
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(3): 7238–7255.
DOI: 10.3934/math.2025331
Received: 22 January 2025
Revised: 11 March 2025
Accepted: 13 March 2025
Published: 28 March 2025

Research article

Finite-time synchronization of fractional-order chaotic systems by applying
the maximum-valued method of functions of five variables

Junli You1 and Zhengqiu Zhang2,*

1 School of General Education, Hunan University of Information Technology, Changsha, 410151,
China

2 College of Mathematics, Hunan University, Changsha, 410082, China

* Correspondence: Email: zhangzhengqiu@hnu.edu.cn; Tel: +8613367496849.

Abstract: In this discussion, the finite time synchronization (FTSN) of master-slave fractional-
order chaotic systems (MSFOCSS) is explored. By adopting the maximum-valued method (MVM)
of functions of five variables, two novel criteria on the FTSN are obtained for the MSFOCSS. So far,
the studies of the FTSN of the MSFOCSS have been rare. Furthermore, the existing results on the
FTSN of MSFOCSS have been achieved often by adopting the LMI method and finite time stability
theorems (FTST). Thus, instead of utilizing the past research methods, adopting the MVM to study the
FTSN of the MSFOCSS is an innovative study work.
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1. Introduction

Chaotic systems (CSS) are quite important systems because they can check the chaotic states of
dynamical systems and forecast the future state responses according to the initial conditions. That is,
a very small variation in the present state may give rise to disrupt the states with large deviations. So,
chaos is one of the most esteemed and intriguing phenomena in control theory. It is a fast that the CSS
has widespread applications in practice in many application fields such as secure communications,
biological systems, information processing, chemical reactions, economic systems, and so on. So,
great advancements in study works have been achieved in synchronizing and stabilization of the CSS by
adopting different study methods [7–9,12–16,37–40,43,44]and constructing different controllers [1,2].
In addition, fractional calculus (FCS) is one of the best study approaches for modeling the nonlinear
dynamical system of real-world phenomena with more accuracy. Thus, the FCS clearly elucidates the
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hereditary and memory properties of various materials and processes. In this connection, fractional-
order systems (FOSS) are mainly utilized to elucidate the numerous seemingly diverse domains in
science and engineering when compared with integer-order dynamical systems [3, 4]. In addition,
chaotic phenomena are independent of order because many real-world happenings are controlled in
terms of both integers. Hence, it is essential for us to research the synchronization subject of the FOSS.
Because of this practical application, the studies on the synchronization (exponential synchronization
and asymptotic synchronization and other synchronization) for the FOSS have been a hot research
topic and a large number of studies have been realized [5, 6, 10, 11, 17–22].

The exponential/asymptotic synchronization of the system cannot guarantee that the system is
bounded in a finite time, or it might be in a large time scale. However, in practical application, in order
to better control the dynamics, it is the best thing that the convergence rate of the dynamics should be
in a finite time span. But, so far, few works have been achieved on the FTSN for the FOCSS. We only
found a few papers [5, 23–30] in which the FTSN subject for FOCSS was studied. In [24], the FTSN
for the fractional-order chaotic systems (FOCSS) with different structures under parameter disturbance
and external disturbance was studied. By adopting the FTST, some criteria for synchronization
of FOCSS were established. In the article [24], employing the sliding-mode control, a finite-time
adaptive synchronization method was introduced to realize the generalized projective synchronization
of fractional order (FO) memristor or CSS with unknown parameters. The authors designed a new
FO integral sliding-mode surface with a faster convergence speed, which can make the error system
converge to zero in finite time. The sufficient condition for the sliding-mode surface can be reached
by the synchronization error system in finite time. Paper [25] considered the finite-time projective
synchronization within a thermal-mechanical FO system in the presence of external disruptions. The
study utilized a developed sliding mode surface and used the Lyapunov function method (LFM) to
synchronize trajectories. Paper [26] designed a finite-time multiple synchronization controller for
FO hyper CSS. The FTSN was explored by employing the FTST for the CSS. This paper [27]
researched the synchronization subject of nonlinear delayed FOCSS. The fast synchronization of the
considered system was ensured in a finite time by using LMI. In [28], the authors investigated the
subject of adaptive sliding mode synchronization control for a class of variable-order FO uncertain
coupled systems. By using the graph theory, some novel FTSN criteria were obtained for the systems.
Paper [29] introduced a novel fuzzy event-triggered control way for uncertain FOSS in the presence
of input delay. A novel practical finite-time chaos synchronization control approach with an event-
triggered strategy was proposed. Paper [30] addressed the topic of the FTSN of FO simplest two-
component chaotic oscillations operating at high frequency and application to digital cryptography. By
constructing a Lyapunov function, an adaptive feedback controller was designed to achieve the FTSN
of two oscillators. In [5], by employing LFW, some criteria on asymptotic synchronization for FOCSS
were obtained.

Up to now, the FTSN for the MSFOCSS has been explored often by employing the LMI
approach [27], LFW [24, 25, 29, 30], FTST [23, 26] and graph theory [28]. Up to now, the results
on the FTSN obtained by using LMI for dynamical systems have been very complicated and difficult
to verify. In addition, the FTST only can be used to study such a first-order differential inequality:
Vη(t) ≤ a + bV(t), where, a, b are constants and η is fractional order cannot be used to study the
differential inequalities (3.3) and (3.11) in our paper. Since the results of the FTSN MSFOCSS have
been rare, this motivates us to study the FTSN for MSFOCSS by using a new study method. Our MVM
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can be used to study the FTSN by studying the complicated differential inequalities, furthermore, our
results obtained by MVM are more concise and more easily verified than those obtained by using LMI
and FTST. Instead of using the past methods of FTSN for the FOCSS, in this article, by adopting the
MVM of functions of the 5 variables and constructing new controllers, two new criteria are established
for the MSFOCSS. One of the difficulties we meet is how to construct the new controllers and plan the
function of 5 variables can get the possible unique local extreme point of the discussed function. The
other difficulty we meet is how to design the assumed conditions can get the setting finite times. Thus,
the main contributions of this article include the following three aspects:
(1) The novel controllers are designed to study the FTSN of the discussed MSFOCSS.
(2) The MVM of functions of 5 variables is introduced to study the FTSN of MSFOCSS.
(3) Two new criteria on FTSN of FOCSS are obtained by employing the MVM of functions
of 5 variables.

2. Preliminaries

We consider the following drive fractional-order Lorenz system with Caputo derivative:

dηN1(t)
dtη = b1[N3(t) − N1(t)],

dηN2(t)
dtη = b1[N4(t) − N2(t)],

dηN3(t)
dtη = b2N1(t) − N3(t) − N1(t)N5(t),

dηN4(t)
dtη = b2N2(t) − N4(t) − N2(t)N5(t),

dηN5(t)
dtη = N1(t)N3(t) + N2(t)N4(t) − b3N5(t),

(2.1)

which is discussed in [5]. We also consider the corresponding slave fractional-order Lorenz systems
with Caputo derivative discussed in [5] as follows:

dηK1(t)
dtη = b1[K3(t) − K1(t)] + Q1(t),

dηK2(t)
dtη = b1[K4(t) − K2(t)] + Q2(t),

dηK3(t)
dtη = b2K1(t) − K3(t) − K1(t)K5(t) + Q3(t),

dηK4(t)
dtη = b2K2(t) − K4(t) − K2(t)K5(t) + Q4(t),

dηK5(t)
dtη = K1(t)K3(t) + K2(t)K4(t) − b3K5(t) + Q5(t),

(2.2)

where bi(i = 1, 2, 3) are constants, Qm(t),m = 1, 2, 3, 4, 5 are the control functions that will be designed
later, 0 < η < 1 is the fractional order, and n is a positive integer. Defining the error functions as
αm(t) = Km(t)−Nm(t),m = 1, 2, 3, 4, 5, the fractional-order error system with the Caputo derivative can
be expressed as

dηα1(t)
dtη = b1[α3(t) − α1(t)] + Q1(t),

dηα2(t)
dtη = b1[α4(t) − α2(t)] + Q2(t),

dηα3(t)
dtη = b2α1(t) − α3(t) − α1(t)α5(t) − α1(t)N5(t) − α5(t)N1(t) + Q3(t),

dηα4(t)
dtη = b2α2(t) − α4(t) − α2(t)α5(t) − α2(t)N5(t) − α5(t)N2(t) + Q4(t),
dηα5(t)

dtη = α1(t)α3(t) + α2(t)α4(t) − b3α5(t) + α1(t)N3(t) + α2(t)N4(t),
+α3(t)N1(t) + α4(t)N2(t) + Q5(t).

(2.3)

Now, by designing the control functions Qm(t),m = 1, 2, 3, 4, 5, employing the control skills, we
will study the FTSN for system (2.1) and system (2.2).
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Definition 2.1. The system (2.1) and the system (2.2) are said to realize FTSN. If for each solution
of system (2.1) and system (2.2) expressed by [N1(t),N2(t), · · · ,N5(t)]T and [K1(t),K2(t), · · · ,K5(t)]T ,

there is a positive constant T that depends on the initial values of the error system (2.3) such that

lim
t→T
|Nm(t) − Km(t)| = 0, |Nm(t) − Km(t)| = 0, t ≥ T.

Definition 2.2. [32] The fractional integral of function H1(t) is defined as

IηH1(t) =
1

G(η)

∫ t

t0
(t − u)η−1H1(u)du, η > 0,

where G(.) is the Gamma function defined by

G(η) =

∫ ∞

0
tη−1e−tdt.

Definition 2.3. [31] Caputo fractional derivative (CFD) of order η of function H1(t) is defined by

DηH1(t) =
1

G(l − η)

∫ t

t0

H(n)
1 (u)

(t − u)η−n+1 du,

where 0 ≤ l− 1 < η < l,G(.) is the Gamma function, and l is an integer that is more than 1. Especially,
when 0 < η < 1,

DηH1(t) =
1

G(1 − η)

∫ t

t0

H′1(u)
(t − u)η

du.

Lemma 2.1. [32] If the CFD DηH1(t) is integrable, then the η integration of DηH1(t) is defined as

Iη[DηH1(t)] = H1(t) −
n−1∑
k=0

H(k)
1 (t0)
k!

(t − t0)k.

Especially, for 0 < η ≤ 1, one has

Iη[DηH1(t] = H1(t) − H1(t0).

Lemma 2.2. [33] Suppose that H1(t) ∈ R is a continuous and derivable function. Then for t ≥ 0,

1
2

DηH2
1(t) ≤ H1(t)DηH1(t), η ∈ (0, 1).

Lemma 2.3. [35,42] If function f (x1(t), x2(t), x3(t), x4(t), x5(t)), xi ∈ (ai, bi), i = 1, 2, 3, 4, 5 has a unique
possible local extremum point (α0

1, α
0
2, α

0
3, α

0
4, α

0
5), and lim(x1,x2,x3,x4,x5)→(y1,y2,y3,y4,y5) f (x1, x2, x3, x4, x5) =

z1 exists, where yi = ai or bi(i = 1, 2, 3, 4, 5), ai may be −∞, bi may be +∞, then

f (x1, x2, · · · , x5)
≤ max

(x1,x2,··· ,x5)∈R5
f (x1, x2, · · · , x5)

= max
{
f (α0

1, α
0
2, α

0
3, α

0
4, α

0
5), z1

}
.
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3. Main results

The control functions in system (2.3) are designed as follows:

Q1(t) = − α5(t)N3(t),
Q2(t) = α4(t)N5(t),
Q3(t) = α1(t)N5(t),
Q4(t) = α−1

4 (t)(k5 + k6),
Q5(t) = −α2(t)N4(t) + k4,

Q4(t) = 0, α4(t) = 0; (3.1)

and

Q1(t) = k2,

Q2(t) = k3 + α−1
2 (t)β,

Q3(t) = α1(t)α5(t),
Q4(t) = α2(t)N5(t),
Q5(t) = −α1(t)N3(t) − α2(t)N4(t) + k1α1(t),
Q2(t) = 0, α2(t) = 0, (3.2)

where k5 < 0, k6 < 0, β < 0, k1, k2, k3, k4 are constants.
Theorem 3.1. Set η ∈ (0, 1). Then the system (2.1) and the system (2.2) can achieve the FTSN by
utilizing the designed controllers (3.1) if the following conditions are met:
(h1)

b2 < b1, b3 > 0, 0.5(b1 + b2) < 1, (b1 + b2)2 , 4b1;

(h2)

k5 +
k2

4

4b3
< 0.

Proof. A Lyapunov function is considered as follows:

n(t) =
1
2

[
α2

1(t) + α2
2(t) + α2

3(t) + α2
4(t) + α2

5(t)
]
.

From system (2.3), by Lemma 2.2, it follows that

Dη
t n(t)

≤ α1(t)
[
b1(α3(t) − α1(t)) + Q1(t)

]
+ α2(t)[b1(α4(t) − α2(t)) + Q2(t)

]
+ α3(t)

[
b2α1(t)

−α3(t) − α1(t)α5(t) − α1(t)N5(t) − α5(t)N2(t) + Q3(t)
]

+ α4(t)
[
b2α2(t) − α4(t) −

α2(t)α5(t) − α2(t)N5(t) − α5(t)N2(t) + Q4(t)
]

+ α5(t)
[
α1(t)α3(t) + α2(t)α4(t) − b3

×α5(t) + α1(t)N3(t) + α2(t)N4(t) + α3(t)N1(t) + α4(t)N2(t) + Q5(t)
]

= (b1 + b2)α1(t)α3(t) − b1α
2
1(t) + (b1 + b2)α2(t)α4(t) − b1α

2
2(t) − α2

3(t) − α2
4(t) − b3α

2
5(t)
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+α1(t)Q1(t) + α1(t)α5(t)N3(t) + α2(t)Q2(t) − α2(t)α4(t)N5(t) + α3(t)Q3(t) − α1(t)
×α3(t)N5(t) + α4(t)Q4(t) + α5(t)Q5(t) + α2(t)α5(t)N4(t) + k4α5(t) + k5 + k6

= (b1 + b2)α1(t)α3(t) − b1α
2
1(t) + (b1 + b2)α2(t)α4(t) − b1α

2
2(t) − α2

3(t) − α2
4(t) − b3α

2
5(t)

+k4α5(t) + k5 + k6. (3.3)

Let

g(α1(t), α2(t), α3(t), α4(t), α5(t))
= (b1 + b2)α1(t)α3(t) − b1α

2
1(t) + (b1 + b2)α2(t)α4(t) − b1α

2
2(t) − α2

3(t) − α2
4(t) − b3α

2
5(t)

+k4α5(t) + k5, (α1(t), α2(t), α3(t), α4(t), α5(t)) ∈ R5. (3.4)

From (3.4), we get 

∂g
∂α1

= (b1 + b2)α3(t) − 2b1α1(t),

∂g
∂α2

= (b1 + b2)α4(t) − 2b1α2(t),

∂g
∂α3

= (b1 + b2)α1(t) − 2α3(t),

∂g
∂α4

= (b1 + b2)α2(t) − 2α4(t),

∂g
∂α5

= k4 − 2b3α5(t).

Letting 

∂g
∂α1

= (b1 + b2)α3(t) − 2b1α1(t) = 0,

∂g
∂α2

= (b1 + b2)α4(t) − 2b1α2(t) = 0,

∂g
∂α3

= (b1 + b2)α1(t) − 2α3(t) = 0,

∂g
∂α4

= (b1 + b2)α2(t) − 2α4(t) = 0,

∂g
∂α5

= k4 − 2b3α5(t) = 0,

by using (h1), we obtain the unique possible local extremum point (α0
1, α

0
2, α

0
3, α

0
4, α

0
5) of

g(α1, α2, α3, α4, α5), where

α0
1 = 0, α0

2 = 0, α0
3 = 0, α0

4 = 0, α0
5 =

k4

2b3
.

From (3.4) and using (h2), it follows that

g(α0
1, α

0
2, α

0
3, α

0
4, α

0
5)

= −b3

( k4

2b3

)2
+ k4

k4

2b3
+ k5
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= k5 +
k2

4

4b3
< 0. (3.5)

From (3.4), using inequality 2ab ≤ a2 + b2, we obtain

g(α1(t), α2(t), α3(t), α4(t), α5(t))
≤ 0.5(b1 + b2)[α2

1(t) + α2
3(t)] − b1α

2
1(t) + 0.5(b1 + b2)[α2

2(t) + α2
4(t)] − b1α

2
2(t) − α2

3(t)
−α2

4(t) − b3α
2
5(t) + k4α5(t) + k5

= 0.5(b2 − b1)α2
1(t) + [0.5(b1 + b2) − 1]α2

3(t) + [0.5(b1 + b2) − 1]α2
4(t) + 0.5(b2 − b1)α2

2(t)
−b3α

2
5(t) + k4α5(t) + k5. (3.6)

From (3.6), we get

g(∞,∞,∞,∞,∞)
≤ lim

(α1,α2,α3,α4,α5)→(∞,∞,∞,∞,∞)

{
0.5(b2 − b1)α2

1(t) + [0.5(b1 + b2) − 1]α2
3(t) + [0.5(b1 + b2)

−1]α2
4(t) + 0.5(b2 − b1)α2

2(t) − b3α
2
5(t) + k4α5(t) + k5

}
≤ k5

< 0. (3.7)

From (3.5) and (3.7), by using Lemma 2.3, we have

g(α1(t), α2(t), α3(t), α4(t), α5(t))
≤ max

(α1,α2,α3,α4,α5)∈R5

{
g(α1(t), α2(t), α3(t), α4(t), α5(t))

}
≤ max

{
g(α0

1, α
0
2, α

0
3, α

0
4, α

0
5), g(∞,∞,∞,∞,∞)

}
≤ 0. (3.8)

Substituting (3.8) into (3.3) gives

Dη
t n(t) ≤ k6. (3.9)

q-Integrating (3.9) over [0, t] gives

0 ≤ n(t) ≤ n(0) +
1

G(η)

∫ t

0
(t − u)η−1k6du

≤ n(0) +
k6tη

ηG(p)
. (3.10)

When t ≥ t̂1 =
[
−n(0)ηG(η)

k6

] 1
η
, from (3.10), we have

0 ≤ n(t) ≤ 0, t ≥ t̂1.

Namely

lim
t→t̂1

n(t) = 0, n(t) = 0, t ≥ t̂1.
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Namely
lim
t→t̂1
|Km(t) − Nm(t)| = 0, |Km(t) − Nm(t)| = 0, t ≥ t̂1.

This ends the argument of Theorem 3.1.
Theorem 3.2. Let η ∈ (0, 1). The system (2.1) and system (2.2) can achieve the FTS by utilizing the
constructed controllers (3.2) if the following conditions are satisfied:
(l1)

0.5|b1 + b2| < b1 + 0.5|k1|, |b1 + b2| < 2b3, |b1 + b2| < 2, |k1| < 2b3;

(l2)
b3 > 0, (b1 + b2)2 > 4b1.

Proof. A Lyapunov function is introduced as follows:

n(t) =
1
2

[
α2

1(t) + α2
2(t) + α2

3(t) + α2
4(t) + α2

5(t)
]
.

From system (2.3), by using Lemma 2.2, it follows that

Dη
t n(t)

≤ α1(t)
[
b1(α3(t) − α1(t)) + Q1(t)

]
+ α2(t)[b1(α4(t) − α2(t)) + Q2(t)

]
+ α3(t)

[
b2α1(t)

−α3(t) − α1(t)α5(t) − α1(t)N5(t) − α5(t)N2(t) + Q3(t)
]

+ α4(t)
[
b2α2(t) − α4(t) −

α2(t)α5(t) − α2(t)N5(t) − α5(t)N2(t) + Q4(t)
]

+ α5(t)
[
α1(t)α3(t) + α2(t)α4(t) − b3

×α5(t) + α1(t)N3(t) + α2(t)N4(t) + α3(t)N1(t) + α4(t)N2(t) + Q5(t)
]

= (b1 + b2)α1(t)α3(t) − b1α
2
1(t) + (b1 + b2)α2(t)α4(t) − b1α

2
2(t) − α2

3(t) − α2
4(t) − b3α

2
5(t)

+α1(t)Q1(t) + α1(t)α5(t)N3(t) + α2(t)Q2(t) − α2(t)α4(t)N5(t) + α3(t)Q3(t) − α1(t)
×α3(t)N5(t) + α4(t)Q(t) + α5(t)Q5(t) + α2(t)α5(t)N4(t)

= (b1 + b2)α1α3 − b1α
2
1 + (b1 + b2)α2α4 − b1α

2
2 − α

2
3 − α

2
4 − b3α

2
5 + k1α1α5 + k2α1

+k3α2 + β. (3.11)

Set

f̂ (α1, α2, α3, α4, α5)
= (b1 + b2)α1α3 − b1α

2
1 + (b1 + b2)α2α4 − b1α

2
2 − α

2
3 − α

2
4 − b3α

2
5 + k1α1α5 + k2α1 + k3α2,

(α1, α2, · · · , α5) ∈ R5. (3.12)

From (3.12), we have
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

∂ f̂
∂α1

= −2b1α1 + (b1 + b2)α3 + k1α5 + k2,

∂ f̂
∂α2

= −2b1α2 + (b1 + b2)α4 + k3,

∂ f̂
∂α3

= −2α3 + (b1 + b2)α1,

∂ f̂
∂α4

= −2α4 + (b1 + b2)α2,

∂ f̂
∂α5

= −2b3α5 + k1α1.

Setting 

∂ f̂
∂α1

= −2b1α1 + (b1 + b2)α3 + k1α5 + k2 = 0,

∂ f̂
∂α2

= −2b1α2 + (b1 + b2)α4 + k3 = 0,

∂ f̂
∂α3

= −2α3 + (b1 + b2)α1 = 0,

∂ f̂
∂α4

= −2α4 + (b1 + b2)α2 = 0,

∂ f̂
∂α5

= −2b3α5 + k1α1 = 0,

we obtain the unique local extremum point (α0
1, α

0
2, · · · , α

0
5) of f̂ (α1, α2, · · · , α5), where

α0
1 =

2b3k2

4b1b3 − k2
1 − b3(b1 + b2)2

;

α0
2 =

2k3

4b1 − (b1 + b2)2 , α0
3 =

k2b3(b1 + b2)
4b1b3 − k2

1 − b3(b1 + b2)2
;

α0
4 =

k3(b1 + b2)
4b1 − (b1 + b2)2 , α0

5 =
k1k2

4b1b3 − k2
1 − b3(b1 + b2)2

.

By applying inequality 2ab ≤ a2 + b2, we have

f̂ (α1, α2, · · · , α5)
≤ 0.5|b1 + b2|(α2

1 + α2
3) − b1α

2
1 + 0.5|b1 + b2|(α2

2 + α2
4) − b1α

2
2 − α

2
3 − α

2
4 − b3α

2
5 +

0.5|k1|(α2
1 + α2

5) + k2α1 + k3α2

=
[
0.5|b1 + b2| − b1 − 0.5|k1|

]
α2

1 + (0.5|b1 + b2| − b1)α2
2 − [0.5 ×

×|b1 + b2| − 1]α2
3 + [0.5|b1 + b2| − 1]α2

4 + (0.5|k1| − b3)α2
5 + k2α1 + k3α2

≤ k2α1 + k3α2. (3.13)
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From (3.13), we obtain by using (l2),

f̂ (α0
1, α

0
2, · · · , α

0
5)

≤
2b3k2

2

4b1b3 − k2
1 − b3(b1 + b2)2

+
2k2

3

4b1 − (b1 + b2)2

≤ 0. (3.14)

At the same time, by using (l1), we have

f̂ (∞,∞, · · · ,∞)
≤ lim

(α1,α2,··· ,α5)→(∞,∞,∞,∞,∞)

{[
0.5|b1 + b2| − b1 − 0.5|k1|

]
α2

1 + (|b1 + b2| − b3)α2
2

−α2
3 + [0.5|b1 + b2| − 1]α2

4 + (0.5|k1| − b3)α2
5 + k2α1 + k3α2

}
= −∞ < 0. (3.15)

From (3.14) and (3.15), by using Lemma 2.3, it follows that

f̂ (α1, α2, · · · , α5)
≤ max

(α1,α2,··· ,α4,α5)∈R5
{ f̂ (α1, α2, · · · , α5)}

≤ max
{
f̂ (α0

1, α
0
2, α

0
3, α

0
4, α

0
5), f̂ (∞,∞, · · · ,∞)

}
≤ 0. (3.16)

Substituting (3.16) into (3.11) gives

Dη
t n(t) ≤ β. (3.17)

q-Integrating (3.17) over [0, t] gives

0 ≤ n(t) ≤ n(0) +
1

G(η)

∫ t

0
(t − u)η−1βdu

≤ n(0) +
βtη

ηG(η)
. (3.18)

When t ≥ t̂2 =
[
−n(0)ηG(η)

β

] 1
η
, by (3.18), we have

0 ≤ n(t) ≤ 0, t ≥ t̂2.

Then

lim
t→t̂2

n(t) = 0, n(t) = 0, t ≥ t̂2.

Namely

lim
t→t̂2
|Km(t) − Nm(t)| = 0, |Km(t) − Nm(t)| = 0, t ≥ t̂2. (3.19)
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From (3.19), the argument of Theorem 3.2 is ended.
Remark 1. So far, the results on FTSN of FOCSS are obtained often by employing the LMI way [27],
FTST [23,26], and LFW [24,25,29,30], and graph theory [28]. In our discussion, the maximum-valued
method of functions of five variables is cited to study the FTSN of MSFOCSS. Namely, by using the
MVM of functions of 5 variables, two innovative results on FTSN of the discussed Lorenz chaotic
systems are gotten.
Remark 2. In [5], the exponential synchronization for the MSFOCSS was studied by LFW. In our
article, by using the MVM,innovative results are established for the same MSFOCSS. Thus, our study
develops the study fields of synchronization for the MSFOCSS.
Remark 3. The FTSN method in our article cannot be extended to study the preassigned-time
intermittent control of memristive chaotic systems and Fixed-time synchronization of dynamical
networks [34, 43, 44] since the setting time in our results is related to the initial values of the
error system.
Remark 4. The result in Theorem 3.1 and the result in Theorem 3.2 are different since their controllers
are different and the assumed conditions are different.
Remark 5. The maximum-valued method and techniques used in our study are quite different from
the integral inequality method and techniques used in [42] and techniques used in [43, 44].

4. Numerical examples

In this section, two examples are given to show the validity of our results.
Example 4.1. We are concerned about the drive system (2.1) and response system (2.2) with control
functions (3.1) for i = 5, where b1 = 1, b2 = 0.5, b3 = 4, k4 = 1.4, k5 = −3, k6 = −1. It is easy to test
if (h1) and (h2) are met. Thus, by Theorem 3.1, the system (2.1) and the system (2.2) can realize the
FTSN utilizing the (3.1).

The curves of the drive fractional-order Lorenz system are shown in the Figure 1, and the curves
of the corresponding slave fractional-order Lorenz systems are shown in Figure 2; the fractional-order
error system’s curves that achieve the FTSN are shown in Figure 3. Figures 1 and 2 show that the
system fluctuates regularly with time, and the kinetic behavior shown is oscillating. Figure 3 shows
that the system error oscillates with time and converges to 0 at finite time t. In this case, dynamic
behavior is in a synchronized state.

In our example, without utilizing the past study methods in [5, 24–30], the controllers in our paper
are essentially different from those in [5, 24–30], so our result on FTS cannot be dealt with using their
methods in [5, 24–30].
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Figure 1. Curves of the variables Ni(t) of drive system (2.1) when k4 = 1.4, k5 = −3, k6 = −1.
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Figure 2. Curves of the variables Ki(t) of response system (2.2) when k4 = 1.4, k5 = −3, k6

= −1.
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Figure 3. Curves of the variables αi = Ei(t) of error system (2.3) when k4 = 1.4, k5 =

−3, k6 = −1.
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Example 4.2. We are concerned about the drive system (2.1) and response system (2.2) with control
functions (3.2). For i = 5, the parameters of both systems are taken as b1 = 0.2, b2 = −1.5, b3 = 3, and
controllers (4.2) with β = −2, k1 = 2, k2 = 2.5, and k3 = 0.1. It is easy to test if the (l1) and (l2) are
met. Thus, by Theorem 3.2, the system (2.1) and the system (2.2) can attain the FTSN by employing
the controllers (3.2).

With different constraints and controllers, the curves of synchronization for drive and response
system under the controller (3.2) are shown in Figures 4–6. Figures 4 and 5 show the dynamic behavior
of the system is very similar, with slight fluctuations in the master-slave system. The figure shows
synchronization errors between systems (2.1) and (2.2), whose values converge to 0 at positive time t.

In our discussion, without utilizing the past study methods in [5, 24–30], the controllers in our
paper are very different from those in [5]. In [5], the asymptotic synchronization was explored, while
in our paper, the FTSN is considered. Our method, the controllers designed, and the results on FTSN
are different from those in the existing articles. So, our result on FTSN cannot be dealt with their
methods in [5, 24–30].
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Figure 4. Curves of the variables Ni(t) of drive system (2.1) when β = −2, k1 = 2, k2

= 2.5, k3 = 0.1.
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Figure 5. Curves of the variables Ki(t) of response system (2.2) when β = −2, k1 = 2, k2

= 2.5, k3 = 0.1.
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Figure 6. Curves of the variables αi = Ei(t) of error system (2.3) when β = −2, k1 = 2, k2

= 2.5, k3 = 0.1.

5. Conclusions

In this article, without adopting previous methods, such as the Fo integral inequality way, the LMI
approach, and FTST, by using the maximum-valued method of functions of five variables, two criteria
assuring the FTSN for the discussed MSFOCSS have been established. Our study method and results
on the FTSN have been quite novel for MSFOCSS. In the future, we will transform our study direction
to study the synchronization for the discrete-time fractional-order dynamical systems.
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