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1. Introduction

Statistical distributions are vital components in the analysis of empirical data, enabling the application
of various statistical techniques and forming the basis of much research in applied probability and
statistics, see [1, 2]. The accuracy of empirical analysis often depends on how well the assumed
distribution models key characteristics such as variance, mean, kurtosis, and skewness [3]. Among the
many available statistical distributions, the Beta family, including the Beta of the first kind (Beta-I), Beta
of the second kind (Beta-II), and Beta of the third kind (Beta-III), plays a pivotal role due to its flexibility
and wide-ranging applicability in modeling positive random variables [4].

The Beta-I distribution is widely recognized for its ability to model data confined within the interval
(0, 1), making it an indispensable tool in fields such as finance, medicine, education, economics, and
ecology, where probabilities, proportions, and percentages are commonly analyzed. However, there is
a growing need for statistical models that can handle data spanning the entire real line, including both
negative and positive values. This need arises in various interdisciplinary fields where the phenomena
being studied are not limited to positive values alone. The Beta-I distribution is characterized by two
shape parameters, α and β, which determine its form and attributes, such as the presence of a mode
within the interval and the degree of symmetry. The probability density function (PDF) of the Beta-I
distribution is provided as:

fY (y; α, θ) =
1

B (α, θ)
yα−1 (1 − y)θ−1 , 0 < y < 1; α, θ > 0, (1.1)

where α and θ are the shape parameters, and B (α, θ) =
∫ 1

0
xα−1(1 − x)θ−1 is the normalizing constant.

The versatility and adaptability of the Beta-I distribution have led to its application across a wide range
of fields. In meteorological studies, for instance, [5] utilized the Beta distribution to model Malaysian
sunshine data over ten years. The study demonstrated that the Beta-I distribution could accurately fit
monthly sunshine data, providing valuable insights into the relationship between mean and standard
deviation of sunshine duration. In the economic analysis, the Beta-I distribution has proven to be an
effective model for income distributions, for instance, [6] studied the Beta Type I distribution to the survey
data, stabilizing estimation and offering insights into the relationship between theoretical distribution
characteristics and income indicators. Environmental research also benefits from the Beta-I distribution’s
capabilities. As reported in [7], the Beta-I distribution was employed to estimate relative humidity and
runoff coefficients and established its usefulness for environmental data through goodness-of-fit tests.
In project management, [8] introduced the Bayesian Beta S-curve method, which utilizes the Beta-I
distribution for probabilistic forecasting. This method provided accurate predictions for project duration
and cost at completion, proving advantageous for risk management in ongoing projects. Furthermore,
the Beta-I distribution has been effectively applied in post-earthquake damage modeling and flood loss
assessment. Recent developments in statistical inference for the Beta-I distribution, such as the novel
closed-form point estimators [9], give alternative approaches that enhance computational efficiency and
parameter estimate accuracy. These estimators provide analytical solutions that avoid iterative numerical
techniques, making them particularly suitable for large-scale applications. In addition to point estimation,
interval estimation is essential for evaluating the uncertainty in parameter estimates. Confidence intervals
for estimated parameters and other relevant variables are critical for practical decision-making, especially
in applications requiring risk assessment or predictive modeling.

The Beta-II distribution, also known as the Beta prime distribution, is another crucial member of the
Beta family. It is a versatile statistical model particularly effective for modeling positive data, as it is
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defined for values ranging from 0 to infinity. The Beta-II distribution and its variants have proven highly
effective in several fields, including finance, environmental science, economics, and engineering, offering
a flexible framework for capturing the variability and uncertainty inherent in diverse data types. The PDF
of the Beta-II distribution is provided via:

fT (t; α, θ) =
1

B (α, θ)

(
tα−1

(1 + t)α+θ

)
, 0 < t < ∞; α, θ > 0. (1.2)

Numerous generalizations of the Beta-II distribution have emerged in the statistical literature, each
offering unique advantages for specific applications. For instance, [10] highlighted the application
of the Beta-II distribution in engineering and environmental data, introducing the odd Beta prime
generalized (OBP-G) family of distributions. Their study derived the OBP-logistic distribution’s
mathematical properties, such as moments and entropy, demonstrating its superior performance in
modeling symmetric and skewed data. Similarly, [11] demonstrated the utility of the generalized Beta-
II in flood frequency analysis, underscoring its relevance in environmental applications, while [12]
expanded the OBP-G with the OBP-Burr X distribution, confirming its usefulness in modeling skewed
data as well as varying hazard rates, especially in COVID-19 mortality and petroleum rock samples.

Additionally, [13] applied the generalized Beta-II distribution to financial data, specifically daily
returns on the stock market, highlighting its suitability for financial modeling. The OBP-inverted
Kumaraswamy distribution introduced by [14] showcased its applicability in biomedical sciences and
engineering, outperforming competitors in modeling COVID-19 mortality data. The OBP-Fréchet
distribution, suggested by [15], can accommodate both right-skewed and left-skewed data, including
groundwater contamination data.

The Beta-III distribution is another important member of the Beta family, known for its versatility in
statistical modeling. Like the Beta-I model, the Beta-III distribution is specified for the interval [0, 1].
The PDF of the Beta-III distribution is given by:

fZ (z; α, θ) =
2αzα−1 (1 − z)θ−1

B (α, θ) (1 + z)α+θ
, 0 < z < 1; α, θ > 0. (1.3)

However, the Beta-III distribution often arises through transformations of the Beta-I distribution, and it
can be extended to multivariate and matrix-variate cases, enhancing its applicability in complex statistical
analyses. For example, in a similar study by [16], the authors introduced the matrix-variate Beta-III
distribution. This distribution was obtained through matrix transformation techniques and exhibits a
range of significant properties, including the Laplace transform and marginal distributions. The study
also explores the relationships between the matrix-variate Beta-III model and its counterparts, the matrix-
variate Beta-I as well as Beta-II models. Through a bilinear transformation of a random matrix, the
matrix-variate Beta-III distribution is generated. The study’s findings underscore the versatility of this
distribution in capturing the properties of random matrices within the bounded interval [0, 1].

According to [17], the Beta-III distribution is derived from the Beta-I distribution. This change assures
that the Beta-III distribution, defined on a bounded interval, can be used as a substitute for the Beta-I
distribution in practical situations. The study delved into various properties of the Beta-III distribution
and examined its relationships with the Beta-I and Beta-II distributions. Additionally, a multivariate
generalization of the Beta-III distribution was developed, along with an exploration of its properties,
further extending its applicability.

Despite the wide-ranging applicability of these Beta distributions, there remains a critical gap in
modeling data that spans the entire real line, including both negative and positive values. Conventional
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Beta distributions are constrained to specific intervals, limiting their use in scenarios where data may take
on any real value. This limitation is particularly evident in fields such as finance, where returns data can
be both negative and positive, and in engineering, biomedical, and hydrological studies, where data often
exhibit more complex patterns.

To address this gap, the present paper introduces a new Extension of the Beta (NE-Beta) distribution.
The proposed distribution extends the Beta-I distribution to the entire real line through a logarithmic
transformation technique, thereby retaining the flexibility and adaptability of the Beta-I distribution while
significantly broadening its applicability. The NE-Beta distribution is particularly useful for modeling
data in scenarios where traditional Beta distributions are inadequate. It provides a more comprehensive
tool for researchers and practitioners across various disciplines. To the best of our ability, the current
study represents the first generalization of the Beta-I using a logarithmic transformation approach that
can model both negative and positive data ranges. As the log-normal distribution originates via the
normal distribution, the NE-Beta distribution is derived from the Beta-I. Some recent generalizations
of statistical models using this logarithmic transformation approach can be found in [18–20], and the
references therein. Other generalized distributions developed using various approaches can be found
in [21–30].

The table below compares the NE-Beta distribution to three typical Beta distributions: Beta-I, Beta-
II, and Beta-III. Table 1 summarizes the key differences in support, shape, and typical applications.
While classical Beta distributions have constraints in terms of support and form flexibility, the NE-Beta
distribution is more widely applicable. Its capacity to represent both positive and negative data, as well
as its adaptability to varied shapes, make it an effective tool for a wide range of statistical modeling tasks.

Table 1. The mean, variance, skewness, and kurtosis for the NE-Beta distribution for various
parameter combinations.

Distribution Support Shape Applications
Beta-I (0, 1) Symmetric or skewed Modeling proportions,

probabilities
Beta-II (0,∞) Right-skewed Reliability analysis,

survival analysis
Beta-III (0, 1) Symmetric or skewed Multivariate applications
NE-Beta (−∞,∞) Near-symmetric, left-skewed, Finance, biomedicine,

or right-skewed engineering, hydrology

The motivation for this research stems from the need to develop a versatile statistical distribution that
not only retains the core applicability of the Beta-I distribution but also extends its range to encompass
all real numbers. This extension is critical for modeling phenomena that involve both positive and
negative values, which are common across various fields such as finance, engineering, biomedicine, and
hydrology. The proposed NE-Beta distribution achieves this by utilizing a logarithmic transformation of
the Beta-I distribution, offering unique properties that make it suited for modeling diverse types of data.

In this study, we demonstrate that the NE-Beta distribution not only offers an excellent fit to financial
returns data, which can be negative or positive, but also proves highly effective in interdisciplinary
applications. The model can represent nearly symmetric, left-skewed, or right-skewed data distributions
and features hazard rates that exhibit increasing trends. This flexibility allows the NE-Beta distribution
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to adapt to various data shapes, making it suitable for a wide array of practical scenarios. The key
contributions of this paper are as follows:

i. To introduce the NE-Beta distribution, which extends the Beta-I distribution to cover the entire
real line using a logarithmic transformation technique, thereby broadening its applicability across
different fields.

ii. The NE-Beta distribution is designed to accommodate nearly symmetric, left-skewed, or right-
skewed data distributions and features increasing or decreasing hazard rates, making it suitable
for modeling diverse data shapes encountered in finance, engineering, biomedicine, and hydrology.

iii. To explore the important statistical properties of the NE-Beta distribution, including its mean,
variance, skewness, kurtosis, and various moments and entropy measures, providing a deep
understanding of its behavior.

iv. To employ the maximum likelihood estimation method to estimate the parameters of the NE-Beta
distribution and validate its performance through Monte Carlo simulations using multiple estimation
approaches, including least squares estimation (LSE), Cramér-von Mises (CVM), weighted least
squares estimation (WLSE), and maximum likelihood estimation (MLE).

v. To demonstrate the broad applicability of the NE-Beta distribution, we apply it to multiple datasets,
including financial returns data, engineering reliability data, biomedical data, and hydrological data.
These applications showcase the model’s ability to outperform competing models across various
disciplines, highlighting its versatility and effectiveness.

The remainder of this paper is organized as follows: Section 2 defines the NE-Beta distribution and
presents plots of its hazard and density functions. Various statistical properties and parameter estimation
methods are discussed in Sections 3 and 4. In Section 5, we conduct Monte Carlo simulations using
the quantile function and apply the NE-Beta distribution to interdisciplinary datasets. Finally, in Section
6, we conclude that the NE-Beta model offers superior performance compared to its competitors across
different domains.

2. Materials and methods

This section offers a novel statistical distribution that will serve as an alternative to several forms of
Beta distributions as well as some other conventional distributions with different probability distribution
limits. The NE-Beta distribution is derived using a logarithmic transformation X = log

(
Y

1−Y

)
of the

classical Beta-I distribution, and this can be provided as:

fX (x; α, θ) =
1

B (α, θ)

(
eαx

(1 + ex)α+θ

)
, −∞ < x < ∞; α, θ > 0. (2.1)

A random variable X with the PDF in Eq (2.1) can be expressed as X ∼ NE−Beta (α, θ), where X follows
the New Beta distribution with parameters α and θ. The cumulative distribution function (CDF) of the
NE-Beta distribution is obtained from Eq (2.1) as:

FX (x; α, θ) =
1

B (α, θ)

x∫
−∞

eαt

(1 + et)α+θ
dt =

1
B (α, θ)

Bex (α, θ) , (2.2)
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where Bex =
∫ ex

0
tα−1

(1+t)α+θ
dt is the incomplete Beta function of the second kind. Nevertheless, the CDF

presented in Eq (2.2) can be expressed as:

FX (x; α, θ) = I (ex; α, θ) , (2.3)

which is represented as the regularized incomplete Beta function, where I (ex; α, θ) = 1
B(α, θ) B (ex; α, θ).

Figure 1 presents the different density patterns of the NE-Beta distribution, including (a) nearly
symmetric, (b) right-skewed, and (c) left-skewed shapes with different parameter settings. As
demonstrated in these figures, the distribution’s shape is greatly influenced by its parameters, α and
θ. When α is considerably larger than θ, the distribution approaches near-symmetry, making it highly
suitable for modeling data that is not strongly skewed in either direction. On the other hand, as θ increases
relative to α, the distribution becomes progressively (b) right-skewed, or (c) left-skewed, enabling it to
effectively model data with a pronounced long tail to the right or left. This adaptability is particularly
valuable in domains such as finance, engineering, biomedicine, and hydrology, where data often exhibits
such characteristics.

(a) (b)

(c)

Figure 1. The PDF plots for the NE-Beta distribution.

Moreover, the NE-Beta distribution offers several advantages over conventional Beta distributions. By
extending the domain to the entire real line, it surpasses the limitations of Beta distributions, which are
confined to the interval (0, 1). This enhanced flexibility allows the NE-Beta distribution to model a wider
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range of data, including those with negative or unbounded values. This flexibility enhances its utility for
diverse datasets across various domains.

2.1. Related distributions

The NE-Beta distribution is related to other statistical distributions, including Beta types I and II.
Some of the relationships are as follows:

i. If X ∼ NE − Beta (α, θ), then eX ∼ Beta − II (α, θ),
ii. If X ∼ NE − Beta (α, θ), then eX

1+eX ∼ Beta − I (α, θ).

3. Properties of the NE-Beta distribution

This section discusses the quantile function, survival function, hazard function, cumulative hazard
function, mixture representations, moment generating function, moments, and Rényi as well as Tsallis
entropies of the NE-Beta distribution.

3.1. Quantile function

The quantile function provides a direct link between the distribution and its application in generating
random samples. This is particularly useful in simulation studies and Monte Carlo experiments, where
the quantile function is employed to efficiently generate data points from the new distribution. The
quantile function of the NE-Beta distribution with the CDF defined in Eq (2.3) can be determined using
the technique applied in [10] as:

exq = I−1 (u; α, θ) . (3.1)

Taking the logarithm of both sides of Eq (3.1) we may obtain the quantile function of the NE-Beta
distribution

xq = log
{
I−1 (u; α, θ)

}
, (3.2)

where u is a real number whose values range from 0 to 1.

3.2. Survival, hazard, and cumulative hazard functions

The survival function is crucial in reliability analysis and survival studies, as it represents the
probability of an event occurring beyond a specific time. Its flexible form in the new distribution enables
the modeling of complex lifetime data, including cases with heavy tails or varying hazard rates. Thus,
the survival function of the NE-Beta distribution can be determined according to Eq (2.2), whereby

S (x; α, θ) = 1 −
(

Bex (α, θ)
B (α, θ)

)
, −∞ < x < ∞; α, θ > 0. (3.3)

The hazard function highlights the instantaneous risk of an event occurring at a specific time, given that it
has not occurred earlier. The flexibility of the hazard function derived from the new distribution makes it
suitable for modeling real-world phenomena with increasing, decreasing, or bathtub-shaped hazard rates,
which are commonly encountered in reliability and biomedical applications. Then, the hazard function
of the NE-Beta distribution is derived from Eqs (2.1) and (3.3):

h (x; α, θ) =
eαx (1 + ex)−(α+θ)

B (α, θ)
{
1 − Bex (α, θ)

B(α, θ)

} , −∞ < x < ∞; α, θ > 0. (3.4)
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The cumulative hazard function (CHF) offers insights into the aggregate risk of an event over time. This
property is particularly beneficial in reliability engineering and failure rate analysis, where the cumulative
effect of risks must be quantified to design more robust systems. Thus, the CHF is derived from Eq (3.3)
as:

H (x; α, θ) = − log (S (x; α, θ)) = − log
(
1 −

(
Bex (α, θ)
B (α, θ)

))
, −∞ < x < ∞; α, θ > 0. (3.5)

Figure 2(a) demonstrates that the curve of the NE-Beta distribution goes higher and remains flat at
where the y-axis is equal to 1. This indicates that the NE-Beta distribution is a legitimate statistical
distribution. In Figure 2(b), the cumulative hazard plots of the NE-Beta distribution display an increasing
shape, indicating that the risk of occurrence has risen over time. Figure 3 shows the structure of the
hazard functions for the NE-Beta distribution, displaying (a) increasing and (b) decreasing shapes across
various parameter values. This characteristic is essential for modeling failure rates in interdisciplinary
datasets, where data can exhibit diverse patterns and complexities, particularly in fields such as finance,
engineering, biomedicine, and hydrology.

Figure 2. The CDF and CHF plots for the NE-Beta distribution.
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Figure 3. The hazard function plots for the NE-Beta distribution.

3.3. Expansion for the PDF

The PDF expansion decomposes the new distribution into simpler components, allowing for better
statistical inference, as presented in [27]. The PDF for NE-Beta can be represented as follows.

Consider the generalized binomial expansion for ϕ > 0 as follows:

(1 + w)−ϕ =
∞∑

k=0

(−ι)k Γ (ϕ + k)
k!Γ (ϕ)

wk, w > 0. (3.6)

Utilizing Eq (3.6) into the denominator in Eq (2.1) yields:

fX (x; α, θ) =
1

B (α, θ)
eαx

∞∑
k=0

(−ι)k Γ (α + θ + k)
k!Γ (α + θ)

(ex)k

=
1

B (α, θ)

∞∑
k=0

(−ι)k Γ (α + θ + k)
k!Γ (α + θ)

ex(k+α), (3.7)

which is the PDF of the NE-Beta distribution.

3.4. Moment generating function

The moment generating function (MGF) is instrumental in deriving moments, cumulants, and other
statistical measures of the distribution. Its existence for the new distribution highlights its potential use in
risk management, financial modeling, and decision-making processes that rely on higher-order moments.
The MGF for the NE-Beta distribution can be constructed according to Eq (2.1) as follows:

MX (t) =
1

B (α, θ)

∞∫
−∞

etx × eαx

(1 + ex)α+θ
dx
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=
1

B (α, θ)

∞∫
−∞

ex(t+α)

(1 + ex)α+θ
dx. (3.8)

Following some computations, Eq (3.8) is presented as:

MX (t) =
1

B (α, θ)
B (t + α, θ − t) , θ > t, (3.9)

which indicates that the MGF of the NE-Beta distribution can only exist when θ > t.

3.5. Moments

Moments provide critical insights into the central tendency, dispersion, skewness, and kurtosis of the
distribution. These measures are valuable in understanding the shape and variability of the data, which is
essential in fields like finance, environmental science, and quality control. The rth moments of X about
the origin of the NE-Beta distribution can be determined using the MGF obtained in Eq (3.9). This can
be achieved by differentiating Eq (3.9) r times for t and then setting t = 0, as explained in [31]. The steps
to obtain moments are as follows:

E (Xr) =
∣∣∣∣∣ dr

dtr {MX (t)}
∣∣∣∣∣
t=0

=
1

B (α, θ)

∣∣∣∣∣ dr

dtr {B (t + α, θ − t)}
∣∣∣∣∣
t=0

=
Γ (α + θ)
Γ (α)Γ (θ)

∣∣∣∣∣ dr

dtr {B (t + α, θ − t)}
∣∣∣∣∣
t=0

=
Γ (α + θ)
Γ (α)Γ (θ)

∣∣∣∣∣∣ dr

dtr

{
Γ (t + α)Γ (θ − t)
Γ (t + α + θ − t)

}∣∣∣∣∣∣
t=0

=
Γ (α + θ)
Γ (α)Γ (θ)

∣∣∣∣∣∣ dr

dtr

{
Γ (t + α)Γ (θ − t)
Γ (α + θ)

}∣∣∣∣∣∣
t=0

=
1

Γ (α)Γ (θ)

∣∣∣∣∣ dr

dtr {Γ (t + α)Γ (θ − t)}
∣∣∣∣∣
t=0
. (3.10)

The first moments can be obtained by differentiating Eq (3.10) for t as:

E (X) =
1

Γ (α)Γ (θ)

{
Γ (θ − t)

d
dt
{Γ (t + α)} + Γ (t + α)

d
dt
{Γ (θ − t)}

}
=

1
Γ (α)Γ (θ)

{Γ (θ − t)ψ (t + α)Γ (t + α) + Γ (t + α) {−ψ (θ − t)Γ (θ − t)}}

=
Γ (t + α)Γ (θ − t)
Γ (α)Γ (θ)

{ψ (t + α) − ψ (θ − t)} , (3.11)

where ψ (t + c) = d
dt lnΓ (t + c) = Γ

′
(t+c)
Γ(t+c) , which implies Γ

′ (t + c) = Γ (t + c)ψ (t + c).
Putting t = 0 into Eq (3.11) will give the first moments for the NE-Beta distribution obtained as:

E (X) = ψ (α) − ψ (θ) . (3.12)
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The second moments can be derived by differentiating Eq (3.11) for t as:

E
(
X2

)
=

1
Γ (α)Γ (θ)

d
dt
{Γ (t + α)Γ (θ − t) {ψ (t + α) − ψ (θ − t)}}

=
Γ (t + α)Γ (θ − t)
Γ (α)Γ (θ)

{
ψ (1, t + α) + ψ (1, θ − t) − 2ψ (t + α)ψ (θ − t) + ψ2 (t + α) + ψ2 (θ − t)

}
.

(3.13)

Substituting t = 0 into Eq (3.13), we obtain the second moments for the NE-Beta distribution as:

E
(
X2

)
= ψ (1, α) + ψ (1, θ) − 2ψ (α)ψ (θ) + ψ2 (α) + ψ2 (θ) . (3.14)

Then, the third and fourth moments are, respectively presented as:

E
(
X3

)
= ψ (2, α) − ψ (2, θ) − 3ψ (θ)ψ (1, α) + 3ψ (α)ψ (1, α) − 3ψ (θ)ψ (1, θ) + 3ψ (α)ψ (1, θ)

− ψ (θ)ψ2 (α) + ψ (α)ψ2 (θ) + ψ
3
(α) − ψ3 (θ) , (3.15)

and

E
(
X4

)
= ψ (3, α) + ψ (3, θ) − 4ψ (θ)ψ (2, α) + 4ψ (α)ψ (2, α) + 4ψ (θ)ψ (2, θ) − 4ψ (α)ψ (2, θ)+

6ψ (1, α)ψ (1, θ) − 8ψ (α)ψ (θ)ψ (1, α) + 6ψ2 (α)ψ (1, α) + 3ψ2 (1, α) + 3ψ2 (θ)ψ (1, α)+
3ψ2 (1, θ) + 3ψ2 (θ)ψ (1, θ) − 4ψ2 (θ)ψ (1, θ) − 6ψ (α)ψ (θ)ψ (1, θ) + 4ψ2 (α)ψ (1, θ)+
2ψ2 (α)ψ2 (θ) − 2ψ (α)ψ (θ)ψ (1, θ) − ψ2 (α)ψ (θ) − 2ψ (α)ψ3 (θ) − ψ3 (α)ψ (θ)

ψ4 (α) + ψ4 (θ) . (3.16)

As a result, the mean is provided in Eq (3.12), and the variance may be determined via Eqs (3.12)
and (3.14).

σ2
X = ψ (1, α) + ψ (1, θ) − 2ψ (α)ψ (θ) + ψ2 (α) + ψ2 (θ) − (ψ (α) − ψ (θ))2

= ψ (1, α) + ψ (1, θ) − 2ψ (α)ψ (θ) + ψ2 (α) + ψ2 (θ) − ψ2 (α) − ψ2 (θ) + 2ψ (α)ψ (θ)

= ψ (1, α) + ψ (1, θ) . (3.17)

The skewness (Sk) and kurtosis (Ku) can now be determined using the first four moments obtained in
Eqs (3.12) and (3.14)–(3.16) as follows:

S k =
E

(
X3

)
− 3E (X)σ2

X − {E (X)}3

σ3
X

, (3.18)

and

Ku =
E

(
X4

)
− 4E (X) E

(
X3

)
+ 6E

(
X2

)
{E (X)}2 − 3 {E (X)}4

σ4
X

. (3.19)

Table 2 presents some properties of the proposed NE-Beta distribution for various combinations of α
and θ. As α increases, the mean of the distribution shifts higher, while variance generally decreases,
indicating reduced dispersion. For fixed α, an increase in θ leads to a lower mean and variance,
concentrating the distribution around lower values. The variation in skewness and kurtosis with both
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parameters underscores the NE-Beta distribution’s flexibility in modeling different data shapes and tails.
This ability to adapt to various data characteristics highlights its advantage over the Beta-I distribution,
which is limited to capturing data strictly within the [0, 1] range. Figure 4 shows the 3D plots of the mean,
variance, kurtosis, and skewness for the NE-Beta distribution across various parameter combinations.

Table 2. The mean, variance, skewness, and kurtosis for the NE-Beta distribution for various
parameter combinations.

α θ Mean Variance Skewness Kurtosis
0.5 0.5 0.0000 8.6743 0.0000 0.6419
0.5 1 -1.3146 5.8245 -0.4793 0.7303
0.5 1.5 -1.9135 5.0130 -0.6781 0.6708
0.5 2 -2.2881 4.6426 -0.7545 0.6345
0.5 2.5 -2.5587 4.4221 -0.7883 0.5985
0.5 3 -2.7697 4.2704 -0.8039 0.5622
0.5 3.5 -2.9423 4.1567 -0.8106 0.5269
0.5 4 -3.0883 4.0663 -0.8125 0.4934
0.5 4.5 -3.2146 3.9916 -0.8116 0.4617
0.5 5 -3.3258 3.9281 -0.8091 0.4319
1 0.5 1.3146 5.8245 0.4793 0.7303
1 1 0.0000 3.2791 0.0000 1.0975
1 1.5 -0.6130 2.5725 -0.3642 1.0841
1 2 -0.9991 2.2809 -0.5552 1.1820
1 2.5 -1.2793 2.1247 -0.6676 1.2798
1 3 -1.4987 2.0277 -0.7402 1.3571
1 3.5 -1.6789 1.9616 -0.7904 1.4153
1 4 -1.8317 1.9137 -0.8268 1.4586
1 4.5 -1.9642 1.8772 -0.8542 1.4908
1 5 -2.0813 1.8484 -0.8753 1.5145
1.5 0.5 1.9135 5.0130 0.6781 0.6708
1.5 1 0.6130 2.5725 0.3642 1.0841
1.5 1.5 0.0000 1.8695 0.0000 0.8028
1.5 2 -0.3863 1.5797 -0.2135 0.7594
1.5 2.5 -0.6667 1.4251 -0.3478 0.7993
1.5 3 -0.8863 1.3296 -0.4393 0.8578
1.5 3.5 -1.0667 1.2650 -0.5055 0.9161
1.5 4 -1.2196 1.2185 -0.5555 0.9692
1.5 4.5 -1.3524 1.1833 -0.5946 1.0159
1.5 5 -1.4696 1.1559 -0.6260 1.0567
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(a) (b)

(c) (d)

Figure 4. 3D plots of mean, variance, skewness, and kurtosis for the NE-Beta distribution
across various parameter combinations.

3.6. Rényi and Tsallis entropies

Rényi and Tsallis entropies quantify the distribution’s uncertainty and diversity. These measures have
significant applications in information theory, ecological diversity studies, and machine learning, where
understanding uncertainty is pivotal for model development and optimization. The Rényi entropy of the
NE-Beta distribution with the PDF as defined in Eq (2.1) can be described as:

Rq (X) =
1

1 − q
log


∞∫
−∞

f q
X (x; α, θ)dx

 , 0 < q < ∞, q , 1. (3.20)

The integral part in Eq (3.20) can be expressed as:

∞∫
−∞

f q
X (x; α, θ)dx =

1
{B (α, θ)}q

∞∫
−∞

(
eαqx

(1 + ex)q(α+θ)

)
dx. (3.21)
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Integrating Eq (3.21) for x, we get
∞∫
−∞

f q
X (x; α, θ)dx =

1
{B (α, θ)}q

B (αq, θq) . (3.22)

Putting Eq (3.22) into Eq (3.20) yields the Rényi entropy for the NE-Beta distribution.

Rq (X) =
1

1 − q
log

{
B (αq, θq)
{B (α, θ)}q

}
, q , 1. (3.23)

Table 3 presents the Rényi entropy values for the NE-Beta distribution across various parameter
combinations of α and θ. The data indicates that Rényi entropy decreases as both α and θ increase.
Specifically, for fixed θ, increasing α leads to a reduction in entropy, reflecting a more concentrated
distribution with less uncertainty. Similarly, for fixed θ, increasing α also results in lower entropy,
suggesting a distribution that becomes increasingly deterministic with fewer data variations. This
trend highlights that the NE-Beta distribution can model a wide range of uncertainty levels, from high
entropy (more spread out) to low Rényi (more concentrated), depending on the chosen parameter values.
Figure 5 illustrates the 3D plots of Rényi entropy for the NE-Beta distribution for various parameter
combinations.

Figure 5. 3D plots of Rényi entropy for the NE-Beta distribution for various parameters.
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Table 3. Rényi entropy for the NE-Beta distribution for various parameter combinations.

α θ Rényi entropy
1 1 1.7918
1 2 1.6094
1 3 1.5405
1 4 1.5041
1 5 1.4816
2 1 1.6094
2 2 1.3581
2 3 1.2528
2 4 1.1939
2 5 1.1562
3 1 1.5405
3 2 1.2528
3 3 1.1249
3 4 1.0508
3 5 1.0020
4 1 1.5041
4 2 1.1939
4 3 1.0508
4 4 0.9657
4 5 0.9085

The Tsallis entropy of the NE-Beta distribution can be represented using Eq (3.22) as

Rq (X) =
ϵ

q − 1

{
1 −

(
B (αq, θq)
{B (α, θ)}q

)}
, ϵ > 0, q , 1. (3.24)

Table 4 presents the Tsallis entropy for the NE-Beta distribution across various combinations of the
parameters α, θ, and q. The entropy values provide insights into the uncertainty and diversity within the
distribution. As α increases while holding θ constant, the Tsallis entropy generally decreases, indicating
that higher α values lead to a more concentrated distribution. Similarly, for a fixed α, increasing θ

also results in lower entropy values, further reflecting a trend toward more concentrated distributions.
Additionally, for a given pair of α and θ, higher q values are associated with less negative entropy values,
suggesting a reduction in the distribution’s uncertainty. This behavior demonstrates the flexibility of the
NE-Beta distribution in capturing a range of uncertainty levels by adjusting the parameters, making it
suitable for various applications where modeling diversity and concentration is crucial.
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Table 4. Tsallis entropy for the NE-Beta distribution for various parameter combinations.

α θ q Tsallis entropy
1 1 1.1 -1.7859
1 1 2.1 -0.7934
1 1 3 -0.4728
1 1 4 -0.3283
1 1 5 -0.2496
1 2 1.1 -1.6272
1 2 2.1 -0.7638
1 2 3 -0.4661
1 2 4 -0.3267
1 2 5 -0.2492
1 3 1.1 -1.5673
1 3 2.1 -0.7510
1 3 3 -0.4629
1 3 4 -0.3258
1 3 5 -0.2490
2 1 1.1 -1.6272
2 1 2.1 -0.7638
2 1 3 -0.4661
2 1 4 -0.3267
2 1 5 -0.2492
2 2 1.1 -1.4039
2 2 2.1 -0.7123
2 2 3 -0.4519
2 2 4 -0.3225
2 2 5 -0.2479
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Figure 6 illustrates the 3D plots of Tsallis entropy for the NE-Beta distribution for various parameter
combinations.

(a) (b)

(c) (d)

Figure 6. 3D plots of Tsallis entropy for the NE-Beta distribution for various parameter
combinations.

4. Parameter estimation

This section describes the methods used to estimate the parameters of the NE-Beta distribution: least
squares estimation (LSE), Cramér-von Mises (CVM), weighed least squares estimation (WLSE), and
maximum likelihood estimation (MLE). The following are the key processes utilized to estimate the
model parameters of the proposed distribution.

4.1. Parameter estimation using LSE

Let x1, x2, x3, . . . , xn represent random samples chosen from the NE-Beta distribution, with F (x; α, θ)
and f (x; α, θ) denoting the CDF and PDF, respectively. Let x(i), for i = 1, 2, . . . , n, be an ordered
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observation with F
(
x(i);Ω

)
as the CDF, where Ω = (α, θ)T . The following should be considered when

determining the parameters using the LSE. Let

Φi (Ω) = F
(
x(i);α, θ

)
−

( i
n + 1

)
. (4.1)

Given the CDF in Eq (2.2), Eq (4.1) can be expressed as follows:

L (Ω) =
n∑

i=1

Φi (Ω) =
n∑

i=1


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

( i
n + 1

). (4.2)

The parameters for the NE-Beta distribution can now be estimated by minimizing Eq (4.2) for the
parameters α and θ, as follows:

∂L (Ω)
∂α

=

n∑
i=1

∂

∂α


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)

, (4.3)

and
∂L (Ω)
∂θ

=

n∑
i=1

∂

∂θ


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)

. (4.4)

Solving for Eqs (4.3) and (4.4) yields estimates of the parameters of the NE-Beta distribution. This can
be accomplished using numerical techniques such as Newton Raphson’s methodology.

4.2. Parameter estimation using CVM

Suppose x1, x2, x3, . . . , xn to be random samples from the NE-Beta distribution, with the CDF and PDF
as F (x; α, θ) and f (x; α, θ). Consider x(i) being an ordered observation, with the CDF as F

(
x(i);Ω

)
. The

estimation based on the CVM can be performed using the following relations:

ψi (Ω) = F
(
x(i);α, θ

)
−

(
2i − 1

2n

)
, (4.5)

and

C (Ω) =
1

12n
+

n∑
i=1

ψ2
i (Ω)

=
1

12n
+

n∑
i=1

B e
x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

(
2i − 1

2n

)
2

. (4.6)

Now, the parameters of the NE-Beta distribution are estimated by minimizing Eq (4.6) for α and θ, as
illustrated below.

∂C (Ω)
∂α

= 2
n∑

i=1

B e
x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

(
2i − 1

2n

) × ∂

∂α


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)

, (4.7)

and
∂C (Ω)
∂θ

= 2
n∑

i=1

B e
x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

(
2i − 1

2n

) × ∂

∂θ


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)

. (4.8)

Solving for Eqs (4.7) and (4.8) gives estimates of the parameters of the NE-Beta distribution. This can
be performed using numerical techniques such as Newton Raphson’s method.
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4.3. Parameter estimation using WLSE

Consider the sample observations x(1), x(2), . . . , x(n) with the CDF of the NE-Beta distribution as
F

(
x(i);Ω

)
. The parameter estimations using the WSLE technique are then attainable using the following

relationships:

ϖi (Ω) =
(
(n + 1)2 (n + 2)

i (n − i + 1)

) [
F

(
x(i);α, θ

)
−

( i
n + 1

)]2

. (4.9)

Equation (4.9) can be provided as follows:

ω (Ω) =
n∑

i=1

ϖi (Ω) = (n + 1)2 (n + 2)
n∑

i=1


(

1
i (n − i + 1)

) B e
x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

( i
n + 1

)
2. (4.10)

To obtain the parameters of the NE-Beta distribution, minimize Eq (4.10) for α and θ, as follows:

∂ω (Ω)
∂α

= 2 (n + 1)2 (n + 2)
n∑

i=1


(

1
i (n − i + 1)

) B e
x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

( i
n + 1

)
 × ∂

∂α


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)

, (4.11)

and

∂ω (Ω)
∂θ

= 2 (n + 1)2 (n + 2)
n∑

i=1


(

1
i (n − i + 1)

) B e
x(i)

1+e
x(i)

(α, θ)

B (α, θ)
−

( i
n + 1

)
 × ∂

∂θ


B e

x(i)

1+e
x(i)

(α, θ)

B (α, θ)

. (4.12)

Solving for Eqs (4.11) and (4.12) yields parameter estimates for the NE-Beta distribution. We can achieve
this by using numerical techniques, such as Newton Raphson’s approach.

4.4. Parameter Estimation using MLE

Let X1, X2, . . . , Xn denote the random sample of size n which is drawn from the NE-Beta model with
vector parameter Φ = (α, θ)T and observed values x1, x2 . . . xn. The estimate of the parameter can be
derived by obtaining the likelihood function of Eq (2.1) as:

L (Φ) =
(

1
B (α, θ)

)n n∏
i=1

(
eαxi

(1 + exi)α+θ

)
. (4.13)

The log-likelihood function of Eq (4.13) is determined as

LL = n log
(
Γ (α + θ)
Γ (α)Γ (θ)

)
+ α

n∑
i=1

xi − (α + θ)
n∑

i=1

log (1 + exi). (4.14)

The parameter estimations can be obtained by considering the partial derivatives of Eq (4.14) with respect
to the parameters α and θ.

∂LL
∂α
= nψ (α + θ) − nψ (α) +

n∑
i=1

xi −

n∑
i=1

log (1 + exi), (4.15)

and
∂LL
∂θ
= nψ (α + θ) − nψ (θ) −

n∑
i=1

log (1 + exi), (4.16)
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where ψ (t) = d
dt lnΓ (t) = Γ

′
(t)
Γ(t) . Taking the results of the partial derivatives of Eqs (4.15) and (4.16) to zero

and solving them as nonlinear equations, we can obtain the MLEs for the parameters α and θ. However,
Eqs (4.15) and (4.16) cannot be solved analytically, thus statistical software can be used to solve them
numerically using iterative methods.

5. Application

5.1. Monte Carlo simulation

This section presents a simulation study to investigate the performances of the parameters of the NE-
Beta distribution. The simulation study can be conducted utilizing the quantile function obtained in Eq
(3.2) by employing various estimation approaches such as LSE, CVM, WLSE, and MLE. The simulation
was carried out and the numerical results are evaluated using the following steps:

1) Generate a random sample of size n taken from the NE-Beta distribution.
2) The NE-Beta distribution parameters are computed using the LSE approach.
3) Steps 1 through 2 should be repeated 1000 times.
4) We compute the averages of the mean, bias, and mean squared error (MSE) for the NE-Beta

distribution with various sample sizes (n = 5, 10, 20, 30, 50, and 100) and parameter values (α = 1
and θ = 1).

The CVM, WLSE, and MLE techniques, which are based on the LSE procedure, are used to determine
the parameters of the NE-Beta distribution. Tables 5 and 6 present the simulation findings for α = 1 and
θ = 1.

Table 5. The mean, bias, and MSE for the NE-Beta distribution.

LSE CVM
n Parameter Mean Bias MSE Mean Bias MSE
5 α 4.2542 3.2542 337.9146 6.2886 5.2886 657.6480

θ 4.3120 3.3120 288.1962 6.1745 5.1745 498.9125
10 α 1.3409 0.3409 1.3983 1.7383 0.7383 7.1976

θ 1.3377 0.3377 1.4357 1.7498 0.7498 10.1371
30 α 1.0283 0.0283 0.1058 1.1148 0.1148 0.1445

θ 1.0384 0.0384 0.1117 1.1262 0.1262 0.1541
50 α 1.0097 0.0097 0.0575 1.0604 0.0604 0.0696

θ 1.0184 0.0184 0.0602 1.0695 0.0695 0.0730
100 α 1.0044 0.0044 0.0251 1.0288 0.0288 0.0277

θ 1.0068 0.0068 0.0261 1.0313 0.0313 0.0291
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Table 6. The Mean, Bias as well as MSE for NE-Beta distribution.

WLSE MLE
n Parameter Mean Bias MSE Mean Bias MSE
5 α 1.6940 0.6940 17.6434 2.2972 1.2972 26.1344

θ 1.5526 0.5526 11.8531 2.3243 1.3243 24.6300
10 α 1.1313 0.1313 1.0930 1.3540 0.3540 0.8149

θ 1.1293 0.1293 1.0130 1.3595 0.3595 0.9090
30 α 1.0237 0.0237 0.0961 1.1000 0.1000 0.0959

θ 1.0336 0.0336 0.0989 1.1084 0.1084 0.0971
50 α 1.0150 0.0150 0.0516 1.0574 0.0574 0.0478

θ 1.0235 0.0235 0.0526 1.0630 0.0630 0.0485
100 α 1.0102 0.0102 0.0214 1.0292 0.0292 0.0196

θ 1.0130 0.0130 0.0224 1.0316 0.0316 0.0208

The mean, bias, and MSE of the parameters using LSE, CVM, WLSE, and MLE are presented in
Tables 5 and 6. These tables show that as the sample size increases, the means approach true parameter
values, while the bias and MSE of each estimate drop and converge to zero.

Table 7 displays the MSE summary for the results from Tables 5 and 6. As the sample size is 5,
the MSE utilizing the WLSE technique provided the optimal result regardless of the parameters α and
θ, followed by MLE, LSE, and CVM. With a sample size of 10, the MLE approach produced lower
MSE values for all parameters α and θ. As the sample size increased, all of the MSEs utilizing various
estimation methodologies reduced and approached zero, but MLE produced a better estimate.

Table 7. MSE summary for different methods of estimation.

n MSE (α, θ) LSE CVM WLSE MLE
5 α 337.9146 657.6480 17.6434 26.1344

θ 288.1962 498.9125 11.8531 24.6300
10 α 1.3983 7.1976 1.0930 0.8149

θ 1.4357 10.1371 1.0130 0.9090
30 α 0.1058 0.1445 0.0961 0.0959

θ 0.1117 0.1541 0.0989 0.0971
50 α 0.0575 0.0696 0.0516 0.0478

θ 0.0602 0.0730 0.0526 0.0485
100 α 0.0251 0.0277 0.0213 0.0196

θ 0.0261 0.0291 0.0222 0.0208
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Figures 7 and 8 demonstrate that the MSE for all estimation methods decreases with increasing sample
size. This trend shows the increased accuracy and efficiency of estimation methods with larger datasets.

(a) (b)

(c) (d)

Figure 7. Performance of parameter α for the NE-Beta distribution.
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(a) (b)

(c) (d)

Figure 8. Performance of parameter θ for the NE-Beta distribution.

5.2. Interdisciplinary data applications

The flexibility and robustness of the proposed NE-Beta distribution allow it to be applied across
various disciplines, offering significant advancements in fields as diverse as finance, biomedicine,
engineering, and environmental science. In finance, the distribution is particularly suited for modeling
the heavy tails and skewness observed in returns data, providing more accurate risk assessments and
portfolio management strategies. In biomedicine, it can effectively model survival times and the
distribution of biological measurements, aiding in the development of predictive models for patient
outcomes and treatment efficacy. Engineering applications, particularly in reliability analysis, benefit
from the distribution’s ability to accurately model failure times, which is critical in the design and
maintenance of systems. Finally, in environmental science, the distribution is used to analyze flood data,
predict extreme events, and assess environmental risks, contributing to better disaster management and
sustainable development practices. These diverse applications will emphasize the broad applicability and
interdisciplinary impact of the NE-Beta distribution in addressing complex, real-world problems across
multiple fields.
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5.2.1. Numerical and graphical data presentations

Different data sets across various disciplines are considered in this study to check the accuracy of the
proposed New Beta distribution with unbounded supports against the other existing distributions that has
the same range of intervals. These include: the logistic, normal, log-gamma, extreme value, and student’s
t distributions. The data sets considered are presented as follows:

Financial data: The first data set covers the daily Nigerian exchange rate between the
naira and USD (United States Dollar), and it spans the period from 4 January, 2021, to 1
February, 2024. This data is accessible at the CBN (Central Bank of Nigeria) using the following link:
https://www.cbn.gov.ng/rates/exrate.html. The returns for the data were computed and considered by
using the following relation:

Returnt =

(
Original Datat

Original Datat−1
− 1

)
× 100. (5.1)

The return values show the percentage change in the exchange rate from one period to another. These
returns are critical in determining the volatility and overall trend of the exchange rate over time.

Biomedical data: The second data was studied in [32]. It involves the survival times (in days) of 73
patients suffering from acute bone cancer.

Engineering data: The third data set consisted of failure times of 50 components (per 1000 h). This
data was studied and analyzed in [33].

Hydrological data: The fourth data set included 141 observations of maximum flood data, which were
investigated in [34].

Table 8 presents the descriptive statistics for the four datasets, illustrating several characteristics such
as skewness and kurtosis, which differ across each dataset. These metrics reveal unique distributional
patterns in the data, offering valuable insights into their behavior and guiding the selection of appropriate
statistical models for analysis.

Table 8. Some descriptive summaries for the four datasets.

Statistic Financial data Biomedical data Engineering data Hydrological data
Observations 748 73 50 141
Minimum -26.7696 0.090 0.0360 0.2083
Maximum 20.4322 86.010 15.0800 6.1876
Mean -0.1311 3.755 3.3430 1.4706
Median -0.0024 1.5700 1.4140 0.9714
Standard deviation 2.9148 10.5986 4.1815 1.5943
First quartile -0.0416 0.9200 0.2075 0.5914
Third quartile 0.0000 2.750 4.4988 1.9698
Skewness -1.5173 6.6596 1.3745 1.5943
Kurtosis 32.7223 47.3686 0.9229 2.2632

For the financial dataset, the summary statistics reveal a distribution with significant negative skewness
and extremely high kurtosis. The returns range from a minimum of -26.77 to a maximum of 20.43, with
a mean of -0.1311 and a median of -0.0024. The standard deviation of 2.9148 reflects considerable
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variability in returns. The negative skewness (-1.5173) indicates a distribution with a tail on the left,
while the extremely high kurtosis (32.7223) suggests the presence of outliers and a peaked distribution.

In the biomedical dataset, the statistics show a highly right-skewed and sharply peaked distribution.
The data ranges from a minimum of 0.090 days to a maximum of 86.010 days, with a mean of 3.755 and a
median of 1.5700. The standard deviation of 10.5986 reflects significant variability in survival times. The
extremely high positive skewness (6.6596) and kurtosis (47.3686) suggest a distribution heavily skewed
to the right, with a concentration of values at the lower end and a long tail extending toward higher
survival times.

For the engineering dataset, the dataset shows positive skewness and moderate kurtosis. The values
range from a minimum of 0.0360 to a maximum of 15.0800, with a mean of 3.3430 and a median
of 1.4140. The standard deviation of 4.1815 indicates a broad spread in the data. The positive
skewness (1.3745) suggests a right-skewed distribution, while the moderate kurtosis (0.9229) indicates
that the distribution is less peaked and has thinner tails compared to a normal distribution.

Lastly, the hydrological dataset exhibits positive skewness and moderately high kurtosis. The values
range from a minimum of 0.2083 to a maximum of 6.1876, with a mean of 1.4706 and a median of 0.9714.
The standard deviation is 1.5943. The positive skewness (1.5943) indicates a right-skewed distribution,
while the moderately high kurtosis (2.2632) suggests a distribution with a somewhat peaked shape and
fatter tails than a normal distribution, likely influenced by extreme flood events.

Figures 9 and 10 illustrate the histograms and box plots for the four datasets, respectively. These
visualizations reveal distinct skewness and kurtosis behaviors, particularly within the biomedical dataset,
offering insights into their distribution characteristics and suitability for specific statistical models. It
is evident that the financial data exhibits negative skewness, while the biomedical, engineering, and
hydrological datasets demonstrate positive skewness. The box plots further highlight that the datasets,
especially the biomedical data, have high extreme values and pronounced peak tails. This indicates that
the proposed distribution, as shown in Figure 2, is well-suited for modeling these datasets and serves as
a robust model for interdisciplinary data analysis.
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(a) (b)

(c) (d)

Figure 9. Histogram plots of four datasets.
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(a) (b)

(c) (d)

Figure 10. Box plots of four datasets.

This study extends the applicability of the NE-Beta distribution by demonstrating its versatility across
interdisciplinary datasets, including financial returns data. Unlike classical Beta distributions, which
are limited to bounded data, the NE-Beta distribution accommodates real-valued data, allowing it to
capture diverse characteristics such as negative skewness and extreme kurtosis. By modeling datasets
from biomedical, engineering, hydrological, and financial domains, this study highlights the NE-Beta
distribution’s potential as a unified and flexible framework for diverse data characteristics, establishing
its originality and practical relevance.

5.2.2. Model performance evaluation

This subsection presents a comparative analysis of the proposed distribution against other existing
distributions using various datasets. The evaluation is based on goodness-of-fit measurements,
specifically BIC (Bayesian information criterion), HQIC (Hannan-Quinn information criterion),
CAIC (consistent Akaike information criterion), and AIC (Akaike information criterion). The distribution
that yields the lowest values for these criteria will be considered the best fit for the datasets, demonstrating
its superiority in modeling diverse types of data.

Tables 9–12 present the goodness-of-fit measures for the financial, biomedical, engineering, and
hydrological datasets, respectively. These tables include the parameter estimates (denoted as Est-I and
Est-II) for the NE-Beta distribution, alongside other comparator distributions, with their corresponding
standard errors in parentheses. The goodness-of-fit metrics, log-likelihood (LL), AIC, BIC, HQIC, and
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CAIC are also provided for each distribution.
As shown in Tables 9 through 12, the NE-Beta, logistic, normal, extreme value, and student’s t

distributions were evaluated. While all models demonstrated satisfactory performance, the NE-Beta
distribution consistently yielded the lowest AIC, BIC, HQIC, and CAIC values, along with the highest
log-likelihood values. This indicates that the NE-Beta distribution may be considered the optimal model
for fitting these diverse datasets.

Table 9. Goodness-of-fit measures for financial data.

Model Est-I Est-II LL AIC BIC HQIC CAIC
NE-Beta 0.9639 1.0439 -1494.8350 2993.6700 3002.9070 2997.2300 2993.6860

(0.0456) (0.0505)
Logistic 1.21e-09 0.5580 -1509.9080 3023.8160 3033.0530 3027.3760 3023.8320

(0.0328) (0.0160)
Normal 4.08e-07 2.5010 -1881.3610 3766.7220 3775.9590 3770.2820 3766.7380

(0.0916) (0.0523)
Extreme 1.3875 4.8055 -2158.5430 4321.0860 4330.3230 4324.6460 4321.1020
value (0.1857) (0.0922)
Student’s t 0.1376 — -7438.3660 14,878.7300 14,883.3500 14,880.5100 14,878.7400

(0.0052) —

Table 10. Goodness-of-fit measures for biomedical data.

Model Est-I Est-II LL AIC BIC HQIC CAIC
NE-Beta 1.3219 0.3012 -128.3802 260.7604 264.5844 262.2166 261.0157

(0.3137) (0.0481)
Logistic 2.6197 2.1796 -140.1824 284.3648 288.1888 285.8210 284.6201

(0.5351) (0.2652)
Normal 3.3430 4.1395 -141.9751 287.9502 291.7742 289.4064 288.2055

(0.5845) (0.4143)
Extreme 5.6546 5.1011 -154.1306 312.2612 316.0852 313.7174 312.5165
value ( 0.7735) ( 0.4900)
Student’s t 0.7408 — -144.2953 290.5906 292.5026 291.3187 290.6739

(0.1482) —
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Table 11. Goodness-of-fit measures for engineering data.

Model Est-I Est-II LL AIC BIC HQIC CAIC
NE-Beta 1.7172 0.2975 -185.9118 375.8236 380.4045 377.6492 375.9950

(0.3517) (0.0390)
Logistic 2.1117 2.2213 -221.3699 446.7398 451.3207 448.5654 446.9112

(0.3951) (0.2443)
Normal 3.7552 10.5258 -275.4119 554.8238 559.4047 556.6494 554.9952

(1.2108) (0.8746)
Extreme 11.2870 24.3240 -328.5893 661.1786 665.7595 663.0042 661.3500
value (3.0630) (1.5320)
Student’s t 1.0628 — -203.4054 408.8108 411.1013 409.7236 408.8671

(0.1851) —

Table 12. Goodness-of-fit measures for hydrological data.

Model Est-I Est-II LL AIC BIC HQIC CAIC
NE-Beta 4.6141 1.4075 -212.1446 428.2892 434.1867 430.6857 428.3762

(0.5563) (0.1510)
Logistic 1.2606 0.6468 -224.5021 453.0042 458.9017 455.4007 453.0912

(0.0936) (0.0466)
Normal 1.4706 1.2570 -232.3228 468.6456 474.5431 471.0421 468.7326

(0.1059) (0.0749)
Extreme 2.1805 1.6537 -272.4572 548.9144 554.8119 551.3109 549.0014
value (0.1486) (0.0906)
Student’s t 2.0701 — -296.4461 594.8922 597.8410 596.0905 594.9210

(0.3623) —

Moreover, the superior performance of the NE-Beta distribution across multiple datasets underscores
its versatility and suitability as a robust model for interdisciplinary research. This makes the proposed
distribution particularly valuable for analyzing complex data across various fields. However, the limited
size and scope of the datasets used in the study may also impact the generalizability of the results,
suggesting that caution should be exercised when applying the NE-Beta distribution to broader contexts.

While the present research focuses on a univariate scenario, it is noteworthy to recognize the
importance of multivariate extensions, particularly in describing dependencies across multiple variables.
Several studies have proposed multivariate extensions of probability distributions, including the
multivariate Student-t process model, which efficiently handles dependent tail-weighted degradation
data [35].
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6. Conclusions

The NE-Beta distribution introduced in this study represents a new advancement in the family of
Beta distributions by extending their applicability to both positive and negative data. This flexibility
is absent in earlier versions such as Beta-I, Beta-II, and Beta-III. The NE-Beta distribution achieves
nearly symmetric or right-skewed density functions and an increasing hazard function, making it highly
suitable for practical applications that require these characteristics. Expressions for the quantile function,
moments, and moment-generating function for the new model have been derived. The practical value of
the NE-Beta distribution was confirmed through diverse data characteristics.

7. Future study

The Future study should be based on the following:

i. To investigate the applicability of various interval estimation methods, including asymptotic,
bootstrap, and Bayesian approaches, to enhance statistical inference for the NE-Beta distribution.

ii. To delve into analogous extensions of the recently proposed NE-Beta distribution to improve its
application in high-dimensional statistical modeling.
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