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Abstract: This study integrated a metaheuristic optimization method, specifically the whale
optimization algorithm (WOA), to enhance the positivity and monotonicity-preserving interpolation
methods by optimizing the free shape parameter. While this free parameter offers flexibility in
modifying the shape of the curve, improper selection can lead to visually unpleasing results. By
applying an optimization method, this study introduced a more efficient approach to determine the
optimal parameter value. To achieve an optimally smooth curve, three different smoothness metrics,
including arc length, strain energy, and curvature variation energy, were minimized as objective
functions. The resulting curves were then compared to identify the most effective smoothness
metric. Results demonstrated that WOA effectively optimized the free shape parameters, and the
curvature variation energy was proven to be the best smoothness metric as it produced the smoothest
interpolation. Applications of this technique were demonstrated in preserving positivity for COVID-19
death cases and ensuring monotonicity of cumulative rainfall measurements.
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1. Introduction

Curve interpolation plays a critical role in data analysis and numerical modeling. It is used to
estimate values within the bounds of known data points [1]. Traditional interpolation methods, such
as polynomial or spline interpolation, focus on providing a smooth curve that passes through given
data points, but they often overlook the important characteristics that may exist in a dataset, such
as positivity and monotonicity. Shape-preserving interpolation addresses this gap by ensuring that
the interpolated curve not only fits the data points but also maintains these underlying properties of
data. For example, positivity-preserving interpolation ensures that the interpolated function does not
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produce negative values when the original data are strictly positive, whereas monotonicity-preserving
interpolation maintains the trend of the data points. This avoids introducing artificial fluctuations that
could mislead interpretation and analysis.

Over the years, positivity and monotonicity-preserving interpolation has received increasing
attention and various techniques have been developed. Among these, splines and curves with shape
parameters have become popular due to their ability to effectively control the shape of the curves. For
example, Hussain et al. [2] developed a GC1 quadratic trigonometric spline with two shape parameters
to preserve positivity and monotonicity in data. Although this scheme is simple, the resulting curve is
rigid and does not allow for any shape enhancement because both shape parameters are constrained.
To address this limitation, a rational cubic Ball curve with four shape parameters was proposed by
Tahat et al. [3]. In this method, only one parameter was constrained to ensure monotonicity, and the
remaining three are left as free parameters. This approach provided greater flexibility which allows
users to modify the final curve’s shape. Similarly, Ahmad et al. [4] developed a rational cubic Bézier
function, expressed in terms of Ball control points, to preserve positive data. This method also involved
four shape parameter but it provided less flexibility than Tahat et al. [3], as it only allowed two free
parameters. However, despite the increased flexibility, these methods are limited to C1 continuity,
which may result in visually less smooth interpolations.

Additionally, researchers have explored rational spline based approaches to ensure positivity and
monotonicity. Karim & Raju [5] and Abbas et al. [6] implemented rational cubic splines with three
shape parameters to preserve the shape of positive and monotone data, respectively. A higher degree
alternative, the rational quintic spline with three shape parameters, was introduced by Hussain et al. [7].
These studies achieved shape preservation by developing sufficient conditions on one of the shape
parameters. Both Abbas et al. [6] and Hussain et al. [7] proposed C2 continuous interpolants, but the
higher-degree approach [7] eliminated the need to solve a tridiagonal system to compute derivative
values for C2 continuity as in [6]. However, the increased degree of the rational function raised the
complexity. To overcome this issue, a nonrational quintic trigonometric Bézier curve was implemented
by Mahzir & Misro [8,9] to preserve positive and monotone data. These studies incorporated two shape
parameters, with one being constrained to ensure shape preservation. By employing a nonrational
formulation, they reduced the complexity while maintaining the shape of data. Nonetheless, similar to
other methods, these approaches relied on manual selection of free shape parameters.

All of the interpolation techniques discussed [3–9] ensure positivity or monotonicity of data by
imposing constraints on specific shape parameters. In addition, these techniques include free shape
parameters which allow users to adjust the final shape of the curves based on their preferences. While
this flexibility is advantageous, improper selection of these parameters can lead to interpolations that
lack smoothness and visual appeal. Moreover, the selection of these free shape parameters is often
based on visual comparison, which can be subject to human bias. This study aims to tackle these
drawbacks by incorporating optimization algorithm into the positivity and monotonicity-preserving
interpolation techniques. By determining optimal values for free shape parameters systematically,
the proposed approach minimizes human error, enhances smoothness, and ensures visually pleasing
interpolations while maintaining computational efficiency.

Optimization algorithm is a procedure used to find the best possible solution to a given problem with
minimal effort [10]. Optimization algorithms have been applied across various fields. For instance, Hu
et al. [11] and Zheng et al. [12] utilized optimization techniques in curve interpolations, aiming to
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refine the shapes of rational quartic interpolation splines and quintic generalized Hermite interpolation
curves, respectively. Swarm intelligence optimization algorithms, specifically the enhanced tunicate
swarm algorithm and improved grey wolf algorithm have been implemented. Swarm intelligence
optimization is inspired by biological group behavior; hence, it is simple, fast, and easy to implement
into various applications [13]. Hu et al. [11] focused on minimizing strain energy as their objective
function, while Zheng et al. [12] focused minimizing arc length, strain energy, and curvature variation
energy. However, these studies only produce optimal interpolation curves without preserving the shape
of data.

The study by Li & Li [14] has solved the nonlinear curve fitting problem by incorporating the
particle swarm optimization technique. Optimization has been used to find the optimal number of
hidden knots, which is the key factor to achieve a good generalization. This method has proven
to be effective in accurately fitting various challenging curve fitting tasks, including benchmark
datasets, simulated spectral data, and measured data from high energy physics experiments, and has
outperformed traditional numerical techniques. Optimization algorithms have also been applied into
developable surfaces for shape optimization, such as the study by Hu et al. [15] that optimized the
shape of shape-adjustable generalized cubic developable Ball surfaces by using an improved marine
predators algorithm. This approach demonstrates superiority in solving shape optimization models for
developable surfaces and in achieving precision and robustness in the optimization process. However,
as of now, there is still lack of studies on the implementation of optimization in shape-preserving
interpolation.

In this study, whale optimization algorithm (WOA) by Mirjalili & Lewis [16] will be implemented
into the positivity and monotonicity-preserving interpolation methods developed by Mahzir & Misro
[8, 9]. The WOA is a type of swarm intelligence optimization and has been proven to be one of the
best in terms of stability when compared to other new swarm intelligence optimization algorithms,
such as the moth-flame optimization algorithm, fireworks algorithm, dragonfly algorithm, crow search
algorithm, butterfly optimization algorithm and pigeons algorithm [13]. Additionally, Mirjalili &
Lewis [16] evaluated the efficiency of WOA by testing it on 29 mathematical benchmark optimization
problems and comparing its performance against particle swarm optimization, gravitational search
algorithm, differential evolution (DE), fast evolutionary programming, and evolution strategy with
covariance matrix adaptation. Despite its simplicity and having fewer parameters, the results
demonstrated that WOA is highly competitive with other meta-heuristic optimizers and superior to
conventional techniques.

The WOA has undergone various advancements to enhance its performance, primarily through
hybridization with other optimization techniques or improvements in its search strategy [17]. For
instance, Mostafa Bozorgi & Yazdani [18] addressed the issue of premature convergence in WOA by
hybridizing WOA’s exploitation capabilities with the strong exploration abilities of DE to generate
better candidate solutions. The proposed algorithms were thoroughly tested against 25 optimization
benchmark functions, and it outperformed the original WOA as well as seven other nature-inspired
algorithms in terms of solution quality and convergence rate. Similarly, Kaur & Arora [19] improved
the slow global convergence and exploration capabilities of WOA by introducing a chaotic WOA.
This approach used different chaotic maps to adjust the critical parameters of WOA, which helps in
balancing the local and global search abilities of the algorithm and leads to improved optimization
results. WOA has also been successfully applied in solving real-world problems. A hybrid WOA was
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developed in Mafarja & Mirjalili [20] to solve feature selection problems, by combining the global
search of WOA with the local search capabilities of simulated annealing (SA). The proposed method
demonstrated superior performance than other wrapper-based algorithms. Furthermore, Chen et al.
[21] developed a balanced WOA that incorporated Lévy flight and chaotic local search. This modified
algorithm was applied to engineering design challenges, including tension or compression spring,
welded beam, pressure vessel design, three-bar truss design, and I-beam design. The experimental
results showed that this algorithm surpassed other optimization methods in terms of convergence speed.

Moreover, an enhanced WOA (EWOA) was introduced by Singh et al. [22] to solve clustering
problems. This improved version integrates tabu search and neighborhood search mechanisms
to enhance search space exploration and accelerate convergence. The algorithm was proven
effective through experiments on eight benchmark datasets and comparison with seven existing
clustering techniques. Likewise, Zhou and Hao [23] developed an improved WOA (ImWOA) by
integrating dynamic elastic boundary optimization strategy, advanced random searching mechanism,
and combined mutation technique. Performance evaluations across multiple benchmark functions
demonstrated that ImWOA outperformed five metaheuristic algorithms and three WOA variants.
Its practical effectiveness was further validated through real-world engineering applications, where
it achieved the lowest average manufacturing costs. WOA has also been successfully applied in
construction management. Golmaei et al. [24] integrated WOA with building information modeling
(BIM) for developing construction schedules. The algorithm utilizes 3D model data, structured within
a directed design structure matrix (DSM), to define stability criteria, which are then incorporated into
the WOA fitness function. Although the computational time varies depending on input parameters,
the algorithm consistently generates fully executable schedules, demonstrating its reliability in
construction planning.

Despite these advancements, this study employs the fundamental WOA to maintain the simplicity
of the proposed method. The primary objective is to determine the optimal shape parameter values and
solve the smoothness problem arising from the flexibility of the free shape parameter. Additionally,
this study seeks to identify the most effective smoothness metric by incorporating and analyzing three
different smoothness metrics into the optimization process. This includes arc length minimization,
strain energy minimization, and curvature variation energy minimization. Finally, the developed
method is compared with conventional shape-preserving techniques to validate its efficiency and
effectiveness.

The rest of this paper is structured as follows: Section 2 presents the interpolation curve, which
is the C2 quintic trigonometric Bézier curves with two shape parameters, together with the formula
in obtaining the derivative values at knots. Next, the procedure of the WOA will be discussed in
Section 3. Section 4 shows the implementation of the WOA optimization method into positivity and
monotonicity-preserving interpolation. This section also describes the three smoothness problems that
will be solved. After that, the results and discussion are presented in Section 5, and Section 6 concludes
the study.

2. C2 quintic trigonometric Bézier curve with two shape parameters

In this study, the C2 quintic trigonometric Bézier interpolation curve from [9] will be used as the
interpolant. Let {(xi, fi) : i = 0, 1, 2, . . . , n} be a set of data defined over the interval [x0, xn] with
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x0 < x1 < x2 < . . . < xn. The C2 quintic trigonometric Bézier curve over each subinterval i = [xi, xi+1]
is given by

s(x) ≡ si(x) = P0 (1 − sin t)4 (1 − αi sin t) + P1 sin t (1 − sin t)3 (4 + αi − αi sin t)

+ P2 (1 − sin t)2 (1 − cos t) (8 sin t + 3 cos t + 9)

+ P3 (1 − cos t)2 (1 − sin t) (8 cos t + 3 sin t + 9)

+ P4 cos t (1 − cos t)3 (4 + βi − βi cos t) + P5 (1 − cos t)4 (1 − βi cos t) ,

(2.1)

where Pi for i = 0, 1, 2, 3, 4, 5 is the control point given by Eq (2.2) as follows:

P0 = fi,

P1 = fi +
2hidi

(4 + αi)π
,

P2 = fi +
hi ((4 + αi)Dihi + 4(3 + αi)diπ)

3(4 + αi)π2 ,

P3 = fi+1 −
hi ((βi − 4)Di+1hi + 4(3 + βi)di+1π)

3(4 + βi)π2 ,

P4 = fi+1 −
2hidi+1

(4 + βi)π
,

P5 = fi+1,

(2.2)

with hi = xi+1−xi and t =
π(x − xi)

2hi
. The shape parameters αi, βi ∈ (−4, 1] are responsible in controlling

the left end and right end of the curve, respectively. Parameters di and Di are the first and second order
derivative values at knots calculated from the given data using the arithmetic mean method (AMM) [7]
as given in Eqs (2.3) and (2.4), respectively:

d0 = ∆0 + (∆0 − ∆1)
h0

h0 + h1
,

di =
∆i + ∆i−1

2
for i = 1, 2, . . . , n − 1,

dn = ∆n−1 + (∆n−1 − ∆n−2)
hn−1

hn−1 + hn−2
,

(2.3)

where ∆i =
fi+1 − fi

hi
. Now, let Mi =

di+1 − di

hi
.

D0 = M0 + (M0 − M1)
h0

h0 + h1
,

Di =
Mi + Mi−1

2
for i = 1, 2, . . . , n − 1,

Dn = Mn−1 + (Mn−1 − Mn−2)
hn−1

hn−1 + hn−2
.

(2.4)
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3. WOA

The WOA is inspired by the hunting strategy of a group of humpback whales, specifically their
bubble-net feeding technique. In this strategy, one or more whales dive deep beneath a large group
of prey, such as small fish or krill, and release bubbles in a spiral shape as they swim upward. These
bubbles create a net that traps and concentrates the prey into a smaller region. The whales then swim
upward through this bubble-net and engulf the prey. Figure 1, taken from [16], illustrates this strategy.
For optimization purposes, this feeding mechanism is mathematically modeled into the following three
phases:

Figure 1. Bubble-net feeding strategy of humpback whales [16].

3.1. Encircling prey

The WOA begins by locating the prey and encircling it. Since the exact position of the prey is
unknown, WOA implements several search agents, Xi : i = 1, 2, 3, . . . , n, placed at random positions.
The best search agent position, X∗, is identified by evaluating the fitness function. This position acts as
the target prey and the positions of the other search agents are updated toward this best position using
the following equations:

D =
∣∣∣C · X∗(t) − X(t)

∣∣∣ , (3.1)
X(t + 1) = X∗(t) − A · D, (3.2)

where

A = 2a · r − a, (3.3)
C = 2 · r. (3.4)

Here, A and C are coefficient vectors, where a decreases linearly from 2 to 0 and r is a random vector
in [0, 1]. The variable t represents the current iteration, while X and X∗ are the position vectors of the
search agents and the best search agent obtained so far. The mathematical symbols | | and · represent
the absolute value and element-by-element multiplication.

3.2. Bubble net attacking method

The bubble-net attacking method is the core of the bubble-net hunting strategy and it represents
the exploitation phase in WOA. This phase involves two mechanisms, which are the shrinking
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encircling mechanism and spiral updating mechanism. These two mechanisms occur simultaneously
as humpback whales swim around their prey in a shrinking spiral trajectory.

The first behavior is modeled by the value of a in Eq (3.2), which decreases linearly within [0, 2]
over the iterations. This range of a also causes the coefficient vector A to lie within [−1, 1]. The second
behavior is represented by a spiral equation that models the helix-shaped movement of the whales and
is given as follows:

X(t + 1) = D′ · ebl · cos(2πl) + X∗(t), (3.5)

where D′ = |X∗(t) − X(t)| is the distance between the ith search agent and the best solution obtained in
the current iteration, b is a constant parameter for the logarithmic spiral, and l is a random number in
[−1, 1].

Since these two behaviors occur simultaneously, WOA assumes a 50% probability of using either
the shrinking encircling mechanism or the spiral updating mechanism to update the search agents’
positions. The mathematical representation is as follows:

X(t + 1) =

X∗(t) − A · D, if p < 0.5,
D′ · ebl · cos(2πl) + X∗(t), if p ≥ 0.5,

(3.6)

where p is the random numbers in [0, 1].

3.3. Search for prey

In addition to updating positions toward the best solution, WOA also includes an exploration phase
where the agents search outside the known search space and update their positions toward any random
whale. This aims to globally search for other possibly better solutions. Exploration phase occurs when
A lies outside the interval [−1, 1] and is mathematically represented by the following equations:

D = |C · Xrand − X(t)| , (3.7)
X(t + 1) = Xrand − A · D, (3.8)

where Xrand is a randomly chosen position vector for current iteration. In the following section, the
WOA will be applied into the positivity and monotonicity-preserving interpolation.

4. Optimized positivity and monotonicity-preserving interpolation using WOA

This study implements the positivity and monotonicity-preserving models developed by [8] and [9],
respectively. Theorems 4.1 and 4.2 from these studies provide the conditions for the positivity and
monotonicity-preserving interpolation that are developed on the shape parameters.

Theorem 4.1 (Positivity-preserving interpolation [8]). The C2 quintic trigonometric Bézier
interpolation curves in Eq (2.1) preserve the positivity of given positive data if the shape parameters
αi and βi in each subinterval i satisfy the following conditions:

βi ∈ (−4, 1] that produce positive and smooth interpolating curve,

αi >max
{
−2h̄idi

π fi
,

4πh̄idi

3π2 fi + h̄i(4πdi + Dih̄i)

}
AIMS Mathematics Volume 10, Issue 3, 6910–6933.
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where h̄i =
hi
ji

and ji > max

0,
−2dihi +

√
4d2

i h2
i − 3Di fih2

i

3π fi

.
Proof. Refer to [8] ■

Theorem 4.2 (Monotonicity-preserving interpolation [9]). The C2 quintic trigonometric Bézier
interpolation curves in Eq (2.1) preserve the monotonicity of given monotone data if the shape
parameters αi and βi in each subinterval i satisfy the following conditions:

βi ∈ (−4, 1] which produces monotone curve,

αi ∈ [li, ui] for

li = min
{

0,
−2hidi

π fi
− 4,

4πhidi

3π2 fi + 4πdihi + Dih2
i

− 4
}
,

ui = max
{

1,
−2hidi

π fi
,

4πhidi

3π2 fi + 4πdihi + Dih2
i

}
.

Moreover, let p j for j = 1, 2, 3, 4 be the second terms in P j, and the parameters h̄i and h̄∗i are determined
as follows: 

h̄i =
hi

ji
, if p1 >

d fi

2
or p2 >

d fi

2
,

h̄∗i =
hi

ki
, if p3 >

d fi

2
or p4 >

d fi

2
,

h̄i = h̄∗i = hi, elsewhere,

where d fi = fi+1 − fi. Scaling factors, ji and ki, satisfy Eqs (4.1) and (4.2) as follows:

ji > max

 4πhidi

(4 + αi)πd fi
,

4(3 + αi)hidi +

√
2h2

i (8(3 + αi)2d2
i + 3(4 + αi)2Did fi)

3(4 + αi)πd fi

 , (4.1)

ki > max

 4πhidi+1

(4 + βi)πd fi
,

4(3 + βi)hidi+1 +

√
2h2

i (8(3 + βi)2d2
i+1 + 3(4 + βi)2Di+1d fi)

3(4 + βi)πd fi

 . (4.2)

Proof. Refer to [9] ■

Note that in both of the studies, only the shape parameter αi is constrained. The shape parameter
βi is left unconstrained as long as it lies within interval (−4, 1]. To ensure smooth shape-preserving
interpolation, a trial and error method was used to choose the suitable value for βi. This method
is impractical and time-consuming. Moreover, this method does not guarantee an optimal solution
because the selection is based only on visual comparison.

In this current study, we proposed three optimization models to serve as the objective functions that
automatically determine the optimal value for βi in producing the smoothest interpolation curves.
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4.1. Optimized positivity and monotonicity-preserving interpolation with minimum arc length

Minimizing the arc length of a curve helps to reduce unnecessary deviations, resulting in smoother
and more direct interpolation between data points. The arc length of a parametric curve, si(x) =
(x(t), s(t)), over subinterval i for i = 1, 2, . . . , n − 1, is given by:

l(si) =
∫ 1

0

∥∥∥s′i(t)∥∥∥ dt. (4.3)

To eliminate the square root, Eq (4.3) can also be approximated by Eq (4.4) below:

l(si) =
∫ 1

0

∥∥∥s′i(t)∥∥∥2 dt. (4.4)

Thus, the optimized positivity or monotonicity-preserving interpolation model with the shortest arc
length can be formulated as:  min L(βi) =

∑n−1
i=1 l(si),

s.t. βi ∈ [l, u],
(4.5)

where u and l are the upper and lower bounds for the shape parameter βi that normally lies in (−4, 1].
However, these bounds may be modified in cases where positivity or monotonicity are not preserved.

4.2. Optimized positivity and monotonicity-preserving interpolation with minimum strain energy

Strain energy measures the bending or twisting of a curve. A high strain energy corresponds to
sharp bends, whereas a minimal strain energy results in gradual and smooth transitions of the curve.
The strain energy of a parametric curve, si(x) = (x(t), s(t)), over subinterval i is given by:

e(si) =
∫ 1

0

∥∥∥s′′i (t)
∥∥∥ dt. (4.6)

For simplicity, this can be approximated by:

e(si) =
∫ 1

0

∥∥∥s′′i (t)
∥∥∥2 dt. (4.7)

Thus, the optimized positivity or monotonicity-preserving interpolation model with minimum strain
energy can be approximated by:  min E(βi) =

∑n−1
i=1 e(si),

s.t. βi ∈ [u, l],
(4.8)

4.3. Optimized positivity and monotonicity-preserving interpolation with minimum curvature
variation energy

The curvature variation energy focuses on the consistency of curvature changes along the curve.
Minimizing this energy ensures that the curve changes its curvature gradually and consistently, thereby

AIMS Mathematics Volume 10, Issue 3, 6910–6933.



6919

reducing unwanted oscillations and promoting smoother transitions. The curvature variation energy of
a parametric curve, si(x) = (x(t), s(t)), is given by:

c(si) =
∫ 1

0

∥∥∥s′′′i (t)
∥∥∥ dt. (4.9)

Similarly, this can be approximated by Eq (4.10) below:

c(si) =
∫ 1

0

∥∥∥s′′′i (t)
∥∥∥2 dt. (4.10)

Thus, the optimized positivity or monotonicity-preserving interpolation with minimum curvature
variation energy can be formulated as: min K(βi) =

∑n−1
i=1 c(si),

s.t. βi ∈ [u, l],
(4.11)

Figure 2 illustrates the flowchart of the proposed method. In summary, the steps to generate the
optimized positivity or monotonicity-preserving interpolation are generalized in Algorithm 1.

Figure 2. Flowchart for the optimized positivity or monotonicity-preserving interpolation.
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Algorithm 1 Optimized Positivity or Monotonicity-preserving Interpolation.
1. Input the data points.
2. Compute the values of hi, ∆i, di, and Di.
3. For each subinterval, calculate the value of the shape parameter αi based on the conditions in

Theorem 4.1 or Theorem 4.2.
4. Determine the optimal βi value by applying the WOA.

Start WOA optimization
5. Select the objective function by choosing one of Equations (4.5), (4.8), or (4.11).
6. Initialize the whales population (search agents).
7. Calculate fitness of each search agent and identify the best search agent.
8. while (i <Maximum iteration)
9. Update the coefficient vector A,C and random number l, p.

10. if (p < 0.5)
11. if (|A| < 1)
12. Update search agent position by Equation (3.2).
13. else
14. Update search agent position by Equation (3.8).
15. end
16. else
17. Update search agent position by Equation (3.5).
18. end
19. Recalculate the fitness of each search agent.
20. Update new best search agent.
21. end
22. return X as βi

23. Using the accumulated values, construct the C2 quintic trigonometric Bézier curves based on
Equation (2.1).

5. Result and discussions

In this section, six shape-preserving interpolation examples from previous schemes are presented.
Three of the examples are on positivity-preserving interpolation, taken from [8], where the values
for the free shape parameter are selected through visual comparison. The remaining three examples,
from [9], involve monotonicity-preserving interpolation, with the free shape parameter values chosen
through curvature comparison.

In this research, the WOA is used to automatically compute the optimal values of the free shape
parameter. The optimal βi values for each metric analysis are presented in the figures of each example.
Finally, to demonstrate the effectiveness of our proposed scheme, comparisons with the previous
studies are presented. Throughout this paper, the algorithmic parameters for the optimization process
are kept uniform, with a population size of n = 30 and a maximum of t = 300 iterations. Each
optimization is executed four times to ensure consistency in the results.
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Example 5.1. Table 1 presents positive data based on experimental measurements of lead content
in the discharge from five outfalls of the Chenab River. The x-values represent the volume of waste
discharged from the drains (gallons), while the y-values indicate the amount of lead in the waste
discharged (mg). Both of the data in Tables 1 and 2 are taken from [7].

Table 1. Lead contamination in the drains of the Chenab River from [7].
i 0 1 2 3 4
xi 20 42 45 47 53
fi 0.05 0.06 1.5 1.67 1.4

20 25 30 35 40 45 50 55

x-axis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y
-a

x
is

Figure 3. Effect of free shape parameter βi on the existing scheme by [8].

Figure 3 shows the positivity-preserving interpolation from [8] for the positive data in Table 1.
In the study, βi was treated as a free parameter, while αi was constrained to ensure positivity. The
figure demonstrates the effect of setting different values to βi. As observed, certain values, particularly
βi = −3.5, result in a wiggly interpolation. For the last subinterval, only βi ∈ [−1.5, 1] values
produce smooth curves. Thus, without the aid of an optimization method, obtaining a visually pleasing
interpolation curve requires users to manually plot the interpolation for multiple βi values and carefully
compare the results to select suitable values of βi.

Figures 4 and 5 depict the optimized positivity-preserving interpolations with the values of βi

computed using the WOA. Figures 4(a) and 5(a) show the results of interpolation achieved through
optimization by minimizing the arc length. Noticeable wiggles appear in the first and last subintervals
of both figures. This indicates that minimizing the arc length does not ensure a smooth curve since
it focuses more on reducing the overall length of the curve rather than its smoothness. Minimizing
the strain energy often results in smoother curves, as shown in Figures 4(b) and 5(b), where the
interpolation curves are smooth and free from wiggles. Similarly, Figures 4(c) and 5(c) show that
minimizing curvature variation energy also produces smooth interpolation curves.

Figures 4(d) and 5(d) compare the interpolation results when the free variable βi in each subinterval
is computed using optimization versus when it is determined by visual comparison as described by [8]
and [7]. The gray line represents [8], while the green line represents [7]. In the last subinterval of
Figure 4(d), the interpolation scheme by [7] shows a jump followed by a sudden drop. In contrast,
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the red curve, where βi is computed by minimizing the arc length, shows a consistent drop with some
wiggle. In the third subinterval, the curves obtained by minimizing the arc length, strain energy, and
curvature variation energy look quite similar despite having different βi values. This is because βi is
associated with the last two inner control points of the Bézier curve, and since the horizontal distance of
the subinterval is small, the variation in the curves is less noticeable. In Figure 5(d), the interpolation
curves from [8] and the optimized interpolation curves for the strain energy and curvature variation
energy minimization are smooth and comparable across all subintervals. Meanwhile, the interpolation
curve from arc length minimization tends to move inward to reduce the total arc length, resulting in the
bending curve.
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(a) Arc length minimization
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(b) Strain energy minimization
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(c) Curvature variation energy minimization
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Figure 4. Optimized positivity-preserving interpolations for data in Table 1.

Example 5.2. Table 2 shows positive data based on the blood creatinine levels of six individuals aged
between 20 and 40. The x-values represent the age of individuals (years), while the y-values represent
their blood creatinine levels in mg/dL.
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Table 2. Blood creatinine levels.
i 0 1 2 3 4 5
xi 20 30 32 35 37 39
fi 1.51 0.18 1.05 0.6 0.51 0.58
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(a) Arc length minimization
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(b) Strain energy minimization
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(c) Curvature variation energy minimization
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Figure 5. Optimized positivity-preserving interpolations for data in Table 2.

Each optimal βi value in this study is determined locally for each subinterval by running the WOA
four times. Figure 6 presents an example of the iterative curves from these four runs to obtain the
optimal βi for the first subinterval of Figure 5(a). In each run, the optimal βi values remain consistent,
with only the number of iterations required for convergence varying. To determine which smoothness
metric converges the fastest, the average number of iterations across the four runs is considered. Figure
7 displays the average iterative curves for each smoothness metric minimization, corresponding to the
first subinterval of Figure 5(a), 5(b), and 5(c). Among them, minimizing the arc length requires the
highest number of iterations to achieve convergence.
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(b) Second run
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(c) Third run
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(d) Fourth run

Figure 6. Iterative curves for the first subinterval of Figure 5(a).
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(a) Arc length minimization
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(b) Strain energy minimization
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Figure 7. Average iterative curves for each smoothness metric in subinterval 1 of Figure 5.
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Example 5.3. Table 3 displays the daily COVID-19 deaths in Malaysia from November 12, 2020 to
December 4, 2020, as reported by the World Health Organization (WHO). The x-values denote the
days, and the y-values indicate the number of deaths. This example differs from the previous two
examples because it contains more data points that are distributed closer to each other.

Table 3. Daily COVID-19 deaths reported.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
xi 1 2 3 5 6 7 10 12 13 14 16 17 22 23
fi 2 1 2 3 4 5 3 3 2 4 3 2 2 11
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(a) Arc length minimization
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(b) Strain energy minimization
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(c) Curvature variation energy minimization
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Figure 8. Optimized positivity-preserving interpolations for data in Table 3.

Figure 8 demonstrates the optimized positivity-preserving interpolations for data from Table 3 for
different metric analyses and their comparisons with the existing scheme by [8], where βi values
are determined by plotting curves with several βi values and visually selecting the smoothest ones.
In Figure 8(a), the interpolation achieved by minimizing the arc length appears smooth in most
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subintervals due to the small gaps between subintervals. However, in the twelfth subinterval, the curve
exhibits a slight oscillation due to the significant changes in the derivative value in the final subinterval.

Figure 8(b) and 8(c) show the positivity-preserving interpolation by optimizing the strain energy
and curvature variation energy, respectively. These curves are smooth with no wiggles. However,
in the twelfth subinterval, the lower boundary for the βi interval is adjusted to βi ∈ [−2.6, 1] instead
of βi ∈ (−4, 1], as being used in the other examples. This adjustment is made to address the abrupt
changes in the y values of the last subinterval. Without this constraint, the interpolation tends to curves
downward and goes below the x-axis. Thus, violating the positivity of the dataset. In contrast, the arc
length minimization required no adjustment to the range, making it more efficient than the other two
optimization models in this case.

Comparing the optimized positivity-preserving interpolations for all of the metric analyses with
the conventional positivity-preserving scheme by [8], as depicted in Figure 8(d), shows that all
methods maintain relatively smooth curves. However, through optimization method, the free parameter
values are chosen automatically as compared to [8] which involved manual selection through visual
comparison. This highlights the robustness of the optimization techniques in shape preservation.

Example 5.4. Table 4 shows a random monotone dataset taken from [25].

Table 4. Monotone dataset from [25].
i 1 2 3 4 5
xi 0 6 10 29.5 30
fi 0.01 15 15 25 30

Example 5.5. Table 5 provides a monotone dataset from an experiment on waveform distortion in
electronic circuits, as reported by [26]. The data exhibits a monotone increasing behavior, with x-
values representing voltage (V) and y-values representing current (A).

Table 5. Monotone data from [26].
i 1 2 3 4 5 6 7 8 9 10 11
xi 0 2 3 5 6 8 9 11 12 14 15
fi 10 10 10 10 10 10 10.5 15 50 60 85

Figure 9 illustrates the monotonicity-preserving interpolation from [9] with multiple βi values.
In the previous study, the optimal βi values for achieving the smoothest curve were determined
by manually plotting and comparing the curvature profiles of the interpolation, which are time
consuming and prone to bias due to human judgment. In contrast, the proposed study applies WOA to
automatically select the optimal βi values, ensuring a more efficient approach.

Figures 10 and 11 show the optimized monotonicity-preserving interpolation for monotone data in
Tables 4 and 5, respectively. Figures 10(a) and 11(a) illustrate interpolation by minimizing the arc
length. The curve in Figure 11(a) is smooth and appears to produce straightforward trajectories, while
Figure 10(a) has wiggles in the third subinterval. Figures 10(b) and 11(b) illustrate the interpolations
achieved by minimizing the strain energy, which aims to create curves with minimal bending energy.
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Figure 9. Effect of free shape parameter βi on existing scheme by [9].
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(b) Strain energy minimization
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(c) Curvature variation energy minimization
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Figure 10. Optimized monotonicity-preserving interpolation for data in Table 4.
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In Figures 10(c) and 11(c), the results of minimizing curvature variation energy, that aims to
maintain consistent curvature throughout the curve are depicted. Minimizing the strain and curvature
variation energy can be chosen as the most effective smoothness metrics because all interpolations
produced are smooth with consistent transitions between data points. Although there are slight
differences in the βi values in the third subinterval of Figures 10(c) and 11(c), the resulting curves
for both figures produce no fluctuation.
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(a) Arc length minimization
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(b) Strain energy minimization
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(c) Curvature variation energy minimization
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Figure 11. Optimized monotonicity-preserving interpolation for data in Table 5.

Figures 10(d) and 11(d) compare the results of the three optimization techniques including arc
length, strain energy, and curvature variation energy against existing interpolation schemes. In Figure
10(d), the proposed methods are compared with the existing schemes by [25] and [9], whereas in
Figure 11(d), the proposed methods are compared with [26] and [9]. The comparison reveals that all
methods maintain monotonicity and accurately interpolate the data points. The arc length minimization
technique produces the most straightforward curves, whereas the strain energy and curvature variation
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energy methods result in smooth and consistent curves that transition gradually between data points.
In comparison with [25], which produce interpolation with C1 continuity, the interpolation from the
proposed method is C2 continuous. Thus, the developed method produces a smoother transition
between each subinterval.

Example 5.6. Table 6 presents cumulative rainfall data obtained from the Malaysian Meteorological
Department, Ministry of Natural Resources, Environment and Climate Change. The data is taken
at Bayan Lepas Station over 12 consecutive days from May 26th to June 6th, 2022. The x-values
represent the days, while the y-values indicate the cumulative amount of rainfall in mm3. Due to the
nonnegativity nature of the rainfall data, this dataset shows a monotone increasing trend.

Table 6. Cumulative rainfall data.
i 1 2 3 4 5 6 7 8 9 10 11 12
xi 1 2 3 4 5 6 7 8 9 10 11 12
fi 1.8 3.2 3.2 3.2 11.6 16.6 48.2 67 68.4 90.8 92.8 92.9
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(b) Strain energy minimization
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(c) Curvature variation energy minimization
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Figure 12. Optimized monotonicity-preserving interpolation for data in Table 6.
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Figure 12 presents the optimized monotonicity-preserving interpolation for the cumulative rainfall
data provided in Table 6. Figures 12(a), 12(b), and 12(c) display the resulting interpolations when the
free parameter βi values for each subinterval are optimized using arc length, strain energy, and curvature
variation energy minimization, respectively. Figure 12(d) compares these optimized interpolations
with the previous study by [9]. In the first three subintervals, the data points are relatively flat, causing
the βi values to be less influenced by the optimization method used. In the remaining subintervals,
minimizing the arc length, strain energy, and curvature variation energy produce comparable and
smooth interpolations because the horizontal gap between each data point is small and uniform.

Overall, it can be concluded that for closely packed data, minimizing the arc length, strain energy,
and curvature variation energy results in smooth interpolations, with arc length minimization producing
a more straightforward trajectory. However, for sparse datasets, arc length minimization tends to
produce oscillating or wiggly interpolations curves, making strain energy and curvature variation
energy minimization more suitable. When there are sudden changes in the data trend, strain energy
and curvature variation energy minimization require adjustment in the range of βi to avoid violations
in the shape of data, whereas arc length minimization does not require such adjustments.

6. Conclusions

In this study, optimized positivity and monotonicity-preserving interpolation techniques have been
developed. This study is an advancement of the previous studies by [8] and [9], where positivity
and monotonicity-preserving interpolation techniques were developed by deriving shape preserving
conditions on one of the shape parameters, αi, of the quintic trigonometric Bézier curve. The remaining
shape parameter, βi was left unconstrained for the users to choose. In this study, the WOA has been
applied to find the optimal values for βi. This optimization significantly reduces the computation time
of the previous schemes. To achieve smoother interpolations, three different smoothness metrics, which
are arc length, strain energy, and curvature variation energy, have been analyzed.

By analyzing the three smoothness metrics, it is observed that arc length minimization produces
interpolations with wiggles and oscillations when the gap between data points is sparse. This occurs
because arc length minimization prioritized reducing the total length over ensuring smoothness.
However, when the gap between data points is small, arc length minimization produced interpolations
that are comparably smooth to those obtained through strain energy minimization and curvature
variation energy minimization. Minimizing strain energy and curvature variation energy consistently
produced the smoothest interpolations because both methods primarily aim to promote smoothness,
provided there is no drastic changes in the trend of data points. However, when abnormalities are
present in the dataset trend, the range of the shape parameter needs to be adjusted to a smaller interval
to avoid violations in the shape of dataset.

Compared with existing schemes, this technique is more time-saving and eliminates possible bias
that might arise due to human judgement. Moreover, the optimization technique ensures that the chosen
values are optimal and the interpolation curve produced is the smoothest. In future work, comparisons
with the other optimization methods should be included to further validate the effectiveness of the
proposed approach.
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