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1. Introduction

The interconnection between the dynamical behavior of discrete and continuous systems is referred
to as a hybrid class. The concept of hybrid systems can be utilized to study the discrete dynamics
of a model whenever the continuous form of the system has a suppressed effect. In networking,
hybrid systems maximize the impact of new technology by integrating newly developed techniques
with existing ones, thereby enhancing the efficiency of the constructed model. This type of system
has gained remarkable attention in various evolving fields, such as networking and communications,
industries, and circuit models [1–3]. The study of continuous-time models with switches at discrete
time instants is referred to as switched systems. By abstracting away the discrete behavior and focusing
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on the possible switching patterns within a class, it is possible to derive switched systems from
hybrid models. In the control design of systems with sub-modules, the switching mechanism plays a
crucial role. This mechanism is categorized based on two criteria: time-dependent and state-dependent
switches. In the case of switches which are dependent on the state, the space Rn is divided into a set
of operating regions by a family of switching sequence. Now each of these regions is interlinked with
a sub-module which is continuous. When the trajectory of the system cuts through switching surface,
the state response of the system suddenly undergoes a change and jumps to a new region by means of a
reset map, whereas, if we consider a switching sequence which is time dependent the system consists
of a piecewise constant switching signal δ : [0,∞]→ P , where P is a finite positive set of integers. The
discontinuities of a function δ at finite time instant is called switching time signals. Here, δ defines
the active subsystem at each time instant. Existence of solution and its uniqueness for the uncertain
class of the switched fractional model was presented in [4]. Positive solutions of switching models was
established by [5]. Switching topologies of the multi-agent model was analyzed in [6].

The examination of system behavior in the presence of time delay is a crucial aspect while designing
physiological and circuit systems. Moreover, analyzation of delay effect has gained even more attention
while designing control models. Significant study time-delay control models can be found in [7–9].
Controllability is one of the most important and effective aspects of studying and manipulating the
designed model according to specific requirements. This approach helps refine differential models.
The impact of impulses on a system plays a vital role in designing the control input, as it requires
formulating a piecewise control input for each interval. Few methods to study the impulsive control
systems and their stability are found in [10–13]. When it comes to nonlinear controllability, the two
vital techniques used are fixed point and differential geometry [14–17]. Switched system combined
with impulsive effects is more efficient to model the discontinuous dynamics. Existing literature
provides a great range of solution methods for hybrid systems. [18] et al. discussed the controllability
of switch perturbed system with delays. The geometric method to analyze the reachability of the
switched linear system was presented in [19]. Controllability of multi-delay switched models was
presented in [20]. Some recent results on relative cotrollability of fractional order systems can be
found in [21, 22]. There are very few works pertaining to the analysis on stability and controllability
of the switched fractional system. To mention a few, T. Kaczorek in [23] established the asymptotic
behavior of the linear switched positive fractional system. Stability of impulsive switched fractional
conformable system was discussed in [24]. Boundedness and stability of switched fractional models
over finite time period was discussed in [25]. In [26], the authors discussed the controllability criteria
for the Hilfer switched dynamical model. Relative controllability of the switched nonlinear fractional
order system was established in [16]. Study on the control results of the nonlocal switching system
can be found in [27]. Finite-time stability (FTS) refers to the study of whether a system’s state
remains within a predefined threshold over a fixed time interval. In other words, FTS ensures that the
system’s solution does not exceed a certain bound within a given time horizon, regardless of external
disturbances or initial conditions. Unlike traditional asymptotic stability, which focuses on long-term
behavior, FTS is particularly useful in scenarios where maintaining system constraints over a finite
duration is critical, such as in control applications, robotics, and networked systems.

One of the key criteria for achieving FTS is ensuring that the system variables remain bounded
within the specified time frame. This boundedness is essential in many real-world applications
where transient behavior plays a crucial role, such as in aerospace systems, power grids, and
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biological models. Various techniques, including Lyapunov-based methods, comparison principles,
and differential inequalities, are commonly employed to establish sufficient conditions for finite-time
stability.

Due to its significance in practical applications, FTS has been a subject of extensive research in
recent years. Numerous studies explore different approaches to analyze and enhance FTS, particularly
in hybrid and switched systems, where impulsive effects and delays introduce additional complexities.
Researchers continue to develop novel methodologies and theoretical frameworks to improve stability
guarantees in such systems, making FTS an active and evolving area of study in control theory and
applied mathematics. Work presented in [28] analyzes the FTS of neutral fractional system in-terms
of fixed point results. Thresholds for impulsive singular systems to admit FTS was studied in [29].
Switching system stability was examined in [15, 30]. A lot of informative results on FTS and how
essentially it affects the analyzation of differential models are discussed in [2, 14, 28, 29, 31–34].
Comparative studies on stability and controllability of switching systems for various derivatives of
fractional order are presented in [15, 26, 35–39].

A careful examination of the aforementioned research works reveals that the general form of
the solution is not easily deduced when the switched system is subject to time delays that occur
at different time instants, particularly when coupled with nonlinear perturbations. This complexity
presents a significant challenge in the analysis and control of such systems. In this context, this
work investigates the finite-time stability and relative-type control criteria for fractional-order switched
impulsive systems with delays occurring at distinct time instants. The aim is to develop effective
control strategies that account for the interplay between time delays, nonlinearity, and fractional
dynamics.

(cDγy)(τ) =Hδ(τ)y(τ−d)+Pδ(τ)w(τ−ρ)+Qδ(τ)(τ,y(τ),
∫ τ

0
g(τ,η,y(η))dη),τ ∈ (τl−1,τl],

∆y(τ) = Eδ(τ)y(τ),τ= τl,

y(τ) = ζ1(τ),τ0−d ≤ τ≤ τ0, ζ1(τ) ∈ C([τ0−d,τ0],R
n),

w(τ) = ζ2(τ),τ0−ρ≤ τ≤ τ0, ζ2(τ) ∈ C([τ0−ρ,τ0],R
m), (1.1)

where the derivative order is γ ∈ (1
2 ,1), the state response vector is y(τ) ∈ Rn, and w(τ) ∈ Rm. Then,

d > 0,ρ > 0 represents the time delay in the state and control input. δ(τ) : [0,∞]→ SK
1 = 1, ...,K

represents the switching function which is left continuous. At the instant δ(τ) = j the jth subsystem
(H j,P j,Q j) will be active. Jump at the instant τl is denoted by ∆y(τl)+ y(τ−l ) = y(τ+l ). The matrices
are H j ∈Rn×n,P j ∈Rn×m and Q j ∈C([τ0,τl]×Rn×Rn,Rn). Eδ(τ) :Rn→Rn, represents the impulsive
function. Let rl = τl−τl−1 represent the dwell time. At this point, it is important to note the switching
signals and perturbations occur simultaneously and, therefore synchronize at τl. As a first step, we
begin by deducing the solution of system (1.1) to analyze the stability and control results. Consider the
following system

(cDγy)(τ) =Hy(τ−d)+Q(τ), τ≥ τ0,

y(τ) = ζ1(τ),τ0−d ≤ τ≤ τ0, ζ1(τ) ∈ C([τ0−d,τ0],R
n). (1.2)

The authors in [40] proposed the solution of (1.2) as

ỹ(τ) = ZH (τ−τ0)
γ

d ζ1(τ−d)+
∫ τ0

τ0−d
ZH (τ−d−ν)γ

d ζ
′
1(ν)dν+

∫ τ

τ0

ZH (τ−ν)γ
d,γ Q(ν)dν, (1.3)
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where ZH .γ

d and ZH .γ

d,γ will be described later. It is more complicated to evaluate the solution of (1.1)
as in the form of (1.3); hence, we first establish improvised form of (1.3) to deduce the state response
of (1.1).

While there is significant research on linear models and stability criteria for fractional-order
differential equations, the nonlinear analytical methods specific to FTS systems remain less explored.
Furthermore, there is a lack of generalization in the thresholds for FTS across different models. The
study of generalized models and their identifiability or invertibility in the context of fractional delays
has not been thoroughly established in previous works, especially concerning systems with nonlinear
dynamics. The paper addresses identifiability and invertibility of generalized fractional models, which
is not commonly explored in the literature. This contributes to the practical application of these
models, particularly in fields involving parameter estimation and system identification. This integrated
approach offers a more robust validation of the theoretical findings, providing a clear pathway from
mathematical derivations to practical implementation. This was largely missing from earlier research
where either theoretical or numerical methods were treated separately. We try to propose a piecewise
continuous solution in the form of the delayed matrix Mittag Leffler function. Then, we deduce
the require bound for (1.1) to admit finite time period stability. Further, analytical and fixed point
techniques will be used to analyze the relative control results of (1.1). The framework of the article is
outlined as follows:

In Section 2, we discuss the basic results, integral inequalities, and definitions which are required
for theoretical study. The thresholds required for FTS are deduced in Section 3. In Section 4, we
provide a nonlinear analytical study using theorems, such as the fixed point for (1.1), to be relatively
controllable. In Section 5, we substantiate our study with concrete numerical simulations.

2. Preliminaries

Let us take into account the vector space Rn with ‖H‖=
√

λmax(HTH) as the matrix norm,where
λmax(H) is the largest eigenvalue of the matrix H. Then, J = P.C.([τ0 − d,τN ],R

n) denoted
the piecewise continuous Banach space function. Let ‖y‖ = sup{‖y(τ)‖,τ ∈ J}. Moreover, let

‖y‖L2[τ0,τN ]
=
(∫ τN

τ0
‖y(ν)‖2dν

) 1
2 be the square functions which are integrable. The important

assumption that we need to consider is rl > max{d,ρ}.

Definition 2.1. [16] Let {τl}N
1 be a sequence of time periods. Then, δ : [τ0,τN ]→ SK

1 is defined as an
admissible switch if δ(τ) = δ(τ+l ) = δ(τl+1),τ ∈ (τl−1,τl], and δ(τ0) = δ(τ+0 ).

Definition 2.2. [16] For any given initial functions ζ1(τ) and ζ2(τ), the relative type controllability
of (1.1) with respect to the {τl}N

l=1 is guaranteed if for the admissible signal δ(τ) and the input w ∈
L2([τ0,τN−ρ],Rm) in such a way that y(τN) = y f .

Definition 2.3. [7] The differential operator in the sense of Riemann-Liouville with order γ ∈ (0,1)

of a function y : [0,∞)→ R is given as (RLDγy)(τ) =
1

Γ(1−γ)

d
d τ
∫ τ

0
y(ν)

(τ−ν)γ
dν.

Definition 2.4. [30] The differential operator in the sense of Caputo with order γ∈ (0,1) of a function

y : [0,∞)→ R is given as (CDγy)(τ) = (RLDγy)(τ)−
y(0)

Γ(1−γ)
τ−γ.
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Definition 2.5. [7] The Mittag-Leffler (ML) functions Eγ and Eγ,ν are given as

Eγ(τ) =
∞

∑
l=0

τl

Γ(lγ+1)
,γ> 0,

Eγ,ν(τ) =
∞

∑
l=0

τl

Γ(lγ+ν)
,(γ,ν)> 0.

Moreover, we have the integral identity

∫ b

a
(τ−ν)γ−1Eγ,γ(λ(τ−ν)γ)dν=

1
λ
[Eγ(λ(τ− a)γ)−Eγ(λ(τ− b)γ)].

Definition 2.6. [16] The classical form of delayed type ML matrix is defined as ZHτγ

d : R→ Rn×n

with

ZHτγ

d =


Θ,−∞ < τ<−d,

I ,−d ≤ τ≤ 0,

I +H
τγ

Γ(γ+1)
+H2 (τ−d)2γ

Γ(2γ+1)
+ ...+Hm (τ− (m−1)d)mγ

Γ(γm+1)
, (m−1)d < τ≤ md,m ∈ S∞

1 ,

where the notion Θ denoted the matrix with all entries zero and I is the identity matrix.

Definition 2.7. [16] The delayed type ML matrix of two parameters ZHτγ

d,ν : R→ Rn×n is of the type

ZHτγ

d,ν =



Θ,−∞ < τ<−d,

I
(d +τ)γ−1

Γ(ν)
,−d ≤ τ≤ 0,

I
(d +τ)γ−1

Γ(ν)
+H

τ2γ−1

Γ(γ+ν)
+H2 (τ−d)3γ−1

Γ(2γ+ν)
+ ...+Hm (τ− (m−1)d)(m+1)γ−1

Γ(mγ+ν)
,

(m−1)d < τ≤ md, m ∈ S∞
1 .

Definition 2.8. [16] System (1.1) admits FTS with respect to {J ,δ,ε,µ}, whenever
max{‖ζ1‖,‖ζ2‖} < δ and ‖w‖ < µ =⇒ ‖y‖ < ε, for all τ ∈ [τ0,τN ]. Moreover δ,µ,ε, are positive
constants.

Lemma 2.1. [16] For γ>
1
2
,ν> 0, then

∥∥∥ZH τγ

d,ν

∥∥∥≤ τγ−1Ed,ν(‖H ‖τγ), τ> 0.

Lemma 2.2. If ζ1 ∈ C([τ0−d,τ0],R
n), then the solution of (1.2) is formulated as

y(τ) = ZH(τ−τ0−d)γ

d ζ1(τ0)+
∫ τ0

τ0−d
HZH(τ−d−ν)γ

d,γ ζ1(ν)dν+
∫ τ

τ0

ZH(τ−ν)γ
d,γ Q(ν)dν. (2.1)
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Proof. By following Theorem 3 [34], we get that

ỹ(τ) = ZH(τ−τ0−d)γ

d ζ1(τ0)+
∫ τ0

τ0−d
HZH(τ−τ0−d)γ

d,γ ζ1(ν)dν,

is a solution of (cDγy)(τ) =Hy(τ−d), with y(τ) = ζ1(τ),τ0−d ≤ τ≤ τ0 as initial value.
Moreover, if ζ(0) = 0, then y(τ) =

∫ τ
τ0

ZH(τ−ν)γ
d,γ Q(ν)dν, as any solution of (1.2) has the form

y(τ)+ ỹ(τ), and Eq (2.1) follows. �

As a direct consequence of the above lemma we present Lemma 2.3 without proof.

Lemma 2.3. Whenever ζ1(τ) ∈ C([τ0− d,τ0],R
n) and ζ2(τ) ∈ C([τ0−ρ,τ0],R

n), for an admissible
δ(τ), the state response of (1.1) can be formulated as

y(τ)=



Z
Hδ(τ1)

(τ−τ0−d)γ

d ζ1(τ0)+
∫ τ0
τ0−d Hδ(τ1)Z

Hδ(τ1)
(τ−d−ν)γ

d,γ ζ1(ν)dν

+
∫ τ−ρ
τ0−ρ Z

Hδ(τ1)
(τ−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν

+
∫ τ
τ0

Z
Hδ(τ1)

(τ−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν, τ ∈ [τ0,τ0 +ρ],

Z
Hδ(τ1)

(τ−τ0−d)γ

d ζ1(τ0)+
∫ τ0
τ0−d Hδ(τ1)Z

Hδ(τ1)
(τ−d−ν)γ

d,γ ζ1(ν)dν

+
∫ τ0
τ0−ρ Z

Hδ(τ1)
(τ−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν+
∫ τ−ρ
τ0

Z
Hδ(τ1)

(τ−ρ−ν)γ

d,γ Pδ(τ1)wy(ν)dν

+
∫ τ
τ0

Z
Hδ(τ1)

(τ−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν, τ ∈ (τ0 +ρ,τ1],

Z
Hδ(τn+1)

(τ−τn−d)
d

{
χn,0ζ1(τ0)+χn,1

(∫ τ0
τ0−d Hδ(τ1)Z

Hδ(τ1)
(τ1−d−ν)γ

d,γ ζ1(ν)dν

+
∫ τ0
τ0−ρ Z

Hδ(τ1)
(τ1−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν+
∫ τ1−ρ
τ0

Z
Hδ(τ1)

(τ1−ρ−ν)γ

d,γ Pδ(τ1)wy(ν)dν
)

+∑
n
l=2χn,l

(∫ τl
τl−1−d Z

Hδ(τl )
(τl−d−ν)γ

d,γ Hδ(τl)y(ν)dν+
∫ τl−ρ
τl−1−ρ Z

Hδ(τl )
(τl−ρ−ν)γ

d,γ Pδ(τl)wy(ν)dν

+Eδ(τl)y(τl)
)
+∑

n
l=1χn,l

∫ τl
τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ Qδ(τl)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν
}

+
∫ τn
τn−d Z

Hδ(τn+1)
(τ−d−ν)γ

d,γ Hδ(τn+1)y(ν)dν+
∫ τ−ρ
τn−ρ Z

Hδ(τn+1)
(τ−ρ−ν)γ

d,γ Pδ(τn+1)wy(ν)dν

+
∫ τ
τn

Z
Hδ(τn+1)

(τ−ν)γ

d,γ Qδ(τn+1)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν,τ ∈ (τn,τn+1],n ∈ SN−1
1 ,

(2.2)

AIMS Mathematics Volume 10, Issue 4, 8095–8115.



8101

with χn,l =
j+1
∏

l=n
Z
Hδ(τl )

(rl−d)γ

d = Z
Hδ(τn)(rn−d)γ

d · · ·Z
Hδ(τ j+1)

(r j+1−d)γ

d ,n > j and χn,n = 1.

H1: For the continuous function Qi(.), there exists Fi,Gi : R+→ R+ so that

sup
(‖y‖+‖z‖)≤ω

∥∥Qi(τ,y(τ),z(τ))
∥∥≤ Fi

∥∥y
∥∥+Gi ‖z‖ , y ,z ∈ Rn.

Therefore we get∥∥∥∥Qi(τ,y(τ),
∫ τ

0
g(τ,η,y(η))dη)

∥∥∥∥≤ Fi
∥∥y
∥∥+Gi

∥∥∥∥∫ τ

0
g(τ,η,y(η))dη)

∥∥∥∥ ≤ κi(ω),

where κi = Fi +Gibi,bi > 0.
In order to make the paper in an easily readable manner, we consider the below given notions

‖Hl‖= αHl ,‖Pl‖= αPl ,‖Ql‖= αQl , sup
τ∈[τ0−d,τ0]

‖ζ1(τ)‖= ‖ζ1‖ , sup
τ∈[τ0−ρ,τ0]

‖ζ2(τ)‖= ‖ζ2‖ ,

Uk = Ed(αHδ(τk)
(rk−d)γ),Uk,l =Uk...Ul,Uk,k = 1,Lk = Eγ(αHδ(τk)

(rk)
γ)−Eγ(αHδ(τk)

(rk−d)γ),

G0 =
αPδ(τ1)

αHδ(τ1)

[Eγ(αHδ(τ1)
rγ1 )−Eγ(αHδ(τ1)

(r1−ρ)γ)],

G1 = αPδ(τ1)
Eγ,γ(αHδ(τ1)

(r1−ρ)γ)
(r1−ρ)γ−

1
2

(2γ−1)
1
2
,

Gm = αPδ(τm)
Eγ,γ(αHδ(τm)

rγm)
r
γ− 1

2
m

(2γ−1)
1
2
,

Vk =
1

αHδ(τk)

(Eγ(αHδ(τk)
rγk )−1),

L1 = αHδ(τ1)
UN,1[

∫ τ1−ρ

τ0

(E
αHδ(τk)

(τ1−ρ−ν)γ

d,γ )2dν]
1
2 ,

Lm = αHδ(τm)
UN,l[

∫ τm

τm−1

(E
αHδ(τm)

(τm−ν)γ

d,γ )2dν]
1
2 ,

qk =Uk,0 ‖ζ1(τ0)‖+Uk,1(L1 ‖ζ1‖+G0 ‖ζ2‖),P0 = 1+UN,l G jR j
∥∥M −1∥∥ ,P1 =

N

∑
l=2

UN,lLl,

G̃1 = µαPδ(τ1)
Eγ,γ(αHδ(τ1)

(r1−ν)γ)(r1−ρ)γγ−1),

L1 = αHδ(τ1)
Eγ,γ(αHδ(τ1)

τ
γ
1 )
∫ τ0

τ0−ν
(τ−ν)γ−1‖ζ1‖dν,

where
k ∈ SN

1 ,m ∈ SN
2 , i ∈ SM

1 , j < k.
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3. FTS result

The primary focus of this section is to avoid the Lyapnouv method and to reduce the conservative
criterias to establish the stability over the bounded interval. Let

λmax(H) = max{αHδ(τl )
}, l = 1,2, ...

Then,
φ1 = Eγ(λmax(H)(r1−d)γ),φk,l = φk, ...,φl+1, k > l, φk,k = 1.

Theorem 3.1. FTS of system (1.1) is guarenteed if the following inequality holds:

Z1(1+∆2λmax(E)Eγ(Z2Γγτγ))Eγ(Z2Γγ τγ)< ε, τ ∈ [τ0,τN ],

where

Z1 = φn+1,0δ+φn+1,1
(
L1 +G0δ+ G̃1

)
+∆2µλmax(P)Eγ,γ(λmax(H)rγ)rγγ−1,

Z2 = ∆2λmax(H)Eγ,γ(λmax(H)rγ)+∆1κlEγ,γ(λmax(H)rγ).

Proof. Taking norm of Eq (2.2) on the interval (τl−1,τl], we get∥∥y(τ)
∥∥≤ φn+1

[
φn,0 ‖ζ1(τ0)‖+φn,1

(
αHδ(τ1)

Eγ,γ(αHδ(τ1)
τ
γ
1 )
∫ τ0

τ0−d
(τ−ν)γ−1‖ζ1‖dν

+
αPδ(τ1)

αHδ(τ1)

[Eγ(αHδ(τ1)
rγ1 )−Eγ(αHδ(τ1)

(r1−ρ)γ)]‖ζ2‖

+µαPδ(τ1)
Eγ,γ(αHδ(τ1)

(τ1−ρ−ν)γ)
∫ τ1−ρ

τ0

(τ1−ρ−ν)γ−1dν
)

+
n

∑
l=2

φn,l

(
λmax(H)

∥∥∥∥∫ τl

τl−1−d
Z
Hδ(τl )

(τl−d−ν)γ

d,γ y(ν)dν
∥∥∥∥

+λmax(P)

∥∥∥∥∫ τl−ρ

τl−1−ρ
Z
Hδ(τl )

(τl−ρ−ν)γ

d,γ wy(ν)dν
∥∥∥∥)

+
n

∑
l=1

φn,l

∥∥∥∥∫ τl

τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ Qδ(τn+1)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)dν

∥∥∥∥
+

n

∑
l=2

φn,lλmax(E)
∥∥yl
∥∥],

∥∥y(τ)
∥∥≤ φn+1

[
φn,0 ‖ζ1(τ0)‖

+φn,1

(
L1 +G0 ‖ζ2‖+µαPδ(τ1)

Eγ,γ(αHδ(τ1)
(τ1−ρ−ν)γ)

∫ τ1−ρ

τ0

(τ1−ρ−ν)γ−1dν
)

+
n

∑
l=2

φn,l

(
λmax(H)

∥∥∥∥∫ τl

τl−1−d
Z
Hδ(τl )

(τl−d−ν)γ

d,γ y(ν)dν
∥∥∥∥

+λmax(P)

∥∥∥∥∫ τl−ρ

τl−1−ρ
Z
Hδ(τl )

(τl−ρ−ν)γ

d,γ wy(ν)dν
∥∥∥∥)

AIMS Mathematics Volume 10, Issue 4, 8095–8115.



8103

+
n

∑
l=1

φn,l

∥∥∥∥∫ τl

τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ Qδ(τn+1)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)dν

∥∥∥∥
+

n

∑
l=2

φn,lλmax(E)
∥∥yl
∥∥],

∥∥y(τ)
∥∥≤ φn+1,0 ‖ζ1(τ0)‖+φn+1,1

(
L1 +G0 ‖ζ2‖µ +αPδ(τ1)

Eγ,γ(αHδ(τ1)
(r1−ν)γ)(r1−ρ)γγ−1

)
+

n+1

∑
l=2

φn+1,l λmax(H)

∥∥∥∥∫ τl

τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ y(ν−d)dν
∥∥∥∥

+
n+1

∑
l=2

φn+1,l λmax(P)µ

∥∥∥∥∫ τl

τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ dν
∥∥∥∥+ n

∑
l=1

φn+1,l

∥∥∥∥∫ τl

τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ dν
∥∥∥∥κl

∥∥y
∥∥

+
n

∑
l=2

φn+1,lλmax(E)
∥∥yl
∥∥ ,

∥∥y(τ)
∥∥≤ φn+1,0 ‖ζ1(τ0)‖+φn+1,1

(
L1 +G0 ‖ζ2‖+ G̃1

)
+

n+1

∑
l=2

φn+1,lµλmax(P)Eγ,γ(λmax(H)rγ)rγγ−1

+
n+1

∑
l=1

φn+1,lλmax(H)
∫ τl

τl−1

(τl−ν)γ−1Eγ,γ(λmax(H)rγ)
∥∥y
∥∥dν

+
n+1

∑
l=1

φn+1,l

∫ τl

τl−1

(τl−ν)Eγ,γ(λmax(H)rγ)κl
∥∥y
∥∥dν+

n+1

∑
l=2

φn+1,lλmax(E)
∥∥yl
∥∥ ,

where r = maxrl, l = 1,2...,N. Now, let ∆1 = ∑
n+1
l=1 φn+1,l and ∆2 = ∑

n+1
l=2 φn+1,l , then we have∥∥y(τ)

∥∥≤ φn+1,0 δ+φn+1,1
(
L1 +G0 δ+ G̃1

)
+∆2µλmax(P)Eγ,γ(λmax(H)rγ)rγγ−1

+∆2λmax(H)
∫ τ

τ0

(τ−ν)γ−1Eγ,γ(λmax(H)rγ)
∥∥y
∥∥dν

+∆1κl

∫ τ

τ0

(τ−ν)γ−1Eγ,γ(λmax(H)rγ)
∥∥y
∥∥dν

+∆2λmax(E)
∥∥yl
∥∥ .

Then, while comparing the above inequality with the GI theorem [41], we formulate∥∥y(τ)
∥∥≤ Z1(1+∆2λmax(E)Eγ(Z2Γγτγ))Eγ(Z2Γγ τγ)

< ε.

�

4. Relative controllability result

As an initial step to analyze the relatively controllable criteria of (1.1), we begin by formulating the
following Grammian matrix.

M1 =
∫ τ1−ρ

τ0

[χN,1Z
Hδ(τ1)

(τ1−ρ−ν)γ

d,γ Pδ(τ1)][χN,1Z
Hδ(τ1)

(τ1−ρ−ν)γ

d,γ Pδ(τ1)]
Tdν,
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Mn =
∫ τn−ρ

τn−1−ρ
[χN,nZ

Hδ(τn)(τn−ρ−ν)γ
d,γ Pδ(τn)][χN,nZ

Hδ(τn)(τn−ρ−ν)γ
d,γ Pδ(τn)]

Tdν, n ∈ SN
2 ,

M =
N

∑
n=1

Mn,

where δ(τ) is a switching signal.

wy(τ) =


[χN,1Z

Hδ(τ1)
(τ1−ρ−ν)γ

d,γ Pδ(τ1)]
Tβy , τ ∈ [τ0,τ1−ρ],

[χN,nZ
Hδ(τn)(τn−ρ−ν)γ
d,γ Pδ(τn)]

Tβy , τ ∈ [τn−1−ρ,τn−ρ],n ∈ SN
2 ,

where

βy = M −1{yf −χN,0ζ1(τ0)−χN,1
(∫ τ0

τ0−d
Hδ(τ1)Z

Hδ(τ1)
(τ1−d−ν)γ

d,γ ζ1(ν)dν

−
∫ τ0

τ0−ρ
Z
Hδ(τ1)

(τ1−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν
)

−
N

∑
l=2

χN,l
(∫ τl

τl−1−d
Z
Hδ(τl )

(τl−d−ν)γ

d,γ Hδ(τl)y(ν)dν

−
∫ τl

τl−1−ρ
Z
Hδ(τl )

(τl−ρ−ν)γ

d,γ Pδ(τl)wy(ν)dν−Eδ(τl)y(τl)
)

−
N

∑
l=1

χN,l

∫ τl

τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)dν

}
.
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As a next step, we construct the operator σ : J → J ,

(σy)(τ)=



Z
Hδ(τ1)

(τ−τ0−d)γ

d ζ1(τ0)+
∫ τ0
τ0−d Hδ(τ1)Z

Hδ(τ1)
(τ−d−ν)γ

d,γ ζ1(ν)dν

+
∫ τ−ρ
τ0−ρ Z

Hδ(τ1)
(τ−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν

+
∫ τ
τ0

Z
Hδ(τ1)

(τ−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν, τ ∈ [τ0,τ0 +ρ],

Z
Hδ(τ1)

(τ−τ0−d)γ

d ζ1(τ0)+
∫ τ0
τ0−d Hδ(τ1)Z

Hδ(τ1)
(τ−d−ν)γ

d,γ ζ1(ν)dν

+
∫ τ0
τ0−ρ Z

Hδ(τ1)
(τ−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν+
∫ τ−ρ
τ0

Z
Hδ(τ1)

(τ−ρ−ν)γ

d,γ Pδ(τ1)wy(ν)dν

+
∫ τ
τ0

Z
Hδ(τ1)

(τ−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν, τ ∈ (τ0 +ρ,τ1],

Z
Hδ(τn+1)

(τ−τn−d)
d

{
χn,0ζ1(τ0)+χn,1

(∫ τ0
τ0−d Hδ(τ1)Z

Hδ(τ1)
(τ1−d−ν)γ

d,γ ζ1(ν)dν

+
∫ τ0
τ0−ρ Z

Hδ(τ1)
(τ1−ρ−ν)γ

d,γ Pδ(τ1)ζ2(ν)dν+
∫ τ1−ρ
τ0

Z
Hδ(τ1)

(τ1−ρ−ν)γ

d,γ Pδ(τ1)wy(ν)dν
)

+∑
n
l=2χn,l

(∫ τl
τl−1−d Z

Hδ(τl )
(τl−d−ν)γ

d,γ Hδ(τl)y(ν)dν+
∫ τl−ρ
τl−1−ρ Z

Hδ(τl )
(τl−ρ−ν)γ

d,γ Pδ(τl)wy(ν)dν

+Eδ(τl)y(τl)
)
+∑

n
l=1χn,l

∫ τl
τl−1

Z
Hδ(τl )

(τl−ν)γ

d,γ Qδ(τl)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν
}

+
∫ τn
τn−d Z

Hδ(τn+1)
(τ−d−ν)γ

d,γ Hδ(τn+1)y(ν)dν+
∫ τ−ρ
τn−ρ Z

Hδ(τn+1)
(τ−ρ−ν)γ

d,γ Pδ(τn+1)wy(ν)dν

+
∫ τ
τn

Z
Hδ(τn+1)

(τ−ν)γ

d,γ Qδ(τn+1)(ν,y(ν),
∫ ν

0 g(ν,η,y(η))dη)dν, τ ∈ (τn,τn+1],n ∈ SN−1
1 .

The technique of the fixed point argument will be utilized for our theoretical analyzation.

Lemma 4.1. [42] If D is a closed convex subset of a banach space and if σ : D →D is an operator
which is completely continuous, then there exists at least one fixed point for σ in D .

H2: Let δ(τ) be a switching signal which is admissible and satisfies the condition Rank (M ) = n.

Theorem 4.1. If the condition

θ= lim
ω→∞

2P0
(
P1 +

∑
N
l=1UN,lVlκδ(τl)(ω)+∑

N
l=1UN,lλmax(E)(ω)

ω

)
< 1, (4.1)

holds then relative controllability of (1.1) is well-established.
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Proof. We need to prove that σ has a fixed point

Γ(ω) = {y ∈ J :
∥∥y
∥∥≤ ω

2
,τ ∈ [τ0,τN ]}.

To show ω̃ ∈ R+ in such a way that σ(Γ(ω̃)) ⊂ Γ(ω̃), we use the contradiction method to establish
this result. Let there exist a possibility to find y ∈ Γ(ω̃) in such a way ‖σy‖ > ω

2 , then we have the
following estimations.

When τ ∈ (τ0,τ0 +ρ],∥∥(σy)(τ)
∥∥≤ ∥∥∥∥Z

Hδ(τ1)
(τ−τ0−d)γ

d ζ1(τ0)

∥∥∥∥+∥∥∥∥∫ τ0

τ0−d
Hδ(τ1)Z

Hδ(τ1)
(τ−d−ν)γ

d,γ ζ1(ν)dν
∥∥∥∥

+

∥∥∥∥∫ τ−ρ

τ0−ρ
Z
Hδ(τ1)

(τ−ρ−ν)γ

d,γ

∥∥∥∥∥∥Pδ(τ1)ζ2(ν)
∥∥dν

+

∥∥∥∥∫ τ

τ0

Z
Hδ(τ1)

(τ−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)dν

∥∥∥∥
≤ Eγ(αHδ(τ1)

(r1−d)γ)‖ζ1(τ0)‖+αHδ(τ1)
Eγ,γ(αHδ(τ1)

(τ)γ)
∫ τ0

τ0−d
‖ζ1‖dν

+αPδ(τ1)

∫ τ

τ0

(τ−ν)γ−1Eγ,γ(αHδ(τ1)
(τ−ν)γ)‖ζ2‖dν

+
∫ τ

τ0

(τ−ν)γ−1Eγ,γ(αHδ(τ1)
(τ−ν)γ)κδ(τ1)(ω)dν

≤ Eγ(αHδ(τ1)
(r1−d)γ)‖ζ1(τ0)‖+αHδ(τ1)

Eγ,γ(αHδ(τ1)
(τ)γ)

∫ τ0

τ0−d
‖ζ1‖dν

+αPδ(τ1)

∫ τ0+ρ

τ0

(τ0 +ρ−ν)γ−1Eγ,γ(αHδ(τ1)
(τ0 +ρ−ν)γ)‖ζ2‖dν

+
∫ τ0+ρ

τ0

(τ0 +ρ−ν)γ−1Eγ,γ(αHδ(τ1)
(τ−ν)γ)κδ(τ1)(ω)dν

≤U1 ‖ζ1(τ0)‖+L1 +
αPδ(τ1)

αHδ(τ1)

[Eγ(αHδ(τ1)
ργ)−1]‖ζ2‖

+
1

αHδ(τ1)

[Eγ(αHδ(τ1)
ργ)−1]κδ(τ1)(ω)

≤U1 ‖ζ1(τ0)‖+L1 +G0 ‖ζ2‖+V1κδ(τ1)(ω),

for τ ∈ (τ0 +ρ,τ1],∥∥(σy)(τ)
∥∥≤ ∥∥∥∥Z

Hδ(τ1)
(τ−τ0−d)γ

d ζ1(τ0)

∥∥∥∥+∥∥∥∥∫ τ0

τ0−d
Hδ(τ1)Z

Hδ(τ1)
(τ−d−ν)γ

d,γ ζ1(ν)dν
∥∥∥∥

+

∥∥∥∥∫ τ0

τ0−ρ
Z
Hδ(τ1)

(τ−ρ−ν)γ

d,γ

∥∥∥∥∥∥Pδ(τ1)ζ2(ν)
∥∥dν

+

∥∥∥∥∫ τ0

τ0−ρ
Z
Hδ(τ1)

(τ−ρ−ν)γ

d,γ

∥∥∥∥∥∥Pδ(τ1)

∥∥∥∥wy
∥∥dν

+

∥∥∥∥∫ τ

τ0

Z
Hδ(τ1)

(τ−ν)γ

d,γ Qδ(τ1)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)dν

∥∥∥∥
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≤ Eγ(αHδ(τ1)
(r1−d)γ)‖ζ1(τ0)‖+αHδ(τ1)

Eγ,γ(αHδ(τ1)
(τ)γ)

∫ τ0

τ0−d
‖ζ1‖dν+αPδ(τ1)

×
∫ τ0+ρ

τ0

(τ0 +ρ−ν)γ−1Eγ,γ(αHδ(τ1)
(τ0 +ρ−ν)γ)‖ζ2‖dν

+αPδ(τ1)

∫ τ1−ρ

τ0

(τ0−ρ−ν)γ−1Eγ,γ(αHδ(τ1)
(τ1−ρ−ν)γ)

∥∥wy
∥∥dν

+
∫ τ1

τ0

(τ1−ν)γ−1Eγ,γ(αHδ(τ1)
(τ1−ν)γ)κδ(τ1)(ω)dν

≤U1 ‖ζ1(τ0)‖+L1 +G0 ‖ζ2‖

+αPδ(τ1)
Eγ,γ(αHδ(τ1)

(r1−ρ)γ)
∫ τ1−ρ

τ0

((τ1−ρ−ν)2γ−2dν)
1
2

×‖wy‖L2[τ0,τ1−ρ]+V1κδ(τ1)(ω)

≤ q1 +G1αPδ(τ1)
[
∫ τ1−ρ

τ0

(Z
αHδ(τ1)

(τ1−ρ−ν)γ

d,γ )2dν]
1
2
∥∥βy
∥∥+V1κδ(τ1)(ω)

≤ q1 +G1R1
∥∥βy
∥∥+V1κδ(τ1)(ω),

for τ ∈ (τn,τn+1],

∥∥(σy)(τ)
∥∥≤Un+1[Un,0 ‖ζ(τ0)‖+Un,1(L1 +G0 ‖ζ1‖+G1

∥∥wy
∥∥

L2[τ0,τ1−ρ]
)+

n

∑
l=2

Un,lLl
∥∥y
∥∥

+
n

∑
l=2

Un,lGl
∥∥wy

∥∥+ n

∑
l=2

Un,l
∥∥Eδ(τl)

∥∥∥∥yl
∥∥+ n

∑
l=1

Un,lVlκδ(τl)(ω)]+Ln+1
∥∥y
∥∥

+Vn+1κδ(τn+1)(ω)+Gn+1
∥∥wy

∥∥
L2[τl−1−ρ,τl−ρ]

≤Un+1,0 ‖ζ(τ0)‖+Un+1,1(L1 +G0 ‖ζ2‖)+
n+1

∑
l=2

Un+1,lLl
∥∥y
∥∥+ n+1

∑
l=1

Un+1,lGlRl
∥∥βy
∥∥

+
n+1

∑
l=1

Un+1,lVlκδ(τl)(ω)+
n+1

∑
l=2

Un+1,lλmax(E)
∥∥yl
∥∥

≤ qn+1 +
n+1

∑
l=2

Un+1,lLl(ω)+
n+1

∑
l=1

Un+1,lVlκδ(τl)(ω)

+
n+1

∑
l=1

Un+1,lGlRl
∥∥βy
∥∥+ n+1

∑
l=2

Un+1,lλmax(E)(ω),

where

∥∥βy
∥∥≤ ∥∥M−1∥∥{∥∥y f

∥∥+UN,0 ‖ζ1(τ0)‖+UN,1(L1 +G0 ‖ζ2‖)+
N

∑
l=2

UN,lLl(ω)

+
N

∑
l=2

UN,lλmax(E)(ω)+
N

∑
l=1

UN,lVlκδ(τl)(ω)}.
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As Uk ≥ 1, we have

∥∥(σy)(τ)
∥∥≤ P2 +

N

∑
l=2

UN,lLl(ω)+
N

∑
l=1

UN,lVlκδ(τl)(ω)+
N

∑
l=2

UN,lλmax(E)(ω)

+
N

∑
l=1

UN,lGlRl
∥∥M−1∥∥ [ N

∑
l=2

UN,lLl(ω)+
N

∑
l=1

UN,lVlκδ(τl)(ω)+
N

∑
l=2

UN,lλmax(E)(ω)],

∥∥(σy)(τ)
∥∥≤ P2 +

N

∑
l=2

UN,lLl(ω)
(
1+

N

∑
l=1

UN,lGlRl
∥∥M−1∥∥)

+
N

∑
l=1

UN,lVlκδ(τl)(ω)
(
1+

N

∑
l=1

UN,lGlRl
∥∥M−1∥∥)

+UN,lλmax(E)(ω)
(
1+

N

∑
l=1

UN,lGlRl
∥∥M−1∥∥)

≤ P2 +P0P1ω +P0

N

∑
l=1

UN,lVlκδ(τl)(ω)+P0

N

∑
l=2

UN,lλmax(E)(ω),

where

P2 = max
n∈SN

2

{q1 +G1R1
∥∥W−1∥∥(qN +

∥∥y f
∥∥), qn +

N

∑
l=1

UN,lGlRl
∥∥M −1∥∥(qN +

∥∥y f
∥∥)}.

Therefore, we obtain

lim
ω→∞

P0P1 +
P0
(

∑
N
l=1UN,lVlκδ(τl)(ω)+∑

N
l=2UN,lλmax(E)(ω)

)
ω

≥ 1
2
,

which conflicts our assumed fact θ< 1, hence

σ(Γ(ω̃))⊂ Γ(ω̃), ω̃ ∈ Rn.

Now we proceed to prove that σ : Γ(ω̃)→ Γ(ω̃) is completely continuous.
S1 : The operator σ is continuous.
If yk converges to y in Γ(ω̃), then continuity of Ql follows from the fact

sup
τ∈[τl−1,τl ]

∥∥∥∥Qδ(τl)(ν,yk (ν),
∫ ν

0
g(ν,η,yk (η))dη)−Qδ(τl)(ν,y(ν),

∫ ν

0
g(ν,η,y(η))dη)

∥∥∥∥→ 0,k→ ∞.

Therefore ∥∥(σyk)(τ)− (σy)(τ)
∥∥

≤ max
n∈SN−1

1

≤ { sup
τ∈[τ0,τ1]

∥∥(σyk)(τ)− (σy)(τ)
∥∥ , sup

τ∈[τn,τn+1]

∥∥(σyk)(τ)− (σy)(τ)
∥∥}

≤ max
n∈SN−1

1

{G1R1
∥∥βyk−βy

∥∥+V1 sup
τ∈[τ0,τ1]

‖Qδ(τ1)(ν,yk (ν),
∫ ν

0
g(ν,η,yk (η))dη)
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−Qδ(τ1)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)‖,

n+1

∑
l=1

Un+1,lLl
∥∥yk − y

∥∥
+

n+1

∑
l=1

Un+1,lGlRl
∥∥βyk −βy

∥∥+Vl sup
τ∈[τl−1,τl ]

‖Qδ(τl)(ν,yk (ν),
∫ ν

0
g(ν,η,yk (η))dη)

−Qδ(τl)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)‖+

N

∑
l=2

UN,l
∥∥Eδ(τl)

∥∥∥∥yk (τl)− y(τl)
∥∥},

where∥∥βyk−βy
∥∥≤ ∥∥M −1∥∥( N

∑
l=2

UN,lLl
∥∥y l − y

∥∥+ N

∑
l=1

UN,lVl sup
τ∈[τl−1,τl ]

‖Qδ(τl)(ν,yk (ν),
∫ ν

0
g(ν,η,yk (η))dη)

−Qδ(τl)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)‖

)
+

N

∑
l=2

UN,l
∥∥Eδ(τl)

∥∥∥∥yk (τl)− y(τl)
∥∥ .

Then, it is straightforward to view
∥∥βyk−βy

∥∥ → 0 when
∥∥yk − y

∥∥ → 0, from which we get∥∥σyk −σy
∥∥→ 0 as

∥∥yk − y
∥∥→ 0; hence, σ is continuous.

S2 : The operator σ is compact.
Consider Γ0 to be a subset of Γ(ω̃), which is bounded. Then, it is easy to view that σ(Γ0)⊂ Γ(ω̃)

is bounded uniformly on [τ0−d,τN ].
Then, for τ0 < τ< τ+ε≤ τ1 and y ∈ Γ0, we get∥∥(σy)(τ+ ε)− (σy(τ))

∥∥
≤ ‖Z

Hδ(τ1)
(τ+ε−τ0−d)γ

d −Z
Hδ(τ1)

(τ−τ0−d)γ

d ‖‖ζ1(τ0)‖

+αHδ(τ1)
‖ζ1‖

∫ τ0+d

τ0

‖Z
Hδ(τ1)

(τ+ε−ν)γ

d,γ −Z
Hδ(τ1)

(τ−ν)γ

d,γ ‖dν

+αPδ(τ1)

∫ τ

τ0

‖Z
Hδ(τ1)

(τ+ε−ν)γ

d,γ −Z
Hδ(τ1)

(τ−ν)γ

d,γ ‖‖wy(ν−ρ)‖dν

+αPδ(τ1)

∫ τ+ε

ρ
‖Z

Hδ(τ1)
(τ+ε−ν)γ

d,γ ‖‖wy(ν−ρ)‖dν

+

(∫ τ+ε

τ
‖Z

Hδ(τ1)
(τ+ε−ν)γ

d,γ ‖dν+
∫ τ

τ0

‖Z
Hδ(τ1)

(τ+ε−ν)γ

d,γ −Z
Hδ(τ1)

(τ−ν)γ

d,γ ‖dν
)

× sup
τ∈[τ0,τ1]

Qδ(τ1)(ν,y(ν),
∫ ν

0
g(ν,η,yk (η))dη)

≤ ‖Z
Hδ(τ1)

(τ+ε−τ0−d)γ

d −Z
Hδ(τ1)

(τ−τ0−d)γ

d ‖‖ζ1(τ0)‖

+αHδ(τ1)
‖ζ1‖

∫ τ0+d

τ0

‖Z
Hδ(τ1)

(τ+ε−ν)γ

d,γ −Z
Hδ(τ1)

(τ−ν)γ

d,γ ‖dν

+αPδ(τ1)

[(∫ τ

τ0

‖Z
Hδ(τ1)

(τ+ε−ν)γ

d,γ −Z
Hδ(τ1)

(τ−ν)γ

d,γ ‖2dν
) 1

2

+

(
ε2γ−1

2γ−1

) 1
2

Eγ,γ(αHδ(τ1)
εγ)

]
ι +

(
1

αHδ(τ1)

(Eγ(αHδ(τ1)
εγ)−1)

)
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+

(∫ τ

τ0

‖Z
Hδ(τ1)

(τ+ε−ν)γ

d,γ −Z
Hδ(τ1)

(τ−ν)γ

d,γ ‖dν
)

× sup
τ∈[τ0,τ1]

Qδ(τ1)(ν,yk (ν),
∫ ν

0
g(ν,η,y(η))dη),

where ι = max{‖ζ1‖,‖wy‖τ∈[τ0,τ1−ρ]}. As, we know that Z
Hδ(τ1)

(·)γ

d and Z
Hδ(τ1)

(·)γ

d,γ are continuous
functions and

∥∥(σy)(τ+ ε)− (σy(τ))
∥∥→ 0 as ε→ 0.

Further, for τn−1 < τ< τ+ε≤ τn and y ∈ Γ0, we get∥∥(σy)(τ+ ε)− (σy)(τ)
∥∥

≤ ‖ZHδ(τn)(τ+ε−τn−1−d)γ

d −Z
Hδ(τn)(τ−τn−1−d)γ

d ‖‖y(τn−1)‖

+αPδ(τn)

∫ τ

τn−1

‖ZHδ(τn)(τ+ε−ν)γ
d,γ −Z

Hδ(τn)(τ−ν)
γ

d,γ ‖
∥∥wy(ν−ρ)

∥∥dν

+αPδ(τn)

∫ τ+ε

τ
‖ZHδ(τn)(τ+ε−ν)γ

d,γ ‖
∥∥wy(ν−ρ)

∥∥dν

+

(∫ τ+ε

τ
‖ZHδ(τn)(τ+ε−ν)γ

d,γ ‖dν+
∫ τ

τn−1

‖ZHδ(τn)(τ+ε−ν)γ
d,γ −Z

Hδ(τn)(τ−ν)
γ

d,γ ‖dν
)

× sup
τ∈[τn−1,τn]

Qδ(τn)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)

+‖ZHδ(τn)(τ+ε−τn−1−d)γ

d −Z
Hδ(τn)(τ−τn−1−d)γ

d ‖
∥∥Eδ(τl)

∥∥‖yτl‖

≤ ‖ZHδ(τn)(τ+ε−τn−1−d)γ

d −Z
Hδ(τn)(τ−τn−1−d)γ

d ‖ω̃

+αPδ(τn)

[(∫ τ

τn−1

‖ZHδ(τn)(τ+ε−ν)γ
d,γ −Z

Hδ(τn)(τ−ν)
γ

d,γ ‖2dν
) 1

2

+

(
ε2γ−1

2γ−1

) 1
2

Eγ,γ(αHδ(τ1)
εγ)

]
‖wy‖L([τn−1−ρ,τn−ρ])+

(
1

αHδ(τn)

(Eγ(αHδ(τn)
εγ)−1)

)
+

(∫ τ

τn−1

‖ZHδ(τn)(τ+ε−ν)γ
d,γ −Z

Hδ(τn)(τ−ν)
γ

d,γ ‖dν
)

sup
τ∈[τn−1,τn]

Qδ(τn)(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη)

+‖ZHδ(τn)(τ+ε−τn−1−d)γ

d −Z
Hδ(τn)(τ−τn−1−d)γ

d ‖
∥∥Eδ(τl)

∥∥‖yτl‖.

Analogous to the previous method, we get
∥∥(σy)(τ+ ε)− (σy)(τ)

∥∥→ 0, whenever τ ∈ (τn−1,τn].

Moreover, we can conclude the equi-continuous of σ(Γ0) on (τ0− d,τN ]. Then, σ(Γ0) is relatively
compact by the application Ascoli theorem. Then, from the above argument, we conclude that σ is
compact. Hence, ỹ ∈ σ(ω̃) is relatively controllable. �

5. Case in point

Example 5.1. Let us consider the system (1.1) with the below given choice of system parameters

H1 =

(
0.3 0
0 0.3

)
, H2 =

(
0.4 0
0 0.4

)
, P1 =

(
0

0.5

)
, P2 =

(
0.5
0

)
,
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E1 =

(
0.17 0

0 0.17

)
, E2 =

(
0.16 0

0 0.16

)
,

Q1(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη) =

1
30

(
13τ2cos(y1(τ))+0.21exp(τ)y1(τ−d)+

∫ τ
0 siny1(η)dη

0.02y2(τ)+2siny2(τ−d)+
∫ τ

0 cosy2(η)dη

)
,

Q2(ν,y(ν),
∫ ν

0
g(ν,η,y(η))dη) =

1
30

(
0.03y1(τ)sint +8cos(y1(τ−d))+

∫ τ
0 cosy1(η)dη

4sin(y2(τ))+0.02y2(τ−d)+
∫ τ

0 siny2(η)dη

)
.

Moreover, τ0 = 0,τ1 = 0.2,τ2 = 0.4,d = 0.1, ι = 0.1. Let

κ1(ω) = 0.53+ max
τ∈[0,0.4]

{0.21exp(τ),0.02}0.03(ω),

κ2(ω) = 0.43+ max
τ∈[0,0.4]

{0.003sinτ,0.02}0.03(ω).

It is straightforward to note that ‖Ql(·)‖ ≤ κl(ω), l = 1,2.
Now, let us fix

δ(τ) =

{
2, τ ∈ [0,0.2],
1, τ ∈ (0.2,0.4].

Then, on calculation we get ‖M −1‖ ≤ 7.153.
Moreover, G0 ≤ 0.10, G1 ≤ 0.61, G2 ≤ 0.83, L1 ≤ 0.06, L2 ≤ 0.07, V1 ≤ 0.46, V2 ≤

0.47, P0 ≤ 1.67, R1 ≤ 0.26, R2 ≤ 0.18, P1 = 0.071.
Then, by substituting the above values in (4.1), we get θ< 1. Thus, our considered form of switching

system (1.1) is controllable relatively.
The FTS of (1.1) for the above choice of system parameters is shown in Table 1. Furthermore, the

norm of the solution for the system in (1.1) is presented in Figure 1.

Table 1. FTS of system (1.1) for the chosen parameters as in Example 5.1.

Theorem ‖ζ1‖ γ τN r δ
∥∥y
∥∥ ε (FTS)

3.1 0.1 0.6 0.4 0.1 0.2 2.35 2.36 yes

Figure 1. Norm of the solution of system (1.1) for chosen δ= 0.2 and ε= 2.36.
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6. Concluding remarks

In the presented work, we have considered a class of switching impulsive fractional control systems.
An explicit form of the solution for (1.1) was derived using the delayed parameters ML function.
Stability of the system was then analyzed by constructing appropriate thresholds with Gronwall’s
inequality. Furthermore, for an admissible switching signal we constructed an appropriate control
input that is piecewise continuous over the given interval to determine the relatively controllable criteria
of (1.1) with nonlinear arguments and impulses. Finally, a concrete numerical simulation is provided
to substantiate the theoretical results. One of the challenging problems arising from this study is when
the impulses are of the non-instantaneous type, which will be addressed in our future work. Moreover,
the study of this problem will remain an interesting and active research field for future studies.
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