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Abstract: In recent years, the peer-to-peer (P2P) educational information sharing system was modeled
by a system of fuzzy relation inequalities (FRIs) with addition-min or max-min composition. The max-
min FRIs system was applicable to the P2P network considering the highest download traffic among
the terminals. Moreover, every solution to such a max-min FRIs system corresponds exactly to one
feasible flow control scheme. To embody the stability of a given feasible scheme, we introduce the
concept of the widest symmetrical interval solution (WSIS), regarding the corresponding solution in
the max-min FRIs system. Some effective procedures are proposed to find the WSIS regarding a
provided solution. In addition, aiming to find the most stable feasible scheme, we further define the
concept of a centralized solution. Some effective procedures are also proposed to find the centralized
solution regarding the max-min FRIs system. Some numerical examples are provided, respectively,
to demonstrate our proposed resolution procedures. Our obtained centralized solution will provide
decision support for system administrators considering the stability of the feasible scheme.
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1. Introduction

In the past few decades, the research on fuzzy relation systems, including equation systems and
inequality systems, has developed rapidly and comprehensively. The concept of fuzzy relation equation
(FRE) was first proposed by E. Sanchez [1]. In [1], the composition operation was max-min. A
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sufficient and necessary condition for the solvable (having at least one solution) FRE system composed
of max-min was displayed in [1]. Moreover, for the solvable system, the full solution set contains
a finite set of lower solutions and a greatest solution. It was widely acknowledged that numerous
issues related to body knowledge can be addressed as FRE problems [2]. In an FRE system, the
initial composition max-min was soon later generalized to max-T , where T represents a triangular
norm [3–6]. The structure of the solution set in a solvable max-T FRE system is the same as that in a
solvable max-min one. The identification of solvability and the determination of the solution set are the
central and foundational aspects of the research on FRE. Many scholars devoted their time to searching
all the solutions to an FRE system, with the max-T composition [7–11].

J. Drewniak mentioned the fuzzy relation inequality (FRI) with max-min for the first time [12]. The
max-min FRIs were completely solved in [13], using the so-called conservative path approach. In [13],
the authors also studied a kind of optimization problem, in which the objective function was expressed
in a latticized linear form and the constraint was the max-min FRIs. F. Guo et al. also proposed the
FRI path approach for solving the minimal solutions in a max-min FRIs system [14].

In 2012, J.-X. Li et al. [15] employed a new composition operator, i.e., addition-min, in a system of
FRIs. The addition-min of FRIs ∑

1≤ j≤n

ai j ∧ x j ≥ bi, i = 1, 2, · · · ,m, (1.1)

were introduced for describing the peer-to-peer (P2P) educational information sharing system. In such
a P2P network system, n terminals are represented by the notations T1, · · · ,Tn as shown in Figure 1.

T1

Ti

Ti−1

...

T2

Ti+1

...

Tn

Figure 1. Peer-to-Peer educational information sharing system.

In system (1.1), the variable x j represents the quality level on which the terminal T j sends out
(shares) its local data. The parameter ai j represents the bandwidth. The download traffic requirement
of Ti is requested to be no less than bi. Obviously, the total download traffic of the ith terminal Ti is
satisfied if and only if it holds that ∑

1≤ j≤n

(ai j ∧ x j) ≥ bi. (1.2)
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Satisfying the download traffic requirements of all the terminals, the above system (1.1) is naturally
generated and established.

Some detailed properties, particularly the number of minimal solutions and the convexity of the
solution set, were extensively discussed in [16]. It was highlighted in [16] that the addition-min FRIs
system often has infinitely many minimal solutions. Thus, it is difficult to compute its complete solution
set. Of course, when the scale of the problem is small enough, it is still possible to find out all the
minimal solutions, as well as the complete solution set [17]. The min-max programming and the
leximax programming were formulated and studied subject to the addition-min FRIs system [18–20].
Considering the random line fault [21] or the distinguishing quality levels on which the terminals send
out their local files [22, 23], some variants of the addition-min FRIs were also investigated.

As pointed out above, characterizing the P2P network system by the addition-min of the FRIs
system (1.1), the authors only considered the total download traffic of the ith terminal. However, when
considering the highest download traffic, the above system (1.1) is ineffective. In fact, the highest
download traffic of the ith terminal Ti should be∨

1≤ j≤n

(ai j ∧ x j) ≥ bi. (1.3)

As a consequence, adopting the highest download traffic, the P2P educational information sharing
system was characterized by the max-min FRIs below [24–27],∨

1≤ j≤n

(ai j ∧ x j) ≥ bi, i = 1, 2, · · · ,m. (1.4)

G. Xiao et al. [25] discussed the classification of the solution set of (1.4), while X. Yang [26]
attempted to find the approximate solution for the unsolvable system (1.4). Considering the rigid
requirement, exactly equal to bi, system (1.4) turns out to be∨

1≤ j≤n

(ai j ∧ x j) = bi, i = 1, 2, · · · ,m. (1.5)

Different resolution methods were proposed for solving the approximate solutions of the above
system (1.5) [28, 29] when it was unsolvable. In the solvable case, three types of geometric
programming problems subject to system (1.5) were solved [30–32]. Considering the flexible
requirement, [33–35] assumed the highest download traffic of Ti to be no less than ci and no more
than di, and established the following max-min FRIs with bidirectional constraints.

ci ≤ (bi1 ∧ y1) ∨ (bi2 ∧ y2) ∨ · · · ∨ (bin ∧ yn) ≤ di, i = 1, 2, · · · ,m. (1.6)

After standardization, it is assumed that ci, bi j, y j, di ∈ [0, 1], ∀i ∈ I, j ∈ J, where

I = {1, . . . ,m}, J = {1, . . . , n}.

Similar to system (1.1) for describing the P2P educational information sharing system, any solution
of system (1.6) stands for a feasible flow control scheme for the P2P network system. A given
solution is indeed a feasible scheme prepared in advance. However, in the actual implementation
process, the values of components in the given solution might encounter some temporary adjustment
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or uncontrollable variation. Thus, we consider the tolerable variation for a given solution in this work.
The widest symmetrical interval solution will be defined and investigated. It embodies the tolerable
variation for a given solution. Moreover, we will further define the centralized solution for system
(1.6). The centralized solution is indeed the solution with the biggest tolerable variation. As is well
known, a feasible scheme is considered to be more stable if it is able to bear a bigger tolerable variation.
As a result, the centralized solution would be considered to be the most stable feasible scheme in the
P2P network system.

The remaining sections are arranged as follows. Section 2 presents the basic foundations on the
max-min FRIs system (1.6). In Section 3, we propose an effective approach for solving the widest
symmetrical interval solution regarding a provided solution. In Section 4, we further provide a
resolution approach for searching the centralized solution for system (1.6). Some numerical examples
are enumerated for illustrating our presented resolution approaches. Section 5 concludes the work.

2. Preliminaries

For convenience, we abbreviate

(bi1 ∧ y1) ∨ (bi2 ∧ y2) ∨ · · · ∨ (bin ∧ yn) = (bi1, · · · , bin) ◦ (y1, · · · , yn),

for any i ∈ I. Furthermore, the above max-min FRIs system (1.6) could be rewritten in its abbreviation
form as

c ≤ B ◦ y ≤ d, (2.1)

where c = (c1, · · · , cm), B = (bi j)m×n, y = (y1, · · · , yn) and d = (d1, · · · , dm). Accordingly, the set of all
solutions to system (1.6) or system (2.1) is exactly

S(B, c, d) = {y ∈ V | c ≤ B ◦ y ≤ d}. (2.2)

where V = [0, 1]n.

Definition 1. (Consistent) [33–35] System (1.6) is called consistent if it has a solution, i.e., S(B, c, d) ,
∅. Conversely, S(B, c, d) = ∅; we call it inconsistent.

Definition 2. [33–35] v̂ ∈ V is a maximum solution if v̂ ∈ S(B, c, d) and v̂ ≥ v hold for any v ∈
S(B, c, d). vm ∈ V is a minimal solution if vm ∈ S(B, c, d) and v ≤ vm ⇒ v = vm holds for any
v ∈ S(B, c, d).

Define the operator “@” as follows:

bi j@di =

1, if bi j ≤ di,

di, if bi j > di.
(2.3)

Let v̂ = (v̂1, v̂2, · · · , v̂n), where
v̂ j =
∧
i∈I

bi j@di. (2.4)

Theorem 1. [33–35] S(B, c, d) , ∅ if and only if v̂ ∈ S(B, c, d).
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Proposition 1. [33–35] If S(B, c, d) , ∅ and v ∈ S(B, c, d) is an arbitrary solution, then we have
v ≤ v̂.

According to Theorem 1 and Proposition 1, when (1.6) is a consistent system, v̂ is always its
maximum solution.

Proposition 2. [33–35] Let u, v ∈ S(B, c, d) be two solutions of system (1.6), with u ≤ v. Then for any
x ∈ [u, v], it holds x ∈ S(B, c, d), i.e., x is also a solution of (1.6).

Theorem 2. [33–35] Let system (1.6) be consistent. Then the solution set is

S(B, c, d) =
⋃

vm∈Sm(B,c,d)

[vm, v̂], (2.5)

where Sm(B, c, d) is the collection of all minimal solutions, while v̂ is the maximum one.

3. Widest symmetrical interval solution regarding the provided solution v

In this section, we posit the hypothesis that

v = (v1, v2, · · · , vn) ∈ V

is one of the given solutions in the max-min FRIs system (1.6), i.e., v ∈ S(B, c, d). We will define the
concept of the widest symmetrical interval solution regarding the provided solution v. Moreover, some
effective procedures will be proposed for obtaining the widest symmetrical interval solution.

Definition 3. (Interval solution & width) Let u, v be two vectors in V, with u ≤ v. If

[u, v] ⊆ S(B, c, d),

then we say [u, v] an interval solution of (1.6). Moreover, the following non-negative number, denoted
by w[u, v], i.e.,

w[u, v] = (v1 − u1) ∧ (v2 − u2) ∧ · · · ∧ (vn − un) (3.1)

is said to be the width of the interval solution [u, v].

Remark 1. Let [u, v], [x, y] ⊆ S(B, c, d) be two interval solutions of (1.6). If [u, v] ⊆ [x, y], then it holds
w[u, v] ≤ w[x, y]. However, this conclusion does not hold in reverse. For example, suppose [u, v] =

([0.2, 0.8], [0.3, 0.4], [0.4, 0.9]), [x, y] = ([0.3, 0.5], [0.4, 0.6], [0.4, 0.7]). It is clear that w[u, v] = 0.1 ≤
0.2 = w[x, y]. However, the inclusion relation [u, v] ⊆ [x, y] doesn’t hold.

Definition 4. (Symmetrical interval solution (SIS) regarding v) Let ε = (ε1, ε2, · · · , εn) ∈ V be an
arbitrary vector. Denote the following vectors v + ε and v − ε, according to ε and v,v + ε = (v1 + ε1, · · · , vn + εn),

v − ε = (v1 − ε1, · · · , vn − εn).
(3.2)

If [v − ε, v + ε] is an interval solution of system (1.6), we say [v − ε, v + ε] a symmetrical interval
solution regarding the provided solution v.
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Obviously, if [v − ε, v + ε], represented by (3.2), is a symmetrical interval solution (SIS) regarding
v, then by (3.1), its width is indeed

w[v − ε, v + ε] = 2(ε1 ∧ ε2 ∧ · · · ∧ εn). (3.3)

Definition 5. (Widest symmetrical interval solution (WSIS) regarding v) Let [v− εv, v + εv] be an SIS
regarding the provided solution v, where εv ∈ V. [v − εv, v + εv] is said to be a widest symmetrical
interval solution regarding v, if

w[v − εv, v + εv] ≥ w[v − ε, v + ε] (3.4)

holds for any SIS [v − ε, v + ε] regarding v, where ε ∈ V. Moreover, the width of [v − εv, v + εv], i.e.,
w[v − εv, v + εv], is said to be the (biggest) symmetrical width regarding v.

3.1. Construct a vector v̆ corresponding to the provided solution v

According to our provided solution v, define m indicator sets as

Jvi = { j ∈ J|bi j ∧ v j ≥ ci}, (3.5)

where i ∈ I. Furthermore, define m indices as

jv
i = arg max{v j| j ∈ Jvi }, (3.6)

where i ∈ I. Now we find the indices jv
1, jv

2, · · · , jv
m. These indices enable us to further define

Ivj = {i ∈ I| jv
i = j}, (3.7)

where j ∈ J. Next, we could construct a vector, denoted by v̆ = (v̆1, v̆2, · · · , v̆n), in which

v̆ j =


∨
i∈Ivj

ci, if Ivj , ∅,

0, if Ivj = ∅,
j ∈ J. (3.8)

Proposition 3. Assume that v ∈ S(B, c, d). Then there is Jvi , ∅ for any i ∈ I.

Proof. Since v ∈ S(B, c, d), according to system (1.6), we have

ci ≤ (bi1 ∧ v1) ∨ (bi2 ∧ v2) ∨ · · · ∨ (bin ∧ vn) ≤ di, ∀i ∈ I.

Therefore, for any i ∈ I, there is ji ∈ J satisfying

bi ji ∧ y ji ≥ ci.

Observing Eq (3.5), we have ji ∈ J
v
i , i.e., Jvi , ∅. �

Proposition 4. For the solution v ∈ S(B, c, d) of (1.6) and the vector v̆ defined by (3.8), we have v̆ ≤ v.
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Proof. Let j ∈ J be an arbitrary indicator.
Case 1. If Ivj = ∅, it follows from (3.8) that v̆ j = 0 ≤ v j.
Case 2. If Ivj , ∅, it follows from (3.8) that v̆ j =

∨
i∈Ivj

ci. Take arbitrarily i ∈ Ivj. By (3.7), we have

jv
i = j.

According to (3.6), it is clear j = jv
i ∈ J

v
i . It follows from (3.5) that

v j ≥ bi j ∧ v j ≥ ci.

In view of the arbitrariness of i in Ivj, there is v j ≥
∨
i∈Ivj

ci = v̆ j.

Cases 1 and 2 indicate v̆ j ≤ v j, ∀ j ∈ J. Thus, we obtain v̆ ≤ v �

Theorem 3. For the solution v ∈ S(B, c, d) of (1.6) and the vector v̆ defined by (3.8), there is v̆ ∈
S(B, c, d). That is to say, v̆ serves as a solution of (1.6).

Proof. Take arbitrarily i ∈ I. It is clear jv
i ∈ J

v
i by (3.6). According to (3.5), we have

bi jvi ≥ bi jvi ∧ v jvi ≥ ci. (3.9)

Denote j† = jv
i . Then we have i ∈ Iv

j†
, ∅ by (3.7). According to (3.8), we have

v̆ j† =
∨
k∈Iv

j†

ck ≥ ci. (3.10)

Considering j† = jv
i , by (3.9) and (3.10) we further have

(bi1 ∧ v̆1) ∨ (bi2 ∧ v̆2) ∨ · · · ∨ (bin ∧ v̆n) ≥ bi j† ∧ v̆ j† ≥ ci, ∀i ∈ I. (3.11)

Since v ∈ S(B, c, d), according to system (1.6), we have

ci ≤ (bi1 ∧ v1) ∨ (bi2 ∧ v2) ∨ · · · ∨ (bin ∧ vn) ≤ di, ∀i ∈ I.

Thus,
bi j ∧ v j ≤ di, ∀i ∈ I,∀ j ∈ J.

Following Proposition 4, it holds v̆ j ≤ v j, j ∈ J. Thus we get

bi j ∧ v̆ j ≤ bi j ∧ v j ≤ di, ∀i ∈ I,∀ j ∈ J,

i.e.,
(bi1 ∧ v̆1) ∨ (bi2 ∧ v̆2) ∨ · · · ∨ (bin ∧ v̆n) ≤ di, ∀i ∈ I. (3.12)

Combining Inequalities (3.11) and (3.12), it is evident to have v̆ ∈ S(B, c, d). �
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3.2. Construct the WSIS regarding the provided solution v

In the previous section, we have obtained the vector v̆ based on the provided solution v. Moreover, v̆
is found to be a solution of system (1.6), no more than v, i.e., v̆ ≤ v. In this section, we further construct
a symmetrical interval solution regarding v, based on the solutions v̆, v, v̂.

Remind that v̂ is the maximum solution, while v is a provided solution of (1.6). Besides, v̆ is as
obtained following Eqs (3.5)–(3.8). Now we denote the vector εv = (εv

1, ε
v
2, · · · , ε

v
n) related to v as

εv
j = (v j − v̆ j) ∧ (v̂ j − v j), j ∈ J. (3.13)

Note that v̆ j ≤ v ≤ v̂ ≤ (1, · · · , 1). It could be evidently found that 0 ≤ εv
j ≤ 1 for all j ∈ J. Hence,

we have εv ∈ V.
Next, we provide some properties on the above-obtained vector εv.

Proposition 5. Let εv ∈ V be the vector defined by (3.13), related to the given solution v. Then there is
v + εv ∈ S(B, c, d), i.e., v + εv satisfies system (1.6).

Proof. Since 0 ≤ εv
j ≤ 1 and

εv
j = (v j − v̆ j) ∧ (v̂ j − v j) ≤ v̂ j − v j, ∀ j ∈ J.

we have
v j ≤ v j + εv

j ≤ v̂ j, ∀ j ∈ J.

That is v ≤ v + εv ≤ v̂. Since v, v̂ ∈ S(B, c, d), following Proposition 2 we have v + εv ∈ S(B, c, d).
�

Proposition 6. Let εv ∈ V be the vector defined by (3.13), related to the given solution v. Then there is
v − εv ∈ S(B, c, d).

Proof. Since 0 ≤ εv
j ≤ 1 and

εv
j = (v j − v̆ j) ∧ (v̂ j − v j) ≤ v j − v̆ j, ∀ j ∈ J,

we have
v̆ j ≤ v j − ε

v
j ≤ v j, ∀ j ∈ J.

That is v̆ ≤ v − εv ≤ v. According to Theorem 3 and the given condition, both v and v̆ are solutions
to system (1.6). It follows from Proposition 2 that v − εv ∈ S(B, c, d). �

According to the above Propositions 5 and 6, one easily discovers the Corollary 1 below.

Corollary 1. Let εv ∈ V be the vector defined by (3.13), related to the given solution v. Then there is
[v − εv, v + εv] ⊆ S(B, c, d), i.e., [v − εv, v + εv] is a symmetrical interval solution regarding v.

It is shown in Corollary 1 that [v − εv, v + εv] is a symmetrical interval solution regarding v. Next,
it will be further verified to be the widest one.

Proposition 7. Let u ∈ S(B, c, d) be a solution of (1.6) with u ≤ v. Then it holds w[u, v] ≤ w[v̆, v].
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Proof. Select arbitrarily j ∈ J. Now let us examine the inequality w[u, v] ≤ v j − v̆ j.
Case 1. If Ivj = ∅, then v̆ j = 0 ≤ u j by (3.8). Hence

w[u, v] =
∧
k∈J

(vk − uk)

≤ v j − u j

≤ v j − v̆ j.

(3.14)

Case 2. If Ivj , ∅, then v̆ j =
∨
i∈Ivj

ci by (3.8). Accordingly, there is i† ∈ Ivj, satisfying

v̆ j = ci† . (3.15)

At the same time, by (3.7) we have
jv
i† = j, (3.16)

since i† ∈ Ivj. Note that u ∈ S(B, c, d). u satisfies the i†th inequality from (1.6), i.e.,

ci† ≤ (bi†1 ∧ u1) ∨ (bi†2 ∧ u2) ∨ · · · ∨ (bi†n ∧ un) ≤ di† .

As a result, there is j† ∈ J satisfying

bi† j† ∧ u j† ≥ ci† . (3.17)

Considering u ≤ v, we have bi† j† ∧ v j† ≥ bi† j† ∧ u j† ≥ ci† . According to (3.5), it holds that j† ∈ Jv
i†

.
Moreover, Inequality (3.17) implies that

u j† ≥ bi† j† ∧ u j† ≥ ci† . (3.18)

Observing (3.6) and (3.16), we have j = jv
i†

= arg max{vl|l ∈ Jvi†}. Thus,

v j ≥ vl, ∀l ∈ Jvi† .

Thereby, j† ∈ Jv
i†

indicates
v j ≥ v j† . (3.19)

Combining (3.15), (3.18), and (3.19), we have

v j − v̆ j = v j − ci†

≥ v j − u j†

≥ v j† − u j†

≥
∧
k∈J

(vk − uk) = w[u, v].

(3.20)

According to Inequalities (3.14) and (3.20), for any j in J, there is v j − v̆ j ≥ w[u, v]. So we have

w[v̆, v] =
∧
j∈J

(v j − v̆ j) ≥ w[u, v].

The proof is complete. �
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Theorem 4. Let εv ∈ V be the vector defined by (3.13), related to the given solution v. Then [v−εv, v +

εv] is the widest symmetrical interval solution regarding v.

Proof. It has been verified in Corollary 1 that [v − εv, v + εv] is an SIS regarding v.
Let [v − ε, v + ε] be an arbitrary SIS regarding the solution v, where ε ∈ V = [0, 1]n. According to

the definition of interval solution, it holds

[v − ε, v + ε] ⊆ S(B, c, d),

That is to say, both v + ε and v − ε are solutions. Since v̂ is maximum in S(B, c, d), it holds that
v + ε ≤ v̂. Thus, for any j ∈ J,

v j + ε j ≤ v̂ j,

or written as
v̂ j − v j ≥ ε j.

As a result, ∧
j∈J

ε j ≤
∧
j∈J

(v̂ j − v j). (3.21)

In addition, since v − ε ∈ S(B, c, d) and v − ε ≤ v, it follows from Proposition 7 that

w[v̆, v] ≥ w[v − ε, v]. (3.22)

According to (3.1) and (3.2), w[v − ε, v] = ε1 ∧ ε2 ∧ · · · ∧ εn =
∧
j∈J
ε j, and w[v̆, v] =

∧
j∈J

(v j − v̆ j). The

above inequality (3.22) turns out to be ∧
j∈J

(v j − v̆ j) ≥
∧
j∈J

ε j. (3.23)

Combining Inequalities (3.21), (3.23), and (3.13), it holds∧
j∈J

εv
j =
∧
j∈J

[(v̂ j − v j) ∧ (v j − v̆ j)]

= [
∧
j∈J

(v̂ j − v j)] ∧ [
∧
j∈J

(v j − v̆ j)]

≥
∧
j∈J

ε j.

(3.24)

Consequently, it follows from (3.3) and (3.24)

w[v − εv, v + εv] =
∧
j∈J

εv
j ≥
∧
j∈J

ε j = w[v − ε, v + ε].

Following Definition 5, [v − εv, v + εv] is the widest symmetrical interval solution regarding v. �
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3.3. Resolution algorithm for the WSIS and illustrative example

This subsection provides an algorithm to find the widest symmetrical interval solution regarding a
given solution. Moreover, some numerical examples are given for verifying our proposed algorithm.

Algorithm I: solving the widest symmetrical interval solution regarding v

Step 1. Following (3.5), calculate the indicator set Jvi for any i ∈ I.
Step 2. Following (3.6), select the indicator jv

i from the indicator set Jvi for any i ∈ I.
Step 3. Following (3.7), construct the indicator set Ivj for any j ∈ J.
Step 4. Following (3.8), generate the vector v̆ = (v̆1, v̆2, · · · , v̆n), where the v̆ j is defined by (3.8).
Step 5. Following (3.13), calculate the vector εv = (εv

1, ε
v
2, · · · , ε

v
n), where the εv

j is defined by (3.13).
Step 6. Construct the widest symmetrical interval solution as [v − εv, v + εv], according to (3.2).

Computational complexity of Algorithm I: In Algorithm I, Step 1 requires 2mn operations for
calculating the indicator sets. Moreover, Steps 2–4 have an identical calculation amount as mn.
Besides, Steps 5 and 6 require 3n and 2n operations, respectively. As a result, applying Algorithm
I to calculate the widest symmetrical interval solution regarding v, it requires totally

2mn + mn + mn + mn + 3n + 2n = 5mn + 5n

operations. The computational complexity of Algorithm I is O(mn).
Here, we have to mention that the reference [36] also proposes an algorithm to calculate the widest

symmetrical interval solution regarding a given solution. However, the algorithm presented in [36]
requires totally

1
2

m2n +
17
2

mn + 6n − 1

operations. The computational complexity is O(m2n). Obviously, our proposed algorithm I is superior
to the algorithm presented in [36], considering the computational complexity.

Example 1. Consider the max-min FRIs system as follows:
0.4 ≤ (0.1 ∧ y1) ∨ (0.7 ∧ y2) ∨ (0.5 ∧ y3) ∨ (0.3 ∧ y4) ∨ (0.3 ∧ y5) ≤ 0.7,
0.2 ≤ (0.3 ∧ y1) ∨ (0.5 ∧ y2) ∨ (0.8 ∧ y3) ∨ (0.2 ∧ y4) ∨ (0.1 ∧ y5) ≤ 0.6,
0.2 ≤ (0.6 ∧ y1) ∨ (0.1 ∧ y2) ∨ (0.3 ∧ y3) ∨ (0.5 ∧ y4) ∨ (0.5 ∧ y5) ≤ 0.8,
0.5 ≤ (0.3 ∧ y1) ∨ (0.2 ∧ y2) ∨ (0.6 ∧ y3) ∨ (0.8 ∧ y4) ∨ (0.2 ∧ y5) ≤ 0.7.

(3.25)

It is easy to check that both v1 = (0.8, 0.6, 0.6, 0.6, 0.3), v2 = (0.6, 0.45, 0.3, 0.65, 0.8) and
v3 = (0.4, 0.6, 0.52, 0.2, 0.4) are solutions of system (3.25). Next, try to obtain the widest symmetrical
interval solution regarding vt(t = 1, 2, 3) and calculate the (biggest) symmetrical width regarding
vt(t = 1, 2, 3).

Solution: According to (2.3) and (2.4), we find

v̂ = (1, 1, 0.6, 0.7, 1).

as the maximum solution for (3.25) after calculation.
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(i) Find the WSIS regarding v1 = (0.8, 0.6, 0.6, 0.6, 0.3).
Steps 1 and 2. Following (3.5) and (3.6), we have

Jv
1

1 = { j ∈ J|b1 j ∧ v1
j ≥ c1} = { j ∈ J|b1 j ∧ v1

j ≥ 0.4} = {2, 3},

Jv
1

2 = { j ∈ J|b2 j ∧ v1
j ≥ c2} = { j ∈ J|b2 j ∧ v1

j ≥ 0.2} = {1, 2, 3, 4},

Jv
1

3 = { j ∈ J|b3 j ∧ v1
j ≥ c3} = { j ∈ J|b3 j ∧ v1

j ≥ 0.2} = {1, 3, 4, 5},

Jv
1

4 = { j ∈ J|b4 j ∧ v1
j ≥ c4} = { j ∈ J|b4 j ∧ v1

j ≥ 0.5} = {3, 4},

and

jv1

1 = arg max{v1
j | j ∈ J

v1

1 } = arg max{v1
2, v

1
3} = 2 or 3,

jv1

2 = arg max{v1
j | j ∈ J

v1

2 } = arg max{v1
1, v

1
2, v

1
3, v

1
4} = 1,

jv1

3 = arg max{v1
j | j ∈ J

v1

3 } = arg max{v1
1, v

1
3, v

1
4, v

1
5} = 1,

jv1

4 = arg max{v1
j | j ∈ J

v1

4 } = arg max{v1
3, v

1
4} = 3 or 4.

Step 3. If we take jv1

1 = 2, jv1

2 = 1, jv1

3 = 1, jv1

4 = 4 and combine (3.7), we can obtain that

Iv
1

1 = {i ∈ I| jv1

i = 1} = {2, 3},
Iv

1

2 = {i ∈ I| jv1

i = 2} = {1},
Iv

1

3 = {i ∈ I| jv1

i = 3} = ∅,

Iv
1

4 = {i ∈ I| jv1

i = 4} = {4},
Iv

1

5 = {i ∈ I| jv1

i = 5} = ∅.

Step 4. Following (3.8), we find

v̆1
1 =
∨

i∈Iv1
1

ci = c2 ∨ c3 = 0.2,

v̆1
2 =
∨

i∈Iv1
2

ci = c1 = 0.4,

v̆1
4 =
∨

i∈Iv1
4

ci = c4 = 0.5,

v̆1
3 = v̆1

5 = 0.

Step 5. As a result, we get the vector v̆1 = (0.2, 0.4, 0, 0.5, 0). Moreover,

εv1

1 = (v̂1 − v1
1) ∧ (v1

1 − v̆1
1) = (1 − 0.8) ∧ (0.8 − 0.2) = 0.2 ∧ 0.6 = 0.2,

εv1

2 = (v̂2 − v1
2) ∧ (v1

2 − v̆1
2) = (1 − 0.6) ∧ (0.6 − 0.4) = 0.4 ∧ 0.2 = 0.2,

εv1

3 = (v̂3 − v1
3) ∧ (v1

3 − v̆1
3) = (0.6 − 0.6) ∧ (0.6 − 0) = 0 ∧ 0.6 = 0,

εv1

4 = (v̂4 − v1
4) ∧ (v1

4 − v̆1
4) = (0.7 − 0.6) ∧ (0.6 − 0.5) = 0.1 ∧ 0.1 = 0.1,

εv1

5 = (v̂5 − v1
5) ∧ (v1

5 − v̆1
5) = (1 − 0.3) ∧ (0.3 − 0) = 0.7 ∧ 0.3 = 0.3.

Thus,
εv1

= (0.2, 0.2, 0, 0.1, 0.3).
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Step 6. Based on the above-obtained εv1
, we further obtain the widest symmetrical interval solution

regarding v1 as

[v1 − εv1
, v1 + εv1

] = ([0.6, 1], [0.4, 0.8], 0.6, [0.5, 0.7], [0, 0.6]).

The (biggest) symmetrical width regarding v1 is

w[v1 − εv1
, v1 + εv1

] = 2(εv1

1 ∧ ε
v1

2 ∧ ε
v1

3 ∧ ε
v1

4 ∧ ε
v1

5 )
= 2(0.2 ∧ 0.2 ∧ 0 ∧ 0.1 ∧ 0.3) = 0.

In fact, since v1
3 = v̂1

3 = 0.6, it can be concluded from equations (3.3) and (3.13) that there must be
w[v1 − εv1

, v1 + εv1
] = 0.

(ii) Find the WSIS regarding v2 = (0.6, 0.45, 0.3, 0.65, 0.8).
Steps 1 and 2. Following (3.5) and (3.6), we find

Jv
2

1 = { j ∈ J|b1 j ∧ v2
j ≥ c1} = { j ∈ J|b1 j ∧ v2

j ≥ 0.4} = {2},

Jv
2

2 = { j ∈ J|b2 j ∧ v2
j ≥ c2} = { j ∈ J|b2 j ∧ v2

j ≥ 0.2} = {1, 2, 3, 4},

Jv
2

3 = { j ∈ J|b3 j ∧ v2
j ≥ c3} = { j ∈ J|b3 j ∧ v2

j ≥ 0.2} = {1, 3, 4, 5},

Jv
2

4 = { j ∈ J|b4 j ∧ v2
j ≥ c4} = { j ∈ J|b4 j ∧ v2

j ≥ 0.5} = {4},

and

jv2

1 = arg max{v2
j | j ∈ J

v2

1 } = arg max{v2
2} = 2,

jv2

2 = arg max{v2
j | j ∈ J

v2

2 } = arg max{v2
1, v

2
2, v

2
3, v

2
4} = 4,

jv2

3 = arg max{v2
j | j ∈ J

v2

3 } = arg max{v2
1, v

2
3, v

2
4, v

2
5} = 5,

jv2

4 = arg max{v2
j | j ∈ J

v2

4 } = arg max{v2
4} = 4.

Step 3. Following (3.7), we can obtain that

Iv
2

1 = {i ∈ I| jv2

i = 1} = ∅,

Iv
2

2 = {i ∈ I| jv2

i = 2} = {1},
Iv

2

3 = {i ∈ I| jv2

i = 3} = ∅,

Iv
2

4 = {i ∈ I| jv2

i = 4} = {2, 4},
Iv

2

5 = {i ∈ I| jv2

i = 5} = {3}.

Step 4. According to (3.8), we further obtain

v̆2
1 = v̆2

3 = 0,
v̆2

2 =
∨

i∈Iv2
2

ci = c1 = 0.4,

v̆2
4 =
∨

i∈Iv2
4

ci = c2 ∨ c4 = 0.5,

v̆2
5 =
∨

i∈Iv2
5

ci = c3 = 0.2.
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Step 5. As a result, we obtain the vector v̆2 = (0, 0.4, 0, 0.5, 0.2). Moreover,

εv2

1 = (v̂1 − v2
1) ∧ (v2

1 − v̆2
1) = (1 − 0.6) ∧ (0.6 − 0) = 0.4 ∧ 0.6 = 0.4,

εv2

2 = (v̂2 − v2
2) ∧ (v2

2 − v̆2
2) = (1 − 0.45) ∧ (0.45 − 0.4) = 0.55 ∧ 0.05 = 0.05,

εv2

3 = (v̂3 − v2
3) ∧ (v2

3 − v̆2
3) = (0.6 − 0.3) ∧ (0.3 − 0) = 0.3 ∧ 0.3 = 0.3,

εv2

4 = (v̂4 − v2
4) ∧ (v2

4 − v̆2
4) = (0.7 − 0.65) ∧ (0.65 − 0.5) = 0.05 ∧ 0.15 = 0.05,

εv2

5 = (v̂5 − v2
5) ∧ (v2

5 − v̆2
5) = (1 − 0.8) ∧ (0.8 − 0.2) = 0.2 ∧ 0.6 = 0.2.

Thus,
εv2

= (0.4, 0.05, 0.3, 0.05, 0.2).

Step 6. Based on the above-obtained εv2
, we further obtain the widest symmetrical interval solution

regarding v2 as

[v2 − εv2
, v2 + εv2

] = ([0.2, 1], [0.4, 0.5], [0, 0.6], [0.6, 0.7], [0.6, 1]).

The (biggest) symmetrical width regarding v2 is

w[v2 − εv2
, v2 + εv2

] = 2(εv2

1 ∧ ε
v2

2 ∧ ε
v2

3 ∧ ε
v2

4 ∧ ε
v2

5 )
= 2(0.4 ∧ 0.05 ∧ 0.3 ∧ 0.05 ∧ 0.2) = 0.1.

(iii) Find the WSIS regarding v3 = (0.4, 0.6, 0.52, 0.2, 0.4).
Steps 1 and 2. Following (3.5) and (3.6), we find

Jv
3

1 = { j ∈ J|b1 j ∧ v3
j ≥ c1} = { j ∈ J|b1 j ∧ v3

j ≥ 0.4} = {2, 3},

Jv
3

2 = { j ∈ J|b2 j ∧ v3
j ≥ c2} = { j ∈ J|b2 j ∧ v3

j ≥ 0.2} = {1, 2, 3, 4},

Jv
3

3 = { j ∈ J|b3 j ∧ v3
j ≥ c3} = { j ∈ J|b3 j ∧ v3

j ≥ 0.2} = {1, 3, 4, 5},

Jv
3

4 = { j ∈ J|b4 j ∧ v3
j ≥ c4} = { j ∈ J|b4 j ∧ v3

j ≥ 0.5} = {3},

and

jv3

1 = arg max{v3
j | j ∈ J

v3

1 } = arg max{v3
2, v

3
3} = 2,

jv3

2 = arg max{v3
j | j ∈ J

v3

2 } = arg max{v3
1, v

3
2, v

3
3, v

3
4} = 2,

jv3

3 = arg max{v3
j | j ∈ J

v3

3 } = arg max{v3
1, v

3
3, v

3
4, v

3
5} = 3,

jv3

4 = arg max{v3
j | j ∈ J

v3

4 } = arg max{v3
3} = 3.

Step 3. Following (3.7), we can obtain that

Iv
3

1 = {i ∈ I| jv3

i = 1} = ∅,

Iv
3

2 = {i ∈ I| jv3

i = 2} = {1, 2},
Iv

3

3 = {i ∈ I| jv3

i = 3} = {3, 4},
Iv

3

4 = {i ∈ I| jv3

i = 4} = ∅,

Iv
3

5 = {i ∈ I| jv3

i = 5} = ∅,
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Step 4. According to (3.8), we further obtain

v̆3
1 = v̆3

4 = v̆3
5 = 0,

v̆3
2 =
∨

i∈Iv3
2

ci = c1 ∨ c2 = 0.4,

v̆3
3 =
∨

i∈Iv3
3

ci = c3 ∨ c4 = 0.5.

Step 5. As a result, we obtain the vector v̆3 = (0, 0.4, 0.5, 0, 0). Moreover,

εv3

1 = (v̂1 − v3
1) ∧ (v3

1 − v̆3
1) = (1 − 0.4) ∧ (0.4 − 0) = 0.6 ∧ 0.4 = 0.4,

εv3

2 = (v̂2 − v3
2) ∧ (v3

2 − v̆3
2) = (1 − 0.6) ∧ (0.6 − 0.4) = 0.4 ∧ 0.2 = 0.2,

εv3

3 = (v̂3 − v3
3) ∧ (v3

3 − v̆3
3) = (0.6 − 0.52) ∧ (0.52 − 0.5) = 0.08 ∧ 0.02 = 0.02,

εv3

4 = (v̂4 − v3
4) ∧ (v3

4 − v̆3
4) = (0.7 − 0.2) ∧ (0.2 − 0) = 0.5 ∧ 0.2 = 0.2,

εv3

5 = (v̂5 − v3
5) ∧ (v3

5 − v̆3
5) = (1 − 0.4) ∧ (0.4 − 0) = 0.6 ∧ 0.4 = 0.4.

Thus,
εv3

= (0.4, 0.2, 0.02, 0.2, 0.4).

Step 6. Based on the above-obtained εv3
, we further obtain the widest symmetrical interval solution

regarding v3 as

[v3 − εv3
, v3 + εv3

] = ([0, 0.8], [0.4, 0.8], [0.5, 0.54], [0, 0.4], [0, 0.8]).

The (biggest) symmetrical width regarding v3 is

w[v3 − εv3
, v3 + εv3

] = 2(εv3

1 ∧ ε
v3

2 ∧ ε
v3

3 ∧ ε
v3

4 ∧ ε
v3

5 )
= 2(0.4 ∧ 0.2 ∧ 0.02 ∧ 0.2 ∧ 0.4) = 0.04.

Then, the problem has already been solved. �

Remark 2. In fact, the widest symmetrical interval solution regarding an identical solution might be
not unique. For example, considering v1 = (0.8, 0.6, 0.6, 0.6, 0.3) in system (3.25), we find jv1

1 = 2 or 3,
jv1

2 = 1, jv1

3 = 1, and jv1

4 = 3 or 4 in Example 1. Taking jv1

1 = 2, jv1

2 = 1, jv1

3 = 1, and jv1

4 = 4, we find the
widest symmetrical interval solution regarding v1 as

[v1 − εv1
, v1 + εv1

] = ([0.6, 1], [0.4, 0.8], 0.6, [0.5, 0.7], [0, 0.6]),

with the (biggest) symmetrical width w[v1 − εv1
, v1 + εv1

] = 0. However, when taking jv1

1 = 3, jv1

2 = 1,
jv1

3 = 1, jv1

4 = 4, the corresponding widest symmetrical interval solution is

([0.6, 1], [0.2, 1], 0.6, [0.5, 0.7], [0, 0.6]).

The corresponding (biggest) symmetrical width is also w([0.6, 1], [0.2, 1], 0.6, [0.5, 0.7], [0, 0.6]) =

0. That is to say, we find two different widest symmetrical interval solutions regarding the solution
v1 = (0.8, 0.6, 0.6, 0.6, 0.3). But they have the same (biggest) symmetrical width.
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Example 2. Consider the max-min FRIs system as follows:

0.37 ≤ (0.35 ∧ y1) ∨ (0.48 ∧ y2) ∨ (0.87 ∧ y3) ∨ (0.63 ∧ y4) ∨ (0.26 ∧ y5) ∨ (0.74 ∧ y6) ≤ 0.82,
0.34 ≤ (0.28 ∧ y1) ∨ (0.92 ∧ y2) ∨ (0.76 ∧ y3) ∨ (0.81 ∧ y4) ∨ (0.53 ∧ y5) ∨ (0.19 ∧ y6) ≤ 0.87,
0.25 ≤ (0.89 ∧ y1) ∨ (0.76 ∧ y2) ∨ (0.42 ∧ y3) ∨ (0.35 ∧ y4) ∨ (0.56 ∧ y5) ∨ (0.75 ∧ y6) ≤ 0.79,
0.36 ≤ (0.33 ∧ y1) ∨ (0.85 ∧ y2) ∨ (0.27 ∧ y3) ∨ (0.49 ∧ y4) ∨ (0.93 ∧ y5) ∨ (0.35 ∧ y6) ≤ 0.85,
0.41 ≤ (0.59 ∧ y1) ∨ (0.28 ∧ y2) ∨ (0.18 ∧ y3) ∨ (0.66 ∧ y4) ∨ (0.83 ∧ y5) ∨ (0.91 ∧ y6) ≤ 0.89,
0.32 ≤ (0.29 ∧ y1) ∨ (0.23 ∧ y2) ∨ (0.31 ∧ y3) ∨ (0.73 ∧ y4) ∨ (0.56 ∧ y5) ∨ (0.82 ∧ y6) ≤ 0.86.

(3.26)
It is easy to check that system (3.26) is consistent and v = (0.65, 0.48, 0.51, 0.43, 0.39, 0.45) is one

of its solutions. Apply Algorithm I to find the widest symmetrical interval solution regarding v and
calculate the (biggest) symmetrical width regarding v.

Solution: According to (2.3) and (2.4), we find

v̂ = (0.79, 0.87, 0.82, 1, 0.85, 0.89).

as the maximum solution for (3.26) after calculation.
Step 1. Following (3.5), we have

Jv1 = {2, 3, 4, 6}, Jv2 = {2, 3, 4, 5}, Jv3 = {1, 2, 3, 4, 5, 6},
Jv4 = {2, 4, 5}, Jv5 = {1, 4, 6}, Jv6 = {4, 5, 6}.

Step 2. Following (3.6), we have

jv
1 = arg max{v j| j ∈ Jv1} = 3, jv

2 = arg max{v j| j ∈ Jv2} = 3,
jv
3 = arg max{v j| j ∈ Jv3} = 1, jv

4 = arg max{v j| j ∈ Jv4} = 2,
jv
5 = arg max{v j| j ∈ Jv5} = 1, jv

6 = arg max{v j| j ∈ Jv6} = 6.

Step 3. Following (3.7), we have

Iv1 = {i ∈ I| jv
i = 1} = {3, 5},

Iv2 = {i ∈ I| jv
i = 2} = {4},

Iv3 = {i ∈ I| jv
i = 3} = {1, 2},

Iv4 = {i ∈ I| jv
i = 4} = ∅,

Iv5 = {i ∈ I| jv
i = 5} = ∅,

Iv6 = {i ∈ I| jv
i = 6} = {6}.

Step 4. Following (3.8), we have

v̆1 =
∨
i∈Iv1

ci = c3 ∨ c5 = 0.41,

v̆2 =
∨
i∈Iv2

ci = c4 = 0.36,

v̆3 =
∨
i∈Iv3

ci = c1 ∨ c2 = 0.37,

v̆4 = v̆5 = 0,
v̆6 =

∨
i∈Iv6

ci = c6 = 0.32.
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Hence, we obtain the vector v̆ = (0.41, 0.36, 0.37, 0, 0, 0.32).
Step 5. Following (3.13), we have

εv
1 = (v1 − v̆1) ∧ (v̂1 − v1) = (0.65 − 0.41) ∧ (0.79 − 0.65) = 0.24 ∧ 0.14 = 0.14.

In a similar way, we further have εv
2 = 0.12, εv

3 = 0.14, εv
4 = 0.43, εv

5 = 0.39, and εv
6 = 0.13. Then

we find the vector εv = (0.14, 0.12, 0.14, 0.43, 0.39, 0.13).
Step 6. According to (3.2), we can obtain the widest symmetrical interval solution regarding v as

[v − εv, v + εv] = ([0.51, 0.79], [0.36, 0.6], [0.37, 0.65], [0, 0.86], [0, 0.78], [0.32, 0.58]).

Moreover, the (biggest) symmetrical width regarding v is

2(εv
1 ∧ · · · ∧ ε

v
6) = 0.14 ∧ 0.12 ∧ 0.14 ∧ 0.43 ∧ 0.39 ∧ 0.13 = 0.24.

�

4. Centralized solution regarding system (1.6)

In the previous section, we have studied the symmetrical interval solution having the biggest width,
which is named WSIS. The width of a WSIS reflects its stability, i.e., the ability to bear the tolerable
variation of a provided feasible scheme. For characterizing the most stable feasible scheme, we further
define the concept of a centralized solution regarding the max-min FRI system (1.6). We will proposed
an effective method for solving the centralized solution.

Definition 6. (Centralized solution regarding system (1.6)) Let vC ∈ S(B, c, d) be a solution of (1.6).
The WSIS regarding vC is [vC − εvC

, vC + εvC
]. Then vC is said to be a centralized solution regarding

system (1.6), if
w[vC − εvC

, vC + εvC
] ≥ w[v − εv, v + εv]

holds for any solution v ∈ S(B, c, d), where [v − εv, v + εv] is the WSIS regarding v.

4.1. Construct a vector v̌ corresponding to the maximum solution v̂

Define the index set
Jv̂i = { j ∈ J|bi j ∧ v̂ j ≥ ci}, (4.1)

where i ∈ I, in accordance with the maximum solution v̂. Moreover, the following m indices are
induced by the above index sets:

jv̂
i = arg max{v̂ j| j ∈ Jv̂i }, (4.2)

where i ∈ I. In addition, based on the indices jv̂
1, jv̂

2, · · · , jv̂
m, we could define

Iv̂j = {i ∈ I| jv̂
i = j}, (4.3)

where j ∈ J. Accordingly, we construct the vector v̌ = (v̌1, v̌2, · · · , v̌n) by

v̌ j =


∨
i∈Iv̂j

ci, if Iv̂j , ∅,

0, if Iv̂j = ∅,

j ∈ J. (4.4)
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Proposition 8. Let v̌ be defined by (4.4). Then it holds v̌ ∈ S(B, c, d), serving as a solution of (1.6).

Proof. The given conditions indicate ci ∈ [0, 1], ∀i ∈ I. According to (4.4), it is evident that v̌ j ∈ [0, 1],
∀ j ∈ J.

For arbitrary i† ∈ I, denote j† = jv̂
i†

. By (4.2), it is clear j† = jv̂
i†
∈ Jv̂

i†
. According to (4.1), it holds

bi† j† ≥ bi† j† ∧ v̂ j† ≥ ci† . (4.5)

On the other hand, j† = jv̂
i†

indicates i† ∈ Iv̂
j†

, by (4.3). Hence, Iv̂
j†
, ∅ and by (4.4), we have

v̌ j† =
∨

i∈Iv̂
j†

ci. It follows from i† ∈ Iv̂
j†

that

v̌ j† =
∨
i∈Iv̂

j†

ci ≥ ci† . (4.6)

Combining (4.5) and (4.6), we have∨
j∈J

(bi† j ∧ v̌ j) ≥ bi† j† ∧ v̌ j† ≥ ci† ∧ ci† = ci† . (4.7)

Note that Inequality (4.7) holds for all i† ∈ I. Therefore, v̌ is a solution in the inequalities (1.6). �

Proposition 9. Let u ∈ S(B, c, d) be a solution of (1.6). Then it holds that w[v̌, v̂] ≥ w[u, v̂].

Proof. Let j be an arbitrary index in J. Next, we first examine that w[u, v̂] ≤ v̂ j − v̌ j in two cases.
Case 1. If Iv̂j = ∅, then by (4.4), v̌ j = 0. The given condition u ∈ S(B, c, d) indicates u j ∈ [0, 1].

Hence
v̂ j − v̌ j = v̂ j − u j ≤ v̂ j − 0 ≥

∧
k∈J

(v̂k − uk) = w[u, v̂]. (4.8)

Case 2. If Iv̂j , ∅, then by (4.4), v̌ j =
∨
i∈Iv̂j

ci. There exists i∗ ∈ Iv̂j such that

ci∗ =
∨
i∈Iv̂j

ci = v̌ j. (4.9)

Meanwhile, i∗ ∈ Iv̂j indicates jv̂
i∗ = j by (4.3). The given condition u ∈ S(B, c, d) also indicates

(bi∗1 ∧ u1) ∨ (bi∗2 ∧ u2) ∨ · · · ∨ (bi∗n ∧ un) ≥ ci∗ . (4.10)

There is j∗ ∈ J such that
bi∗ j∗ ∧ u j∗ ≥ ci∗ . (4.11)

Inequality (4.11) implies that
u j∗ ≥ bi∗ j∗ ∧ u j∗ ≥ ci∗ . (4.12)

Since v̂ is maximum and u ∈ S(B, c, d), we have v̂ j∗ ≥ u j∗ . Hence by (4.11) we further have

bi∗ j∗ ∧ v̂ j∗ ≥ bi∗ j∗ ∧ u j∗ ≥ ci∗ . (4.13)
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According to (4.1), it holds that j∗ ∈ Jv̂i∗ . Considering jv̂
i∗ = j and j∗ ∈ Jv̂i∗ , it follows from (4.2) that

v̂ j ≥ v̂ j∗ . (4.14)

Using the inequalities (4.9), (4.12), and (4.14), we have

v̂ j − v̌ j = v̂ j − ci∗ ≥ v̂ j − u j∗ ≥ v̂ j∗ − u j∗ ≥
∧
k∈J

(v̂k − uk) = w[u, v̂]. (4.15)

Considering the arbitrariness of the index j in J, by (4.8) and (4.15) we have v̂ j− v̌ j ≥ w[u, v̂], ∀ j ∈ J.
Hence it holds w[v̌, v̂] =

∧
j∈J

(v̂ j − v̌ j) ≥ w[u, v̂]. �

4.2. Construct the centralized solution regarding system (1.6)

In accordance with the solutions v̂ and v̌, we denote

vC =
v̂ + v̌

2
, εvC

=
v̂ − v̌

2
. (4.16)

Some properties are investigated for the vectors vC and εvC
as follows.

Theorem 5. Let vC and εvC
be defined by (4.16). Then there is vC ∈ S(B, c, d). Moreover, [vC −εvC

, vC +

εvC
] is the widest symmetrical interval solution regarding vC.

Proof. According to Proposition 8, it holds v̌ ∈ S(B, c, d). v̂ is the maximum solution. It is clear that
v̂ ≥ v̌. Then we have

vC =
v̂ + v̌

2
∈ [v̌, v̂]. (4.17)

Hence, vC ∈ S(B, c, d) is a solution. Note thatv̌ = v̂+v̌
2 −

v̂−v̌
2 = vC − εvC

∈ S(B, c, d),
v̂ = v̂−v̌

2 + v̂+v̌
2 = vC + εvC

∈ S(B, c, d).
(4.18)

It follows from Definitions 3 and 4 that [vC − εvC
, vC + εvC

] is an SIS regarding the solution vC.
Let [vC − ε†, vC + ε†] be an arbitrary SIS regarding vC, where ε† ∈ V. Following Definitions 3 and

4, we obtain
vC − ε†, vC + ε† ∈ S(B, c, d). (4.19)

Thus, vC − ε† ≤ vC + ε† ≤ v̂. This indicates

w[vC − ε†, v̂] ≥ w[vC − ε†, vC + ε†]. (4.20)

On the other hand, since vC − ε† ∈ S(B, c, d), we have

w[vC − εvC
, vC + εvC

] = w[v̌, v̂] ≥ w[vC − ε†, v̂], (4.21)

by Proposition 9. Inequalities (4.20) and (4.21) imply that w[vC − εvC
, vC + εvC

] ≥ w[vC − ε†, vC + ε†].
As a result, by Definition 5 we know that [vC−εvC

, vC +εvC
] is a widest symmetrical interval solution

regarding vC. �
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Proposition 10. Let u ∈ S(B, c, d) be an arbitrary solution in (1.6). Then it holds w[u, v̂] ≤ w[v̌, v̂].

Proof. Let j be an arbitrary index in J. Now we examine the inequality v̂ j − v̌ j ≥ w[u, v̂].
Case 1. If Iv̂j = ∅, then v̌ j = 0 by (4.4). Hence

w[u, v̂] =
∧
k∈J

(v̂k − uk) ≤ v̂ j − u j ≤ v̂ j − 0 = v̂ j − v̌ j. (4.22)

Case 2. If Iv̂j , ∅, then v̌ j =
∨
i∈Iv̂j

ci by (4.4). Obviously, there exists i† ∈ Iv̂j, such that

v̌ j = ci† . (4.23)

At the same time, by (4.3) and i† ∈ Iv̂j we have

jv̂
i† = j. (4.24)

Note that u ∈ S(B, c, d). Obviously, u satisfies the i†th inequality in (1.6), i.e.,

ci† ≤ (bi†1 ∧ u1) ∨ (bi†2 ∧ u2) ∨ · · · ∨ (bi†n ∧ un) ≤ di† .

As a result, there is j† ∈ J satisfying

bi† j† ∧ u j† ≥ ci† . (4.25)

Considering u ≤ v̂ since v̂ is the maximum solution, we obtain bi† j†∧v̂ j† ≥ bi† j†∧u j† ≥ ci† . According
to (4.1), it holds j† ∈ Jv̂

i†
. Moreover, Inequality (4.25) implies that

u j† ≥ bi† j† ∧ u j† ≥ ci† . (4.26)

Observing (4.2) and (4.24), we have j = jv̂
i†

= arg max{v̂l|l ∈ Jv̂i†}. Thus,

v̂ j = v̂ jv̂
i†
≥ v̂l, ∀l ∈ Jv̂i† .

Since j† ∈ Jv
i†

, it holds
v̂ j ≥ v̂ j† . (4.27)

Combining (4.23), (4.26), and (4.27), we have

v̂ j − v̌ j = v̂ j − ci† ≥ v̂ j − u j† ≥ v̂ j† − u j† ≥
∧
k∈J

(v̂k − uk) = w[u, v̂]. (4.28)

Inequalities (4.22) and (4.28) contribute to v̂ j − v̌ j ≥ w[u, v̂], ∀ j ∈ J. So we have

w[v̌, v̂] =
∧
j∈J

(v̂ j − v̌ j) ≥ w[u, v̂].

�

Theorem 6. vC and εvC
are defined by (4.16). Then it holds that vC is a centralized solution regarding

system (1.6).
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Proof. Let v ∈ S(B, c, d) be an arbitrary solution in (1.6). [v− εv, v + εv] is the WSIS regarding v. Since
[v − εv, v + εv] is an interval solution of (1.6); by Definition 3, it holds

[v − εv, v + εv] ⊆ S(B, c, d). (4.29)

That is v − εv, v + εv ∈ S(B, c, d). According to Proposition 10,

w[v̌, v̂] ≥ w[v − εv, v̂]. (4.30)

Since v̂ is the maximum solution, it is clear v̂ ≥ v + εv. Thus

w[v − εv, v̂] ≥ w[v − εv, v + εv]. (4.31)

Inequalities (4.30) and (4.31) imply that

w[v̌, v̂] ≥ w[v − εv, v + εv]. (4.32)

By (4.16), it is clear v̌ = vC − εvC
and v̂ = vC + εvC

. Inequality (4.32) could be further written as

w[v − εv, v + εv] ≤ w[vC − εvC
, vC + εvC

]. (4.33)

According to Definition 6, vC is a centralized solution regarding system (1.6). Moreover, the WSIS
regarding vC is [vC − εvC

, vC + εvC
] = [v̌, v̂]. �

4.3. Resolution algorithm for the centralized solution and illustrative example

This subsection provides an algorithm to find the centralized solution regarding a given max-min
system. Moreover, some numerical examples are given for verifying our proposed algorithm.

Algorithm II: solving the centralized solution regarding system (1.6)

Step 1. Following (4.1), calculate the indicator set Jv̂i for any i ∈ I.
Step 2. Following (4.2), select the indicator jv̂

i from the indicator set Jv̂i for any i ∈ I.
Step 3. Following (4.3), construct the indicator set Iv̂j for any j ∈ J.
Step 4. Following (4.4), generate the vector v̌ = (v̌1, v̌2, · · · , v̌n), where the v̌ j is defined by (4.4).
Step 5. Following (4.16), calculate the vectors vC and εvC

. Then we find the centralized solution
regarding system (1.6) as vC and the corresponding (biggest) symmetrical width as 2(εvC

1 ∧ε
vC

2 ∧· · ·∧ε
vC

n ).

Computational complexity of Algorithm II: In Algorithm II, Step 1 requires 2mn operations for
calculating the indicator sets. Moreover, Steps 2–4 have an identical calculation amount as mn.
Besides, Step 5 requires 4n + 2 operations. As a result, applying Algorithm II to calculate the widest
symmetrical interval solution regarding v, it requires totally

2mn + mn + mn + mn + 4n = 5mn + 4n + 2

operations. The computational complexity of Algorithm II is also O(mn).
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Example 3. Consider the max-min FRIs system as follows:

0.3 ≤ (0.2 ∧ y1) ∨ (0.4 ∧ y2) ∨ (0.5 ∧ y3) ∨ (0.1 ∧ y4) ∨ (0.6 ∧ y5) ∨ (0.7 ∧ y6) ≤ 0.8,
0.4 ≤ (0.3 ∧ y1) ∨ (0.6 ∧ y2) ∨ (0.2 ∧ y3) ∨ (0.8 ∧ y4) ∨ (0.5 ∧ y5) ∨ (0.1 ∧ y6) ≤ 0.9,
0.1 ≤ (0.7 ∧ y1) ∨ (0.3 ∧ y2) ∨ (0.4 ∧ y3) ∨ (0.2 ∧ y4) ∨ (0.5 ∧ y5) ∨ (0.6 ∧ y6) ≤ 0.6,
0.5 ≤ (0.8 ∧ y1) ∨ (0.1 ∧ y2) ∨ (0.3 ∧ y3) ∨ (0.4 ∧ y4) ∨ (0.7 ∧ y5) ∨ (0.2 ∧ y6) ≤ 0.9,
0.2 ≤ (0.5 ∧ y1) ∨ (0.2 ∧ y2) ∨ (0.1 ∧ y3) ∨ (0.9 ∧ y4) ∨ (0.6 ∧ y5) ∨ (0.4 ∧ y6) ≤ 0.8.

(4.34)

Try to find the centralized solution regarding the system (4.34).

Solution:
Notice that

v̂ = (0.6, 1, 1, 0.8, 1, 1).

is the maximum solution of system (4.34). Combining (4.1) and (4.2), we have

Jv̂1 = { j ∈ J|b1 j ∧ v̂ j ≥ c1} = { j ∈ J|b1 j ∧ v̂ j ≥ 0.3} = {2, 3, 5, 6},
Jv̂2 = { j ∈ J|b2 j ∧ v̂ j ≥ c2} = { j ∈ J|b2 j ∧ v̂ j ≥ 0.4} = {2, 4, 5},
Jv̂3 = { j ∈ J|b3 j ∧ v̂ j ≥ c3} = { j ∈ J|b3 j ∧ v̂ j ≥ 0.1} = {1, 2, 3, 4, 5, 6},
Jv̂4 = { j ∈ J|b4 j ∧ v̂ j ≥ c4} = { j ∈ J|b4 j ∧ v̂ j ≥ 0.5} = {1, 5},
Jv̂5 = { j ∈ J|b5 j ∧ v̂ j ≥ c5} = { j ∈ J|b5 j ∧ v̂ j ≥ 0.2} = {1, 2, 4, 5, 6},

and

jv̂
1 = arg max{v̂ j| j ∈ Jv̂1} = arg max{v̂2, v̂3, v̂5, v̂6} = 2 or 3 or 5 or 6,

jv̂
2 = arg max{v̂ j| j ∈ Jv̂2} = arg max{v̂2, v̂4, v̂5} = 2 or 5,

jv̂
3 = arg max{v̂ j| j ∈ Jv̂3} = arg max{v̂1, v̂2, v̂3, v̂4, v̂5, v̂6} = 2 or 3 or 5 or 6,

jv̂
4 = arg max{v̂ j| j ∈ Jv̂4} = arg max{v̂1, v̂5} = 5,

jv̂
5 = arg max{v̂ j| j ∈ Jv̂5} = arg max{v̂1, v̂2, v̂4, v̂5, v̂6} = 2 or 5 or 6.

Take jv̂
1 = 2, jv̂

2 = 5, jv̂
3 = 3, jv̂

4 = 5 , jv̂
5 = 6. Combining (4.3) and (4.4), we can obtain that

Iv̂1 = {i ∈ I| jv̂
i = 1} = ∅,

Iv̂2 = {i ∈ I| jv̂
i = 2} = {1},

Iv̂3 = {i ∈ I| jv̂
i = 3} = {3},

Iv̂4 = {i ∈ I| jv̂
i = 4} = ∅,

Iv̂5 = {i ∈ I| jv̂
i = 5} = {2, 4},

Iv̂6 = {i ∈ I| jv̂
i = 6} = {5},

and
v̌1 = 0, v̌2 =

∨
i∈Iv̂2

ci = c1 = 0.3, v̌3 =
∨
i∈Iv̂3

ci = c3 = 0.1,

v̌4 = 0, v̌5 =
∨
i∈Iv̂5

ci = c2 ∨ c4 = 0.5, v̌6 =
∨
i∈Iv̂6

ci = c5 = 0.2.
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Then we find the vector v̌ = (0, 0.3, 0.1, 0, 0.5, 0.2). In accordance with (4.16), we further have

vC =
v̂ + v̌

2
= (0.3, 0.65, 0.55, 0.4, 0.75, 0.6),

εvC
=

v̂ − v̌
2

= (0.3, 0.35, 0.45, 0.4, 0.25, 0.4) .

Then it holds that vC = (0.3, 0.65, 0.55, 0.4, 0.75, 0.6) is a centralized solution regarding
system (4.34). The corresponding widest symmetrical interval solution regarding vC is

[vC − εvC
, vC + εvC

] = ([0, 0.6], [0.3, 1], [0.1, 1], [0, 0.8], [0.5, 1], [0.2, 1]), (4.35)

with the (biggest) symmetrical width w[vC − εvC
, vC + εvC

] = 0.5. �

Remark 3. In fact, the centralized solution regarding a given system with max-min FRIs might not be
unique. For example, it can be easily examined that

(0.35, 0.75, 0.75, 0.55, 0.75, 0.75)

is indeed another centralized solution regarding system (4.34).

Example 4. Consider the max-min FRIs system as follows:

0.37 ≤ (0.35 ∧ y1) ∨ (0.48 ∧ y2) ∨ (0.87 ∧ y3) ∨ (0.63 ∧ y4) ∨ (0.26 ∧ y5) ∨ (0.74 ∧ y6) ≤ 0.82,
0.34 ≤ (0.28 ∧ y1) ∨ (0.92 ∧ y2) ∨ (0.76 ∧ y3) ∨ (0.31 ∧ y4) ∨ (0.53 ∧ y5) ∨ (0.19 ∧ y6) ≤ 0.87,
0.25 ≤ (0.89 ∧ y1) ∨ (0.76 ∧ y2) ∨ (0.42 ∧ y3) ∨ (0.18 ∧ y4) ∨ (0.56 ∧ y5) ∨ (0.75 ∧ y6) ≤ 0.79,
0.36 ≤ (0.33 ∧ y1) ∨ (0.85 ∧ y2) ∨ (0.27 ∧ y3) ∨ (0.35 ∧ y4) ∨ (0.93 ∧ y5) ∨ (0.35 ∧ y6) ≤ 0.85,
0.41 ≤ (0.59 ∧ y1) ∨ (0.28 ∧ y2) ∨ (0.18 ∧ y3) ∨ (0.38 ∧ y4) ∨ (0.83 ∧ y5) ∨ (0.91 ∧ y6) ≤ 0.89,
0.32 ≤ (0.48 ∧ y1) ∨ (0.23 ∧ y2) ∨ (0.31 ∧ y3) ∨ (0.26 ∧ y4) ∨ (0.56 ∧ y5) ∨ (0.28 ∧ y6) ≤ 0.86.

(4.36)
Try to find the centralized solution regarding system (4.36).

Solution: After calculation, the maximum solution of system (3.26) can be obtained as v̂ =

(0.79, 0.87, 0.82, 1, 0.85, 0.89). Next, we apply our proposed Algorithm II to find the centralized
solution regarding (4.36).

Step 1. Following (4.1), we have

Jv̂1 = {2, 3, 4, 6}, Jv̂2 = {2, 3, 5}, Jv̂3 = {1, 2, 3, 5, 6},
Jv̂4 = {2, 5}, Jv̂5 = {1, 5, 6}, Jv̂6 = {1, 5}.

Step 2. Following (4.2), we have

jv̂
1 = arg max{v j| j ∈ Jv̂1} = 4, jv̂

2 = arg max{v j| j ∈ Jv̂2} = 2,
jv̂
3 = arg max{v j| j ∈ Jv̂3} = 6, jv̂

4 = arg max{v j| j ∈ Jv̂4} = 2,
jv̂
5 = arg max{v j| j ∈ Jv̂5} = 6, jv̂

6 = arg max{v j| j ∈ Jv̂6} = 5.
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Step 3. Following (4.3), we have

Iv̂1 = {i ∈ I| jv̂
i = 1} = ∅,

Iv̂2 = {i ∈ I| jv̂
i = 2} = {2, 4},

Iv̂3 = {i ∈ I| jv̂
i = 3} = ∅,

Iv̂4 = {i ∈ I| jv̂
i = 4} = {1},

Iv̂5 = {i ∈ I| jv̂
i = 5} = {6},

Iv̂6 = {i ∈ I| jv̂
i = 6} = {3, 5}.

Step 4. Following (4.4), we have

v̌1 = 0,
v̌2 =

∨
i∈Iv̌2

ci = c2 ∨ c4 = 0.36,

v̌3 = 0,
v̌4 =

∨
i∈Iv̌4

ci = c1 = 0.37,

v̌5 =
∨
i∈Iv̌5

ci = c6 = 0.32,

v̌6 =
∨
i∈Iv̌6

ci = c3 ∨ c5 = 0.41.

Hence, we obtain the vector v̌ = (0, 0.36, 0, 0.37, 0.32, 0.41).
Step 5. Following (4.16), we can calculate the vectors vC and εvC

. After calculation, we have

vC =
v̂ + v̌

2
= (0.395, 0.615, 0.41, 0.685, 0.585, 0.65).

εvC
=

v̂ − v̌
2

= (0.395, 0.255, 0.41, 0.315, 0.265, 0.24).

Hence, the centralized solution regarding system (4.36) is vC =

(0.395, 0.615, 0.41, 0.685, 0.585, 0.65), with the corresponding (biggest) symmetrical width
2(εvC

1 ∧ ε
vC

2 ∧ · · · ∧ ε
vC

6 ) = 0.48. �

5. Conclusions

Recently, some researchers adopted the max-min FRIs or FREs system to model a P2P educational
information sharing system. Any feasible scheme in the P2P network system was found to be a
solution to the max-min system, e.g., system (1.6). As a result, we employed the concept of the widest
symmetrical interval solution to represent the stability for a feasible scheme. Moreover, reflecting the
most stable feasible scheme, the concept of a centralized solution of system (1.6) was further defined.
Effective resolution methods were proposed for the widest symmetrical interval solution regarding
a provided solution and the centralized solution regarding system (1.6), respectively. The proposed
resolution methods have been demonstrated and examined through the numerical examples. In future
works, one might further generalize the widest symmetrical interval solution and centralized solution
to the addition-min FRIs system, or even to the classical max-t-norm fuzzy relational system.
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