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Abstract: Approximation theory plays a central role in numerical analysis, evolving through a variety
of methodologies, with significant contributions from Lebesgue, Weierstrass, Fourier, and Chebyshev
approximations. For sufficiently smooth functions, the partial sum of Chebyshev series expansion
provides optimal polynomial approximation, making it a preferred choice in many applications.
However, existing literature predominantly focuses on Chebyshev interpolation, which requires exact
Chebyshev series coefficients. The computation of these exact coefficients is challenging and
often impractical for numerical algorithms, limiting their practical utility. Additionally, traditional
approaches typically involve polynomials on fixed intervals where the basis functions of the series are
defined. In this article, we have generalized Chebyshev polynomial approximation to a broader domain
and presented two optimal error estimations for functions of bounded variation, using approximated
Chebyshev series coefficients. This aspect is notably absent in current literature. To support our
theoretical findings, we conducted numerical experiments and proposed future research directions,
particularly in the fields of machine learning and related areas.
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1. Introduction

Polynomial approximation serves as a fundamental method across various domains of numerical
analysis [1, 2]. Not only does it provide a robust tool for approximating complex functions, but it
also plays a crucial role in numerical integration and solving differential and integral equations. The
Lagrange interpolation polynomial at Chebyshev points of the first or second kind has been observed
to mitigate the Runge phenomenon [3], surpassing interpolants at equally spaced points. Moreover, the
accuracy of approximation exhibits rapid enhancement with an increase in the number of interpolation
points [4, 5]. Functions of bounded variation hold significant importance in various branches of
mathematical physics, optimization [6], free-discontinuity problems [7], and hyperbolic systems of
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conservation laws [8]. Additionally, these functions find application in image segmentation and
related models [9]. However, despite their relevance, the theory of numerical approximations for such
functions remains relatively underdeveloped, primarily due to the inherent singularities they exhibit.

A significant body of research has focused on approximating non-smooth functions through
decay estimates of series coefficients. Xiang [10] explored the decay behavior of coefficients
in polynomial expansions of functions with limited regularity, specifically examining Jacobi and
Gegenbauer polynomial series. The goal is to derive optimal asymptotic results for the decay
of these coefficients, investigating how the decay rate varies for functions with both interior and
boundary singularities, across different parameters. Francesco et al. [11,12] introduced the constrained
mock-Chebyshev least squares (CMCLS) approximation method, which aims to mitigate the Runge
phenomenon by interpolating functions on nodes near Chebyshev-Lobatto nodes and using remaining
nodes for regression in univariate and bivariate functions. More recently, Wang [13–15] addressed error
localization in Chebyshev spectral methods for functions with singularities. This study begins with a
pointwise error analysis for Chebyshev projections of such functions, revealing that the convergence
rate away from the singularity is faster than at the singularity itself by a factor of 1

x . The analysis
rigorously explains the observed error localization phenomenon, suggesting that Chebyshev spectral
differentiations generally outperform other methods, except near singularities, where the latter exhibit
faster convergence.

Liu et al. [16] introduced a novel theoretical framework grounded in fractional Sobolev-type spaces,
leveraging Riemann-Liouville fractional integrals/derivatives for optimal error estimates of Chebyshev
polynomial interpolation for functions with limited regularity. Key components include fractional
integration by parts and generalized Gegenbauer functions of fractional degree (GGF-Fs). This
framework facilitates the estimation of the optimal decay rate of Chebyshev expansion coefficients
for functions with singularities, leading to enhanced error estimates for spectral expansions
and related operations. In a separate study, Wang [15] focused on deriving error bounds for
Legendre approximations of differentiable functions using Legendre coefficients by Hamzehnejad [17].
Additionally, Xie [14] recently obtained bounds for Chebyshev polynomials with endpoint
singularities. Zhang and Boyd [18] derived estimates for weak endpoint singularities, while
Zhang [19, 20] obtained bounds for logarithmic endpoint singularities. In [21], the focus lied on a
specialized filtered approximation technique that generates interpolation polynomials at Chebyshev
zeros using de la Vallée Poussin filters. The aim is to approximate locally continuous functions
equipped with weighted uniform norms. Ensuring that the associated Lebesgue constants remain
uniformly bounded is crucial for this endeavor.

The methodologies discussed above primarily concentrate on Chebyshev interpolation [19, 21–23],
yielding results with exact Chebyshev series coefficients. However, computing exact series coefficients
poses a general challenge and proves impractical for numerical algorithms, diminishing their utility
in practical applications. Furthermore, these approaches usually involve Jacobi, Gegenbauer, and
Legendre polynomials on fixed intervals where the respective series’ basis functions are defined. Such
limitations highlight the need for more versatile and efficient approximation methods in numerical
analysis. Addressing this gap necessitates the utilization of efficient approximation techniques.
Chebyshev polynomials, renowned for their versatility and effectiveness across diverse fields such
as digital signal processing [24], spectral graph neural networks [25–27], image processing [22], and
graph signal filtering [28, 29] present a promising avenue for approximating functions of bounded
variation. Many physical systems modeled using partial differential equations (PDEs) involve
boundary layers or discontinuities, where functions of bounded variation frequently occur. Extending
Chebyshev approximations to these functions allows for more accurate error analysis and truncation in
numerical simulations of such systems.

Truncated Chebyshev expansions have proven capable of yielding minimax polynomial
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approximations for analytic functions [30]. Our objective is to employ these polynomials not only for
approximating functions of bounded variation but also for conducting a comprehensive convergence
analysis of Chebyshev polynomial approximation techniques. At the core of our convergence
analysis lies the estimation of Chebyshev coefficients’ decay. We leverage two recently established
decay estimates: Majidian’s decay estimate for Chebyshev series coefficients of functions defined
on the interval [−1, 1], subject to specific regularity conditions [31]; and a sharper decay estimate
demonstrated by Xiang [10], with a more relaxed smoothness assumption on the function. In our
pursuit of convergence results, we take an initial step by extending these decay bounds to encompass
Chebyshev series coefficients of functions defined on the interval [a, b].

The main contributions are three folds:

1. Generalization of Chebyshev polynomial approximation: The article extends the traditional
Chebyshev polynomial approximation to a broader domain beyond the fixed intervals where
basis functions are typically defined. This generalization allows for more flexible application
of Chebyshev approximations in various settings.

2. Optimal error estimates: Two new optimal error estimates for Chebyshev polynomial
approximations are presented, specifically tailored for functions of bounded variation. These
error estimates are derived using approximated Chebyshev series coefficients rather than exact
ones, addressing a significant gap in the existing literature.

3. Practical computation with approximated coefficients: By focusing on approximated Chebyshev
series coefficients, the article offers a more practical approach for numerical algorithms,
overcoming the challenges associated with computing exact series coefficients. The theoretical
findings are supported by numerical experiments, providing empirical evidence of the efficacy
and accuracy of the proposed error estimates.

These contributions collectively advance the understanding and application of Chebyshev
polynomial approximations, particularly for functions with bounded variation, and offer practical
solutions for numerical analysis.

While preparing this manuscript we found some very interesting recent works in the domain
of approximation theory and Chebyshev polynomials. One of them [32] introduced unified
Chebyshev polynomials (UCPs) and established their foundational properties, including analytic
forms, moments, and inversion formulas. UCPs are shown to be expressible through three consecutive
Chebyshev polynomials of the second kind. The authors derive new derivative expressions and
connection formulas between different UCP classes, linking them with orthogonal and non-orthogonal
polynomials. The second one [33] proposed two numerical schemes for solving the time-fractional
heat equation (TFHE) using collocation and tau spectral methods. The authors introduce a new basis:
Unified Chebyshev polynomials (UCPs) of the first and second kinds, deriving novel theoretical results
for these polynomials.

The structure of the article is as follows: Section 2 provides the necessary preliminaries, including
the Chebyshev series expansion of a function, the Gauss-Chebyshev quadrature rule, and several
lemmas that are utilized to develop the main results. In Section 3, we derive decay bounds for the
Chebyshev coefficients for functions of bounded variation and functions with limited smoothness.
Section 4 presents L1-error estimates for the Chebyshev approximation of f , leveraging the two
decay estimates established in Section 3. Section 5 numerically demonstrates that the improved decay
estimates of the Chebyshev coefficients and the L1-error estimates of the truncated Chebyshev series
approximation obtained in Section 4 are sharper than previously known results. Finally, we conclude
the paper in Section 6 by outlining some promising future research directions.
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2. Preliminaries

2.1. Chebyshev series expansion

The Chebyshev polynomial of the first kind, denoted as T j(t) for a given integer j ≥ 0, is defined as:

T j(t) = cos( jθ), (2.1)

where θ = cos−1(t) and t ∈ [−1, 1]. Notably, T j(t) is a polynomial of degree j in the variable t.
These polynomials exhibit orthogonality with respect to the weight function ω(t) = 1√

(1−t2)
, within the

interval [−1, 1]. Specifically, they satisfy the following orthogonality relations:

1∫
−1

ω(s)Tp(s)Tq(s)ds =


0 if p , q,
π if p = q = 0,
π
2 if p = q , 0.

The Chebyshev series expansion of a function f : [−1, 1]→ R is expressed as follows:

f (t) =
c0

2
+

∞∑
j=1

c jT j(t), where c j =
〈 f , T j 〉ω

‖T j‖
2
ω

, (2.2)

and

〈 f , T j 〉ω =

1∫
−1

ω(s) f (s)T j(s)ds.

The norm ‖T j‖ω is computed as:

‖T j‖ω =
〈

T j,T j
〉 1

2
ω =

√π j = 0,
√
π/2 j , 0.

(2.3)

Hence, the Chebyshev coefficients c j can be obtained using the integral form:

c j =
2
π

1∫
−1

f (s)T j(s)ω(s)ds. (2.4)

Given the difficulty in accurately evaluating the integral (2.4) for general functions, we resort to
employing the Gauss-Chebyshev quadrature rule to approximate c j, the jth coefficient of the series.

2.1.1. Gauss-Chebyshev quadrature formula

Quadrature methods are renowned for numerically computing definite integrals of the type
presented in (2.4). The Gauss-Chebyshev quadrature formula, a variant of Gaussian quadrature
employing the weight function ω and n Chebyshev points, provides an explicit formula for numerical
integration (see [3, 34, 35]):

1∫
−1

ω(s)F(s)ds ≈
π

n

n∑
l=1

F(tl), (2.5)
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where t1, t2, . . . , tn represent the n roots of a Chebyshev polynomial Tn(t) of degree n, also known as
Chebyshev points, defined as:

tl = cos
(
(2l − 1) π

2n

)
, l = 1, 2, . . . , n. (2.6)

Leveraging the quadrature formula (2.5), we can readily approximate Chebyshev series
coefficients (2.4) for any function using the formula provided by Rivlin [35, p. 148] :

ck ≈
2
n

n∑
l=1

f (tl)Tk(tl) =: ck,n. (2.7)

Here, ck,n denotes the approximated Chebyshev coefficients using n quadrature points.

2.2. Notations

We denote the Chebyshev series expansion of a function f ∈ L2
ω[a, b] by C∞[ f ](x), defined as:

C∞[ f ](x) :=
∞∑
j=0

c jT j(G−1(x)),

where G : [−1, 1]→ [a, b] is a bijection map given by:

G(t) = a +
(b − a)

2
(t + 1), t ∈ [−1, 1].

The Chebyshev coefficients c j are calculated as:

c j =
2
π

∫ 1

−1

f (G(t))T j(t)
√

1 − t2
dt.

Utilizing the change of variable t = cos θ, we express c j as:

c j =
2
π

∫ π

0
f (G(cos θ)) cos jθdθ. (2.8)

The dth partial sum, Cd[ f ](x), approximates the function f at a point x ∈ [a, b], given by:

Cd[ f ](x) :=
d∑′

j=0

c jT j(G−1(x)). (2.9)

In our results, we use:

Cd,n[ f ](x) :=
d∑′

j=0

c j,nT j(G−1(x)) (2.10)

to denote the corresponding approximation of f using n quadrature points.
Additionally, we represent the Chebyshev series expansion of f , approximated with n quadrature

points, as:

C∞,n[ f ](t) :=
∞∑′

j=0

c j,nT j(t). (2.11)

The following lemmas are used in deriving the required error estimates.
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Lemma 2.1. For a given positive integer n, we have

ck,n − ck =

∞∑
j=1

(−1) j(c2 jn−k + c2 jn+k
)
,

for any integer k such that 0 ≤ k < 2n.

Proof. Since the identity is trivially satisfied for k = n, we assume that k , n.
Using (2.2) in the quadrature formula (2.7), we get

ck,n =
2
n

n−1∑
i=0

 ∞∑′

j=0

c jT j(ti)

 Tk(ti)

=
2
n

∞∑′

j=0

c j

 n−1∑
i=0

T j(ti)Tk(ti)

 .
First, consider the case when k = 0. In this case, we can write

c0,n =
2
n

c0

2

 n−1∑
i=0

T0(ti)T0(ti)

 +

∞∑
j=1

c j

 n−1∑
i=0

T j(ti)T0(ti)


 .

Using the fact that T0 ≡ 1, we see that

c0,n = c0 +
2
n

∞∑
j=1

c j

 n−1∑
i=0

T j(ti)T0(ti)

 .
The first possibility is:

n−1∑
i=0

T j(ti)T0(ti) =

{
(−1)pn, if j = 2pn, for p = 1, 2, . . . ,

0, otherwise.

Thus, we can write

c0,n = c0 + 2
∞∑

p=1

(−1)pc2pn,

which is the required identity for k = 0.
We now assume that k , 0 (and recall that we have already assumed that k , n). We can write

ck,n =
2
n

 k−1∑′

j=0

c j

 n−1∑
i=0

T j(ti)Tk(ti)


+ ck

 n−1∑
i=0

Tk(ti)Tk(ti)


+

∞∑
j=k+1

c j

 n−1∑
i=0

T j(ti)Tk(ti)


 .
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Let us first evaluate the second term on the right-hand side. Since 0 < k < 2n with k , n, we see by
taking j = k that

j + k = 2k , 2pn, for any nonnegative integer p,

and
| j − k| = 0⇒ s = 0,

and hence we see that

n−1∑
i=0

Tk(ti)Tk(ti) =
n
2
.

Therefore, the above expression can be written as

ck,n = ck +
2
n


k−1∑′

j=0

c j

 n−1∑
i=0

T j(ti)Tk(ti)

 +

∞∑
j=k+1

c j

 n−1∑
i=0

T j(ti)Tk(ti)


 . (2.12)

Let us now consider two cases, namely, 0 < k < n and n < k < 2n. We skip the proof of 0 < k < n and
consider only the case when n < k < 2n (note that we have already proved for k = n separately).

(1) For j = 0, . . . , k − 1, we write j = k − α for α = 1, 2, . . . , k. Then, for some p ∈ Z+,

j + k = 2k − α = 2pn⇒ α = 2k − 2pn.

Since α ranges from 1 to k, we cannot have p = 0, for otherwise α = 2k which is not possible.
Also, we see that j + k , 2pn, for any p = 2, 3, . . ., for then α becomes negative. However, for
p = 1, we have α = 2k − 2n. Thus,

for k = n + 1, n + 2, . . . 2n − 1, we have α = 2, 4, . . . , 2n − 2(= k − 1).

Thus, we see that one term in the first summation within the brace of (2.12) is nonzero depending
on the given value of k between n and 2n. Note that, for this to happen, we need n ≥ 2 (because
only then α will have a meaningful range). Also note that in order for the present case of n <
k < 2n to happen, we need n ≥ 2. An interesting point is that this is one of the assumptions in
Theorem 3.1.
On the other hand, for any nonnegative integer s,

| j − k| = 2sn⇒ α = 2sn.

Since α ranges from 1 to k and n < k < 2n, we see that the above condition does not hold for any
nonnegative integer s and therefore

| j − k| , 2sn for any s ∈ Z+.

Thus we see that

n−1∑
i=0

T j(ti)Tk(ti) =

 −n
2
, if α = 2k − 2n,

0, otherwise.
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Thus, we have
k−1∑′

j=0

c j

 n−1∑
i=0

T j(ti)Tk(ti)

 =

k∑′

α=1

ck−α

 n−1∑
i=0

Tk−α(ti)Tk(ti)


= −

n
2

ck−2k+2n

= −
n
2

c2n−k. (2.13)

(2) For j = k + 1, k + 2, . . ., let us write j = k + α, for α = 1, 2, . . .. For some p ∈ Z+,

j + k = 2k + α = 2pn⇒ α = 2pn − 2k.

This is not possible for p = 0, 1 because then α becomes negative. However, this is possible for
p = 2, 3, . . ., for which we have

α = 4n − 2k, 6n − 2k, . . . .

On the other hand, for any q ∈ Z+,

| j − k| = 2qn⇒ α = 2qn.

This is possible for q = 1, 2, . . . , for which we have

α = 2n, 4n, . . . .

Note that we have to see if both j + k = 2pn and | j − k| = 2qn hold for some p, q ∈ Z+. If this is
so, then we must have the corresponding α values be equal. That is, for some p and q,

2pn − 2k = 2qn⇒ pn − k = qn⇒ k = (p − q)n.

This shows that both these cases happen if and only if k is a multiple of n. But our present case is
that n < k < 2n and hence both these cases cannot happen simultaneously.
From the above discussions, we see that

either j + k = 2pn or | j − k| = 2qn or neither of these two

for any p = 2, 3 . . . and q = 1, 2, . . . .. Thus, we have for j = k + 1, k + 2, . . . ,
n−1∑
i=0

T j(ti)Tk(ti) =

n−1∑
i=0

Tk+α(ti)Tk(ti)

=

 (−1)p n
2
,


if α = 2pn − 2k, for p = 2, 3, . . . ,

or
if α = 2pn, for p = 1, 2, . . . ,

0, otherwise.

Using this, we can write
∞∑

j=k+1

c j

 n−1∑
i=0

T j(ti)Tk(ti)

 =

∞∑
α=1

ck+α

 n−1∑
i=0

Tk+α(ti)Tk(ti)


=

n
2

−c2n+k +

∞∑
p=2

(−1)p(c2pn−k + c2pn+k
) .

(2.14)
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Substituting (2.13) and (2.14) in (2.12), we get

ck,n = ck − c2n−k − c2n+k +

∞∑
p=2

(−1)p(c2pn−k + c2pn+k
)

= ck +

∞∑
p=1

(−1)p(c2pn−k + c2pn+k
)
.

This completes the proof.

Lemma 2.2. For 0 ≤ d < 2n, we have

‖Cd[ f ] −Cd,n[ f ]‖1 ≤ (b − a)
∞∑
j=1

2 jn+d∑
i=2 jn−d

|ci|,

for any f ∈ L1[a, b].

Proof. For any t ∈ [a, b], we have

∣∣∣Cd[ f ](t) −Cd,n[ f ](t)
∣∣∣ =

∣∣∣∣∣∣∣
d∑′

k=0

(ck − ck,n)Tk(G−1(t))

∣∣∣∣∣∣∣ ≤
d∑′

k=0

|ck − ck,n|.

By Lemma 2.1, we have

∣∣∣Cd[ f ](t) −Cd,n[ f ](t)
∣∣∣ ≤ d∑′

k=0

∣∣∣∣∣∣∣
∞∑
j=1

(−1) j(c2 jn−k + c2 jn+k
)∣∣∣∣∣∣∣

≤

∞∑
j=1

 d∑′

k=0

{
|c2 jn−k| + |c2 jn+k|

} .
Note that each term of the right-hand-side series can be rewritten as

d∑′

k=0

{
|c2 jn−k| + |c2 jn+k|

}
=
|c2 jn|

2
+
|c2 jn|

2

+ |c2 jn−1| + |c2 jn+1| + . . . + |c2 jn−d| + |c2 jn+d|

=

2 jn+d∑
i=2 jn−d

|ci|.

Substituting this expression in the above inequality, we get

∣∣∣Cd[ f ](t) −Cd,n[ f ](t)
∣∣∣ ≤ ∞∑

j=1

2 jn+d∑
i=2 jn−d

|ci|.

Therefore,

‖Cd[ f ] −Cd,n[ f ]‖1 =

b∫
a

|Cd[ f ](t) −Cd,n[ f ](t)|dt
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≤

b∫
a

∞∑
j=1

2 jn+d∑
i=2 jn−d

|ci|dt

= (b − a)
∞∑
j=1

2 jn+d∑
i=2 jn−d

|ci|.

Using the preliminaries and the lemmas presented in Section 2, we establish the decay estimates for
the Chebyshev coefficients.

3. Decay bounds for the Chebyshev coefficients

In this section, we extend the decay bounds established in prior works by Majidian [31] and
Xiang [10]. This generalization is pivotal for numerous applications. In practical scenarios, the
function to be approximated may not always reside solely within the domain [−1, 1]. Moreover, in
various applications, local schemes [36] or piecewise approximation [37, 38] are preferred over global
ones. In such cases, decay estimates on a general domain become imperative.

Theorem 3.1. For some integer k ≥ 0, let f , f ′, . . . , f (k−1) be absolutely continuous on the
interval [a, b]. If Vk := ‖ f (k)‖T < ∞, where

‖ f ‖T :=
∫ π

0
| f ′ (G(cos θ))| dθ, (3.1)

then for j ≥ k + 1 and for some s ≥ 0, we have

|c j| ≤



(
b − a

2

)2s+1 2Vk

π

s∏
i=−s

( j + 2i)

, if k = 2s,

(
b − a

2

)2s+2 2Vk

π

s+1∏
i=−s

( j + 2i − 1)

, if k = 2s + 1,

(3.2)

where ck, k = 0, 1, . . ., are the Chebyshev coefficients of f .

Proof. For a given nonnegative integer r, we define:

c(r)
j =

2
π

∫ π

0
f (r)(G(cos θ)) cos jθdθ, (3.3)

with the understanding that c(0)
j = c j. In dealing with non-smooth functions, we must utilize the

weak derivative (distributional derivative) on the right-hand side of the above expression, if it exists.
Employing integration by parts in (3.3), we can express c(r)

j as:

c(r)
j =

(b − a)
4 j

(
c(r+1)

j−1 − c(r+1)
j+1

)
, (3.4)
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for j = 1, 2, . . .. In order to prove the required estimate, we prove the following general inequality:

|c(k−m)
j | ≤

2Vk

π



(
b − a

2

)m+1 1
s∏

i=−s

( j + 2i)

, if m = 2s, s ≥ 0,

(
b − a

2

)m+1 1
s+1∏

i=−s

( j + 2i − 1)

, if m = 2s + 1, s ≥ 0,
(3.5)

for m = 0, ...., k and j ≥ m + 1 using induction on m. Then m = k gives our required result. First let us
claim that (3.5) holds for m = 0. From (3.4) and (3.3), we have

|c(k)
j | ≤

b − a
4 j

(
|c(k+1)

j−1 | + |c
(k+1)
j+1 |

)
≤

(b − a)
jπ

Vk.

This is precisely the inequality (3.5) for m = 0. Let us assume that the inequality (3.5) holds for m = 2s
for some s ≥ 1. Then for m = 2s + 1 (odd), we have

|c(k−2s−1)
j | ≤

b − a
4 j

(
|c(k−2s)

j−1 | + |c
(k−2s)
j+1 |

)
.

Using the assumption that the inequality (3.5) holds for m = 2s, we can write

|c(k−2s−1)
j | ≤

b − a
4 j


(
b − a

2

)2s+1 2Vk

π


1

s∏
i=−s

( j + 2i − 1)

+
1

s∏
i=−s

( j + 2i + 1)



 .
By simplifying the right-hand side, we get

|c(k−2s−1)
j | ≤

(
b − a

2

)2s+2 2Vk

π

s+1∏
i=−s

( j + 2i − 1)

,

which is precisely the required inequality (3.5) for m = 2s+1. Finally, asssume that the inequality (3.5)
holds for m = 2s + 1. Then for m = 2s + 2 (even), we have

|c(k−2s−2)
j | ≤

b − a
4 j

(
|c(k−2s−1)

j−1 | + |c(k−2s−1)
j+1 |

)
.

Using the assumption that the inequality (3.5) holds for m = 2s + 1, we can write

|c(k−2s−2)
j | ≤

b − a
4 j


(
b − a

2

)2s+2 2Vk

π


1

s+1∏
i=−s

( j + 2i − 2)

+
1

s+1∏
i=−s

( j + 2i)




.
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By simplifying the right-hand side, we get

|c(k−2s−1)
j | ≤

(
b − a

2

)2s+3 2Vk

π

s+1∏
i=−(s+1)

( j + 2i)

,

which is precisely the required inequality (3.5) for m = 2s + 2. The proof now follows by induction.

Remark 3.1. Note that if f (k) is absolutely continuous, then Vk is precisely the total variation of f (k)

and hence in this case, the assumption that Vk is finite implies f (k) is of BV on [a, b]. If f (k) involves a
jump discontinuity, then one has to necessarily use the distribution derivative of f (k) in computing Vk.

The following lemma is the generalization of a result in [10].

Lemma 3.1. Let f be a function defined on an interval [a, b] such that for some integer k ≥ 1, c(k)
j is

well-defined and f (k) is of bounded variation on [a, b]. Then we have

c j =

(
b − a

4

)p p∑
i=0

(
p
i

)
(−1)i( j + 2i − p)

( j + i)( j + i − 1) . . . ( j + i − p)
c(p)

( j+2i−p), (3.6)

where j = p, p + 1, . . . and p = 1, 2, . . . , k.

Theorem 3.2. Let f be a function defined on [a, b] such that for some nonnegative integer k, f (k) is of
bounded variation with Vk = Var( f (k)) < ∞. Then we have

|c(k)
j | ≤

2Vk

jπ
, j = 1, 2, . . . , (3.7)

|c j| ≤
2Vk

π

(
b − a

4

)k k∑
i=0

(
k
i

)
1

( j + i)( j + i − 1) . . . ( j + i − k)
, (3.8)

for j = k + 1, k + 2, . . ..

Proof. Since f (k) is of bounded variation, we can write (see Lang [39])

Var
(

f (k)
)

= Var(g1) + Var(g2), (3.9)

where g1 and g2 are monotonically increasing functions on [a, b]. Define u(θ) := gi(G(cos θ)) which is
monotonically decreasing for θ ∈ [0, π]. Further, we have∫ π

0
gi(G(cos θ)) cos jθ dθ = −

2
π

∫ π

0
v(θ) cos jθ dθ,

where v(θ) = −u(θ). By the second mean value theorem of integral calculus (Apostol [40,
Theorem 7.37]), there exists x0 ∈ [0, π] such that∫ π

0
gi(G(cos θ)) cos jθ dθ = −

2
π

(
v(0)

∫ x0

0
cos jθdθ + v(π)

∫ π

x0

cos jθ dθ
)
. (3.10)

By the definition of v, we have

−v(0) = u(0) = gi(G(cos 0)) = gi(G(1)) = gi(b),
−v(π) = u(π) = gi(G(cos π)) = gi(G(−1)) = gi(a).
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Substituting in (3.10) and then integrating yields∫ π

0
gi(G(cos θ)) cos jθdθ =

2
π

gi(b) − gi(a)
j

sin jx0.

Using (3.3) and (3.9), we get |c(k)
j | ≤

2Vk

jπ
, for j = 1, 2, . . . . Consider (3.6) with p = k which gives

c j =

(
b − a

4

)k k∑
i=0

(
k
i

)
(−1)i( j + 2i − k)

( j + i)( j + i − 1) . . . ( j + i − k)
c(k)

( j+2i−k).

Taking the modulus on both sides and using the above inequality, we get

|c j| ≤

(
b − a

4

)k k∑
i=0

(
k
i

)
( j + 2i − k)

( j + i)( j + i − 1) . . . ( j + i − k)

(
2Vk

( j + 2i − k)π

)
,

for j = k + 1, k + 2, . . . , which leads to the desired result. Note that, in this case, j = k is not defined
when i is 0.

For the well-known decay estimate of the Chebyshev coefficients of a real analytic function, we
refer to Rivlin [35] (also see Xiang et al. [41]).

4. Error estimate for Chebyshev approximation

In this section, we derive L1-error estimates for the Chebyshev approximation of f , utilizing two
decay estimates provided in Theorems 3.1 and 3.2. Specifically, we establish the error estimate for
the truncated Chebyshev series approximation, relying on the decay estimate (3.2) of the Chebyshev
coefficients, as presented in the following theorem.

Theorem 4.1. Assume the hypotheses of Theorem 3.1. Then for any given integers n and d such that
n − 1 ≥ k ≥ 1 and k ≤ d ≤ 2n − k − 1, we have

‖ f − Cd,n[ f ]‖1 ≤ Td,n,

where

(1) if d = n − l, for some l = 1, 2, . . . , n − k, then we have

Td,n :=



(
b − a

2

)k+2 4Vk

kπ
(
Π1,1(n − l) + Π1,2(n − l)

)
, if k = 2s,(

b − a
2

)k+2 4Vk

kπ
(
Π0,0(n − l) + Π0,1(n − l)

)
, if k = 2s + 1,

(4.1)

(2) if d = n + l, for some l = 0, 1, . . . , n − k − 1, then we have

Td,n :=



(
b − a

2

)k+2 6Vk

πk
(
Π1,0(n − l) + Π1,1(n − l)

)
, if k = 2s,(

b − a
2

)k+2 6Vk

kπ
(
Π0,−1(n − l) + Π0,0(n − l)

)
, if k = 2s + 1,

(4.2)
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for some integer s ≥ 0, where

Πα,β(η) :=
1

s−α∏
i=−s

(η + 2i + β)

, α = 0, 1, β = −1, 0, 1, 2. (4.3)

Proof. We have ∥∥∥ f −Cd,n[ f ]
∥∥∥

1
≤

∥∥∥ f −Cd[ f ]
∥∥∥

1
+

∥∥∥Cd[ f ] −Cd,n[ f ]
∥∥∥

1
.

For estimating the second term on the right-hand side of the above inequality, we use the well-known
result (see Fox and Parker [42])

cd,n − cd =

∞∑
j=1

(−1) j(c2 jn−d + c2 jn+d
)
,

for 0 ≤ d < 2n. Using this property, with an obvious rearrangement of the terms in the series, we
can obtain

‖ f − Cd,n[ f ]‖1 ≤ (b − a)E, (4.4)

where

E :=


∞∑

j=d+1

|c j| +

∞∑
j=1

2 jn+d∑
i=2 jn−d

|ci|

 .
By adding some appropriate positive terms, we can see that (also see Xiang et al. [41])

E ≤


2

∞∑
i=n−l+1

|ci|, for d = n − l, l = 1, 2, . . . , n,

3
∞∑

i=n−l

|ci|, for d = n + l, l = 0, 1, . . . , n − 1.
(4.5)

We restrict the integer d to k ≤ d ≤ 2n − k − 1 so that the decay estimate in Theorem 3.1 can be used.
Now using the telescopic property of the resulting series (see also Majidian [31]), we can arrive at the
required estimate.

Remark 4.1. From the above theorem, we see that for a fixed n (as in the hypotheses), the upper
bound Td,n decreases for d < n and increases for d ≥ n. Further, we see that Tn−l−1,n = 2

3Tn+l,n,
however computationally Cn−l−1,n[ f ] is more efficient than Cn+l,n[ f ].

The following theorem states the error estimate for the truncated Chebyshev series approximation
based on the decay estimate (3.8).

Theorem 4.2. Assume the hypotheses of Theorem 3.2 for an integer k ≥ 1. Let, for given integers d
and n such that n ≥ k and k ≤ d ≤ 2n − k − 1, Cd,n[ f ] be the truncated Chebyshev series of f with
approximated coefficients. Then we have

‖ f − Cd,n[ f ]‖1 ≤ Td,n, (4.6)

where
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(1) if d = n − l, for some l = 1, 2, . . . , n − k, we have

Td,n =
4Vk(b − a)k+1

4kkπ

k∑
j=0

(
k
j

)
1

(n − l + j)(n − l + j − 1) · · · (n − l + j − k + 1)
, (4.7)

(2) if d = n + l, for some l = 0, 1, 2, . . . , n − k − 1, we have

Td,n =
6Vk(b − a)k+1

4kkπ

k∑
j=0

(
k
j

)
1

(n − l + j − 1)(n − l + j − 2) · · · (n − l + j − k)
. (4.8)

Proof. Recall the L1-error estimate for the truncated Chebyshev series expansion of f with
approximated coefficients given by (4.4) and (4.5):

‖ f − Cd,n[ f ]‖1 ≤


2(b − a)

∞∑
i=n−l+1

|ci|, for d = n − l, l = 1, 2, . . . , n − k,

3(b − a)
∞∑

i=n−l
|ci|, for d = n + l, l = 0, 1, . . . , n − k − 1.

(4.9)

Case 1. Now let us take the first case in the above estimate and apply Theorem 3.2 for d = n − l, l =
1, 2, . . . , n − k, to get

∞∑
i=n−l+1

|ci| ≤
2Vk

π

(
b − a

4

)k k∑
j=0

(
k
j

) ∞∑
i=n−l+1

1
(i + j)(i + j − 1) . . . (i + j − k)

=
2Vk

π

(
b − a

4

)k k∑
j=0

(
k
j

) ∞∑
i=n−l+1

1
k

(
1

(i + j − 1) · · · (i + j − k)
−

1
(i + j) · · · (i + j − k + 1)

)
.

Hence using the telescopic property of the above series, we have

∞∑
i=n−l+1

|ci| ≤
2Vk

kπ

(
b − a

4

)k k∑
j=0

(
k
j

)
1

(n − l + j)(n − l + j − 1) · · · (n − l + j − k + 1)
. (4.10)

Case 2. Similarly, for d = n + l, l = 0, 1, . . . , n − k − 1, we apply Theorem 3.2 to get

∞∑
i=n−l

|ci| ≤
2Vk

kπ

(
b − a

4

)k k∑
j=0

(
k
j

)
1

(n − l + j − 1)(n − l + j − 2) · · · (n − l + j − k)
. (4.11)

By substituting (4.10) and (4.11) in (4.9), we get

‖ f − Cd,n[ f ]‖1 ≤



2(b − a)
2Vk

kπ

(
b − a

4

)k k∑
j=0

(
k
j

)
1

(n − l + j)(n − l + j − 1) · · · (n − l + j − k + 1)
,

for d = n − l, l = 1, 2, . . . , n − k,

3(b − a)
2Vk

kπ

(
b − a

4

)k k∑
j=0

(
k
j

)
1

(n − l + j − 1)(n − l + j − 2) · · · (n − l + j − k)
,

for d = n + l, l = 0, 1, . . . , n − k − 1.

Hence, we have the required results.
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5. Numerical comparison

In this section, we numerically illustrate that the improved decay estimate of the Chebyshev
coefficients and the L1-error estimate of the truncated Chebyshev series approximation, obtained in
Section 4, are sharper than the earlier ones obtained in [31].

Example 5.1. Let us consider the following example:

g(t) =
|t|

t + 2
, t ∈ [−1, 1]. (5.1)

The function g is absolutely continuous and

g′(t) =


−2

(t + 2)2 , if −1 ≤ t < 0,

2
(x + 2)2 , if 0 < t ≤ 1,

which is not continuous. Therefore, we have to take k = 1. Let us check the other hypothesis of
Theorems 3.1 and 3.2. Using the weak derivative of g′, we can compute V1 in Theorems 4.1 and 4.2 as

V1 = 1 +
2π
√

3
< ∞,

and the bounded variation of g′ is approximately equal to 2.7778, which is taken as the value of V1 in
Theorems 3.2 and 4.2.

The decay estimates (bounds given in (3.2) and (3.8)) of the Chebyshev series coefficients c j of
g, for j = 2, 3, . . ., as a function j given in Theorems 4.1 and 3.2 are depicted in Figure 1(a). The
error estimates for the truncated Chebyshev series that we obtained in Theorems 4.1 and 4.2 are
demonstrated in Figure 1(b). It can be seen that the improved estimates we derived by using the
results of Xiang [10] are sharper than the earlier ones we obtained using the results of Majidian [31].

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

 (a)

Majidian

Xiang

60 80 100 120 140 160 180 200
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
 (b)

Majidian

Xiang

Figure 1. (a) Depicts the comparison between the decay bounds of |c j|, for j = 2, 3, . . . , 30
derived in Theorem 4.1 (blue line) and Theorem 3.2 (red line). (b) Depicts the comparison
between the error estimates we obtain in Theorem 4.1 (blue line) and Theorem 4.2 (red line)
for d = n − l, where n = 200 and l = 2 j, j = 1, 2, . . . , 7.

6. Conclusions

In conclusion, this study extends the applicability of Chebyshev series to functions defined beyond
the traditional [−1, 1] domain, broadening the scope of Chebyshev approximations for a variety of
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real-world applications. By introducing generalized decay bounds and truncation error results for
Chebyshev approximations, we provide a more efficient and accessible framework for approximating
functions, particularly in situations where exact computation of Chebyshev coefficients is not feasible.
The results are highly relevant for fields such as spectral graph neural networks (GNNs), where
Chebyshev approximations are commonly used to analyze graph signals and compute spectral filters
efficiently. Additionally, these findings can enhance approximation techniques in image processing,
particularly in tasks like edge detection and image compression, where rapid, accurate approximations
are crucial. Overall, the theoretical advancements presented here offer a promising path to improve
computational efficiency and approximation accuracy across a wide range of applications, particularly
for functions with bounded variation.
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