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Abbreviations

r-d: right dense; 1-d: left dense; r-s: right scattered; 1-s: left scattered; UPS: uniform practical
stability; SUPS: strongly uniform practical stability; LF: Lyapunov function; CFrAD: Caputo
fractional delta derivative; CFrADiD: Caputo fractional delta Dini derivative; GLFrAD:
Grunwald—Letnikov fractional delta derivative; GLFrADiD: Grunwald-Letnikov fractional delta Dini
derivative; CFrDyT: Caputo fractional dynamic equations on time scales; CFrD: Caputo fractional
derivative

1. Introduction

In the field of dynamic systems, stability analysis is essential for understanding system responses
to various initial conditions and disturbances. Traditional Lyapunov stability theory has made
significant contributions here, focusing on convergence to the equilibrium [1,2]. However, this strict
convergence requirement can be overly restrictive in real-world applications where slight deviations
are often tolerable. UPS offers a more flexible framework, allowing systems to operate within an
acceptable range around the equilibrium rather than requiring exact convergence (see [3,4]).

The recent growth of fractional calculus has introduced valuable tools for stability analysis. By
extending differentiation and integration to arbitrary order, fractional calculus has proven to be highly
effective in modeling complex systems with memory effects and non-local interactions [5—7]. Among
these tools, the Caputo fractional derivative (CFrD) has shown practical relevance for various
applications (see [8,9]). However, most studies have relied on scalar Lyapunov functions (LFs),
which evaluate stability on an individual-variable basis [10, 11]. It is widely recognized that as the
complexity of a dynamical system increases, identifying a suitable LF becomes more challenging.
This difficulty often leads to the use of multiple LFs, forming a vector LF, where each component
reveals insights into different parts of the system’s behavior. By this approach, certain complex
elements can be simplified into interconnected subsystems, allowing for more relaxed conditions.
Thus, the method of vector LFs provides a highly adaptable framework for analysis [12—14].

Previous studies, including [15-17], have concentrated largely on stability aspects like uniform,
asymptotic, and variational stability within delay and impulsive settings, primarily for continuous-
time systems. In contrast, research such as [18] has examined stability in discrete settings. This
paper introduces an innovative approach using vector LFs for Caputo fractional dynamic equations on
time scales (CFrDyT), establishing UPS in terms of two measures (m, m), and presenting a versatile
framework well-suited for real-world applications. This approach ensures that systems remain within
specific bounds despite small disturbances, reflecting a balance between rigorous stability and practical
adaptability.

With the introduction of time scale calculus in [19], a unified approach for analyzing systems
evolving in both discrete and continuous time domains has emerged, extending traditional continuous
analysis techniques to discrete cases. Integrating this calculus with fractional dynamics enables a
more sophisticated framework for understanding systems that undergo both gradual and abrupt
changes, common in hybrid systems. When combined with fractional calculus, time scale calculus
provides a versatile platform for analyzing dynamic behaviors in both continuous and discrete
settings.

AIMS Mathematics Volume 10, Issue 3, 7001-7021.



7003

Building on these advancements, this paper extends the results in [20, 21], presenting a novel
methodology for examining the (mg, m)-uniform practical stability (UPS) and (mg, m)-strongly
uniform practical stability (SUPS) of CFrDyT. To further extend the scope of practical stability
analysis [22], this work applies the novel derivatives introduced in [23], the Caputo fractional delta
derivative (CFrAD) and Caputo fractional delta Dini derivative (CFrADiD) of order ¢ € (0, 1), which
enables unified stability analysis, creating a robust framework for hybrid systems exhibiting both
gradual and abrupt changes.

Let us examine the system
Ay =D(,v), teT,

1.1
v(f) = Do, th > 0. (D

Here,
D e Cy[T xRN, RM]

is a function satisfying
D(,0) =0,

and €A%y denotes the CFrAD of vy € R" of order £. Let

n(t) = 0(t, 1y, 1) € C5 [T, RY]

represent a solution of (1.1). Assuming that the function D possesses sufficient smoothness to ensure
the existence, uniqueness, and continuous dependence of solutions (see [24,25]), this paper examines
the (mg, m)-UPS and (m, m)-SUPS of the system (1.1).

To achieve this, we use the comparison system of the form
Ak = O(t, k), K(to) = ko = 0, (1.2)

where
O e CylT xRE, R

The system (1.2) is a simpler system of lesser dimension than (1.1), whose qualitative properties
including the existence and uniqueness of its solution

k(1) = k(t; ty, Ko)

and practical stability are already known or easy to find, see [26].

The structure of this research is outlined as follows: In Section 2, necessary terminologies, key
definitions, remarks, and foundational lemmas that support the later developments are given. In
Section 3, we develop and give details of core findings and theoretical contributions of our research.
In Section 4, we present practical examples to illustrate the relevance and applicability of our
approach. Lastly, in Section 5, we present a summary of the main findings and discuss their
implications.
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2. Preliminaries and definitions

Definition 2.1. [27] Ift € T, then

w(@) =inf{s €T : s>t}
is called the forward jump operator and

p(t)=sup{seT:s<t}
is called the backward jump operator. So that t € T is said to be: right dense (r-d) if

w(t) =1,
right scattered (r-s) if w(t) > t, left dense (I-d) if p(t) = t, and left scattered if p(t) < t. Also the function
) =w(®) —t

is called the graininess function.

Definition 2.2. [28] A function
h:T—>R

is said to be r-d continuous represented by C,,, if it remains continuous at every r-d point in T, and has
finite left-sided limits at each l-d point of T.

Definition 2.3. [28] We define the following class of functions:
K ={y € [[0,r], [0, 0)]}: ¥(t) is strictly increasing on [0, r] and ¥(0) = 0;
CK ={aeCylTxR,,R,]: a(t,s) € K for each t};
M={meCylTxR"R,]: %nf)m(t, x) = 0}.
t,x
We now define the derivative of LF utilizing the CFrADiD as presented in [23].

Definition 2.4. Let
[t0, T)r = [to, T) N T,

where T > t,. Then a Lyapunov-like function
1t v) € Crg[T xR, RY]

is defined as the generalized CFrADiD relative to (1.1) as follows: given € > 0, there exists a
neighborhood P(€) of t € T such that

=

1
@@ 9@ 0) = 30,90 = Y (D ECD - 17, 00 = 7D, (1) = o, 101}
T =1

<At y) +e
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for each s € P(e) and s > t, and
l)(t) = I)(t’ to, 1)0)
is any solution of (1.1), where 0 < { < 1, @ is the forward jump operator as defined in Definition 2.1,

-1 —t+]1)

t!

T=w—t, °C, =

and ["=22] denotes the integer part of the fraction ‘2.

Definition 2.5. [23] Using Definition 2.6, we state the CFrADiD of the LF X(t,v) as
[[ IOJ
A%t = limsup Z( D'ECOR@() - . n@(0) - FD(e o) - Luo ool (2.1)

T—0"

which is equivalent to

“A%3(e.p) = limsup — {J(w(r) (@ (1)) - Ato, 90)
[%1
= ) D@ - (@) D (D) - o, 1)0)]}
and
(50

1
CAL(,v) = lim sup — 3 )@ (1), (@ () + D EDEC) [A@) - i y(@ (@) - O v(@)]

7—-0* =1

B 2o, yo)(t — )¢

) (2.2)
' -9
where t € T, and v,y € R", and
y(@ (1) — “D(t,v) € RV,
For discrete times, Eq (2.1) becomes
1[@]
AL = =] Y DIECI@O, 0@ D) - o, 100,
v =0
and for continuous times (T = R), Eq (2.1) becomes
AL, ) = D, ) = limsup {36, 0(0) ~ 3 )
k—07t
(52 (2.3)

= DL EDTECE = () = KD 0(E) = Ao, 01
=1

Notice that (2.3) is the same in [5], where k > 0.
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Definition 2.6. Let
(1) = v(t; o, Vo)
be any solution of (1.1), then system (1.1) is said to be:

(UP;) (my, m)-uniformly practically stable if, given (1,A) € R, with 0 < A < A, we have my(ty, Do) < A

implies m(y(1)) < A, YV tp € T;

(UP,) (my, m)-uniformly practically quasi-stable if given (1, B,T) > 0 and ty € T, we have my(ty, o) < A

= m(() < B, fort >ty +T;
(UP3) (my, m)-SUPS if (UP;) and (U P,) hold together.
Definition 2.7. Corresponding to Definition 2.6, the solution

k(1) = k(t; to, Ko)

of (1.2), is called uniformly practically stable if given 0 < A < A, we have

n

n
ZKO</1 - ZKi(l;lo,K0)<A, t =1y,

i1 i=1
for some ty € TNR,.

Lemma 2.1. [23] Let
R,B € CylT,R"].
Assume I t; > to, with
HheT:R@#) =B(t)
and
R(t) < B(1)
forty <t < t1. If the CFrADID of R and B are defined at t,, then the inequality
“NLR(1) > ALB(1)
holds.
Lemma 2.2. (Comparison theorem) Let
(@) O € CylT xR%,R"Y] and O(t, k)T is non-decreasing in .
(ii) Xt,v) € Cq[T x RN, RY] be locally Lipschitzian in v and
A, v) < O, X1, 1)), (1,9) € T xRV,
(iii) o(t) = o(t; ty, ko) be the maximal solution of (1.2) existing on T.
Then
A,9@®) <o), t=1
provided that

A0, vo) < Kos
where

n(#) = n(#; 10, Vo)
is any solution of (1.1), t € T, t > t,.

(2.4)

(2.5)

AIMS Mathematics Volume 10, Issue 3, 7001-7021.
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Proof. We shall make this proof by the principle of induction. For an assertion
S : Wt,n@) <o), teT,
the following holds:
(1) S(t) is true since Xy, Vo) < Ko.
(i) Assuming ¢ is r-s and &(t) is true. Then we prove that S(w(?)) is true; 1.e.,

(@ (@), n(@(1)) < o(@w(®),

set

%#(t) = ), v(1)),

and then

x(w (1)) = N@ (1), ) (@ (1)),
then from Definition 2.6, we obtain

[y

CAi%(t)—hmsup ! Z( D“C,[n(w(t) — o7) — %(to)] ¢,

=0+

also,
(Lo
CAZQ(I)—IIHISH]D1 Z( D“C.lo(w (1) - i7) — o(to)] , 1> 1o,
-0+
then,
=
CASo(D) CA(%(I)—thlllDl Z( D“C lo(@(r) — i7) — o(ty)]
-0+ =0
[
—hmsupl Z(—1)‘{Ct[%(W(t)—LT)—%(to)] ,
=0+ T’ =0
[0
CAi C A§ e =1 1 Lg’C
(At =€ Afxto)e = timsup 2D [fo@(®) - ) - o)
- Lt (®) - i7) = 21|
< [o(@ (1)) — 0(to)] — [#(w (1)) — x(1p)]
< [o(@ (1)) — %(w@(1))] — [o(to) — %(to)],
then,

lo(@(1)) = %(@(1)] = (CAiQ(t) CA:%(t)) + [o(to) = #(10)],

(2.6)
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so that,
(@ (1) — o(@ ()] < (CAig(n ¢ Ai%m)ﬁ“ + [x(t0) - 0(10)]
< (@(t, (1) - 01, g(r)))r-‘ + [x(t0) — 0to)].

By the non-decreasing property of O(z, k)t and since &(1) is true, then

n(@(1) — o(@w(n) <0,

so Eq (2.6) holds.

(iii) For r-d points * € U, where U is a right neighborhood ¢ € T. We can clearly see that S(¢*) is
true immediately from [5, Lemma 3] since at every r-d point of T, 1(z, p(¢)) is continuous and the
domain is R.

(iv) Lettbe I-d, and let S(s) be true for all s > t. We want to show that S(¢) is true. This immediately
follows r-d continuity of 1(z, y(¢)), n(¢), and the maximal solution o(¢). Thus, by the principle of
induction, the assertion &(¢) holds for all # € T, thereby concluding the proof.

The proof is completed. m|
3. Main results

Now, we present the (m, m)-UPS and (m, m)-SUPS results for the fractional dynamic system (1.1).
Theorem 3.1. ((m, my)-UPS) Assume that

(m) 0<A<A;

(my) mog,m € M, and my is uniformly finer than m, implying m(t,v) < ¢(my(t,v)), ¢ € K, whenever
mo(t,9) < A;

(m3) There exists
1€ Cy[T xRY,RY]

and
Q € Cy[R},RY],

such that if
Q7. v)) = B(1, ),

B(t,v) is locally Lipschitz in v, and for
(t,y) € S(m,A) = {(t,9) € TxR" : m(t,9) < A},
then,
bOm(t,) < > Vi), if m(t,y) <A
i=0

oo 3.1
D Bilt,v) < almo(t,m)), if mo(t, ) < A;
0

AIMS Mathematics Volume 10, Issue 3, 7001-7021.
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(my) for (1,9) € S(m, A)
CASB(t, 1) < O, B(1,v)),

where
O e CylT xR}, R,

O(t, k) is quasimonotone nondecreasing in k with

O,k =0,

a € CK, and for each i, 1 <i < n, O(t,k)1(t) + k; is nondecreasing in k for all t € T;

(ms) ¢(1) < A and a() < b(A) hold;

Then the UPS properties of (1.2) imply the corresponding (my, m)-UPS properties of (1.1).
Proof. Since (1.2) is UPS, then we deduce from (2.4) that V #, € Tand 0 < 1 < A,

n n

Dok <a) = kit 1,K) < BA), 12 o,

i=0 i=1
We can easily assert that (1.1) is (m, my)-UPS with respect to (4, A).
However, if the assertion were false, then for any solution
() = y(t; to, Vo)
of (1.1) with
my(to, Vo) < 4,

there would be a point #; > ¢, such that

m(t;,p(t1)) = A and m(t,p(t)) <A fort e [ty t)).

Setting
Ko, = B,(t, o),
and from (2.5), we have
B(t, (1) < o(1, 1, Ko)s

where o(¢) is the maximal solution of (1.2).
Also, from assumptions (1m,) and (ms), it is clear to see that

m(ty, o) < P(my, (fo, Do) < P(1) < A.

Then, we deduce that,

n

D ko, < D Bilto, vo) < almo(to, o)) < a(d).
0

i=1
Combining (3.3)—(3.6), we obtain

B(A) = bm(n, v(t)) < D Bilti,n(1)) < D 0iti; o, K9) < b(A).
i=1 i=1

Equation (3.7) is a contradiction, so the statement that (1.1) is (1, m)-UPS is true.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

O
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Theorem 3.2. ((m,my)-SUPS) Assume that conditions (my)—(my) of Theorem 3.1 is satisfied, and
Eq (1.2) is SUPS; then, Eq (1.1) is (m, my)-SUPS.

Proof. To make this proof, we need (1.1) to be (mg, m)-UPS and (m, m)-uniformly practically quasi-
stable together. Now, (1.1) is (mg, m)-UPS by Theorem 3.1, so we need to prove only (m, m)-uniform
practical quasi-stability. By the assumption of the theorem, Eq (1.2) is (m, m)-SUPS for

(a(4),b(4),b(B), T) > 0,

so that for all ¢y € T,

n

Dok <o) = ) kilt,to,k0) <B(B), 1219+, (3.8)

i=1 i=1

where «;(t, ty, ko) is any solution of (1.2). By the UPS of (1.2), we can comfortably make the assumption
that
mo(fp, Ho) < 4,

so that
m(t,p(t)) < A

for t > t,. Setting
ko; = Bi(to, Vo),

and by Lemma 2.2, we have the estimate

B(z,y(1) < o(t, 10, o), (3.9)

where o(¢) is the maximal solution of (1.2). Following this argument closely, and from (3.8) and (3.9),
we obtain

bOm(t,0(1) < D Bilt,0(0) < ) 0t o, ko) < B(B), 1219+ T.
i=1 i=1

So that
m(t,y(1)) < B
whenever
my(fo, Do) < 4,
for t > ty + T. Therefore, we conclude that (1.1) is (mg, m)-SUPS. O

4. Illustrations

4.1. Illustration 1

Given the following system

“Ap1(1) = =291 — 97 exp(p1) — 95 exp(P1),

4.1)
CApy(t) = —pT exp(p2) — 292 — 93 exp(2),

AIMS Mathematics Volume 10, Issue 3, 7001-7021.
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with initial conditions
91(fo) = P10

and
©2(f) = 920,

for
(91, 92) € R

Choose the LF for (4.1) to be
J = (SBI’ Qg2)T9

where
B (1, 91, 92) = |91l

and
By (1, 1, 92) = |92l

Using (2.5), the CFrADiD for
By, 91, 92) = |1l

is computed as

. 1
AL, (1, 1) = lim sup g{ww(r), 1@ (1))
=0t

=

By (10, ¢ —_ )¢
+ Z(—l)‘(gct) |B1(@() - 17, p1(@(0) - D (1, pl(t))]}— 100, P10)(t = to)
=1

r(1-90
gy ey [P10l(r = 1)
= limsup — o1 (@ ()] + ;H)‘(fct)[lpl(w(t)) - Dt el - TTa-0
oy =t [10l(r = 1)
< lim sup — o1 (@(0)] + Zl](—l)‘(?ct)[lpl(w(t))l D90l = TR
| | (5] (221 l@10l(t = 19)7¢
< limsup — 1 Ip1 (@) + Zl](—l)‘(?angol(w(r)n + ;<—1>‘(4a>lr»‘®1<n 0l S T
e & [Prol(t = 1)
< o1 (@ () hri(s)?p o ;(—I)L(KCL) + D (t, 1) hrrrlgyp ;(—1)‘(@) T TTra-o

Applying (2.12) and (2.14) in [23], we obtain

— )¢ — )¢
CALB (1, p1) = lpl(wr(g)ﬁt{) Do) - —lgollfl((lt_ 20)) ,
— )4
AL, < 'g”l(wr(g)'_(tg) D7 ol
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When
lp1(@))I(t — )™

(-2

— 0,

then

CALB < —|Di(t 91
= —[1- 291 - 97 exp(p1) — 93 exp(p1)]]
= —[1-2p1 - (9} + p3) exp(p)]
< —[1- 2911 (4.2)
< -[2pill,
CASB, < -2B + 0B,.

Similarly, compute the CFrADiD for

(52
1 - [920l(r = 1)
By (1, 91, 92) = || = liﬁz?p - |2 (@ (1)) + Z (—1)L(§CL)[|802(ZD'(Z‘)) —°Dsy(t, o)l — |50212|((1t - Z)))

=1
=

1 T
< limsup — S [pa(@(@)] + D (=D CCIlpa@@)] + [ Da(t, )]
-0t T =1

20l — 1)~
I'(1-2
[0 =

1 - LN
< limsup —  [p(@(0)] + Z;(—l)z(.fct)lgaz(w(t))l + Zl(_l)‘(évcl)l‘r{bz(l, o)lb = '502r0|((1t—_?))

T—0"

(o (g
. I < ' : . t 92012 — )_74

< |@2(@(1))| lim sup p: Z(—D (¢C) + |Da(t, p2)| lim sup Z(—l) ¢c) - @zlg(l - ;)

1=0 =1

70" 70"
Applying (2.12) and (2.14) in [23], we obtain

[ (@ ()N — 19)~¢

CA¢ _ .
A, < ri1-0) |D2(t; 92)I.
When
lp2(@()I(r — 15)~¢
t , — 0,
I(1-2
then,

CALB, < —|Da(t; 92)]
= - [I - 9T exp(p2) — 202 — 93 exp(pa)]
= —[1-202 = (91 - D) exp(2)l

<=l -2p,ll
< —2|po|.
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Therefore,
CALB, < 0B, —2B,. (4.3)
From (4.2) and (4.3), it follows that
-2 0\(B
CA¢ [
Al < ( 0 _2) (%2) = 0O(1, D). 4.4)
Next, we choose a comparison system
Ak = O(t, k) = Mk (4.5)
with
-2 0
M= ( ; _2) |

Clearly, Figure 1 below shows the stability of system (4.2). The vector inequality (4.4), along with
all the other requirements of Theorem 3.1, holds when the matrix M has eigenvalues with negative
real parts. Given that the eigenvalues of M are both —2, it can be concluded that (4.1) is not only
(m, my)-UPS but also (m, my)-SUPS.

Stability Curves of the Fractional System

k(0
fy(0)

4 6 8 10
Time (1)

Figure 1. Stability of system (4.5).

4.2. Illustration 2

Given the following system

NZ + 3K?2
CAR (1) = 4N, - 2—3,
N
3IN2+ N2
CAIR (1) = ———— + 48, - =2, (4.6)
N, N,

2

N
CA§N3(I) =-_1 + 3&3,
N3

AIMS Mathematics Volume 10, Issue 3, 7001-7021.
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with initial conditions
Ni(f)) = N,  No(fp) =Ny, and  N3(tp) = N3,
for
N = (N],Nz, N3) € R3.
Choose a vector LF
1=(8,8,,85)" : B, =K], B,=N3, B3=N;
and
2
Jo(R1, R, 85) = > By(R), 8o, ) = K + 8]+ 83,
i=1
Computing the CFrADiD for
Q}] = N%,
we obtain:

A, = timsup | |8 ()] - [(%107]

T—=0*
=]
+ D D (EC) [ @) - 1 (1, R))] - [((Nlof]}

= lim sup — {[(Nl(w(t))) ] [(Nm)z]

70"
=]
+ D (C) IR (@) = 281 (@O)TD 1 (1, 1, Ko, Ks)

=1

+ 7D (1,81, 8, 3))°] - [(&0)2] }
=] =]
:—li?lg?pT{{Z( D (“C.) [(Si0) ]}+hmsup {Z( D (“C) [Si@®)y ]}

~timsup{ " (~1) (C) 2N (@) D11 81, 8o, Ko

7—0% =1

From (2.12) and (2.14) in [23], we obtain

C Al (t_ ZLO)_‘( 2] _
M <TT5 |Ri@@))] - 2X1(@E)D1(2, K1, 8, R3)].
When ( -
t—1ty) " 2
1= 00, o i@ -
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so that we obtain
CASB; < 2[R (@)D (1, 1, Na, 83)].

Using
N(@ (1)) < TEAR@) + K@),
we obtain

AL, = [r(tm (1,81, 80, 8s) + N1 (DD, (7, xl,xz,xs)]

2

N2 + 3N3 N2 + 383
== 2 (4w, - =) [ - = )| @7
N2 +3K82\ N2 + 3N3
= 200 |48, - 22 | aw 4N - 2R
N] N1
If T = R then 7 = 0, reducing (4.7) to the form
N2 + 3N?2
CALD (R, N, 83) = =28 |48, - %]
: (4.8)

= —8K] + 283 + 683
=(-826)-(B; B, By)!.

When T = N then, 7 = 1, reducing (4.7) to

24382\ N2 + 382
CASB (R, 82, 83) = -2 l(‘ml _ R 3) ] - 2N, [42’41 - %]
1 1

N2 +3N3
N ’

< =28, [4&1 -

resulting in the same outcome as (4.8). Evidently, this applies to any other discrete time as well.
Also, computing the CFrADiD for
By(N) = N3,

we obtain:

CALB(8) = lim sup —{ [ Ra(@))] - (%07

07"
=]
+ D) [Ra@() = D8, X)) - [(Nzo)z]}
=1

[1‘ 10]
= tim sup —{ [(Ra(aw))?] - [(Xao)| Z( D' (“C) [(Rx(@ (@)’

7—0"

— 2Ry (@ (D) Da(t, R, Ma, R3) + 74Dt N1, Ko, 83))’] = | (Roo)’ }
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& =

:—hmsup Z( ' (“C.) [(820] +11msup Z( 1) (“C.) [Ra(m())?]

70"

s
~ lim sup{ Z( 1) (£C.) 282(@ ()T Da(t, 81, N, xg)]}

70"

From (2.12) and (2.14) in [23], we obtain

_ -
A0 < O (8] - 20 Da(r 81, N N

When i

t = oo, (rt(_l ’_")b [(Nz(w(t)))z] -0
so that

CASBH(R) < —2[Ra(@(1))Da(t, N1, R, N3)],
using
N(w@(1)) < TCAR(G) + N(©),

we obtain

CALB,(R) = —2[r<r>®§<t, N1, R, Na) + Ra(0)Da(t, Ny, N, x3>]

2

3N+ N2 3N+ N2
—2[7(0 - AR, — 2| + 8o (- +AR, - =2 ]

N N> N, N>
= =27(t 3N2+ 48 NS 2 2N 3N2+ 48 N
= (1) N, + 2 N, 1 S, + 2 R, .
If T =R, then 7 = 0, reducing (4.9) to
C Al 3N+ N3
A+%2(N1, Nz) = —2&2 + 4&2 — N_
2

:6N$—8N§+N§
=6 -8 1)- (B, B, By) .

When T = Ny, then 7 = 1, and (4.9) reduces to:

col 3N+ 82\’ 3N+ N3
A+%2(N) =-2 + 4&2 - — - 2&1 - + 4&2 - —

I—I

Nz Nz NZ NQ
2N 3N% 4N NZ

resulting in (4.10).

4.9)

(4.10)
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Finally, for the CFrADiD of
B3N], Ry, N3) = N3

we obtain

AL, = lim sup —{ | Rs(@0))"] - [(%s07]

70"
(=]
+ 0 (1) () (@) - 723, M) - [l

= tim sup —_{ [(8s(@(0))*] - [ (%0’

T—=0*
=]
+ 1 (FC) IR3(@ () = 2R3(@ ()T Ds (1, K1, Ko, Ks)

=1

+ TN N, R = [0}
[=] =]

= —lim sup — {Z( 1) (£C.) |30 ]}+hmsup {Z( 1) (“C.) [Rs((1)))? ]}

7—-0* T4 70"

=
—hmsup{ Z( 1) (C)[283(w(t))‘r(®3(t N, No, 83)]}

70

From (2.12) and (2.14) in [23], we obtain

_ -{
WV < O (0] - 280 Da(e N N )
As ( )(
r—1

1= 00, o [ Ms@0)?] -

then
CALB; < —2[N3(@ (1) Ds(t, K1, Na, N3],
Using
N(@ (1)) < TEAR@) + K@),

we obtain

CALDy = —2[r(r>1>§<t, Na, R, Ka) + 0s()D3(0, Ky, N m]

N2 ’ NT
_ —Z[T(t) (_N_; + 3}{3) + N3 (—N—; + 383)] “4.11)

N2 ? N2
= _27() | (-t 2y |-t
7(1) l( R + 387,) } N3 |: R + 3N3].
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If T is continuous, then 7 = 0, and (4.11) reduces to:

xz
CAi%:;(Nl, NZa N}’) = _2N3 |:—x—1 =+ 3N3
3

) 4.12
~ N - 6N2 12
=20 -6)-(8; B, By .
Otherwise, for discrete T 7 = 1, (4.11) reduces to:
N2 ? N2
CASB; = -2 [(_N_l + 3N3) ] — 2N, [_x_; +3N;
N7
< =281 |—— + 3N3],
< 1 [ R + 33
then we also obtain (4.12).
From (4.8), (4.10), and (4.12), we obtain
-8 2 6)\(V,
CAB<|6 -8 1[]|By]=0792). (4.13)
2 0 -6)\3B;

Next, we choose a comparison system of the form

Ak = O, k) = Mk

-8 2 6
M=[6 -8 1|.
2 0 -6

The vector inequality (4.13), along with all the conditions outlined in Theorems 3.1 and 3.2, hold true
if the matrix M has eigenvalues with negative real parts. Given that the eigenvalues of M are

with

Ay =-12433, A, =-7.199, A3 =-2.369,

it follows that (4.6) is uniformly practically stable. Thus, we conclude that system (4.6) exhibits UPS.
5. Conclusions

In conclusion, this paper develops a unified approach for UPS analysis of CFrDyT, utilizing vector
LFs and a two-measure framework. By applying the CFrAD and the CFrADIiD, this study extends
stability analysis methods across both continuous and discrete domains, making it versatile for hybrid
systems exhibiting both gradual and abrupt changes. The use of vector LFs over scalar LFs enables a
broader and more robust stability analysis, accommodating complex system dynamics with improved
precision and adaptability. Illustrative examples, Eqs (4.1) and (4.6), demonstrate the practical
application of the proposed framework, underscoring its effectiveness and relevance in capturing the
essential stability characteristics of fractional dynamic systems. This work offers significant
contributions to stability theory by enhancing the tools available for fractional dynamic systems, with
implications for fields such as engineering, control theory, and applied sciences.
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