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Abstract: This paper introduced a novel single-index partially functional linear regression model
with p-order autoregressive skew-normal errors, addressing the dual challenges of autocorrelation
and skewness in high-dimensional functional data. We proposed an innovative EM-CALS algorithm,
which synergizes the expectation-maximization (EM) framework with conditional adaptive least
squares to estimate constrained parameters and functional components efficiently. The algorithm
uniquely addressed the unit-norm constraint of single-index vectors through reparameterization,
thereby overcoming the limitations of conventional EM in nonlinear optimization. Comprehensive
simulations demonstrated EM-CALS’s superiority over the two-step iterative least squares (TSILS)
algorithm, achieving reductions of 1.19% in root mean square error (RMSE), 2.45% in mean square
error (MSE), 38.00% in root average squared errors (RASE1), and 51.35% in RASE2, respectively,
demonstrating a clear advantage in enhancing prediction accuracy. Additionally, we conducted residual
analysis based on conditional quantiles, considering the skew-normal distribution and autocorrelation
of the residuals, and performed local influence analysis using the Q-function in the EM algorithm.
The efficiency of the EM-CALS algorithm was validated through simulation studies. Finally, the
methodology was applied to an empirical dataset from photovoltaic power forecasting, underscoring its
practical applicability. This work bridged significant gaps in functional data analysis by simultaneously
addressing dimension reduction, temporal dependence, and distributional asymmetry, which are crucial
challenges in modern energy analytics and biomedical studies.
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1. Introduction

With advances in information technology, functional data collected as curves or images is common
in econometrics and biomedicine. However, the classical statistical method does not perform well when
applied directly to such data, which has driven the development of functional data analysis (FDA).
Researchers have extensively studied the functional regression model as an essential part of the FDA.
For example, Cardot et al. [1] introduced the functional linear model, and due to the flexibility of semi-
parametric models, significant research on functional semi-parametric regression has been conducted
since 2008. For instance, Şentürk et al. [2] extended the traditional varying-coefficient model to
functional data, proposing the functional varying-coefficient model. Aneiros-Perez et al. [3] proposed
the semi-functional partially linear model, combining the advantages of semi-linear modeling and the
nonparametric form of functional data. Zhou et al. [4] introduced the semi-functional linear model,
studied the spline estimation of functional coefficients and nonparametric functions, and derived the
convergence rate of these spline estimates.

When the dimensionality of multivariate covariates becomes excessively high, the curse of
dimensionality inevitably emerges. The single-index model captures the key features of high-
dimensional data by searching for a univariate index of multivariate covariates, modeling the effects of
the covariates in a nonparametric manner. Härdle et al. [5] applied the single-index model to discrete
choice analysis in econometrics and dose-response modeling in biostatistics. Zou et al. [6] studied
the M-estimators for the single-index model, approximated the unknown link function with B-splines,
and obtained the M-estimators for both the parametric and nonparametric components in a single step.
They also proved the asymptotic normality of the estimators. In functional data analysis, to avoid the
curse of dimensionality while preserving the advantages of nonparametric smoothing, Yu et al. [7]
combined the single-index model with functional linear regression models and proposed the single-
index partially functional linear regression model.

However, the above functional regression models assume that the errors are independent. In reality,
data often exhibits autocorrelation, such as in financial series or photovoltaic system outputs. For
regression analysis of such data, it is necessary to assume that the errors are autocorrelated. To
address this issue, Dabo-Niang et al. [8] proposed the functional semi-parametric partially linear
model with autoregressive errors and obtained estimates of these coefficients using generalized least
squares, proving the consistency and asymptotic normality of the estimators. Yang et al. [9] proposed
a robust estimation method for the semi-functional linear model with autoregressive errors. Xiao et
al. [10] introduced the partial functional linear model with autoregressive errors, estimated multivariate
regression parameters, and functional regression coefficients using generalized least squares, and
proved the asymptotic normality of multivariate coefficients and the optimal convergence rate of the
functional regression parameters. When the dimensionality of multivariate covariates in a partially
functional linear model becomes excessively high, the curse of dimensionality often arises. To address
this issue, this paper introduces a single-index partially functional linear model with autoregressive
errors for analyzing autocorrelated data.

The research above assumes that the error terms follow a normal distribution. However, in practice,
the data may show skewness. To address this skewness issue, Azzalini et al. [11] proposed the skew-
normal (SN) distribution, which accommodates skewness and includes the normal distribution as a
particular case. Xiao et al. [12] proposed a new asymmetric Huber regression (AHR) estimation
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method for analyzing the partially functional linear models with skewed data and derived the
asymptotic properties of the proposed estimator. In multivariate data analysis, Ferreira et al. [13]
proposed an estimation method for the partially linear model with first-order autoregressive (AR(1))
skew-normal errors and conducted local influence analysis. Liu et al. [14] introduced a Bayesian local
influence method for detecting influential observations in the partially linear model with first-order
autoregressive skew-normal errors and performed local influence analysis. Ferreira et al. [15] extended
the autoregressive order to p-order, proposing the partially linear model with p-order autoregressive
(AR) skew-normal errors and deriving the maximum likelihood estimator using the EM algorithm.
We extend this autoregressive error distribution to models involving functional data. We investigate
the parameter estimation problem for the single-index partially functional linear model with p-order
autoregressive skew-normal errors.

In the study of parameter estimation for functional data models with autoregressive errors, Chen
et al. [16] investigated a functional partial linear model with autoregressive errors, used weighted
least squares to estimate spline coefficients, and derived theoretical properties such as the convergence
rates of the function regression parameters and nonparametric function estimates for scalar predictor
variables. Wang et al. [17] studied a multivariate functional linear model with autoregressive errors,
employed least squares to estimate the function coefficients and autoregressive coefficients, and proved
the asymptotic properties of the proposed estimators. Inspired by the study of Ferreira et al. [15], this
paper proposes a parameter estimation method based on the EM algorithm for the single-index partially
functional linear model with p-order autoregressive skew-normal errors. Due to the constraints on the
single-index vector, the standard EM algorithm cannot be directly applied. Therefore, a new EM
algorithm is proposed, which introduces a conditional adaptive least squares (CALS) step after the
conventional EM steps. This step handles the constraint issue through reparameterization and uses the
adaptive least squares method to estimate the single-index vector.

The main objective of sensitivity analysis is to assess the impact of perturbations in the model or data
on parameter estimates. A commonly used method is case deletion, which evaluates the influence of
each observation on the parameter estimates. However, this method does not directly capture the impact
of other perturbations in the model. To address this limitation, Cook [18] proposed the local influence
method, which studies the sensitivity of the log-likelihood to small perturbations in parts of the model
and is computationally simpler. Building upon Cook’s pioneering work, Zou et al. [19] extended
this method to partially linear single-index models. In the study of autocorrelated data, Ferreira et
al. [13] used the EM algorithm to estimate the unknown parameters in partially linear models with
first-order autoregressive AR(1) skew-normal errors and conducted a local influence analysis using
the conditional expectation of the complete-data log-likelihood function. Inspired by these works, we
extend the local influence method to the single-index partially functional linear regression models with
p-order autoregressive skew-normal errors.

The structure of this paper is as follows. Section 2 describes in detail the single-index partially
functional linear model with p-order autoregressive skew-normal errors. Section 3 introduces the
proposed EM-CALS algorithm, compares it with the TSILS, and presents a residual analysis based
on conditional quantiles. Section 4 conducts local influence analysis using the Q-function in the EM
algorithm. Section 5 evaluates the efficiency of the EM-CALS algorithm through simulation studies.
Section 6 demonstrates the application of the proposed method using actual data from grid-connected
photovoltaic systems. Section 7 provides some discussions and summarizes the contributions of

AIMS Mathematics Volume 10, Issue 3, 7022–7066.



7025

this paper.

2. Model and estimation

2.1. The skew-normal distribution

Common statistical regression models often assume that the error terms follow normal or other
symmetric distributions. However, in practice, data often exhibits skewness. If a symmetric distribution
assumption is maintained in such cases, it may lead to inefficient estimates. To better reflect the
characteristics of the data, it is more reasonable to assume a skewed distribution, such as the skew-
normal distribution, for the error terms, which can improve the model’s estimation performance. The
following section provides an introduction to skew-normal distribution.

The SN distribution was proposed by Azzalini [11], which is an effective extension of the normal
distribution. The skewness coefficient of the skew-normal distribution ranges from −0.995 to 0.995,
and the maximum kurtosis can reach 3.869. By introducing the skewness parameter, this distribution
can flexibly accommodate skewed data, making it suitable for a wider range of data modeling scenarios.
In the parameter estimation below, we refer to the method of Ferreira et al. [15] and propose the EM-
CALS algorithm for estimating unknown parameters and functions. We adopt the parameterized form
of the skew-normal distribution proposed by Sahu et al. [20] to facilitate the direct use of analytical
expressions in the E and M steps.

We will briefly introduce the Sahu-type skew-normal distribution and discuss some of its properties,
which will be used in the EM-CALS algorithm.

The probability density function (pdf) and cumulative distribution function (cdf) of the Sahu-type
skew-normal distribution are as follows:

f (y | µ, σ2, δ) =
2

√
σ2 + δ2

φ

(
y − µ
√
σ2 + δ2

)
Φ

(
δ

σ

y − µ
√
σ2 + δ2

)
, (2.1)

FY(y; µ, σ2, δ) = 2Φ

((
y − µ
√
σ2 + δ2

, 0
)

; 0,Ω
)
, (2.2)

where µ is the location parameter, σ2 is the scale parameter, and δ is the skewness parameter. φ and Φ

are the pdf and cdf of the standard normal distribution N(0, 1), respectively, Ω =

(
1 −δ1

−δ1 1

)
, where

δ1 = δ
√
σ2+δ2

. If the random variable Y follows a skew-normal distribution with parameters µ, σ2, δ, we
denote it as Y ∼ S N(µ, σ2, δ). The skew-normal distribution simplifies to the normal distribution when
δ = 0.

If Y ∼ S N(µ, σ2, δ), the expectation and variance of Y are as follows:

E[Y] = µ + bδ, Var(Y) = σ2 + (1 − b2)δ2, (2.3)

where b =

√
2
π
.

Additionally, the stochastic representation of Y is given by Y d
= µ + δ|X0| + σX1, where X0 and X1

are independent random variables N(0, 1).
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2.2. The single-index partially functional linear model with AR(p) skew-normal errors

In regression analysis of autocorrelated data, autoregressive error structures are commonly used
for modeling. Traditional studies often assume that the errors follow a normal distribution. However,
when the data exhibits skewness, setting the error distribution to a skewed distribution, such as the
skew-normal distribution, can effectively improve the efficiency of parameter estimation.

The single-index model, as a dimensionality reduction method, was combined with the functional
linear model by Yu et al. [7] to propose the single-index partially functional linear model. In this
model, the error structure is based on autoregressive errors under the skew-normal distribution when
modeling autocorrelated data with skewness.

The single-index partially functional linear model with AR(p) skew-normal errors, denoted as
SIPFLM-SNAR(p), is defined as follows:

yi = g(Z>i α) +

∫
T
β(t)Xi(t)dt + εi,

εi = ei +

p∑
j=1

ψ jεi− j,

ei ∼ S N(−bδ, σ2, δ),

(2.4)

let yi represent the observed response values for i = 1, 2, . . . , n, and Zi denote an l-dimensional vector
of covariates. The parameter vector α = (α1, . . . , αl)> is an unknown vector satisfying the constraint
‖α‖ = 1. For identification purposes, we assume that the first component of α1 is positive. The function
g(·) is an unknown univariate link function, and {X(t) : t ∈ T } represents a zero-mean random element
in the Hilbert space H = L2(T ), where H denotes the space of all square-integrable functions on T .
The inner product in H is defined as 〈x, y〉 =

∫
T

x(t)y(t) dt for any x, y ∈ H, with the corresponding
norm ‖x‖ = 〈x, x〉1/2. The autoregressive parameters are denoted as ψ1, . . . , ψp, and the error terms
ei are independent random variables, each following a skew-normal distribution with zero mean and
constant variance, as described in Eq (2.3). We assume that ε0 = ε−1 = · · · = ε−(p−1) = 0. When
ψ1 = · · · = ψp = 0 and δ = 0, model (2.4) reduces to the single-index partially functional linear
model as discussed by Yu et al. [7]. To define the function g(·), we let its domain be [a1, b1], where a1

and b1 are the infimum and supremum of the set {Z>α}, respectively. For simplicity, we assume that
T = [0, 1].

Following the approach of Ferreira et al. [15], for i = 1, . . . , n, we assume that

Yi | (yi−1, . . . , yi−p) ∼ S N

ui +

p∑
j=1

ψ j(yi− j − ui− j) − bδ, σ2, δ

 ,
where ui = g(Z>i α) +

∫ 1

0
β(t)Xi(t) dt.

Given the flexibility and local control of the B-spline, we choose to represent the smooth functions
g(u) and β(t) using B-splines (deBoor [21]). First, consider g(u), which is expressed as

g(u) ≈
N1∑
j=1

B1 j,l1(u)η j,
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where B1 j,l1(u) denotes the normalized B-spline basis function of degree l1, and η j are the coefficients
to be estimated.

B1 j,0(u) =

1, κ j ≤ u < κ j+1,

0, otherwise,

and
B1 j,l1(u) = w jl1 B1 j,l1−1(u) + (1 − w j+1,l1)B1 j+1,l1−1(u), l1 > 0,

where w jl1(u) =
u−κ j

κ j+l1−κ j
. To approximate the link function g(·), we partition the interval [a1, b1] as

a1 = κ0 < κ1 < · · · < κk1+1 = b1, and use κi as the knots. We use N1 = k1 + l1 + 1 as the normalized
B-spline basis functions of degree l1 to approximate g(·), forming a linear spline space. Following
the idea of Yu et al. [7], the basis functions are defined using a cubic B-spline with evenly distributed
knots, where l1 = 3. In this case, we have the approximation: g(u) ≈

∑N1
j=1 B1 j,3(u)η j. To simplify, we

let B1 j = B1 j,3(u), and, thus, the approximation becomes: g(u) ≈
∑N1

j=1 B1 j(u)η j.

We place these basis functions into the vector B1(u) = (B11(u), . . . , B1N1(u))>. Then, we
approximate g(·) on the interval [a1, b1] using B1(·). Similarly, we approximate slope function β(t)
using the same method. Let B2(t) = (B21(t), . . . , B2N2(t))

> be the vector of normalized B-spline basis
functions of degree l2 on the interval [0, 1], containing k2 internal knots, where N2 = k2 + l2 + 1. Thus,
we have β(t) ≈

∑N2
j=1 B2 j,l2(u)γ j. This can be rewritten in matrix form as

g(u) ≈ B>1 (u)η, β(t) ≈ B>2 (t)γ,

where η = (η1, . . . , ηN1)
> and γ = (γ1, . . . , γN2)

>.
To estimate the slope function β(·) and the link function g(·), we employ B-spline approximation.

First, the degrees of spline functions must be determined. Inspired by the idea of Huang et al. [22],
cubic splines with equally spaced knots are selected. The choice of the number of knots and basis
functions is also crucial. Too many knots and basis functions may increase the complexity of the
model, and although the fitting error may decrease, it could lead to overfitting by capturing noise,
resulting in unreliable parameter estimates. On the other hand, too few knots and basis functions may
fail to capture the complexity of the data, leading to underfitting. We need to select the numbers of
basis functions, N1 and N2. For this purpose, the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) are commonly used to select the truncation parameters. In this study, the
optimal values of N1 and N2 are determined by minimizing the BIC criterion, which is defined as
follows:

BIC(N1,N2) = −2L(θ̂,N1,N2) + (N1 + N2 + l + p + 1) ln(n),

where L(θ̂,N1,N2) denotes the log-likelihood function evaluated at θ̂ for fixed N1 and N2.

We define W = 〈X(t), B2(t)〉 =

(∫ 1

0
X(t)B21(t) dt, . . . ,

∫ 1

0
X(t)B2N2(t) dt

)>
, and Wi = 〈Xi(t), B2(t)〉,

ψ = (ψ1, . . . , ψp)>. The model (2.4) simplifies to

yi ≈ B>1 (Z>i α)η + W>
i γ + εi,

εi = ei +

p∑
j=1

ψ jεi− j,

ei ∼ S N(−bδ, σ2, δ), i = 1, . . . , n.

(2.5)
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The unknown parameters in this model are θ̃ = (α>, η>,γ>,ψ>, δ, σ2)>, where the l-dimensional
single-index vector αmust satisfy the constraints ‖α‖ = 1 and α1 > 0. Inspired by Yu and Ruppert [26],
we also handle the constraint on the single-index parameter through reparameterization.

Inspired by the work of Yu et al. [7], let φ represent a parameter vector of dimension l − 1, and
define α = α(φ) =

( √
1 − ‖φ‖2,φ>

)>
. Given that the true parameter vector φ0 must satisfy the

constraint ‖φ0‖ ≤ 1, we assume the strict inequality ‖φ0‖ < 1. As a result, the function α(φ) is
infinitely differentiable with respect to φ. The Jacobian matrix of α(φ) with respect to φ is expressed
as

Jφ ≡
− (

1 − ‖φ‖2
)−1/2

φ>

Il−1

 ,
where Il is the l × l identity matrix. After reparameterization, the unknown parameters are θ =

(φ>, η>,γ>,ψ>, δ, σ2)>.

3. Parameter estimation via the EM-CALS algorithm

According to Eq (2.5), for the parameter θ = (φ>, η>,γ>,ψ>, δ, σ2)> ∈ Rp∗ , where ψ = (ψ1, . . . , ψp)
and p∗ = N1 + N2 + l + p + 1, the log-likelihood function of the observed data can be expressed as

`(θ) = n log
(

2
√

2π

)
−

n
2

log(σ2 + δ2) −
1

2(σ2 + δ2)

n∑
i=1

(yi − ξi + bδ)2 +

n∑
i=1

log {Φ(Bi)} , (3.1)

where Bi = δ
σ(σ2+δ2)1/2 (yi − ξi + bδ), ξi = B>1 (Z>i α)η + W>

i γ +
∑p

j=1 ψ j(yi− j − B>1 (Z>i− jα)η − W>
i− jγ),

B>1 (Z>i α) and W>
i represent the i-th row of B1(Z>α) and W, respectively.

To estimate the parameter θ, we need to maximize the log-likelihood function. However, directly
maximizing this objective function can be challenging, so numerical methods are necessary. Given the
stochastic representation of the skew-normal distribution, the EM algorithm is particularly useful for
addressing this problem.

3.1. EM-CALS algorithm

The EM algorithm, introduced by Dempster et al. [23], is widely utilized for solving maximum
likelihood estimation problems. One of the key advantages of the EM algorithm is its ability to
efficiently handle maximum likelihood estimation issues that involve missing data or latent variables
through an iterative approach. This capability makes it particularly effective for managing complex
models, especially when the data is incomplete or the underlying structure is not well-defined.

Let T N(µ, σ2; 0,+∞) represent the truncated normal distribution with parameters µ and σ2, which
is supported on the interval (0,+∞) (Johnson et al. [24]). By utilizing the stochastic representation of
the Sahu-type skew-normal distribution, we can derive:

Yi | Zi = zi, yi−1, . . . , yi−p
ind
∼ N(ξi − bδ + δzi, σ

2),

Zi
iid
∼ T N(0, 1; (0,+∞)), i = 1, . . . , n.

(3.2)
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The EM algorithm treats latent variables z = (z1, . . . , zn)> as unobserved data and y = (y1, . . . , yn)>

as observed data. Using Eq (3.2), we obtain the joint distribution of (Yi,Zi) as

f (yi, zi; yi−1, . . . , yi−p, θ) = 2φ(yi | ξi + δzi − bδ, σ2)φ(zi)I(0,+∞)(zi)
= 2φ(yi | ξi − bδ, σ2 + δ2)φ(zi | µiz, σ

2
z )I(0,+∞)(zi)

= f (yi | yi−1, . . . , yi−p) f (zi | yi, yi−1, . . . , yi−p),
(3.3)

where µiz = δ
σ2+δ2 (yi − ξi + bδ), σ2

z = σ2

σ2+δ2 ; thus, using Eq (3.3), we obtain Zi | yi, θ ∼
T N(µiz, σ

2
z ; (0,+∞)).

Using the properties of the truncated normal distribution, we can obtain the following conditional
expectation:

E[Zi | yi] = µiz + σzWΦ

(
µiz

σz

)
,

E[Z2
i | yi] = µ2

iz + σ2
z + σzµizWΦ

(
µiz

σz

)
,

(3.4)

where WΦ(u) =
φ(u)
Φ(u) .

Using Eq (3.3), the joint distribution of yc = (y, z), we obtain the logarithmic likelihood function
for the complete data:

`c(θ|yc) = C −
n
2

log(σ2) −
1

2σ2

n∑
i=1

[
(yi − ξi)2 − 2δ(yi − ξi)(zi − b) + δ2(b2 − 2bzi + z2

i )
]
,

where C is a constant independent of the unknown parameters.
In the EM algorithm, the Q-function is the expectation of the complete logarithmic likelihood

function of the data, given the observed data y and the current parameter estimates θ̂
(k)

. Specifically, it
is defined as

Q(θ | θ̂
(k)

) = E[`c(θ | yc) | y, θ̂
(k)

] ∝ −
n
2

log(σ2)−
1

2σ2

n∑
i=1

[
(yi−ξi)2−2δ(yi−ξi)(ẑ

(k)
i −b)+δ2(b2−2bẑ(k)

i +ẑ2
(k)
i )

]
,

where ẑ(k)
i = E[Zi | yi, θ̂

(k)
] and ẑ2

i

(k)
= E[Z2

i | yi, θ̂
(k)

].
Based on Eq (3.4), the expectation of the latent variable z given the observed data y and the current

parameter estimates θ̂
(k)

can be computed as follows:

ẑ(k)
i = µ̂(k)

iz + σ̂(k)
z WΦ

 µ̂(k)
iz

σ̂(k)
z

 , (3.5)

ẑ2
(k)
i =

[
µ̂(k)

iz

]2
+ σ̂2

(k)
z + σ̂(k)

z µ̂
(k)
iz WΦ

 µ̂(k)
iz

σ̂(k)
z

 , (3.6)

for any i = 1, . . . , n, where µ̂(k)
iz = δ̂(k)

σ̂2(k)
+δ̂(k)2

(
yi − ξ̂

(k)
i + bδ̂(k)

)
, σ̂2

(k)
z = σ̂2(k)

σ̂2(k)
+δ̂(k)2

, ξ̂(k)
i = û(k)

i +∑p
j=1 ψ̂

(k)
j

(
yi− j − û(k)

i− j

)
, û(k)

i = B>1 (Z>i α(k))η(k) + W>
i γ

(k).
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Let A = A(ψ) be an n × n matrix, given by

A =



1 0 0 · · · 0 0 · · · 0 0 0
−ψ1 1 0 · · · 0 0 · · · 0 0 0
−ψ2 −ψ1 1 · · · 0 0 · · · 0 0 0
...

...
...

. . .
...

...
. . .

...
...

...

−ψp −ψp−1 −ψp−2 · · · −ψ1 1 · · · 0 0 0
0 −ψp −ψp−1 · · · −ψ2 −ψ1 1 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

...

0 · · · 0 · · · 0 0 · · · −ψ2 −ψ1 1


.

Let θ = (η>,γ>,ψ>, δ, σ2)>, where the M-step updates the parameter θ by maximizing Q(θ | θ̂
(k)

),
yielding a new estimate θ

(k+1)
, and the ith row of A is Ai

>.
The EM algorithm is preferred for its simplicity and stability. However, when parameters are

subject to constraints, maximizing the Q-function can become extremely difficult, complicating the
M-step. Keiji Takai [25] proposed a constrained EM algorithm that utilizes a projection method, but
challenges still arise when addressing nonlinear constraints in single-index models. In particular, the
unit norm constraint ‖α‖ = 1 requires solving nonlinear equations, calculating gradients, and inverting
matrices, which becomes increasingly complex in high-dimensional parameter spaces and can lead to
numerical instability, thereby complicating optimization. Furthermore, selecting the appropriate step
size in the P-step of the constrained EM algorithm is challenging, especially under high-dimensional
nonlinear constraints, where finding a suitable step size is often difficult. This frequently results in
slow convergence and reduced efficiency.

For the constraint ‖α‖ = 1 and α1 > 0, Yu and Ruppert [26] addressed this issue using a
reparameterization approach. Additionally, Yu et al. [7] applied the least squares method to estimate
the single-index vector in the single-index partially functional linear model. Inspired by these works,
we also use the least squares method to compute the single-index vector. Furthermore, since the
least squares method converges faster than the EM algorithm and is simpler for handling nonlinear
constraints, we choose to use the least squares method as a substitute for maximum likelihood
estimation (MLE). Furthermore, given that the error terms exhibit an autoregressive structure and do
not meet the assumption of normality in the error distribution, we employ the ALS to estimate the
single-index vector α. The ALS method effectively addresses autocorrelation among the error terms,
providing robust parameter estimates by accounting for dependencies among errors. Additionally,
ALS can adapt to skewed distributions and nonzero expectations of errors, leading to more accurate
and stable parameter estimates. Within the framework of the EM algorithm for this model, the E-step
and M-step are utilized to estimate other complex parameters. In contrast, the single-index vector α
is estimated by introducing a CALS step. In this CALS step, we estimate φ using ALS while holding
the current estimates of the other parameters fixed, and then we obtain the estimate of the single-index
vector α(φ) through a transformation.

Similar to Ferreira et al. [15], for i = 1, . . . , n, we assume that

Yi | (yi−1, . . . , yi−p) ∼ SN

ui +

p∑
j=1

ψ j(yi− j − ui− j) − bδ, σ2, δ

 , (3.7)
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where ui = B>1 (Z>i α(φ))η + W>
i γ.

Given the current estimates of θ, namely, η = η(t), γ = γ(t), ψ = ψ(t), δ = δ(t), and σ2 = σ2(t), and
the observed data Y , the ALS method can be employed to estimate the single-index vector α. Using
the conditional expectation formula (2.3) for the truncated normal distribution, we can compute its
conditional expectation as follows:

Ŷi = E
(
Yi | yi−1, . . . , yi−p, η,γ,ψ, δ, σ

2
)

= ui +

p∑
j=1

ψ j(yi− j − ui− j).

In ALS, the parameter φ is obtained by minimizing the sum of squared residuals

φ̂ALS = arg min
φ

n∑
i=1

U2
i ,

where the residual Ui is defined as: Ui = Yi − E
(
Yi | yi−1, . . . , yi−p, η,γ,ψ, δ, σ

2
)
. Finally, the estimate

of the single-index vector α is obtained by transforming φ̂ALS into α(φ̂ALS ).

3.2. Algorithm implementation

Step 0. Start from θ̂
(0)

=

(
α̂(0)>, η̂(0)>, γ̂(0)>, ψ̂

(0)>
, δ̂(0), σ̂2

(0)
)>

, for example, by minimizing
∑n

i=1(Yi−

Z>i α −W>
i γ)2 and normalizing α̂(0) such that ‖α̂(0)‖ = 1 and α̂(0)

1 > 0, to obtain the estimate of α̂(0),
where α̂(0)

1 is the first component of α̂(0). Given the initial single-index vector α̂(0), we compute {ui =

Z>i α̂
(0), i = 1, . . . , n}. Then, minimize the error sum of squares function:

n∑
i=1

(
Yi − B>1 (ui)η −W>

i γ
)2
,

to optimize (η>,γ>)>, yielding η̂(0) and γ̂(0). In B1(u), the basis functions use k1 equidistant points as
nodes within the domain of g(·). Once η̂(0) and γ̂(0) are obtained, fit r = Y−B1(u)η̂(0)−Wγ̂(0) using the R
function selm, extract the shape parameter α and scale parameterω from the skew-normal distribution,
and use the relationships σ2 = ω2

1+α2 and δ = α2ω2

1+α2 to obtain δ̂(0) and σ̂2
(0)

. Assume ψ̂
(0)>

= 0. After

completing the above steps, the initial estimate is θ̂
(0)

=

(
α̂(0)>, η̂(0)>, γ̂(0)>, ψ̂

(0)>
, δ̂(0), σ̂2

(0)
)>

.

Step 1. In the E-step, calculate z(k)
i and z2(k)

i for i = 1, . . . , n using formulas (3.5) and (3.6).

Step 2. In the M-step, update
(
γ̂(k)>, η̂(k)>, δ̂(k), ψ̂

(k)>
, σ̂2(k)

)>
. When k > 1: α̂(k) = α(φ̂

(k)
), and when

k = 0: α̂(0) = α̂(0). The iteration formulas are as follows:

γ̂(k+1) =

[
(Â(k)W)>(Â(k)W)

]−1 [
(Â(k)W)>

(
Â(k)Y − Â(k)B1(Z>α̂(k))η̂(k) − δ̂(k)( ẑ(k) − b)

)]
,

η̂(k+1) =

[
(Â(k)B1(Z>α̂(k)))>(Â(k)B1(Z>α̂(k)))

]−1 [
(Â(k)B1(Z>α̂(k)))>

(
Â(k)Y − Â(k)Wγ̂(k) − δ̂(k)( ẑ(k) − b)

)]
,

δ̂(k+1) =

∑n
i=1

(
yi − ξ̂

(k)
i

) (
ẑ(k)

i − b
)

∑n
i=1

(
b2 − 2bẑ(k)

i + ẑ2
i

(k)
) ,
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ψ̂(k+1)
j =

1∑n
i=1 r2

i− j

n∑
i=1

ri −

p∑
l=1,l, j

ψ̂(k)
l ri−l − δ̂

(k)(ẑ(k)
i − b)

 ri− j, j = 1, . . . , p,

σ̂2
(k+1)

=
1
n

n∑
i=1

[
(yi − ξ̂

(k)
i )2 − 2δ̂(k)(yi − ξ̂

(k)
i )(ẑ(k)

i − b) + δ̂(k)2
(
b2 − 2bẑ(k)

i + ẑ2
i

(k)
)]
,

where ri = yi − u(k)
i = yi − B>1 (Z>i α̂

(k))η̂(k) −W>
i γ̂

(k), i = 1, . . . , n, and r0 = r−1 = · · · = r−(p−1) = 0,
ẑ(k) = (ẑ(k)

1 , ẑ
(k)
2 , . . . , ẑ

(k)
n )>, for k = 0, 1, 2, . . . . Finally, the matrix Â(k) is generated by the following

formula: Â(k) = A(ψ̂(k)).
The basis function B1(u) uses k1 equidistant points within the interval [a1, b1], but in practice, the

interval [a1, b1] is unknown. We generate the B-spline basis function for each given α̂(k) using the
minimum and maximum values of Z>i α̂

(k) as boundary points. Beyond this interval, g(·) may be defined
in any reasonable manner without altering the results.

Step 3. In the CALS step, apply the ALS method to estimate the parameter vector φ. Fix(
η̂(k)>, γ̂(k)>, ψ̂

(k)>
, δ̂(k), σ̂2(k)

)>
and minimize

∑n
i=1(Yi − u(k)

i −
∑p

j=1 ψ
(k)
j (yi− j − u(k)

i− j))
2, where u(k)

i =

B>1 (Z>i α(φ̂
(k)

))η̂(k) + W>
i γ̂

(k), to obtain φ̂
(k+1)

. This step can be optimized using the optim function
in R, and then the transformed α̂(k+1) is obtained.

Step 4. Repeat Steps 1 to 3 until the convergence criterion is satisfied, where ||θ
(k+1)
− θ

(k)
|| is less

than 10−5, and represent the final estimates of α, η,γ,ψ, δ, σ2as α̂, η̂, γ̂, ψ̂, δ̂, σ̂2, respectively.
The following is the flowchart of the EM-CALS algorithm (see Figure 1):
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Figure 1. The flowchart of the EM-CALS algorithm.
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3.3. Comparison of algorithms

Inspired by the work of Yang et al. [27], we use the TSILS to estimate the unknown parameters in
the single-index partially functional linear regression model with p-order autoregressive skew-normal
errors. This section compares the proposed EM-CALS algorithm with the TSILS.

The two-step iterative least squares estimation is as follows:

Step 0. Start with the initial estimate θ̂
(0)

=

(
α̂(0)>, η̂(0)>, γ̂(0)>, ψ̂

(0)>
, δ̂(0), σ̂2(0)

)>
, for example, by

minimizing the objective function:
∑n

i=1
(
Yi − Z>i α −W>

i γ
)2
, and normalizing α̂(0) such that ‖α̂(0)‖ = 1

and α̂(0)
1 > 0, where α̂(0)

1 is the first component of α̂(0), to obtain the estimate of α̂(0). Given the initial

single-index vector α̂(0), we compute {ui = Z>i α̂
(0), i = 1, . . . , n}. Then, obtain Ûi =

(
Ŵ
>

i , B
>
i

)>
,

and compute θ̂
(0)

=
(
γ̂(0)>, η̂(0)>

)>
based on the least squares method: θ(0) =

(
Û
>

Û
)−1

Û
>

Y, where

Y = (Y1,Y2, . . . ,Yn)> and Û
>

=
(
Û
>

1 , Û
>

2 , . . . , Û
>

n

)
. Once η̂(0) and γ̂(0) are obtained, fit r = Y −

B1(u)η̂(0) −Wγ̂(0) using the R function selm. Extract the shape parameter α and scale parameter ω
from the skew-normal distribution, and use the relationships: σ2 = ω2

1+α2 , δ = α2ω2

1+α2 to obtain δ̂(0) and

σ̂2(0). Assume ψ̂
(0)>

= 0. After completing the above steps, the initial estimate is:

θ̂
(0)

=

(
α̂(0)>, η̂(0)>, γ̂(0)>, ψ̂

(0)>
, δ̂(0), σ̂2(0)

)>
.

Step 1. Update Ṽ(k), H̃(k):

Ṽ(k)
=


ε̂(k)

p+1
...

ε̂(k)
n

 , H̃(k)
=


ε̂(k)

p · · · ε̂(k)
1

...
...

ε̂(k)
n−1 · · · ε̂(k)

n−p

 ,
where ε̂(k)

t = Yt − Û>t θ̂
(k−1), t = 1, 2, · · · , n.

Step 2. Compute ψ̂
(k)

:

ψ̂
(k)

= (H̃(k)>H̃(k))−1H̃(k)>Ṽ(k)
.

Step 3. Update V (k)
t , H(k)

t :

V (k)
t = Yt −

p∑
l=1

ψ(k)
l Yt−l, H(k)

t = Ût −

p∑
l=1

ψ(k)
l Ût−l.

Step 4. Compute θ(k):

θ̂
(k)

= (H(k)>H(k))−1H(k)>V(k),

where

V(k) =


V (k)

p+1
...

V (k)
n

 , H(k) =


H(k)

p+1
...

H(k)
n

 .
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Step 5. In this step, apply the ALS method to estimate the parameter vector φ. Fix(
η̂(k)>, γ̂(k)>, ψ̂

(k)>
, δ̂(k), σ̂2(k)

)>
and minimize

∑n
i=1(Yi − u(k)

i −
∑p

j=1 ψ
(k)
j (yi− j − u(k)

i− j))
2, where u(k)

i =

B>1 (Z>i α(φ̂
(k)

))η̂(k) + W>
i γ̂

(k), to obtain φ̂
(k+1)

. This step can be optimized using the optim function
in R, and then the transformed α̂(k+1) is obtained.

Step 6. In B1(u), the basis functions use k1 equidistant points as nodes within the domain of g(·).
Once η̂(k) and γ̂(k) are obtained, fit r = Y − B1(u)η̂(k) −Wγ̂(k) using the R function selm, extract the
shape parameter α and scale parameter ω from the skew-normal distribution, and use the relationships
σ2 = ω2

1+α2 and δ = α2ω2

1+α2 to obtain δ̂(k+1) and σ̂2
(k+1)

.

Step 7. Repeat Steps 1 to 6 until the convergence criterion is satisfied, where ||θ
(k+1)
−θ

(k)
|| is smaller

than 10−5.
This section verifies the statistical performance of the proposed algorithm through simulation

experiments. The experimental setup is as follows: We generate simulated data with the sample size
n = 1000 and conduct 100 independent repeated experiments to eliminate randomness. For objective
performance evaluation, all comparative experiments are implemented under identical simulated data
conditions, with estimation accuracy and computational efficiency quantitatively analyzed through
mean square error (MSE) and root MSE (RMSE) metrics.

To evaluate the performance of the proposed algorithm, we compute both the RMSE and the MSE,
which are defined as follows:

RMSE =

√√
1
n

n∑
i=1

(
Yi − Ŷi

)2
,

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2
,

where Yi is the true value of the i-th observation, Ŷi is the estimated value for the i-th observation, and
n is the total number of samples.

To assess the performance of the estimated link function g(·) and slope function β(·), we adopt
the root of the average squared errors (RASE), as introduced by Peng et al. [28], which is defined as
follows:

RASE1 =

 1
K1

K1∑
k=1

(ĝ(uk) − g(uk))2

1/2

,

RASE2 =

 1
K2

K2∑
k=1

(
β̂(tk) − β(tk)

)2
1/2

,

where {uk, k = 1, . . . ,K1} and {tk, k = 1, . . . ,K2} are the grid points uniformly distributed on the domains
of g(·) and β(·), respectively. In the two examples below, we choose K1 = K2 = 200.

The dataset in the simulation experiments is generated according to the following model:

Y = sin (u) +

∫ 1

0
β(t)X(t) dt + ε.
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In the single-index component, we use the design of Lin et al. [29], g(u) = sin(u), where u = Z>α,
α =

(0.2,−0.7)>
√

0.53
, and let Z = (Z1,Z2)>, where Zi

iid.
∼ Unif(0, 1), for i = 1, 2. In the functional linear

component, we follow the design of Yu et al. [30], with the slope function set as β(t) =
√

2 sin
(
πt
2

)
+

3
√

2 sin
(

3πt
2

)
, and X(t) =

∑50
j=1 ξ jv j(t). Here, ξ j follows a normal distribution with mean 0 and variance

λ j = (( j − 0.5)π)−2 and v j(t) =
√

2 sin(( j − 0.5)πt). The random error ε satisfies the model εi =

ei +
∑p

l=1 ψlεi−l, where ei ∼ SN(−bδ, σ2, δ), with δ = 1 and σ2 = 0.2. This part studies the 1-order
autoregressive error structure (AR(1)), where we set ψ = 0.5.

The computational efficiency of the two algorithms was quantitatively evaluated through average
user central processing unit (CPU) time per iteration monitoring. The EM-CALS algorithm
demonstrated a mean user time of 80.765 s per iteration, compared to 75.486 s for the TSILS
implementation. This observed time difference aligns with the established computational complexity
characteristics of EM algorithms versus least squares methods, where EM-based approaches typically
require more intensive computations due to their iterative latent variable estimation process.

As shown in Table 1, EM-CALS outperforms TSILS across all metrics, particularly excelling
in RASE1 and RASE2. The EM-CALS algorithm shows significant improvement over the TSILS
algorithm in terms of the mean values of RMSE, MSE, RASE1, and RASE2, with decreases of
1.19%, 2.45%, 38.00%, and 51.35%, respectively, demonstrating its significant advantage in enhancing
prediction accuracy. However, in terms of computational time, TSILS is found to be faster than EM-
CALS. Therefore, EM-CALS is better suited for tasks that prioritize accuracy, while TSILS may
remain relevant for scenarios where computational efficiency is the primary concern.

Table 1. Algorithm results.

RMSE MSE RASE1 RASE2

Algorithms Mean Var Mean Var Mean Var Mean Var

EM-CALS 0.747 0.000 0.558 0 .001 0.498 0.073 0.072 0.001

TSILS 0.756 0.000 0.572 0.001 0.801 0.151 0.148 0.006

3.4. Residual analysis

If the data is correlated, Dunn and Smyth [31] suggested using conditional residuals to ensure the
independence and asymptotic normality of the quantile residuals. These residuals can be derived from
the conditional residuals defined in model (2.5) as follows:

rqi = yi − B>1 (Z i
>α̂)η̂ −W>

i γ̂ −
p∑

j=1

ψ̂ j

(
yi− j − B>1 (Z>i− jα̂)η̂ −W>

i− jγ̂
)

=

yi − B>1 (Z>i α̂)η̂ −W>
i γ̂, i = 1, . . . , p,

yi − B>1 (Z>i α̂)η̂ −W>
i γ̂ −

∑p
j=1 ψ̂ j

(
yi− j − B>1 (Z>i− jα̂)η̂ −W>

i− jγ̂
)
, i = p + 1, . . . , n,

where Wi = 〈Xi(t), B2(t)〉.
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Using the expression for the cdf of a skew-normal distribution as presented in Eq (2.2), the
conditional quantile residual can be defined as follows:

tqi = Φ−1
(
FY

(
rqi;−bδ̂, σ̂2, δ̂

))
, i = 1, . . . , n.

According to the research by Dunn and Smyth [31], if the parameter θ can be consistently estimated,
the distribution of tqi will asymptotically approach a standard normal distribution. Therefore, the
conditional quantile residual can be used to analyze deviations from the error assumptions and identify
potential outliers.

4. The local influence approach

Inspired by Ferreira’s work [13], we use the conditional expectation of the complete-data log-
likelihood function to conduct a local influence analysis.

The perturbation model is defined as M = { f (yc, θ,ω) : ω ∈ Ω}, where ω = (ω1, . . . , ωn) represents
a perturbation vector that varies within an open region Ω ⊂ Rn. The function f (yc, θ,ω) is the pdf of
the complete data yc perturbed by ω and `c(θ,ω | yc) = log f (yc, θ,ω). Let θ̂(ω) be the maximum
of the function Q(θ,ω | θ̂) = E

[
`c(θ,ω | Yc) | y, θ̂

]
. It is assumed that there exists a ω0 such that

`c(θ,ω0|Yc) = `c(θ|Yc) for all θ. The influence graph is defined as α(ω) = (ω>, fQ(ω))>, where fQ(ω)
is the Q-displacement function, defined as: fQ(ω) = 2

[
Q(θ̂|θ̂) − Q(θ̂(ω)|θ̂)

]
.

Zhu et al. [33] pointed out that, at the parameter point ω0, the normal curvature CfQ,d of α(w) along
the direction of the unit vector d effectively characterizes the local behavior of the Q-displacement
function.

The normal curvature C fQ,d of α(w) is defined as:

C fQ,d = −2d>Q̈ω0 d and − Q̈ω0 = 4>ω0

(
−Q̈θ(θ̂)

)−1
4ω0 ,

where Q̈θ(θ̂) =
∂2Q(θ|θ̂)
∂θ∂θ>

∣∣∣∣
θ=θ̂

and 4ω =
∂2Q(θ,ω|θ̂)
∂θ∂ω>

∣∣∣∣
θ=θ̂(ω)

.

Following Cook’s approach, we construct a measure of influence by using the spectral
decomposition of the symmetric matrix −2Q̈ω0 =

∑n
k=1 ξkeke>k . Let {(ξ1, e1), . . . , (ξn, en)} be the

eigenvalue-eigenvector pairs of the matrix −2Q̈ω0 , where the first q eigenvalues satisfy ξ1 ≥ · · · ≥

ξq > 0 and ξq+1 = · · · = ξn = 0, and {e1, . . . , en} forms an orthonormal basis. Based on the methods of
Zhu et al. [33], the aggregated contribution vector M(0)l is defined as the normalized weighted sum of
the components corresponding to all nonzero eigenvalues:

M(0)l =

q∑
k=1

ξ̃ke2
kl,

where ξ̃k =
ξk√∑q
j=1 ξ

2
j

represents the normalized eigenvalue weights, and e2
k = (e2

k1, . . . , e
2
kn) is the square

of the components of the eigenvector ek.
To identify influential cases, we perform a preliminary evaluation by inspecting the graph of

{M(0)l, l = 1, . . . , n}. Following Ferreira’s approach [13], we use 1
n + c∗S as a benchmark, and consider

the l-th case as influential if M(0)l exceeds this benchmark. Here, c∗ is a constant selected based on the
specific application, and S is the standard deviation of the vector {M(0)l, l = 1, . . . , n}.
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Let A be an n × n matrix. The result of ∂A
∂ψi

is that the elements on the i-th lower off-diagonal are all

−1, and the other elements are 0. The result of ∂AT

∂ψi
is that the elements on the i-th upper off-diagonal

are all −1, and the other elements are 0. The k-th row of ∂A
∂ψi

is ∂Ak
>

∂ψi
.

When i = 2, the results are shown below:

∂A
∂ψ2

=



0 0 0 · · · 0
0 0 0 · · · 0
−1 0 0 · · · 0
0 −1 0 · · · 0
...

. . .
...

...
...

0 · · · −1 0 0


n×n

,

∂A>

∂ψ2
=



0 0 −1 0 · · · 0
0 0 0 −1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · −1
0 0 0 0 · · · 0
0 0 0 0 · · · 0


n×n

.

4.1. The Hessian matrix, Q̈(θ̂)

To obtain the diagnostic measures of the SIPFLM-SNAR(P), based on the approach of Zhu and
Lee [33], it is necessary to compute Q̈θ(θ̂) =

∂2Q(θ|θ̂)
∂θ∂θ>

,where θ = (ηT ,γT , σ2, δ,ψT )T . Q̈θ(θ̂) has elements
given by the following expression:

∂2Q(θ|θ̂)
∂η∂η>

= −
1
σ2

(
AB1(Z>α)

)>AB1(Z>α),

∂2Q(θ | θ̂)
∂γ∂η>

= −
1
σ2

(AW)>AB1(Z>α),

∂2Q(θ|θ̂)
∂σ2 ∂η

= −
1
σ4

(
AB1(Z>α)

)> (y − ξ − δ(ẑ − b1n)) ,

∂2Q(θ|θ̂)
∂δ ∂η

= −
1
σ2

(
AB1(ZTα)

)>
(ẑ − b1n) ,

∂2Q(θ|θ̂)
∂ψi∂η

=
1
σ2

(
AB1(Z>α)

)>
·
∂A
∂ψi

r +
1
σ2 B>1 (Z>α) ·

∂A>

∂ψi
(y − ξ − δ (ẑ − b1n)) , i = 1, . . . , p,

∂2Q(θ|θ̂)
∂γ∂γ>

= −
1
σ2

(AW)>AW,
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∂2Q(θ|θ̂)
∂σ2 ∂γ

= −
1
σ4

(AW)> (y − ξ − δ(ẑ − b1n)) ,

∂2Q(θ|θ̂)
∂δ ∂γ

= −
1
σ2

(AW)> (ẑ − b1n) ,

∂2Q(θ|θ̂)
∂ψi∂γ

=
1
σ2

(AW)> ·
∂A
∂ψi

r +
1
σ2

(
W>∂A>

∂ψi

)
(y − ξ − δ (ẑ − b1n)) , i = 1, . . . , p,

∂2Q(θ|θ̂)
∂σ4 =

n
2σ4 −

1
σ6

n∑
i=1

[
(yi − ξi)2 − 2δ(yi − ξi)(ẑi − b) + δ2(b2 − 2bẑi + ẑ2

i )
]
,

∂2Q(θ|θ̂)
∂δ∂σ2 =

1
σ4

n∑
i=1

[
−(yi − ξi)(ẑi − b) + δ(b2 − 2bẑi + ẑ2

i )
]
,

∂2Q(θ|θ̂)
∂ψi∂σ2 =

1
σ4 r>

(
∂A>

∂ψi

)
Ar −

δ

σ4 r>
∂A>

∂ψi
(ẑ − b1n) , i = 1, . . . , p,

∂2Q(θ|θ̂)
∂δ2 = −

1
σ2

n∑
i=1

(
b2 − 2bẑi + ẑ2

i

)
,

∂2Q(θ|θ̂)
∂ψi∂δ

=
1
σ2 r>

∂A>

∂ψi
(ẑ − b1n) , i = 1, . . . , p,

∂2Q(θ|θ̂)
∂ψ j∂ψi

= −
1

2σ2 r>
(
∂A>

∂ψi
·
∂A
∂ψ j

+
∂A>

∂ψ j
·
∂A
∂ψi

)
r, i = 1, . . . , p, j = 1, . . . , p,

where 1n is a vector of ones, and ξ = (ξ1, . . . , ξn), r = y − B1(Z>α)η −Wγ, ẑ = (ẑ1, . . . , ẑn)>.
In the above formula, ∂2Q(θ|θ̂)

∂ψi∂η
represents the i-th column of ∂2Q(θ|θ̂)

∂ψ>∂η
, and ∂2Q(θ|θ̂)

∂ψ j∂ψi
corresponds to the

(i, j)-th element of ∂2Q(θ|θ̂)
∂ψ∂ψ>

; other symbols follow the same pattern.

4.2. Perturbation schemes

In this section, we consider the three usual perturbation schemes in local influence for the SIPFLM-
SNAR(P) proposed in this work.

4.2.1. Case-weight perturbation

This section examines whether differentially weighted observations influence the maximum
likelihood estimation of θ. The perturbed Q-function is written as: Q(θ,ω|θ̂) =

∑n
i=1 ωiQi(θ|θ̂). In

this case, ω0 = (1, . . . , 1) = 1n and ∂Q(θ,ω|θ̂)
∂ωi

= Qi(θ|θ̂), and 4ω0 has elements ∂Qi(θ|θ̂)
∂θ

, i = 1, . . . , n.

∂Qi(θ|θ̂)
∂η

=
1
σ2

(
B>1 (Z>α)Ai

)
(yi − ξi − δ(ẑi − b)) ,

∂Qi(θ|θ̂)
∂γ

=
1
σ2

(
W>Ai

)
(yi − ξi − δ(ẑi − b)) ,
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∂Qi(θ|θ̂)
∂σ2 = −

1
2σ2 +

1
2σ4

[
(yi − ξi)2 − 2δ(yi − ξi)(ẑi − b) + δ2(b2 − 2bẑi + ẑ2

i )
]
,

∂Qi(θ|θ̂)
∂δ

=
1
σ2

[
(yi − ξi)(ẑi − b) − δ(b2 − 2bẑi + ẑ2

i )
]
,

∂Qi(θ|θ̂)
∂ψk

= −
1
σ2 (AT

i r − δ(ẑi − b))
(
∂Ai

>

∂ψk

)
r, k = 1, . . . , p.

4.2.2. Response variable perturbation

Inspired by Ferreira’s work [13], we consider an additive perturbation given by

yiω = yi + S yωi, i = 1, . . . , n,

where S y is the standard deviation of y. In this case, ω0 = 0 : n × 1, and by replacing yi with yiω in the
Q-function, we obtain Q(θ,ω | θ̂).

It follows that the matrix
∂2Q(θ,ω|θ̂)
∂θ∂ω>

∣∣∣∣∣∣
ω=ω0

,

where

∂2Q(θ,ω | θ̂)
∂η∂ω>

∣∣∣∣∣∣
ω=ω0

=
S y

σ2

(
AB1(ZTα)

)>
A,

∂2Q(θ,ω | θ̂)
∂γ∂ω>

∣∣∣∣∣∣
ω=ω0

=
S y

σ2
(AW)>A,

∂2Q(θ,ω | θ̂)
∂σ2∂ω

∣∣∣∣∣∣
ω=ω0

=
S y

σ4

(
A>Ar − δA>(ẑ − b1n)

)
,

∂2Q(θ,ω | θ̂)
∂δ∂ω

∣∣∣∣∣∣
ω=ω0

=
S y

σ2 A> (ẑ − b1n) ,

∂2Q(θ,ω | θ̂)
∂ψi∂ω

∣∣∣∣∣∣
ω=ω0

= −
S y

σ2

[(
∂A>

∂ψi
· A + A> ·

∂A
∂ψi

)
r −

(
δ
∂A>

∂ψi

)
(ẑ − b1n)

]
.

4.2.3. Explanatory variable perturbation

Inspired by the research of Zou et al. [19], we consider the following perturbation.
We perturb Zi as follows: Zi + l jω

>ki, where ω ∈ Rn, l j ∈ R
l, ki ∈ R

n, where l j and ki

are unit vectors with their j-th and i-th elements equal to 1, respectively. It means that only the j-th
covariate is being perturbed. In this case, ω0 = 0 : n × 1. By replacing Zi in the Q-function with
Zi + l jω

>ki, we obtain: Q(θ,ω | θ̂).

AIMS Mathematics Volume 10, Issue 3, 7022–7066.



7041

∂2Q(θ,ω | θ̂)
∂η∂ω>

∣∣∣∣∣∣
ω=ω0

=
1
σ2

[ n∑
i=1

[ −B1(Z>i α) +

p∑
l=1

ψlB1(Z>i−lα)


·

ciα
> l j k>i −

p∑
l=1

ψl(ci−lα
> l j k>i−l)


+ (yi − ξi − δ(ẑi − b))

·

Ḃ1(Z>i α)α> l j k>i −
p∑

l=1

ψlḂ1(Z>i−lα)α> l j k>i−l

 ]],
∂2Q(θ,ω | θ̂)
∂γ∂ω>

∣∣∣∣∣∣
ω=ω0

=
1
σ2

[ n∑
i=1

−Wi +

p∑
l=1

ψlWi−l

 ciα
> l j k>i −

p∑
l=1

ψl

(
ci−lα

> l j k>i−l

) ],
∂2Q(θ,ω | θ̂)
∂δ∂ω>

∣∣∣∣∣∣
ω=ω0

=
1
σ2

[ n∑
i=1

−( ẑi − b)

ciα
> l j k>i −

p∑
l=1

ψl

(
ci−lα

> l j k>i−l

) ],
∂2Q(θ,ω | θ̂)
∂σ2∂ω>

∣∣∣∣∣∣
ω=ω0

= −
1
σ4

[ n∑
i=1

(yi − ξi − δ(ẑi − b))

ciα
> l j k>i −

p∑
l=1

ψl

(
ci−lα

> l j k>i−l

) ],
∂2Q(θ,ω | θ̂)
∂ψk∂ω>

∣∣∣∣∣∣
ω=ω0

= −
1
σ2

[ n∑
i=1

[
ri−k

ciα
> l j k>i −

p∑
l=1

ψl

(
ci−lα

> l j k>i−l

)+(yi−ξi−δ(ẑi−b))(ci−kα
> l j k>i−k)

]]
,

where ci is given by ci = Ḃ>1 (Z>i α)η, and it is important to note that all terms must have indices greater
than 0; otherwise, the term will be equal to 0.

5. Simulation study

In this section, we examine the properties of the proposed estimator using two simulation examples.
We consider three different sample sizes: n = 100, 300, and 700. Each example is repeated 300 times.

Additionally, we utilize MSE, bias, and variance (var) values to assess the performance of parameter
estimation. For instance, in the case of δ, the MSE, bias, and var values are calculated using the
following equations:

MSE(δ̂) =
1

300

300∑
j=1

(
δ̂ j − δ

)2
, (5.1)

Bias(δ̂) =
1

300

300∑
j=1

(
δ̂ j − δ

)
, (5.2)

Var(δ̂) =
1

300

300∑
j=1

(
δ̂ j − δ

)2
, (5.3)

where δ is the true value, and δ is the mean of {δ̂ j} j=1,...,300. To assess the performance of the estimated
link function g(·) and slope function β(·), we adopt the RASE as a metric.
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Following the idea of Yu et al. [7], the simulation experiment uses a cubic B-spline with evenly
distributed knots. To simplify the computational complexity and ensure numerical stability, the
numbers of spline basis functions, N1 and N2, are selected by minimizing the BIC.

5.1. Example 1

The dataset for the first example is generated according to the following model:

Y = sin (u) +

∫ 1

0
β(t)X(t) dt + ε.

In the single-index component, we use the design of Lin et al. [29], g(u) = sin(u), where u = Z>α,
α =

(0.2,−0.7)>
√

0.53
, and let Z = (Z1,Z2)>, where Zi

iid
∼ Unif(0, 1), for i = 1, 2. In the functional linear

component, we follow the design of Yu et al. [30], with the slope function set as β(t) =
√

2 sin
(
πt
2

)
+

3
√

2 sin
(

3πt
2

)
, and X(t) =

∑50
j=1 ξ jv j(t). Here, ξ j follows a normal distribution with mean 0 and variance

λ j = (( j − 0.5)π)−2, and v j(t) =
√

2 sin(( j − 0.5)πt). The random error ε satisfies the model εi =

ei +
∑p

l=1 ψlεi−l, where ei ∼ SN(−bδ, σ2, δ), with σ2 = 0.2.
To assess the algorithm’s robustness, we examine its performance under various error structures by

adjusting the autoregressive coefficient, order, and skewness. We focus on three cases: Case 1, where
we have a 1-order autoregressive structure (AR(1)) with δ = 0.7; Case 2, where we have a 2-order
autoregressive structure (AR(2)) with δ = 0.7; and Case 3, where we again use a 1-order autoregressive
structure (AR(1)) but with δ = 1. For the autoregressive structures, we set ψ = 0.5 for AR(1), and
ψ1 = −0.7, ψ2 = 0.2 for AR(2).

Tables 2 and 3 present the MSE, Var, and bias for the parameters α, ψ, σ2, and δ, along with the
sample mean, median, and variance of RASE j (for j = 1, 2) at different sample sizes. It is evident
that as the sample size n increases from 100 to 300 and further to 700, both the MSE and the sample
statistics (mean, median, and variance) of RASE j show a decreasing trend. Based on the above results,
it can be seen that the B-splines provide asymptotically unbiased estimates for the nonparametric
components. Although the bias of α1 and ψ fluctuates slightly, it shows a decreasing trend as the
sample size increases, while the bias of the other parameters consistently decreases as the sample size
grows. Figures 2 and 3 present the true curves and the fitted curves based on the estimates. It is evident
that as the sample size increases, the estimated curves gradually approach the true curves, indicating
that the algorithm’s fitting performance for the nonparametric components improves with larger sample
sizes. Overall, the simulation results demonstrate that the proposed estimation method is effective.
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Table 2. Simulation results for nonparametric components of Case 1.

n Criterion Mean Median Var

100 RASE1 1.266 1.037 1.106

RASE2 0.297 0.188 0.092

300 RASE1 0.695 0.646 0.104

RASE2 0.131 0.110 0.017

700 RASE1 0.486 0.433 0.044

RASE2 0.073 0.066 0.001

Table 3. Simulation results for parametric components of Case 1.

n = 100 n = 300 n = 700

Parameter True Value MSE Var Bias MSE Var Bias MSE Var Bias

α1
0.2
√

0.53
0.025 0.025 0.009 0.013 0.013 0.017 0.006 0.006 0.005

α2
−0.7
√

0.53
0.471 0.403 0.261 0.065 0.063 0.045 0.001 0.001 0.005

ψ 0.5 0.009 0.009 0.001 0.002 0.002 -0.002 0.001 0.001 0

σ2 0.2 0.011 0.011 -0.024 0.004 0.004 0.005 0.001 0.011 -0.002

δ 0.7 0.112 0.104 -0.091 0.031 0.028 -0.053 0.008 0.008 -0.013
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Figure 2. The estimated curves of β(t) in Case 1.
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Figure 3. The estimated curves of g(t) in Case 1.

To validate the stability of the algorithm, Case 2 extends the error structure from 1-order
autoregressive (AR(1)) to 2-order autoregressive (AR(2)), increasing the complexity of the error model.
As shown in Tables 4 and 5, the bias and MSE of the parameters α, ψ, and δ, as well as the sample
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mean, median, and variance of RASE j (for j = 1, 2), decrease as the sample size increases. Although
the bias of σ2 fluctuates slightly, its MSE still decreases with increasing sample size. This indicates
that as the sample size grows, the accuracy and stability of the parameter estimates improve. From
Figures 4 and 5, it can be observed that the estimated curves gradually approach the true curves.

Table 4. Simulation results for nonparametric components of Case 2.

n Criterion Mean Median Var

100 RASE1 1.149 0.923 0.591

RASE2 0.336 0.170 0.120

300 RASE1 0.620 0.553 0.097

RASE2 0.149 0.086 0.053

700 RASE1 0.436 0.397 0.025

RASE2 0.083 0.055 0.022

Table 5. Simulation results for parametric components of Case 2.

n = 100 n = 300 n = 700

Parameter True Value MSE Var Bias MSE Var Bias MSE Var Bias

α1
0.2
√

0.53
0.031 0.031 0.027 0.010 0.010 0.007 0.005 0.005 -0.006

α2
−0.7
√

0.53
0.800 0.606 0.440 0.268 0.246 0.147 0.102 0.099 0.054

ψ1 -0.7 0.018 0.016 -0.050 0.004 0.003 -0.012 0.001 0.001 -0.003

ψ2 0.2 0.020 0.015 -0.066 0.004 0.003 -0.017 0.001 0.001 -0.007

σ2 0.2 0.014 0.014 -0.007 0.005 0.005 0.011 0.003 0.003 0.009

δ 0.7 0.156 0.128 -0.167 0.057 0.050 -0.084 0.040 0.037 -0.055
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Figure 4. The estimated curves of β(t)in Case 2.
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Figure 5. The estimated curves of g(t) in Case 2.

To evaluate the performance of the proposed algorithm under data with varying skewness, Case 3
systematically increased the skewness parameter δ from 0.7 to 1. As shown in Tables 6 and 7, the bias
and mean squared error (MSE) of the parameters α, ψ, and δ, as well as the sample mean, median,
and variance of RASE j (for j = 1, 2), decrease with increasing sample size across different sample
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sizes. Although the bias of σ2 fluctuates slightly, it remains at a low level (ranging from -0.001 to
-0.004). Additionally, as seen in Figures 6 and 7, the estimated functions progressively approach the
true functions as the sample size increases.

From the algorithm’s performance under AR(1) and AR(2) error structures, as well as varying
levels of skewness, it can be observed that the proposed estimation method demonstrates good
consistency and effectiveness in complex error structures. Furthermore, the estimation accuracy
improves significantly as the sample size increases.

To systematically evaluate the time complexity and efficiency of the algorithm, this paper measures
the average runtime of the EM-CALS algorithm under Cases 1–3 scenarios with sample sizes of n =

100, 300, and 700. As shown in Table 8, the experiment execution time does not directly increase
or decrease with the increase in sample size. This is related to the more flexible convergence criteria
applied in the EM-CALS algorithm.

Table 6. Simulation results for nonparametric components of Case 3.

n Criterion Mean Median Var

100 RASE1 1.149 0.923 0.591

RASE2 0.336 0.170 0.120

300 RASE1 0.620 0.553 0.097

RASE2 0.149 0.086 0.053

700 RASE1 0.436 0.397 0.025

RASE2 0.083 0.055 0.022

Table 7. Simulation results for parametric components of Case 3.

n = 100 n = 300 n = 700

Parameter True Value MSE Var Bias MSE Var Bias MSE Var Bias

α1
0.2
√

0.53
0.038 0.037 0.030 0.018 0.017 0.021 0.009 0.009 0.007

α2
−0.7
√

0.53
0.674 0.530 0.378 0.180 0.168 0.109 0.001 0.001 0.007

ψ 0.5 0.009 0.009 0.009 0.002 0.002 -0.001 0.001 0.001 0

σ2 0.2 0.018 0.017 -0.034 0.004 0.004 -0.001 0.001 0.001 -0.004

δ 1 0.108 0.104 -0.060 0.014 0.013 -0.028 0.005 0.004 -0.007
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Figure 6. The estimated curves of β(t)in Case 3.
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Figure 7. The estimated curves of g(t) in Case 3.
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Table 8. Experiment Execution Time(s).

n User System Elapsed

100 Case 1 146.328 2.723 151.925

Case 2 189.914 2.816 196.018

Caee 3 143.048 2.206 148.332

300 Case 1 123.117 2.297 127.611

Case 2 256.243 3.896 263.757

Case 3 50.093 0.829 51.795

700 Case 1 135.031 2.781 140.028

Case 2 203.583 3.370 207.119

Case 3 82.259 1.514 84.915

5.2. Example 2

The dataset is generated based on the following model:

Y = −2(u − 1)2 + 1 +

∫ 1

0
β(t)X(t) dt + ε,

where u = Z>α, Z = (Z1,Z2)>, and Zi
iid
∼ Unif(0, 1), i = 1, 2. The single-index vector is α = (α1, α2)> =( √

3
3 ,

√
6

3

)>
. For the slope function, the generation of X(t) and ε follows the same design as in Example 1.

To evaluate the robustness of the algorithm, we adopt the same design as in Example 1. By
varying the skewness parameter, autoregressive coefficients, and orders, the algorithm’s performance is
assessed under different error structures. Specifically, we consider three cases: Case 4, which involves
a 1-order autoregressive structure (AR(1)) with δ = 0.7; Case 5, which uses a 2-order autoregressive
structure (AR(2)) with δ = 0.7; and Case 6, which again employs a 1-order autoregressive structure
(AR(1)), but with δ = 1. For the autoregressive structures, we set ψ = 0.5 for AR(1), and ψ1 = −0.7,
ψ2 = 0.2 for AR(2).

From Tables 9 and 10, it is evident that as the sample size n increases, the sample mean, median,
and variance of RASE1 and RASE2 gradually decrease. This trend indicates that the algorithm’s
performance in fitting the nonparametric components improves with larger sample sizes. Additionally,
the MSE values for all parameters also decline as n increases. The Var consistently decreases with
larger n, indicating improved stability of the estimators. Although the bias of some parameters, such
as α1, shows slight fluctuations across different sample sizes, these variations remain small and are
generally kept at low levels. These fluctuations may be linked to the complexity of the error terms.
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Table 9. Simulation results for nonparametric components of Case 4.

n Criterion Mean Median Var

100 RASE1 1.269 1.073 0.644

RASE2 0.199 0.160 0.113

300 RASE1 0.706 0.625 0.182

RASE2 0.104 0.099 0.002

700 RASE1 0.478 0.429 0.041

RASE2 0.070 0.067 0.001

Table 10. Simulation results for parametric components of Case 4.

n = 100 n = 300 n = 700

Parameter True Value MSE Var Bias MSE Var Bias MSE Var Bias

α1

√
3

3 0.017 0.017 -0.010 0.005 0.005 0.001 0.002 0.002 0.004

α2

√
6

3 0.030 0.030 -0.022 0.002 0.002 -0.005 0.001 0.001 -0.004

ψ 0.5 0.010 0.010 0.002 0.002 0.002 -0.001 0.001 0.001 0

σ2 0.2 0.011 0.011 -0.029 0.004 0.004 0.006 0.001 0.001 -0.002

δ 0.7 0.112 0.106 -0.079 0.033 0.030 -0.057 0.008 0.008 -0.014

Figures 8 and 9, it is evident that as the sample size n increases, the performance of the fitted
functions β(t) and g(t) using B-splines improves significantly. When n = 100, a noticeable deviation
exists between the fitted curves and the true curves. However, as n increases to 300 and 700, the
fitted curves progressively converge to the true curves. This indicates that larger sample sizes allow
the algorithm to more effectively capture the characteristics of the true curves, leading to improved
estimation accuracy and convergence.
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Figure 8. The estimated curves of β(t) in Case 4.
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Figure 9. The estimated curves of g(t) in Case 4.

The analysis of Tables 11 and 12 reveals that as the sample size n increases, the algorithm’s
performance in fitting the nonparametric components improves consistently. This improvement is
reflected in reducing the sample mean, median, and variance of RASE1 and RASE2. Moreover, as
the sample size grows, the MSE and the variance of the parameters also decrease. For the bias of the
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parameters α1 and σ2, although there are some fluctuations, the values remain within a relatively small
range overall. Increasing the sample size results in more precise and stable estimation outcomes.

Table 11. Simulation results for nonparametric components of Case 5.

n Criterion Mean Median Var

100 RASE1 1.097 0.908 0.559

RASE2 0.333 0.139 0.766

300 RASE1 0.618 0.540 0.095

RASE2 0.085 0.064 0.062

700 RASE1 0.438 0.403 0.024

RASE2 0.049 0.047 0

Table 12. Simulation results for parametric components of Case 5.

n = 100 n = 300 n = 700

Parameter True Value MSE Var Bias MSE Var Bias MSE Var Bias

α1

√
3

3 0.022 0.021 -0.026 0.004 0.004 -0.003 0.001 0.001 -0.004

α2

√
6

3 0.157 0.149 -0.091 0.012 0.012 -0.008 0.001 0.001 0.001

ψ1 -0.7 0.019 0.016 -0.054 0.004 0.004 -0.012 0.001 0.001 -0.004

ψ2 0.2 0.020 0.016 -0.068 0.004 0.003 -0.017 0.001 0.001 -0.007

σ2 0.2 0.013 0.013 -0.011 0.006 0.005 0.015 0.003 0.003 0.007

δ 0.7 0.153 0.127 -0.159 0.068 0.058 -0.101 0.036 0.033 -0.050

In Figures 10 and 11, it is evident that as the sample size n increases, the algorithm’s performance
to fit β(t) and g(t) improves significantly. When the sample size n increases to 300 and 700, the
fitted curves approach the accurate curves more closely, indicating that the accuracy of the estimation
improves with larger sample sizes.
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Figure 10. The estimated curves of β(t) in Case 5.
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Figure 11. The estimated curves of g(t) in Case 5.

Tables 13 and 14 present the MSE, Var, and bias for the parameters α, ψ, σ2, and δ, along with the
sample mean, median, and variance of RASE j (for j = 1, 2) at different sample sizes. These results
demonstrate conclusions consistent with Case 5. Simulation experiments using three distinct parameter
configurations in Example 2 indicate that the proposed algorithm demonstrates strong adaptability
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in the single-index partially linear model, even with complex autoregressive error structures. As
illustrated in Figures 12 and 13, the estimated curves gradually approach the true curve as the sample
size increases.

Table 13. Simulation results for nonparametric components of Case 6.

n Criterion Mean Median Var

100 RASE1 1.538 1.238 1.284

RASE2 0.319 0.211 0.408

300 RASE1 0.771 0.701 0.232

RASE2 0.125 0.117 0.003

700 RASE1 0.527 0.467 0.069

RASE2 0.083 0.080 0.001

Table 14. Simulation results for parametric components of Case 6.

n = 100 n = 300 n = 700

Parameter True Value MSE Var Bias MSE Var Bias MSE Var Bias

α1

√
3

3 0.030 0.029 -0.016 0.007 0.007 -0.001 0.003 0.003 0.005

α2

√
6

3 0.104 0.099 -0.071 0.003 0.003 -0.006 0.001 0.001 -0.006

ψ 0.5 0.010 0.010 0.003 0.002 0.002 0 0.001 0.001 0

σ2 0.2 0.019 0.018 -0.035 0.004 0.004 -0.001 0.001 0.001 -0.005

δ 1 0.107 0.104 -0.053 0.015 0.014 -0.028 0.004 0.004 -0.008
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Figure 12. The estimated curves of β(t) in Case 6.
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Figure 13. The estimated curves of g(t) in Case 6.

To systematically evaluate the time complexity and efficiency of the algorithm, the average runtime
of the EM-CALS algorithm is measured under Cases 4–6 scenarios in Example 2, with sample sizes
of n = 100, 300, and 700, following the same approach as in Example 1. As shown in Table 15, the
experiment execution time does not directly increase or decrease with the increase in sample size. This
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is related to the more flexible convergence criteria applied in the EM-CALS algorithm.

Table 15. Experiment Execution Time(s).

n User System Elapsed

100 Case 4 126.892 2.917 194.251

Case 5 193.034 2.961 199.880

Caee 6 111.520 2.566 173.009

300 Case 4 75.457 1.741 109.605

Case 5 168.304 2.418 172.591

Case 6 32.806 0.786 48.882

700 Case 4 65.384 1.678 68.649

Case 5 177.791 2.418 172.591

Case 6 48.716 1.256 56.743

6. Application

With the rapid advancement of photovoltaic (PV) technology, it has gained significant popularity in
grid-connected applications. The power output of PV systems is affected by various factors, including
solar irradiance, ambient temperature, sunlight intensity, and installation angle. Given the fluctuations
in solar irradiance and environmental conditions, the power output of PV systems inherently exhibits
temporal variability. Wang, Su, and Shu [32] analyzed grid-connected power generation data from
Macau in 2011 using partial functional linear regression under the assumption of independent errors.
Xiao and Wang [12] extended this analysis by employing a partial functional linear model with
autoregressive errors on the same dataset.

In this study, we analyzed the Macau 2018 PV power generation dataset provided by Qiu [34].
This dataset comprises solar power generation data collected from a 3-kilowatt rooftop PV plant at the
University of Macau throughout 2018, with measurements taken at 30-second intervals. Additionally, it
includes public weather report data from Macau, with weather variables recorded hourly. The system is
located on Coloane Island in the Macau Special Administrative Region (SAR) (latitude 22° 100000’N,
longitude 113° 330000’E). The data was recorded from January 1, 2018 to December 31, 2018. Due to
various factors, such as meteorological conditions, maintenance, or instrument malfunctions, some data
entries were missing. After employing standard preprocessing techniques to eliminate missing values
and outliers, we retained 356 days of data. The total output power for the following day was selected
as the response variable Y(kW), while the hourly output power from the previous day served as the
functional predictor. Several meteorological variables were also considered as multivariate predictors.
Specifically, Z1 represents daily average cloud cover, Z2 refers to daily precipitation, Z3 denotes the
daily average temperature, and Z4 refers to total solar radiation . Figure 14 illustrates the behavior
of the functional predictor variables Xi(t), where all functional predictors exhibit similar patterns.
Before modeling, Figures 15–18 depict the relationships between daily average cloud cover, daily
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precipitation, daily average temperature, and daily solar radiation with daily output power, respectively.
The fitted curves were derived using the lasso method.

To evaluate model performance, we split the dataset into two subsamples: A training subsample
{Yt,Zt, Xt(u)}300

t=1 for parameter estimation and a test subsample {Yt,Zt, Xt(u)}356
t=301 for validating

prediction quality. We quantify forecasting accuracy through two metrics: the MSE and mean relative
squared error (MRSE), defined, respectively, as

MSE =
1

56

356∑
t=301

(
Yt − Ŷt

)2
, (6.1)

MRSE =
1

56

356∑
t=301

(
Yt − Ŷt

)2

Var(Y)
, (6.2)

where Var(Y) denotes the variance of the response variable over the test set, Yi represents the true value
of the i-th observation, and Ŷi is the predicted value for the i-th observation from the model.

As shown in Figures 15–18, the daily average cloud cover (Z1) negatively impacts output power,
as seen in Figure 15. Clouds obstruct sunlight, reducing effective radiation reaching PV panels and
significantly lowering generation efficiency. Daily precipitation (Z2) demonstrates a negative nonlinear
relationship with output power. As precipitation increases, the power output decreases. Heavier rainfall
is typically accompanied by cloudy conditions, which reduce solar radiation. This attenuation of
solar radiation, caused by both cloud cover and rain, leads to a decrease in power generation. The
daily average temperature (Z3) has a positive but insignificant effect on output power. While higher
temperatures are generally associated with ample sunlight that aids power generation, the efficiency of
PV panels actually decreases at elevated temperatures. This results in only a weak positive impact of
temperature on output power. In contrast, total solar radiation (Z4) shows a strong positive correlation
with output power. Higher radiation levels enhance photon absorption, leading to a direct increase in
power generation, in accordance with the fundamental principles of PV energy conversion.

8 10 12 14 16 18

−
1

1
3

Figure 14. The plot of the functional predictor.
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Figure 15. Scatter plot and fitted curve of daily average cloud cover and daily output power.
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Figure 16. Scatter plot and fitted curve of daily precipitation and daily output power.
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Figure 17. Scatter plot and fitted curve of daily average temperature and daily output power.
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Figure 18. Scatter plot and fitted curve of solar radiation and daily output power.

Figures 15–18 illustrate that the relationships between daily average cloud cover, daily precipitation,
daily average temperature, and daily solar radiation with output power are nonlinear. Consequently,
traditional linear models are insufficient for accurately capturing these complex interactions. The
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single-index model provides the necessary flexibility to account for nonlinear relationships among
multiple covariates. By integrating the effects of several covariates into a single index, this model
is particularly effective for modeling the nonlinear dynamics between output power and the relevant
variables. Therefore, we utilize the single-index partially functional linear regression model for our
analysis.

The residual analysis was performed using the single-index partially functional linear regression
model introduced by Yu et al. [7]. The residuals were then evaluated with the Shapiro-Wilk test to
check for normality. The results revealed a W statistic of 0.77008 and a p-value less than 2.2 × 10−16,
which led to the rejection of the null hypothesis. This indicates that the residuals do not follow a
normal distribution. Furthermore, the Q-Q plot shown in Figure 19 suggests that while the residuals
approximate a normal distribution in the central region, they exhibit significant deviations in the tails,
indicating heavy-tailed characteristics and a departure from normality. Given the observed skewness
and heavy tails in the residuals, the SN distribution, as proposed by Azzalini [11], was adopted to
more accurately model errors. The SN distribution introduces a skewness parameter, enabling it to
effectively capture asymmetry and accommodate data with moderate skewness and kurtosis. As a
result, the assumption of normal errors was replaced with the skew-normal error distribution.
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Figure 19. The Q-Q plot of the residuals.

Based on the model and algorithm proposed by Yu et al. [7], the residual sequence is obtained.
Subsequently, the Ljung-Box (LB) test statistic, along with the autocorrelation function (ACF) and
partial autocorrelation function (PACF) plots, are utilized to test for the presence of 1-order to 5-order
serial correlation.

Figures 20 and 21 illustrate the PACF and the ACF of the residuals, respectively. Both functions
reveal significant deviations from zero at a lag of 2, indicating that the residuals display an AR(2)
structure. As shown in Table 16, when h = 2, the p-value of the LB test statistic is the smallest and
is less than the given significance level of 0.05, leading to the rejection of the null hypothesis and
indicating that the errors follow an AR(2) structure. Considering the AR(2) structure and skewness of
the errors, we propose a single-index partially functional linear model with AR(2) skew-normal errors,
referred to as SIPFLM-SNAR(2). For comparative analysis, we also created two additional models:
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one that includes normal AR(2) errors, called SIPFLM-NAR(2), and another that assumes independent
errors.
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Figure 20. The PACF plot of the residuals.
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Figure 21. The ACF plot of the residuals.

Table 16. The p-value of the LB test statistic.

h-order
h=1 h=2 h=3 h=4 h=5

p values 0.768 0.026 0.061 0.091 0.050

Table 17 summarizes the estimated values of the relevant parameters and MSE and MRSE.
The results indicate that the proposed SIPFLM-SNAR(2) model achieves a lower MSE and MRSE
compared to the SIPFLM-NAR(2) and SIPFLM models, demonstrating its superior predictive
accuracy.
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Table 17. The estimated parameters and the MSE and MRSE for the power output data.

Parameter Indep. Normal AR(2)-Normal AR(2)-Skew-Normal

α1 0.001 0.649 0.646
α2 0.074 0.049 0.051
α3 -0.996 -0.757 -0.760
α4 0.048 0.053 0.054
γ1 -1.095 -0.687 -0.688
γ2 2.212 1.563 1.567
γ3 -1.917 -1.490 -1.497
γ4 0.625 0.573 0.582
η1 0.548 0.642 0.646
η2 5.524 5.751 5.741
η3 14.573 14.609 14.608
η4 15.032 15.018 15.007
ψ1 – 0.115 0.114
ψ2 – 0.194 0.194
σ2 2.061 2.916 2.958
δ – – 0.086
MSE 5.168 3.190 3.161
MRSE 0.314 0.194 0.192
Total Sample Size 356 356 356
Training Set Size 300 300 300
Test Set Size 56 56 56

7. Conclusions and discussion

This paper addresses parameter estimation for the single-index partially functional linear models
with p-order autoregressive skew-normal errors. We propose an EM-CALS algorithm to estimate
the model’s parametric and nonparametric components. The method includes analytical expressions
for the E-step and M-step. To handle the nonlinear constraint imposed on the single-index coefficient,
specifically the unit norm constraint, we incorporate a CALS step into the algorithm. This modification
reduces the parameter estimation complexity and improves the algorithm’s stability. To demonstrate
the performance advantages of the EM-CALS algorithm, we compare it with the TSILS algorithm.
Compared to the TSILS algorithm, the EM-CALS algorithm shows significant improvements in the
mean values of RMSE, MSE, RASE1, and RASE2, with decreases of 1.19%, 2.45%, 38%, and 51.35%,
respectively, demonstrating its clear advantage in enhancing prediction accuracy. Additionally, we
perform a residual analysis based on conditional residuals, following the methodology described by
Dunn and Smyth [31].

The proposed model performs local influence analysis using the Q-function in the EM algorithm.
The impact of case-weight perturbation, response variable perturbation, and explanatory variable
perturbation on the model is examined, and the analytical expression of the Hessian matrix is derived.

The performance of the EM-CALS algorithm is validated through simulation studies that assess
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its behavior under various scenarios, including changes in the autoregressive order of the errors and
the nonparametric function in the single-index component. The results indicate that while some
parameters show fluctuations in bias, their MSE decreases with larger sample sizes. This suggests
an improvement in model fitting performance. The proposed estimation method demonstrates good
stability and accuracy, particularly when larger sample sizes are used.

Furthermore, the model is applied to a dataset from a PV system for power prediction. The
findings reveal that the SIPFLM-SNAR(2) model effectively captures asymmetry and temporal
dependence in the response variable, making it highly useful in scenarios involving functional data
and multidimensional scalar predictors.

Despite the positive results of this study, several limitations remain. First, the asymptotic properties
and convergence rate of the EM-CALS estimators have yet to be proven. Future research could
explore the asymptotic normality and convergence speed of this algorithm. Second, the simulations
in this study mainly focus on low-dimensional cases, and the performance of the algorithm in
high-dimensional single-index models has not been fully examined. As the model’s dimensionality
increases, ensuring the accuracy of estimations and improving the computational efficiency of the
algorithm will present significant challenges. Future research can expand the scope of simulations
to further validate the applicability of the algorithm in high-dimensional settings while considering
additional potential influencing factors, thereby enhancing the robustness and broader applicability of
the algorithm.
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