 and $2 = 0, the traveling wave solution is given by

µF4 (κ, τ) =
η

6ω
+

2η$1ω

3
+

4e2
√
$1(η+η0)

(
−

3$2
4 + 3

2

√
$1(η+η0)$2

)
ω

3$1
. (3.51)

Family 5. When $1 < 0 and $2 = 0, the traveling wave solution is given by

µF5 (κ, τ) =
η

6ω
+

2η$1ω

3
−

ie2i
√
−$1(η+η0)$2ω
√
−$1

. (3.52)

Family 6. When $1 < 0 and $2 = 0, the traveling wave solution is given by

µF6 (κ, τ) =
η

6ω
−

2ω
η + η0

+
2(η + η0)$1ω

3
. (3.53)

Family 7. When $1 < 0 and $2 = 0, the traveling wave solution is given by

µF7 (κ, τ) =
η

6ω
−

2ω
η + η0

+
2(η + η0)$1ω

3
. (3.54)

Family 8. When $1 < 0 and $2 = 0, the traveling wave solution is given by

µF8 (κ, τ) =
η

6ω
+

2η$1ω

3
− 2
√
$1ω coth

(
(η + η0)

√
$1

)
. (3.55)
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4. Results and discussion

The objective of this study was to employ Mathematica 13.3.1 as a computational framework to
analyze the graphical properties of the nonlinear Kairat-II equation. The temporal evolution of wave
propagation at varying velocities is illustrated through a suite of visualizations, including 2D, 3D, and
contour diagrams. The investigation is conducted over the spatial and temporal domains −20 ≤ x ≤ 20
and 0 ≤ t ≤ 10, respectively and encompasses a broad spectrum of parameter values for the relevant
variables. The primary aims were to thoroughly examine the graphical behavior of the model and
to elucidate the dynamic features that emerge from variations in the model’s parameters. In solving
the equation, a combination of trigonometric, exponential, and hyperbolic functions was utilized to
comprehensively characterize the solution space.

This section delineates the behaviors and analytical interpretations of several obtained solutions,
emphasizing the role of λ. The analysis is carried out graphically through the handling of Figures 1–9,
which show the response of the soliton solution. As a sequel to the analysis, the following findings are
established. Both sets of figures provide a view on how changes in the parameter λ influence the soliton.
Subfigures (a), (d), and (g) consist of 3D plots that show the behaviour of the soliton solution with
different values of λ. These plots enable one to track the soliton’s dynamics, particularly its amplitude,
width, and velocity. This aspect is particularly critical when analyzing soliton dynamics modeled by
linear coupled stochastic differential equations (LCSDEs). It should be noted that subfigures (c), (f),
and (i) address the 2D behavior of the soliton solution. These plots offer a clearer picture of the
soliton’s shape and how the propagation properties vary with λ. Subfigures (b), (e), and (h) are 2D
contour plots that provide a top view of the soliton solution. These contour plots help determine the
intensity distribution and the soliton’s outline along the z-direction. These subfigures demonstrate
the whole structure and stability of the soliton through a 3D top view. Altogether, these graphical
illustrations provide a quantitative and visual perception of how the soliton behaves under different
conditions, helping to extend the understanding of phenomena like stability measures, solitary wave
encounters, and the time evolution within Solomon’s mathematical model. Such plots are necessary
for studying the soliton’s behavior depending on the stability parameters and tracking the fine details
of its dynamics.

The soliton solutions derived for the nonlinear Kairat-II equation provide valuable physical insights
into optical pulse propagation in nonlinear media. These solutions illustrate how solitons maintain
their stability while traveling through optical fibers, effectively balancing dispersion and nonlinearity
to minimize signal distortion in high-speed communication systems. The Jacobi elliptic solutions
describe periodic wave structures that transition into solitons under specific conditions, making them
relevant to optical lattices and photonic crystals. The bright and dark solitons highlight distinct
regimes of energy localization, which are crucial for designing optical switches, modulators, and pulse-
shaping techniques. Additionally, the rational and singular solutions offer insights into localized energy
concentration and wave collapse phenomena. The graphical analysis, including 2D, 3D, and contour
plots, further demonstrates the solitons’ stability and interactions under various parametric conditions.
The diversity of soliton solutions provides a valuable framework for future research, as it simplifies
the complexity of systems across various scientific domains, including fluid dynamics, optical fibers,
and condensed matter physics. This reduction in complexity facilitates both practical applications and
theoretical advancements, enabling deeper insights and innovative developments in these fields.
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(a) Three-dimensional plot at σ1 =

0.01, σ2 = 0.5, σ3 = 1.2, ω =

0.19, and λ = 0.1.

(b) Contour plot at σ1 = 0.01,
σ2 = 0.5, σ3 = 1.2, ω = 0.19, and
λ = 0.1.

(c) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.5, σ3 = 1.2, ω = 0.19, and
λ = 0.1.

(d) Three-dimensional plot at σ1 =

0.01, σ2 = 0.5, σ3 = 1.2, ω =

0.19, and λ = 0.5.

(e) Contour plot atσ1 = 0.01, σ2 =

0.5, σ3 = 1.2, ω = 0.19, and λ =

0.5.

(f) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.5, σ3 = 1.2, ω = 0.19, and
λ = 0.5.

(g) Three-dimensional plot at σ1 =

0.01, σ2 = 0.5, σ3 = 1.2, ω =

0.19, and λ = 1.

(h) Contour plot at σ1 = 0.01,
σ2 = 0.5, σ3 = 1.2, ω = 0.19, and
λ = 1.

(i) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.5, σ3 = 1.2, ω = 0.19, and
λ = 1.

Figure 1. Dynamic propagation of the soliton solution µ1(κ, τ).
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(a) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, and λ = 0.1.

(b) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
and λ = 0.1.

(c) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
and λ = 0.1.

(d) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, and λ = 0.5.

(e) Contour plot atσ1 = 0.01, σ2 =

0.09, σ3 = 1.5, ω = 0.15, and λ =

0.5.

(f) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
and λ = 0.5.

(g) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, and λ = 1.

(h) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
and λ = 1.

(i) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
and λ = 1.

Figure 2. Dynamic propagation of the soliton solution µ13(κ, τ).
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(a) Three-dimensional plot at σ1 =

0.125, σ2 = 0.08, σ3 = 0.08, ω =

1.45, and λ = 0.1.

(b) Contour plot at σ1 = 0.125,
σ2 = 0.08, σ3 = 0.08, ω = 1.45,
and λ = 0.1.

(c) Influence of time on the
propagation of waves at σ1 =

0.125, σ2 = 0.08, σ3 = 0.08,
ω = 1.45, and λ = 0.1.

(d) Three-dimensional plot at σ1 =

0.125, σ2 = 0.08, σ3 = 0.08, ω =

1.45, and λ = 0.5.

(e) Contour plot at σ1 = 0.125,
σ2 = 0.08, σ3 = 0.08, ω = 1.45,
and λ = 0.5.

(f) Influence of time on the
propagation of waves at σ1 =

0.125, σ2 = 0.08, σ3 = 0.08,
ω = 1.45, and λ = 0.5.

(g) Three-dimensional plot at σ1 =

0.125, σ2 = 0.08, σ3 = 0.08, ω =

1.45, and λ = 1.

(h) Contour plot at σ1 = 0.125,
σ2 = 0.08, σ3 = 0.08, ω = 1.45,
and λ = 1.

(i) Influence of time on the
propagation of waves at σ1 =

0.125, σ2 = 0.08, σ3 = 0.08,
ω = 1.45, and λ = 1.

Figure 3. Dynamic propagation of the soliton solution µ15(κ, τ).
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(a) Three-dimensional plot at σ1 =

0.01, σ2 = 0.01, σ3 = 1.15, ω =

1.19, and λ = 0.1.

(b) Contour plot at σ1 = 0.01,
σ2 = 0.01, σ3 = 1.15, ω = 1.19,
and λ = 0.1.

(c) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.01, σ3 = 1.15, ω = 1.19,
and λ = 0.1.

(d) Three-dimensional plot at σ1 =

0.01, σ2 = 0.01, σ3 = 1.15, ω =

1.19, and λ = 0.5.

(e) Contour plot atσ1 = 0.01, σ2 =

0.01, σ3 = 1.15, ω = 1.19, and
λ = 0.5.

(f) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.01, σ3 = 1.15, ω = 1.19,
and λ = 0.5.

(g) Three-dimensional plot at σ1 =

0.01, σ2 = 0.01, σ3 = 1.15, ω =

1.19, and λ = 1.

(h) Contour plot at σ1 = 0.01,
σ2 = 0.01, σ3 = 1.15, ω = 1.19,
and λ = 1.

(i) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.01, σ3 = 1.15, ω = 1.19,
and λ = 1.

Figure 4. Dynamic propagation of the soliton solution µ16(κ, τ).
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(a) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, ρ = 0.8, and λ = 0.1.

(b) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.8, and λ = 0.1.

(c) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.8, and λ = 0.1.

(d) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, ρ = 0.8, and λ = 0.5.

(e) Contour plot atσ1 = 0.01, σ2 =

0.09, σ3 = 1.5, ω = 0.15, ρ = 0.8,
and λ = 0.5.

(f) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.8, and λ = 0.5.

(g) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, ρ = 0.8, and λ = 1.

(h) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.8, and λ = 1.

(i) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.8, and λ = 1.

Figure 5. Dynamic propagation of the soliton solution µ21(κ, τ).
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(a) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, ρ = 0.08, and λ = 0.1.

(b) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.08, and λ = 0.1.

(c) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.08, and λ = 0.1.

(d) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, ρ = 0.08, and λ = 0.5.

(e) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.08, and λ = 0.5.

(f) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.08, and λ = 0.5.

(g) Three-dimensional plot at σ1 =

0.01, σ2 = 0.09, σ3 = 1.5, ω =

0.15, ρ = 0.08, and λ = 1.

(h) Contour plot at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.08, and λ = 1.

(i) Influence of time on the
propagation of waves at σ1 = 0.01,
σ2 = 0.09, σ3 = 1.5, ω = 0.15,
ρ = 0.08, and λ = 1.

Figure 6. Dynamic propagation of the soliton solution µ23(κ, τ).
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(a) Three-dimensional plot at$1 =

0.01, η0 = 0.5, $2 = 1.2, ω =

0.01, and λ = 0.1.

(b) Contour plot at $1 = 0.01,
η0 = 0.5, $2 = 1.2, ω = 0.01, and
λ = 0.1.

(c) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 1.2, ω =

0.01, and λ = 0.1.

(d) Three-dimensional plot at
$1 = 0.01, η0 = 0.5, $2 = 1.2,
ω = 0.01, and λ = 0.5.

(e) Contour plot at$1 = 0.01, η0 =

0.5, $2 = 1.2, ω = 0.01, and λ =

0.5.

(f) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 1.2, ω =

0.01, and λ = 0.5.

(g) Three-dimensional plot at$1 =

0.01, η0 = 0.5, $2 = 1.2, ω =

0.01, and λ = 1.

(h) Contour plot at $1 = 0.01,
η0 = 0.5, $2 = 1.2, ω = 0.01, and
λ = 1.

(i) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 1.2, ω =

0.01, and λ = 1.

Figure 7. Dynamic propagation of the soliton solution µF1(κ, τ).
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(a) Three-dimensional plot at$1 =

0.01, η0 = 0.5, $2 = 0.2, ω = 0.9,
and λ = 0.1.

(b) Contour plot at $1 = 0.01,
η0 = 0.5, $2 = 0.2, ω = 0.9, and
λ = 0.1.

(c) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 0.2, ω = 0.9,
and λ = 0.1.

(d) Three-dimensional plot at
$1 = 0.01, η0 = 0.5, $2 = 0.2,
ω = 0.9, and λ = 0.5.

(e) Contour plot at$1 = 0.01, η0 =

0.5, $2 = 0.2, ω = 0.9, and λ =

0.5.

(f) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 0.2, ω = 0.9,
and λ = 0.5.

(g) Three-dimensional plot at$1 =

0.01, η0 = 0.5, $2 = 0.2, ω = 0.9,
and λ = 1.

(h) Contour plot at $1 = 0.01,
η0 = 0.5, $2 = 0.2, ω = 0.9, and
λ = 1.

(i) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 0.2, ω = 0.9,
and λ = 1.

Figure 8. Dynamic propagation of the soliton solution µF5(κ, τ).
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(a) Three-dimensional plot at$1 =

0.01, η0 = 0.5, $2 = 1.2, ω = 0.1,
and λ = 0.1.

(b) Contour plot at $1 = 0.01, η0 =

0.5, $2 = 1.2, ω = 0.1, and λ = 0.1.
(c) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 1.2, ω = 0.1,
and λ = 0.1.

(d) Three-dimensional plot at
$1 = 0.01, η0 = 0.5, $2 = 1.2,
ω = 0.1, and λ = 0.5.

(e) Contour plot at$1 = 0.01, η0 =

0.5, $2 = 1.2, ω = 0.1, and λ =

0.5.

(f) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 1.2, ω = 0.1,
and λ = 0.5.

(g) Three-dimensional plot at$1 =

0.01, η0 = 0.5, $2 = 1.2, ω = 0.1,
and λ = 1.

(h) Contour plot at $1 = 0.01,
η0 = 0.5, $2 = 1.2, ω = 0.1, and
λ = 1.

(i) Influence of time on the
propagation of waves at $1 =

0.01, η0 = 0.5, $2 = 1.2, ω = 0.1,
and λ = 1.

Figure 9. Dynamic propagation of the soliton solution µF8(κ, τ).

5. Conclusions

The Kumar–Malik method and the extended hyperbolic function method have been successfully
applied to construct the numerous analytical exact soliton solutions for the nonlinear Kairat-II equation
that explain important scientific and engineering phenomena. The solutions encompass a broad
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spectrum of soliton types, including bright, dark, singular, periodic, exponential forms, and Jacobi
elliptic function solutions with an elliptic modulus. The diversity of these solutions reveals rich
patterns, such as exponential, plane wave, and shock wave structures, which enhance the understanding
of soliton’s dynamics in nonlinear optical systems. The graphical representations, including 2D, 3D,
and contour plots, provide valuable insights into key soliton behaviors, highlighting the impact of
parameters, particularly the wave number, on solitons’ amplitude, motion, and singularity. These
results underline the importance of tunability in shaping solitons’ characteristics, offering a powerful
tool for controlling solitons’ properties in nonlinear media. The demonstrated effectiveness of the
applied methods in generating exact solutions to the Kairat-II equation lays a solid foundation for
further research on soliton-based technologies, with potential applications in fields such as optical
communications and materials science. The obtained solutions show that these analytical techniques
can be used for other dynamic models for analytical study. However, the Kumar–Malik method, while
effective for certain soliton solutions, is limited by its applicability to equations that can be transformed
into a suitable form, which excludes some nonlinear equations. It also becomes computationally
intensive for higher-order equations, requiring complex algebraic manipulations. Moreover, the
solutions obtained may be difficult to interpret or apply due to their complexity. Similarly, the extended
hyperbolic function method is most useful for equations with hyperbolic nonlinearities, limiting its
general applicability. The solutions can be complex, making analysis challenging; in some cases, the
method may fail to provide real solutions. Additionally, the success of both methods depends on correct
transformations, and improper choices may lead to failure in obtaining meaningful solutions. In the
future, this study could be extended to the fractional domain, as fractional derivatives provide a more
accurate representation of memory and hereditary effects in complex systems. Fractional extensions
of the K-II equation could offer deeper insights into soliton dynamics in heterogeneous and anomalous
media, making them highly relevant for applications in optical fibers, plasma physics, and biological
systems. Furthermore, the proposed approach can be further expanded to different classes of fractional
differential equations in future work; more appealingly, the meanings of the obtained solutions in
various practical applications can be studied, which provides a valuable method for researchers in
fractional calculus and nonlinear dynamics.
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