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1 Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid 28040, Spain
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1. Introduction

In a seminal paper in 1964, Buchdahl considered [1] a class of metrics on a (3+1)-dimensional
spherically symmetric static spacetime in a general relativity framework [2]. In terms of the so-called
isotropic coordinates (t, r, θ, ϕ), this family of metrics is given by

ds2 =

(
1 − f (r)

)2(
1 + f (r)

)2 dt2 − (1 + f (r))4
[
dr2 + r2(dθ2 + sin2 θdϕ2)] , (1.1)

where the function f (r) had to be determined and units are chosen such that the speed of light is
normalized to c = 1. This equation was shown to correspond to a relativistic fluid sphere. Under some
additional requirements, the field equations gave rise to the following scalar second-order nonlinear
ordinary differential equation (ODE):

d2 f
dr2 −

3
f

(
d f
dr

)2

−
1
r

d f
dr
= 0, (1.2)

which admits the exact solution (see [1])

f (r) =
±1

k1

√
1 + k2r2

, (1.3)

where k1, k2 are the two integration constants. Note that Eq (1.2) can be written alternatively in terms
of total derivatives as

d
dr

(
1
r

d
dr

(
1
f 2

))
= 0.

The Buchdahl equation (1.1) has also been considered in a different context, namely that of nonlinear
ODEs with time- and position-dependent coefficients, by replacing the radial function f (r) by x(t) and
interpreting t as the time [3–6], leading to the modified Buchdahl equation

d2x
dt2 =

3
x

(
dx
dt

)2

+
1
t

dx
dt
. (1.4)

In this form, the equation has been studied in the aforementioned works using several different methods
in [3, Example 2], [5, Example 1], and [6, Example 3.6].

In the general context of nonlinear ODEs, Eq (1.4) is nothing but a special case of the generic
equation

d2x
dt2 = a(x)

(
dx
dt

)2

+ b(t)
dx
dt
, (1.5)

where a(x) and b(t) are arbitrary functions of their arguments. This generalization can also be regarded
as the equation of the motion of a dynamical system with variable coefficients a(x) and b(t), depending
on the velocity/momentum terms. It is not difficult to see that, by dividing by

ẋ =
dx
dt
,
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the equation* can be rewritten as

d
dt

ln |ẋ| =
d
dt

(∫ x

a(ξ)dξ
)
+

d
dt

(∫ t

b(τ)dτ
)
, (1.6)

showing that (1.5) is an exact equation, the solution of which is recovered from the expression

ln |ẋ| =
∫ x

a(ξ)dξ +
∫ t

b(τ)dτ + k1 (1.7)

using quadratures, where k1 is a constant of integration [7–9]. It can be further shown that for any
choices of a(x) and b(t), Eq (1.5) is linearizable by a point transformation, i.e., it admits a maximal Lie
algebra of point symmetries isomorphic to sl(3,R) [10]†. However, as the point transformation is not
canonical, it may change the physical meaning of the dependent and independent variables, and thus
this does not constitute the most appropriate strategy for some applications. On the other hand, the
first-order equation (1.7) may not always be explicitly integrable, in the sense that x can be expressed
in terms of the elementary functions of the independent variable t.

As already mentioned, in various physical applications, the use of (1.6) may not be computationally
satisfactory, and an alternative approach to derive exact solutions (whenever possible) is required. In
this context, it was observed in [11, 12] that the Eq (1.4), when interpreted as a first-order system of
ODEs, possesses the supplementary structure of a Lie–Hamilton (LH) system associated with the so-
called “book algebra” b2 (see [11–14] and references therein). It was further shown in [14] that any
LH system based on this Lie algebra can be integrated by quadratures, a property that also holds, under
certain constraints, for its quantum deformation [15].

The structure of the paper is as follows. In Section 2, we reconsider the generalized Buchdahl
equation (1.5) from the point of view of LH systems, determining the general solution by means of
the associated book Lie algebra b2, following the general ansatz proposed in [14]. The procedure is
illustrated through some special types of the generalized Buchdahl equations in Section 3. In
particular, it is shown that no further extension of the generalized Buchdahl equation as an LH system
based on b2 is possible. In Section 4, we study the Poisson–Hopf deformation of the generalized
Buchdahl equations associated with the quantum book algebra [15], showing that the corresponding
equations can also be solved exactly, and then apply such results in Section 5 to the special cases
considered before in Section 3, with special emphasis on the first-order approximation in the quantum
deformation parameter z. It is shown that these equations can also be solved exactly. In Section 6, we
extrapolate the results thus obtained to the oscillator algebra h4 extending b2, finding that the
corresponding systems can still be solved exactly. The procedure is illustrated by considering the
extension of the special cases studied in Section 3. In Section 7, their Poisson–Hopf deformation,
based on the “nonstandard” quantum deformation of h4, is analyzed, also obtaining its general
solution, which is a completely novel result. In addition, it is applied to the systems in Section 5,
arriving at their extended version. In Section 8, the physical and mathematical significance of the
quantum deformation parameter z is considered in more detail. Specifically, it is shown that for
higher-dimensional deformations, the corresponding Hamiltonian equations exhibit interaction terms
that are intrinsic to the deformation, meaning that the equations of the motion are no longer copies of

*In other terms, the equation admits an integrating factor.
†In Appendix, the symmetry generators are explicitly given.
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the original one-dimensional system. Finally, in a concluding section, we summarize the results
obtained concerning the (deformed) generalized Buchdahl equations based on b2 and h4, also
highlighting how these systems are related by a limiting process. Moreover, the existence of a
Lagrangian formalism for any (quantum deformed) equation obtained from (1.4) is indicated. Some
conclusions are drawn, and possible future developments of the method in connection with the
embedding of the book algebra into either the simple Lie algebra sl(2,R) ⊃ b2 or the two-photon
algebra h6 ⊃ h4 ⊃ b2 are briefly discussed.

2. The generalized Buchdahl equation as an LH system

We call (1.5) the generalized Buchdahl equation, as considered in [6]. For the special choice

a(x) = 3/x and b(t) = 1/t,

the classical Buchdahl equation is recovered. As shown in [6], Eq (1.5) admits both a standard and
reciprocal Lagrangian description for arbitrary choices of the parameter functions. The generalized
equation, besides its applications in the context of general relativity, can also be interpreted as the
equation of the motion for nonlinear systems with variable coefficients.

We first reinterpret the generalized Buchdahl equation in the context of the LH system framework,
deriving its general solution in appropriate coordinates after a canonical transformation, and we
analyze some relevant particular cases in Section 3. Although this approach does not supply essential
new information (the equation is solved by (1.6)), it is relevant for the study of perturbations or
quantum deformations of the equation, which are, in general, no longer exact and linearizable by a
point transformation, and where the application of the traditional direct integration methods may be
too cumbersome.

Considering the variable

y ≡
dx
dt
,

Equation (1.5) is equivalent to the first-order nonlinear system of ODEs

dx
dt
= y,

dy
dt
= a(x)y2 + b(t)y. (2.1)

This system can further be expressed in terms of the t-dependent vector field

Xt = X1 + b(t)X2, (2.2)

where the vector fields X1 and X2 are explicitly given by

X1 = y
∂

∂x
+ a(x)y2 ∂

∂y
, X2 = y

∂

∂y
. (2.3)

These vector fields satisfy the Lie bracket

[X2,X1] = X1; (2.4)
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hence they span a Lie algebra isomorphic to the book algebra b2‡. The generator X2 can be seen as a
dilation, while X1 corresponds to a translation. Formally, (2.1) and (2.2) define a Lie system [16–18]
with a noninvariance Lie algebra (called Vessiot–Guldberg Lie algebra) isomorphic to the “book” Lie
algebra b2. It can actually be shown (see e.g., [9]) that the ODE (1.5) is the most general second-order
scalar equation that admits b2 as a Vessiot–Guldberg algebra. However, the generalized Buchdahl
equation is more than a mere Lie system, as it admits a symplectic form ω such that the vector fields Xi

are Hamiltonian vector fields with respect to the appropriate Hamiltonian functions hi (i = 1, 2). The
compatibility conditions

LXiω = 0, ιXiω = dhi, (2.5)

with ι denoting the contraction or inner product of ω, determine the structure of an LH system (see [13]
and the references therein)§.

In this case, the symplectic form is given by

ω =
exp

(
−

∫ x
a(ξ)dξ

)
y

dx ∧ dy. (2.6)

Hereafter, it will be assumed that y , 0. The Hamiltonian functions associated with the Hamiltonian
vector fields Xi are

h1 = y exp
(
−

∫ x

a(ξ)dξ
)
, h2 = −

∫ x

exp
(
−

∫ ξ

a(ξ′)dξ′
)

dξ, (2.7)

which satisfy the following Poisson bracket with respect to ω (see (2.4)):

{h2, h1}ω = −h1.

Hence, the LH system (2.2) has a t-dependent Hamiltonian given by

ht = h1 + b(t)h2, (2.8)

whose Hamilton equations with respect to the noncanonical symplectic form ω (2.6) give rise to
Eq (2.1)

dx
dt
= {x, ht}ω =

y

exp
(
−

∫ x
a(ξ)dξ

) ∂ht

∂y
,

dy
dt
= {y, ht}ω = −

y

exp
(
−

∫ x
a(ξ)dξ

) ∂ht

∂x
.

We observe that all the structures above are properly defined on R2
y,0.

‡This is the same as the affine algebra in two dimensions.
§According to the classification of LH systems on R2 [11, 12], the book Lie algebra b2 is locally diffeomorphic to the imprimitive

class I14A with r = 1 and η1(x) = ex.
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2.1. The general solution as an LH system

LH systems related to the book algebra were generically studied in [11], with nonlinear
superposition rules being given in [12], using an appropriate embedding of b2 into a
higher-dimensional LH algebra. The generalized Buchdahl equation is one particular case of an
ample class of b2-LH systems that comprise, among others, complex Bernoulli differential equations
(with t-dependent real coefficients) [14], some Lotka–Volterra systems, and various types of
time-dependent epidemic models with stochastic fluctuations [19], for which an exact solution can be
found using an explicit diffeomorphism (corresponding to an appropriate change of variables) that
leads to a canonical realization of the LH algebra (see [14, 19] for further details).

As a shorthand notation, we define the function

Ξ(x) := exp
(
−

∫ x

a(ξ)dξ
)
,

so that the expressions (2.6) and (2.7) read

ω =
Ξ(x)

y
dx ∧ dy, h1 = yΞ(x), h2 = −

∫ x

Ξ(ξ)dξ . (2.9)

Now, under the change of variables

q = −yΞ(x), p =
1
y
Ξ(x)−1

∫ x

Ξ(ξ)dξ , (2.10)

the Buchdahl equation, as presented above, can be reformulated in terms of the b2-LH algebra in the
canonical form introduced in [20] (see also [14, 19])), which differs considerably from that given in
the works [11,12], although both are (locally) diffeomorphic. In this context, the coordinates (q, p) are
canonical, and the symplectic form (2.6) and Hamiltonian functions (2.7) become

ω ≡ ωcan = dq ∧ dp, (2.11)

h1 = −q, h2 = qp, {h2, h1}ωcan = −h1, (2.12)

while the t-dependent Hamiltonian (2.8) reduces to

ht = h1 + b(t)h2 = −q + b(t)qp. (2.13)

The corresponding equations of the motion are given by

dq
dt
= {q, ht}ωcan = b(t)q,

dp
dt
= {p, ht}ωcan = 1 − b(t)p, (2.14)

which is a linear, uncoupled system. We observe that a(x) does not appear explicitly in (2.14) (compare
this with (2.1)), as it is “hidden” within the transformation (2.10) through Ξ(x). The Hamiltonian vector
fields (2.3), when expressed in the canonical variables, are

X1 =
∂

∂p
, X2 = q

∂

∂q
− p
∂

∂p
, (2.15)
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which satisfy the Lie commutator (2.4) and provide the same LH system (2.14). As follows from (2.14),
the generalized Buchdahl LH system (2.1) is separable in the coordinates (q, p), and can be easily
solved by quadratures as follows:

q(t) = c1eγ(t), γ(t) :=
∫ t

b(τ)dτ,

p(t) =
(
c2 +

∫ t

eγ(τ)dτ
)

e−γ(t),
(2.16)

where c1 and c2 are the two constants of integration determined by the initial conditions. These results
are summarized in the following statement.

Proposition 2.1. The general solution of the generalized second-order Buchdahl equation (1.5) and
its associated first-order system of ODEs (2.1) is given by∫ x

Ξ(ξ)dξ = −c1

(
c2 +

∫ t

eγ(τ)dτ
)
, Ξ(x) := exp

(
−

∫ x

a(ξ)dξ
)
,

y(t) =
dx
dt
= −c1

eγ(t)

Ξ(x)
, γ(t) :=

∫ t

b(τ)dτ,

(2.17)

where c1 and c2 are the two constants of integration determined by the initial conditions.

Observe, in particular, that the first equation of (2.17) can also be expressed as

d
dt

(
e−γ(t)

d
dt

∫ x

Ξ(ξ)dξ
)
= 0 ≡

d
dt

(
e−γ(t) Ξ(x)

dx
dt

)
= 0,

which, taking into account that

d
dt

e−γ(t) = −e−γ(t)b(t),
d
dx
Ξ(x) = −Ξ(x)a(x),

d
dt
Ξ(x) = −Ξ(x)a(x)

dx
dt
,

reproduces the initial generalized second-order Buchdahl equation (1.5).
In the context of nonlinear dynamical systems with variable coefficients, the previous result can

be applied directly by means of appropriate choices for the parameter functions a(x) and b(t). In this
situation, the functions Ξ and γ are obtained from (2.17), reducing the problem to the integration of
x(t), while y(t) follows directly by insertion of x(t) into the second equation, providing the solution of
system (2.1).

3. Applications to particular generalized Buchdahl equations

We illustrate the procedure in terms of LH systems by studying some particular cases corresponding
to explicit choices for the parameter functions a(x) and b(t).

3.1. The classical Buchdahl equation

The equation arises from the specific choices

a(x) =
3
x
, b(t) =

1
t
, x ∈ R∗, t ∈ R∗ (3.1)
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in (2.1), so that the functions Ξ(x) and γ(t) in (2.17) are given by

Ξ(x) = x−3, γ(t) = ln t.

Note that
eγ(t) = t,

which in (2.17), is therefore always well-defined. It follows that the symplectic form and Hamiltonian
functions (2.9) are given by

ω =
1

x3y
dx ∧ dy, h1 =

y
x3 , h2 =

1
2x2 .

Substituting these expressions into the first equation of (2.17), we find that

1
x2(t)

= 2c1c2 + c1t2,

from which the general solution

x(t) =
±1√

2c1c2 + c1t2
, y(t) =

∓c1t(
2c1c2 + c1t2)3/2 (3.2)

is obtained, recovering the expression (1.3) of the Buchdahl equation (1.4) with

c1 = k2
1k2, c2 =

1
2k2

and f (r) ≡ x(t).

3.2. Case with a(x) = 1/x and an arbitrary b(t)

As a first natural generalization in (2.1), we consider the function

a(x) = x−1

and an arbitrary b(t). It follows that

Ξ(x) = x−1, x > 0,

with γ(t) as given in (2.17). The symplectic form and Hamiltonian functions (2.9) read

ω =
1
xy

dx ∧ dy, h1 =
y
x
, h2 = − ln x.

The first equation in (2.17) provides

ln x(t) = −c1

(
c2 +

∫ t

eγ(τ)dτ
)
,

which can be easily solved, leading to the exact solution

x(t) = exp
(
−c1c2 − c1

∫ t

eγ(τ)dτ
)
, y(t) = −c1 eγ(t) exp

(
−c1c2 − c1

∫ t

eγ(τ)dτ
)
.

For instance, choosing b(t) = 1/t with t ∈ R∗ (i.e., eγ(t) = t), we find that

x(t) = exp
(
−c1c2 − c1

t2

2

)
, y(t) = −c1t exp

(
−c1c2 − c1

t2

2

)
, (3.3)

which can be compared with (3.2).
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3.3. Case with a(x) = α/x (α , 1) and an arbitrary b(t)

We now choose
a(x) = αx−1

with α ∈ R∗ and α , 1, keeping b(t) arbitrary, so that

Ξ(x) = x−α, x ∈ R∗.

Hence the expression (2.9) gives rise to

ω =
1

xαy
dx ∧ dy, h1 =

y
xα
, h2 = −

x1−α

1 − α
, α , 1.

The first equation in (2.17) reads

x1−α(t)
1 − α

= −c1

(
c2 +

∫ t

eγ(τ)dτ
)
,

providing the following exact solution:

x(t) =
(
(α − 1)c1

(
c2 +

∫ t

eγ(τ)dτ
)) 1

1−α

,

y(t) = −c1 eγ(t)
(
(α − 1)c1

(
c2 +

∫ t

eγ(τ)dτ
)) α

1−α

.

As a particular case, taking b(t) = 1/t with t ∈ R∗, we find that

x(t) =
(
(α − 1)c1

(
c2 +

t2

2

)) 1
1−α

, y(t) = −c1t
(
(α − 1)c1

(
c2 +

t2

2

)) α
1−α

,

which, as expected, reduces for α = 3 to the solution (3.2) of the classical Buchdahl equation.

3.4. Case with a(x) = αxr (r , −1) and an arbitrary b(t)

Despite the previous particular cases determined by Proposition 2.1, for which exact solutions have
been presented in an explicit form, it is worth observing that, in general, the first equation in (2.17)
does not provide an explicit expression for x(t), as it may not be expressible in terms of the usual
elementary functions.

The simplest choice for which this pattern is observed corresponds to polynomial choices of a(x);
more precisely

a(x) = αxr, x ∈ R∗, α ∈ R∗, r ∈ R∗, r , −1.

Then we find that

Ξ(x) = exp
(
−α

xr+1

r + 1

)
AIMS Mathematics Volume 10, Issue 3, 6873–6909.
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along with

ω =
1
y

exp
(
−α

xr+1

r + 1

)
dx ∧ dy, h1 = y exp

(
−α

xr+1

r + 1

)
,

h2 =
1

r + 1

(
α

r + 1

)− 1
r+1
Γ

(
1

r + 1
, α

xr+1

r + 1

)
, r , −1,

where Γ(u, v) denotes the incomplete Gamma function [21]. The first equation in (2.17), which
provides the general solution x(t), adopts the cumbersome implicit form

1
r + 1

(
α

r + 1

)− 1
r+1
Γ

(
1

r + 1
, α

xr+1

r + 1

)
= c1

(
c2 +

∫ t

eγ(τ)dτ
)
.

For general values of α, this expression cannot be solved explicitly with respect to x(t), and alternative
methods, like the Lie series [22], have to be applied to determine the solution of the system.

3.5. Nonexistence of b2-based extensions of the generalized Buchdahl equation

Taking into account the b2-LH algebra’s symmetry (see (2.1)–(2.8)) of the generalized Buchdahl
system, it is rather natural to analyze whether it is possible to extend the system adding a second t-
dependent arbitrary function, i.e., to consider two coefficient functions b1(t) and b2(t). We start with
the first-order ODE system

dx
dt
= b1(t)y,

dy
dt
= b1(t)a(x)y2 + b2(t)y, (3.4)

such that b1(t) and b2(t) are arbitrary. These equations determine a Lie system with the t-dependent
vector field

Xt = b1(t)X1 + b2(t)X2,

where the t-independent vector fields Xi are defined as in (2.3). It is straightforward to verify that (3.4)
also determines a b2-LH system with the Hamiltonian

ht = b1(t)h1 + b2(t)h2

and the same Hamiltonian functions (2.7) and symplectic form (2.6).
Assuming that b1(t) , 0, we consider the following change in the coordinate y:

ỹ(t) = b1(t)y(t).

It follows that

dỹ
dt
= b1

dy
dt
+

db1

dt
y = b2

1a(x)y2 + b1b2y +
db1

dt
y = a(x)ỹ2 + b(t)ỹ,

where
b(t) = b2(t) +

1
b1(t)

db1

dt
.

In this case, the system (3.4) is equivalent to (2.1), showing that the latter cannot be generalized as an
LH system based on the LH algebra b2, consistent with the results derived in [9].
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4. Deformed generalized Buchdahl equation from the quantum book algebra

Starting from the quantum deformation of the book algebra, which is briefly recalled, in this
section, we obtain the deformed counterpart of the generalized Buchdahl system (2.1), together with
its corresponding general solution, thus extending Proposition 2.1 to an arbitrary quantum
deformation parameter z, while keeping the parameter functions b(t) and a(x) arbitrary.

4.1. Quantum book algebra and deformed book LH systems

The quantum algebra deformation (see [23,24] for details) of the book Lie algebra b2 is denoted by

Uz(b2) ≡ bz,2,

where z is the quantum deformation real parameter (usually q = ez). Its Hopf structure is defined by
the following deformed coproduct map ∆z and compatible commutation relation in an “abstract” basis
(v1, v2):

∆z(v1) = v1 ⊗ 1 + 1 ⊗ v1,

∆z(v2) = v2 ⊗ e−zv1 + 1 ⊗ v2,

[v2, v1]z = −
1 − e−zv1

z
,

(4.1)

such that ∆z is an algebra homomorphism and satisfies the coassociativity condition

(Id ⊗ ∆z)∆z = (∆z ⊗ Id)∆z.

The pair (bz,2,∆z) thus defines a coalgebra structure (see [14, 15] and references therein for more
details). In the following, we apply to b2 the formalism of Poisson–Hopf deformations of LH systems
introduced in [20, 25], from which a deformation of the generalized Buchdahl system (2.1) will be
derived.

A deformed symplectic representation Dz of bz,2 (4.1) in terms of the canonical variables (q, p) of
Section 2.1 and the canonical symplectic form (2.11) is given by

hz,1 := Dz(v1) = −q, hz,2 := Dz(v2) =
(
ezq − 1

z

)
p, (4.2)

where the corresponding deformed Poisson bracket with respect to ωcan is

{hz,2, hz,1}ωcan =
e−zhz,1 − 1

z
.

From the relation
ιXz,iωcan = dhz,i,

we compute the corresponding deformation of the vector fields (2.15)

Xz,1 =
∂

∂p
, Xz,2 =

(
ezq − 1

z

)
∂

∂q
− ezq p

∂

∂p
,
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which span a smooth distribution in the sense of Stefan–Sussmann [26–28] through the commutator

[Xz,2,Xz,1] = ezq Xz,1.

The invariance condition of ωcan in (2.11) under the Lie derivative (2.5) is trivially satisfied.
This leads to the deformed t-dependent Hamiltonian and t-dependent vector field (compare this with

Eq (2.13))

hz,t = hz,1 + b(t)hz,2 = −q + b(t)
(
ezq − 1

z

)
p,

Xz,t = Xz,1 + b(t)Xz,2 =
∂

∂p
+ b(t)

((
ezq − 1

z

)
∂

∂q
− ezq p

∂

∂p

)
,

where b(t) is an arbitrary real parameter function. The associated first-order system of nonautonomous
nonlinear and coupled ODEs on R2 is given by

dq
dt
= b(t)

(
ezq − 1

z

)
,

dp
dt
= 1 − b(t)ezq p.

(4.3)

For the limit z → 0, the system (2.14) is recovered¶. As the first of the equations above is separable,
it can be easily solved, and substitution into the second equation yields, after a quadrature, the general
solution (see [14, 15])

q(t) = −
ln

(
1 − zc1eγ(t)

)
z

, γ(t) :=
∫ t

b(τ)dτ,

p(t) =
(
e−γ(t) − zc1

) (
c2 +

∫ t 1
e−γ(τ) − zc1

dτ
)
,

(4.4)

where c1 and c2 are the two constants of integration determined by the initial conditions. Observe that
the first equation in (4.4) can be expressed alternatively as

1 − e−zq(t)

z
= c1 eγ(t).

It is worth observing that the presence of the quantum deformation parameter z can be regarded as
the introduction of a perturbation in the classical b2-LH system (2.14), in such a manner that a nonlinear
interaction or coupling between the variables (q, p) in the deformed b2-LH system (4.3) arises through
the term ezq p. This fact can be clearly appreciated by taking a power series expansion in z of (4.3) and
truncating at the first order, leading to the system

dq
dt
= b(t)

(
q + 1

2zq2) + o[z2],

dp
dt
= 1 − b(t)

(
p + zqp

)
+ o[z2],

(4.5)

¶All the deformed expressions above reduce to (2.12)–(2.16) concerning the classical b2-LH algebra.
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which hold for a small value of z. In this approximation, we find that z introduces a quadratic term q2

in the first equation of (4.5), leading to a real Bernoulli equation, while the second equation is linear
in p, once the value of q has been obtained. This enables us to integrate the system by quadratures,
allowing us to obtain the general solution.

4.2. Deformed generalized Buchdahl equation and its general solution

By introducing the change of variables (2.10) into the expressions of (4.2) to (4.3) with the initial
canonical variables (q, p), we directly obtain the deformation of the generalized Buchdahl equation
presented in Section 2 in the appropriate coordinates (x, y). This result is summarized as follows.

Proposition 4.1. (i) The deformation of the t-dependent generalized Buchdahl Hamiltonian (2.8) in
terms of the variables (x, y) is defined by

hz,t = hz,1 + b(t)hz,2,

hz,1 = yΞ(x), Ξ(x) := exp
(
−

∫ x

a(ξ)dξ
)
,

hz,2 =
exp

(
−zyΞ(x)

)
− 1

zyΞ(x)

∫ x

Ξ(ξ)dξ,

(4.6)

such that

{hz,2, hz,1}ω =
e−zhz,1 − 1

z
with respect to the noncanonical symplectic form ω (2.9).

(ii) The deformation of the generalized Buchdahl system (2.1) is given by

dx
dt
={x, hz,t}ω = y + b(t)

(
exp

(
zyΞ(x)

)
− 1 − zyΞ(x)

zyΞ2(x)

)
exp

(
−zyΞ(x)

) ∫ x

Ξ(ξ)dξ,

dy
dt
={y, hz,t}ω = a(x)y2 + b(t) exp

(
−zyΞ(x)

)
×

(
exp

(
zyΞ(x)

)
− 1

zΞ(x)
+

exp
(
zyΞ(x)

)
− 1 − zyΞ(x)

zΞ2(x)
a(x)

∫ x

Ξ(ξ)dξ
)
,

(4.7)

for any arbitrary a(x), b(t), and z.

It follows that the introduction of the Poisson–Hopf deformation of the book algebra leads to the
appearance of strong nonlinear interaction terms in the initial generalized Buchdahl system (2.1)
determined by the quantum deformation parameter z. In this sense, note that the first equation in (4.7)
is no longer equal to

dx
dt
= y,

and additional functions depending on (x, y) and z, as well as the coefficient b(t) itself, enter into the
deformation. At the first-order approximation in z, the system (4.7) reduces to

dx
dt
= y +

1
2

zy b(t)
∫ x

Ξ(ξ)dξ + o[z2],

dy
dt
= a(x)y2 + b(t)y

(
1 −

1
2

zy
(
Ξ(x) − a(x)

∫ x

Ξ(ξ)dξ
))
+ o[z2],

(4.8)
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which nontrivially couples the coordinate functions.
The deformed vector fields corresponding to the Hamiltonian (4.6) are given by

Xz,t = Xz,1 + b(t)Xz,2, Xz,1 = y
∂

∂x
+ a(x)y2 ∂

∂y
,

Xz,2 =

(
exp

(
zyΞ(x)

)
− 1 − zyΞ(x)

zyΞ2(x)

)
exp

(
−zyΞ(x)

) ∫ x

Ξ(ξ)dξ
∂

∂x

+ exp
(
−zyΞ(x)

) (exp
(
zyΞ(x)

)
− 1

zΞ(x)
+

exp
(
zyΞ(x)

)
− 1 − zyΞ(x)

zΞ2(x)
a(x)

∫ x

Ξ(ξ)dξ
)
∂

∂y
,

which fulfill the relation (2.5) with respect to ω in (2.6) and provide the same deformed generalized
Buchdahl system (4.7). These vector fields span a distribution with the commutator

[Xz,2,Xz,1] = exp
(
−zyΞ(x)

)
Xz,1.

Despite the complicated expressions of the deformed generalized Buchdahl system (4.7), we emphasize
that a general solution can be derived from the exact solution for deformed book LH systems (4.4) with
canonical variables and the change of coordinates (2.10). This is achieved as follows.

Proposition 4.2. The general solution of the first-order system of deformed generalized Buchdahl
equations (4.7) is given by∫ x

Ξ(ξ)dξ =
ln

(
1 − zc1eγ(t)

)
z

(
e−γ(t) − zc1

) (
c2 +

∫ t 1
e−γ(τ) − zc1

dτ
)
,

y(t) =
ln

(
1 − zc1eγ(t)

)
zΞ(x)

, Ξ(x) := exp
(
−

∫ x

a(ξ)dξ
)
, γ(t) :=

∫ t

b(τ)dτ,

(4.9)

where c1 and c2 are the two integration constants determined by the initial conditions.

Notice that, in contrast to Proposition 2.1, now y , dx/dt (see (4.7)). As expected, under the limit
z → 0, we recover the undeformed/classical solution presented in Proposition 2.1. As in the classical
case, one has to choose explicit expressions for a(x) and b(t) in the first equation of (4.9) and try
to derive the solution x(t). The solution y(t) can be deduced from the second equation. As already
mentioned, despite the algorithmic procedure, an explicit integration differs from being a trivial task in
the general case.

5. Applications to particular deformed Buchdahl equations

We illustrate the results established in Propositions 4.1 and 4.2 by constructing the deformed
counterpart of the particular generalized Buchdahl equations described in Sections 3.1–3.3.

5.1. Deformation of the proper Buchdahl equations

We choose the functions
a(x) = 3x−1 (x ∈ R∗)
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and
b(t) = t−1 (t ∈ R∗)

as in (3.1), giving rise to
Ξ(x) = x−3

and
γ(t) = ln t.

Thus the symplectic form and the deformed Hamiltonian vector fields (4.6) read

ω =
1

x3y
dx ∧ dy, hz,1 =

y
x3 , hz,2 = x

1 − exp
(
−

zy
x3

)
2zy

.

The deformed system of Buchdahl equation (4.7) is given by

dx
dt
= y +

1
2t

x exp
(
−

zy
x3

)
− x4

1 − exp
(
−

zy
x3

)
zy

 ,
dy
dt
=

3
x

y2 +
1
2t

3y exp
(
−

zy
x3

)
− x3

1 − exp
(
−

zy
x3

)
z

 .
(5.1)

The corresponding exact solution is obtained by the application of Proposition 4.2. In particular, the
first equation of (4.9) directly yields the exact solution for x(t), namely

1
x2(t)

=
2(zc1t − 1) ln

(
1 − zc1t

)
zt

(
c2 −

zc1t + ln
(
1 − zc1t

)
z2c2

1

)
. (5.2)

The second equation gives the following solution y(t) in terms of the result above:

y(t) = x3(t)
ln

(
1 − zc1t

)
z

.

The exact solution (3.2) of the proper Buchdahl equation is recovered under the undeformed limit
z→ 0; the limit of the first factor in (5.2) leads to 2c1, while the second factor gives c2 + t2/2.

Furthermore, we stress that the quantum deformation parameter z can be regarded as a small
integrable perturbation parameter, similarly to (4.8). Under such a first-order approximation in z, the
system (5.1) reduces to

dx
dt
≃ y − z

y
4tx2 ,

dy
dt
≃

3
x

y2 +
y
t
− z

5y2

4tx3 ,

(5.3)

where, for simplicity, we omit the term o[z2] for such approximations. From (5.3), and taking into
account that only terms that are at most linear in z are considered, it follows that the first-order
deformation of the Buchdahl equation (1.4) adopts the form

d2x
dt2 ≃

3
x

(
dx
dt

)2

+
1
t

dx
dt
+ z

1
4t2x2

dx
dt
. (5.4)
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In contrast to the nondeformed equation, Eq (5.4) only admits one Lie point symmetry

Y = t
∂

∂t
−

x
2
∂

∂x
,

showing that the maximal symmetry has been broken, i.e., the equation is no longer linearizable [10].
According to the previous discussion, the solution of (5.3) and (5.4) is given by

x(t) ≃
±1√

2c1c2 + c1t2

(
1 + z

c1t
(
6c2 − t2)

12
(
2c2 + t2) ) ,

y(t) ≃
∓c1t(

2c1c2 + c1t2)3/2

(
1 + z

c1t
(
10c2 + t2)

4
(
2c2 + t2) )

,

(5.5)

which can be compared with Eq (3.2).
To illustrate the effect of the real deformation parameter, in Figure 1, we plot several solutions (5.5)

for positive values of z, whereas Figure 2 shows the corresponding negative values.

Figure 1. First-order solutions (5.5) of Eq (5.4), for a positive x(t) and negative y(t), with
the choices of the integration constants c1 = c2 = 0.5 and positive values of the deformation
parameter z. The case z = 0 is the solution (3.2) of the proper Buchdahl equation (1.4).

Figure 2. First-order solutions (5.5) of Eq (5.4), as in Figure 1, but with negative values of
the deformation parameter z.
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5.2. Deformed case with a(x) = 1/x and an arbitrary b(t)

If
a(x) = x−1,

then
Ξ(x) = x−1 (x > 0).

From (4.6) we find that

ω =
1
xy

dx ∧ dy, hz,1 =
y
x
, hz,2 = x ln x

exp
(
−

zy
x

)
− 1

zy
.

Proposition 4.1 leads to the corresponding deformed system of Buchdahl equations for any b(t), namely

dx
dt
= y + b(t) x ln x

x
exp

(
zy
x

)
− 1

zy
− 1

 exp
(
−

zy
x

)
,

dy
dt
=

y2

x
+ b(t)

x
1 − exp

(
−

zy
x

)
z

(1 + ln x) − y exp
(
−

zy
x

)
ln x

 .
(5.6)

Its exact solution, provided by Proposition 4.2, reads as

ln x(t) =
ln

(
1 − zc1eγ(t)

)
z

(
e−γ(t) − zc1

) (
c2 +

∫ t 1
e−γ(τ) − zc1

dτ
)
,

y(t) = x(t)
ln

(
1 − zc1eγ(t)

)
z

.

(5.7)

This yields a family of deformed Buchdahl-type systems, together with their exact solution, depending
on the function b(t). Once the latter is fixed, it is possible to study the first-order approximation in z,
analogous to the discussion in Section 5.1.

Let us choose, for example,
b(t) = 1/t

with t ∈ R∗ (so eγ(t) = t), as in Section 3.2. The exact solution (5.7) for Eq (5.6) reduces to

ln x(t) =
(1 − zc1t) ln

(
1 − zc1t

)
zt

(
c2 −

zc1t + ln
(
1 − zc1t

)
z2c2

1

)
,

y(t) = x(t)
ln (1 − zc1t)

z
.

At the first-order in z, the system (5.6) becomes

dx
dt
≃ y + z

y ln x
2t
,

dy
dt
≃

y2

x
+

y
t
+ z

y2(ln x − 1)
2tx

.

(5.8)
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After some algebraic manipulation, we arrive at the approximation of the deformed second-order
generalized Buchdahl equation (1.5) in the form

d2x
dt2 ≃

1
x

(
dx
dt

)2

+
1
t

dx
dt
− z

ln x
2t2

dx
dt
. (5.9)

As expected, the deformed equation only admits one Lie point symmetry

Y = t
∂

∂t
+ x ln x

∂

∂x
,

and the solution of (5.8) and (5.9) turns out to be

x(t) ≃ exp
(
−c1c2 − c1

t2

2

) (
1 + z

c2
1t
2

(
c2 −

t2

6

))
,

y(t) ≃ −c1t exp
(
−c1c2 − c1

t2

2

) (
1 + z

c1t
2

(
1 + c1c2 −

c1t2

6

))
,

which can be compared with the nondeformed Eq (3.3).

5.3. Deformed case with a(x) = α/x (α , 1) and an arbitrary b(t)

As a final example, we consider the function

Ξ(x) = x−α (x ∈ R∗)

with α , 1. The expression (4.6) yields

ω =
1

xαy
dx ∧ dy, hz,1 =

y
xα
, hz,2 = x

exp
(
−zyx−α

)
− 1

zy(1 − α)
, α , 1,

in such a manner that the deformed system of the Buchdahl equation (4.7) is now given by

dx
dt
= y + b(t)

x
1 − α

(
xα

exp
(
zyx−α

)
− 1

zy
− 1

)
exp

(
−zyx−α

)
,

dy
dt
= α

y2

x
+ b(t)

1
1 − α

(
xα

exp
(
zyx−α

)
− 1

z
− αy

)
exp

(
−zyx−α

)
.

(5.10)

The corresponding exact solution, obtained by the previous prescription, turns out to be

x1−α(t) = (1 − α)
ln

(
1 − zc1eγ(t)

)
z

(
e−γ(t) − zc1

) (
c2 +

∫ t 1
e−γ(τ) − zc1

dτ
)
,

y(t) = xα(t)
ln

(
1 − zc1eγ(t)

)
z

.

(5.11)

As in the preceding cases, we can obtain an approximation of the deformed system at the first order in
z, once an explicit function b(t) has been chosen. To compare these with the previous results, we again
set

b(t) = 1/t (t ∈ R∗).
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Under such an approximation, Eq (5.10) reads

dx
dt
≃ y + z

y x1−α

2(1 − α)t
,

dy
dt
≃ α

y2

x
+

y
t
− z

y2x−α(1 − 2α)
2(1 − α)t

,

(5.12)

which leads to the following deformed second-order Buchdahl equation

d2x
dt2 ≃

α

x

(
dx
dt

)2

+
1
t

dx
dt
+ z

x1−α

2(α − 1)t2

dx
dt
. (5.13)

This ODE again only possesses one Lie point symmetry

Y = (1 − α)t
∂

∂t
+ x
∂

∂x
,

showing that it is not linearizable by point transformations [10]. A solution of (5.12) and (5.13) can,
however, be deduced from (5.11), showing that

x(t) ≃
(
(α − 1)c1

(
c2 +

t2

2

)) 1
1−α

+
z

12
c2

1t
(
6c2 − t2) ((α − 1)c1

(
c2 +

t2

2

)) α
1−α

,

y(t) ≃ −
z

12
c3

1t2
(
6c2(2α − 1) + t2(2α − 3)

) (
(α − 1)c1

(
c2 +

t2

2

)) 2α−1
1−α

− c1t
(
(α − 1)c1

(
c2 +

t2

2

)) α
1−α

.

Many other particular equations and their solutions can be analyzed by applying the general results
described in Propositions 4.1 and 4.2.

6. Extending the generalized Buchdahl equation from the oscillator algebra

So far, we have obtained (deformed) generalized Buchdahl equations from the (quantum) book
algebra b2 in terms of the arbitrary functions a(x) and b(t). Moreover, we have proven, in Section 3.5,
that there is no possible extension of the generalized Buchdahl equation (2.1) from b2, i.e., from this
underlying symmetry, no additional t-dependent coefficient can be considered in a nontrivial way.

Nevertheless, as b2 has arisen as a subalgebra of other higher-dimensional Lie algebras, it is natural
to extend the method of exact solutions to other LH systems (and their corresponding Poisson–Hopf
deformations) that keep b2 as an LH subalgebra. From the classification of LH systems on the plane
(see [11, 12]), it follows that the relevant candidates are the oscillator h4, sl(2,R) and the so-called
two-photon h6 LH algebras.

Taking into account the canonical representation (2.12), we find that the simplest extension is
provided by the oscillator LH algebra, corresponding to the imprimitive class I8 in [11, 12], which
entails the introduction of an additional nontrivial arbitrary t-dependent coefficient. Furthermore, the
corresponding exact solution is straightforward, allowing us to apply this result to the framework of
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Buchdahl equations, which we develop in what follows. We recall that the embedding b2 ⊂ h4 has
already been used in the context of t-dependent epidemic models in [19]. However, we stress that an
exact solution can also be deduced for the deformed counterpart from a quantum oscillator algebra,
which, to best of our knowledge, has been lacking but will be addressed in the next section.

Thus, we start with the oscillator h4-LH algebra with Hamiltonian functions, expressed in canonical
coordinates (q, p) as [11, 12]

h1 = −q, h2 = qp, h3 = p, h0 = 1, (6.1)

obeying the commutation relations

{h2, h1}ωcan = −h1, {h2, h3}ωcan = h3, {h3, h1}ωcan = h0, {h0, · }ωcan = 0, (6.2)

with respect to the canonical symplectic form (2.11). Hence, h2 can be regarded as the number
generator, h1, h3 as lowering/raising generators, and h0 as the central element (which is necessary to
close the brackets). The extension of the t-dependent Hamiltonian (2.13) in terms of two arbitrary
t-dependent functions

b1(t) ≡ b(t)

and b2(t) yields
ht = h1 + b1(t)h2 + b2(t)h3 = −q + b1(t)qp + b2(t)p, (6.3)

giving rise to the Hamilton equations

dq
dt
= {q, ht}ωcan = b1(t)q + b2(t),

dp
dt
= {p, ht}ωcan = 1 − b1(t)p, (6.4)

which again form a linear and uncoupled system.
The associated Hamiltonian vector fields are obtained from (6.1) through the relation (2.5) and read

as
X1 =

∂

∂p
, X2 = q

∂

∂q
− p
∂

∂p
, X3 =

∂

∂q
, (6.5)

which satisfy the Lie commutators

[X2,X1] = X1, [X2,X3] = −X3, [X1,X3] = 0. (6.6)

Therefore, the Vessiot–Guldberg Lie algebra is isomorphic to the (1+1)-dimensional Poincaré algebra
on a light-cone basis, with X2 playing the role of the boost generator, and X1, X3 as translations. In
fact, if (q, p) are identified with the light-like coordinates (x+, x−), the vector fields (6.5) are just the
Killing vector fields of the metric

ds2 = dx+dx−

in Minkowskian spacetime.
The oscillator LH system (6.4) can then be solved directly, leading to the following exact solution

in terms of the two integration constants c1 and c2:

q(t) =
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)

eγ(t), γ(t) :=
∫ t

b1(τ)dτ,

p(t) =
(
c2 +

∫ t

eγ(τ)dτ
)

e−γ(t).
(6.7)
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The results above can be applied in a straightforward manner to the generalized Buchdahl equations
by applying the change of coordinates (2.10). The Hamiltonian function (6.1) and the vector fields (6.5)
turn out to be

h1 = yΞ(x), h2 = −

∫ x

Ξ(ξ)dξ, h3 =
1

yΞ(x)

∫ x

Ξ(ξ)dξ, h0 = 1, (6.8)

and

X1 = y
∂

∂x
+ a(x)y2 ∂

∂y
, X2 = y

∂

∂y
,

X3 = −
1

yΞ2(x)

∫ x

Ξ(ξ)dξ
∂

∂x
−

1
Ξ2(x)

(
Ξ(x) + a(x)

∫ x

Ξ(ξ)dξ
)
∂

∂y
,

(6.9)

with Ξ(x) as given in (2.17). They fulfill the same commutation rules (6.2) and (6.6) (the former is with
respect to the symplectic form (2.6)). Observe that, as a byproduct, the t-independent vector fields Xi

in (6.9) are Killing vector fields of the Minkowskian metric, now reading as

ds2 =a(x)
(
Ξ(x) + a(x)

∫ x

Ξ(ξ)dξ
)

dx2 +
1
y2

∫ x

Ξ(ξ)dξ dy2

−
1
y

(
Ξ(x) + 2a(x)

∫ x

Ξ(ξ)dξ
)

dx dy.

From ht (6.3) or
Xt = X1 + b1(t)X2 + b2(t)X3,

we arrive at the extended generalized Buchdahl equations as the first-order nonlinear system of ODEs
given by

dx
dt
= y − b2(t)

1
yΞ2(x)

∫ x

Ξ(ξ)dξ,

dy
dt
= a(x)y2 + b1(t)y − b2(t)

1
Ξ2(x)

(
Ξ(x) + a(x)

∫ x

Ξ(ξ)dξ
)
,

(6.10)

(compare this with the system (2.1)). In this respect, it should be observed that consideration of the h4-
LH algebra implies the introduction of a “naı̈ve” term b2(t)p in the Hamiltonian ht (6.3), whose effect
becomes quite strong in the context of the Buchdahl equations above. In particular, the coefficient b2(t)
introduces complicated terms in both equations with

dx
dt
, y.

Their corresponding exact solution is provided by (6.7) and is characterized by the following
“extended” version of Proposition 2.1.
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Proposition 6.1. The general solution of the extended generalized Buchdahl equations (6.10),
determined by the oscillator h4-LH algebra, is given by∫ x

Ξ(ξ)dξ = −
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
) (

c2 +

∫ t

eγ(τ)dτ
)
,

y(t) = −
eγ(t)

Ξ(x)

(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)
,

Ξ(x) := exp
(
−

∫ x

a(ξ)dξ
)
, γ(t) :=

∫ t

b1(τ)dτ,

(6.11)

where c1 and c2 are the two constants of integration determined by the initial conditions.

Once the coefficients b1(t), b2(t), and a(x) have been chosen, the procedure used to obtain the
solution (x(t), y(t)) from Proposition 6.1 consists of calculating Ξ(x) and γ(t), introducing them in the
first equation trying to compute x(t), and substituting it into the second equation, finding y(t).

We point out that the particular case with the constant

b2(t) = b0,

covered by Proposition 6.1, is also endowed with the h4-LH algebra. Although ht (6.3) is thus composed
of only two Hamiltonian functions, a third function is needed to close the Poisson brackets, leading to
an LH algebra isomorphic to h4. Explicitly, if we define

h± := h1 ± b0h3,

then the commutation rules (6.2) are transformed into

{h2, h±}ω = −h∓, {h+, h−}ω = 2b0h0, {h0, · }ω = 0,

with respect to the symplectic form (2.6), and

ht = h+ + b1(t)h2.

Likewise, this particular system comes from the t-dependent vector field

Xt = X+ + b1(t)X2,

where
X± := X1 ± b0X3,

such that
[X2,X±] = X∓

and
[X+,X−] = 0,

which is isomorphic to the Poincaré Lie algebra.
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We illustrate the h4-LH systems (6.10) together with their general solution (6.11) by constructing
the extensions of the particular generalized Buchdahl equations studied previously in Sections 3.1–3.3,
the final results of which are summarized in Table 1.

Table 1. Extensions of the particular generalized Buchdahl equations of Sections 3.1–3.3
from the oscillator LH algebra.

• Case I Extended Buchdahl equation a(x) = 3x−1 b1(t) = t−1 Ξ(x) = x−3 γ(t) = ln t

ω =
1

x3y
dx ∧ dy h1 =

y
x3 h2 =

1
2x2 h3 = −

x
2y

dx
dt
= y + b2(t)

x4

2y
dy
dt
=

3y2

x
+

y
t
+ b2(t)

x3

2

x(t) = ±
{(

c1 +

∫ t b2(τ)
τ

dτ
) (

2c2 + t2
)}−1/2

y(t) = ∓ t
(
c1 +

∫ t b2(τ)
τ

dτ
)−1/2 (

2c2 + t2
)−3/2

• Case II a(x) = x−1 arbitrary b1(t) Ξ(x) = x−1

ω =
1
xy

dx ∧ dy h1 =
y
x

h2 = − ln x h3 =
x ln x

y
dx
dt
= y − b2(t)

x2 ln x
y

dy
dt
=

y2

x
+ b1(t)y − b2(t)x

(
1 + ln x

)
x(t) = exp

{
−

(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
) (

c2 +

∫ t

eγ(τ)dτ
)}

y(t) = −eγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)

exp
{
−

(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
) (

c2 +

∫ t

eγ(τ)dτ
)}

Subcase II a(x) = x−1 b1(t) = t−1 Ξ(x) = x−1 γ(t) = ln t

x(t) = exp
{
−

(
c1 +

∫ t b2(τ)
τ

dτ
) (

c2 +
t2

2

)}
y(t) = −t

(
c1 +

∫ t b2(τ)
τ

dτ
)

exp
{
−

(
c1 +

∫ t b2(τ)
τ

dτ
) (

c2 +
t2

2

)}
• Case III a(x) = α x−1 (α , 1) arbitrary b1(t) Ξ(x) = x−α

ω =
1

xαy
dx ∧ dy h1 =

y
xα

h2 = −
x1−α

1 − α
h3 =

x
y(1 − α)

dx
dt
= y − b2(t)

x1+α

(1 − α)y
dy
dt
=
α y2

x
+ b1(t)y − b2(t)

xα

1 − α

x(t) =
{

(α − 1)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
) (

c2 +

∫ t

eγ(τ)dτ
)} 1

1−α

y(t) = −eγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
) {

(α − 1)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
) (

c2 +

∫ t

eγ(τ)dτ
)} α

1−α

Subcase III a(x) = α x−1 (α , 1) b1(t) = t−1 Ξ(x) = x−α γ(t) = ln t

x(t) =
{

(α − 1)
(
c1 +

∫ t b2(τ)
τ

dτ
) (

c2 +
t2

2

)} 1
1−α

y(t) = −t
(
c1 +

∫ t b2(τ)
τ

dτ
) {

(α − 1)
(
c1 +

∫ t b2(τ)
τ

dτ
) (

c2 +
t2

2

)} α
1−α

∗Note: For each case, we indicate the choice of the coefficients a(x) and b1(t) for an arbitrary b2(t), the symplectic
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form (2.6), the functions Ξ(x) and γ(t), the Hamiltonian functions (6.8), the system (6.10), and its corresponding general
solution (6.11).

7. Deformed generalized Buchdahl equation from the quantum oscillator algebra

Among all possible quantum deformations of the oscillator Lie algebra h4 [29], only the so-called
nonstandard deformation, namely

Uz(h4) ≡ hz,4,

enables the Hopf algebra embedding
bz,2 ⊂ hz,4.

In fact, hz,4 is a central extension of the nonstandard quantum (1+1) Poincaré algebra [30, 31] on the
light-cone basis (6.6). In what follows, we first recall the role of hz,4 in the framework of LH systems
and then apply these results to the context of Buchdahl equations, arriving at the extension of the
deformed generalized equations obtained in Sections 4 and 5.

7.1. Quantum oscillator algebra and deformed oscillator LH systems

The Hopf structure of hz,4 is determined by the following coproduct map and compatible
commutation relations in a basis (v1, v2, v3, v0) [29]:

∆z(v1) = v1 ⊗ 1 + 1 ⊗ v1, ∆z(v2) = v2 ⊗ e−zv1 + 1 ⊗ v2,

∆z(v3) = v3 ⊗ e−zv1 + 1 ⊗ v3 + zv2 ⊗ e−zv1v0, ∆z(v0) = v0 ⊗ 1 + 1 ⊗ v0,

[v2, v1]z =
e−zv1 − 1

z
, [v2, v3]z = v3, [v3, v1]z = e−zv1v0, [v0, · ]z = 0.

(7.1)

In canonical variables (q, p), a deformed symplectic representation Dz of hz,4 turns out to be [31]

hz,1 : = Dz(v1) = −q, hz,2 := Dz(v2) =
(
ezq − 1

z

)
p,

hz,3 : = Dz(v3) = ezq p, hz,0 := Dz(v0) = 1,
(7.2)

which fulfill the deformed Poisson brackets given by

{hz,2, hz,1}ωcan =
e−zhz,1 − 1

z
, {hz,2, hz,3}ωcan = hz,3,

{hz,3, hz,1}ωcan = e−zhz,1hz,0, {hz,0, · }ωcan = 0,
(7.3)

with respect to the canonical symplectic form (2.11).
The relation

ιXz,iωcan = dhz,i

leads to the associated deformed Hamiltonian vector fields

Xz,1 =
∂

∂p
, Xz,2 =

(
ezq − 1

z

)
∂

∂q
− ezq p

∂

∂p
, Xz,3 = ezq ∂

∂q
− zezq p

∂

∂p
,
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which do not close on the nonstandard quantum Poincaré algebra [30] but on a smooth
Stefan–Sussmann distribution [26–28] given by the commutation relations [20]

[Xz,2,Xz,1] = e−zhz,1 Xz,1,

[Xz,2,Xz,3] = −Xz,3,

[Xz,3,Xz,1] = z e−zhz,1hz,0 Xz,1.

(7.4)

Thus, we obtain a deformed t-dependent Hamiltonian and a vector field in terms of two coefficients

b1(t) ≡ b(t)

and b2(t) as follows

hz,t = hz,1 + b1(t)hz,2 + b2(t)hz,3 = −q + b1(t)
(
ezq − 1

z

)
p + b2(t)ezq p,

Xz,t = Xz,1 + b1(t)Xz,2 + b2(t)Xz,3

=
∂

∂p
+ b1(t)

((
ezq − 1

z

)
∂

∂q
− ezq p

∂

∂p

)
+ b2(t)

(
ezq ∂

∂q
− zezq p

∂

∂p

)
,

(7.5)

yielding the first-order system of nonlinear and coupled ODEs on R2 given by

dq
dt
= b1(t)

(
ezq − 1

z

)
+ b2(t)ezq,

dp
dt
= 1 − b1(t)ezq p − zb2(t)ezq p.

(7.6)

The first equation can be solved directly, and by substituting into the second one, we obtain the general
solution

q(t) = −
1
z

ln
{

1 − zeγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)}
,

γ(t) :=
∫ t

b1(τ)dτ,

p(t) =
{

e−γ(t) − z
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)}

×

c2 +

∫ t (
e−γ(τ) − z

(
c1 +

∫ τ

e−γ(τ
′)b2(τ′)dτ′

))−1

dτ

 ,
(7.7)

where c1 and c2 are the two integration constants. We note that, to best of our knowledge, this exact
solution has not yet been considered in the framework of LH systems. On the contrary, the usual
approach is to deduce “deformed” superposition rules from t-independent constants of the motion [20].
Note also that, as expected, the expressions (6.1)–(6.7) are recovered from (7.2)–(7.7) under the limit
z→ 0.

The first-order of the power series expansion in z of (7.6) yields

dq
dt
= b2(t) + b1(t)q + z

(
b2(t)q +

1
2

b1(t)q2
)
+ o[z2],

dp
dt
= 1 − b1(t)p − z

(
b2(t)p + b1(t)qp

)
+ o[z2],
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which can be compared with (4.5).

7.2. Deformed extended generalized Buchdahl equation and its general solution

Similarly to Section 4.2, we apply the change of variables (2.10) to the expressions (7.2) and (7.6),
obtaining the deformation of the extended generalized Buchdahl equation in Section 6 from the
quantum oscillator algebra hz,4.

Proposition 7.1. (i) The deformation of the t-dependent extended generalized Buchdahl
Hamiltonian (6.3) is defined, in terms of the variables (x, y), by the Hamiltonian functions

hz,t = hz,1 + b1(t)hz,2 + b2(t)hz,3,

hz,1 = yΞ(x),

hz,2 =
exp

(
−zyΞ(x)

)
− 1

zyΞ(x)

∫ x

Ξ(ξ)dξ,

hz,3 =
exp

(
−zyΞ(x)

)
yΞ(x)

∫ x

Ξ(ξ)dξ,

Ξ(x) := exp
(
−

∫ x

a(ξ)dξ
)
,

(7.8)

which, together with

hz,0 = 1,

verify the same deformed Poisson brackets (7.3), now with respect to the (noncanonical) symplectic
form ω (2.9).

(ii) The Poisson–Hopf deformation of the extended generalized Buchdahl system (6.10) reads as

dx
dt
={x, hz,t}ω

=y + b1(t)
(
exp

(
zyΞ(x)

)
− 1 − zyΞ(x)

zyΞ2(x)

)
exp

(
−zyΞ(x)

) ∫ x

Ξ(ξ)dξ

− b2(t)
(
1 + zyΞ(x)

yΞ2(x)

)
exp

(
−zyΞ(x)

) ∫ x

Ξ(ξ)dξ,

dy
dt
={y, hz,t}ω

=a(x)y2 + b1(t) exp
(
−zyΞ(x)

)
×

(
exp

(
zyΞ(x)

)
− 1

zΞ(x)
+

exp
(
zyΞ(x)

)
− 1 − zyΞ(x)

zΞ2(x)
a(x)

∫ x

Ξ(ξ)dξ
)

− b2(t)
exp

(
−zyΞ(x)

)
Ξ2(x)

(
Ξ(x) +

(
1 + zyΞ(ξ)

)
a(x)

∫ x

Ξ(ξ)dξ
)
,

(7.9)

for any arbitrary a(x), b1(t), b2(t), and z.
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The deformed vector fields associated with the Hamiltonian functions (7.8) turn out to be

Xz,t =Xz,1 + b1(t)Xz,2 + b2(t)Xz,3,

Xz,1 =y
∂

∂x
+ a(x)y2 ∂

∂y
,

Xz,2 =

(
exp

(
zyΞ(x)

)
− 1 − zyΞ(x)

zyΞ2(x)

)
exp

(
−zyΞ(x)

) ∫ x

Ξ(ξ)dξ
∂

∂x

+ exp
(
−zyΞ(x)

) (exp
(
zyΞ(x)

)
− 1

zΞ(x)
+

exp
(
zyΞ(x)

)
− 1 − zyΞ(x)

zΞ2(x)
a(x)

∫ x

Ξ(ξ)dξ
)
∂

∂y
,

Xz,3 = −

(
1 + zyΞ(x)

yΞ2(x)

)
exp

(
−zyΞ(x)

) ∫ x

Ξ(ξ)dξ
∂

∂x

−
exp

(
−zyΞ(x)

)
Ξ2(x)

(
Ξ(x) +

(
1 + zyΞ(ξ)

)
a(x)

∫ x

Ξ(ξ)dξ
)
,

that span a distribution with the same commutation rules given by (7.4).
From the general solution of the deformed extended generalized Buchdahl equations in canonical

variables (7.7), we arrive at the one corresponding to the deformed system in Proposition 7.1.

Proposition 7.2. The general solution of the first-order system of deformed extended generalized
Buchdahl equation (7.9) is given by

∫ x

Ξ(ξ)dξ =
1
z

ln
{

1 − zeγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)} {

e−γ(t) − z
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)}

×

c2 +

∫ t (
e−γ(τ) − z

(
c1 +

∫ τ

e−γ(τ
′)b2(τ′)dτ′

))−1

dτ

 ,
y(t) =

1
zΞ(x)

ln
{

1 − zeγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)}
,

Ξ(x) := exp
(
−

∫ x

a(ξ)dξ
)
,

γ(t) :=
∫ t

b(τ)dτ,

(7.10)

where c1 and c2 are the two integration constants provided by the initial conditions.

Propositions 7.1 and 7.2 state the most general results of this work, covering all the previous systems
obtained so far. They can be applied to particular cases, along the same lines as in Section 5, by
selecting precise functions a(x), b1(t), and b2(t). The main results concerning the extensions of the
systems in Sections 5.1–5.3 are presented in Table 2, which correspond to the deformation of the h4-
LH systems shown in Table 1, which are recovered when z → 0. It is clear that a further analysis of
the perturbations at the first order in z can be performed in a similar way to that in Section 5.
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Table 2. Extensions of the particular deformed generalized Buchdahl equations of
Sections 5.1–5.3 from the deformed oscillator LH algebra.

• Case I Deformed extended Buchdahl equation a(x) = 3x−1 b1(t) = t−1 Ξ(x) = x−3 γ(t) = ln t

ω =
1

x3y
dx ∧ dy hz,1 =

y
x3 hz,2 = x

1 − exp
(
−

zy
x3

)
2zy

hz,3 = −
x

2y
exp

(
−

zy
x3

)
dx
dt
= y +

1
2t

(
x exp

(
−

zy
x3

)
− x4 1 − exp

(
−

zy
x3

)
zy

)
+ b2(t)

x4 + zxy
2y

exp
(
−

zy
x3

)
dy
dt
=

3y2

x
+

1
2t

(
3y exp

(
−

zy
x3

)
− x3 1 − exp

(
−

zy
x3

)
z

)
+

1
2

b2(t)
(
x3 + 3zy

)
exp

(
−

zy
x3

)
1

x2(t)
=

2
zt

(
zt

(
c1 +

∫ t b2(τ)
τ

dτ
)
− 1

)
ln

{
1 − zt

(
c1 +

∫ t b2(τ)
τ

dτ
)}

×

c2 +

∫ t

t
(
1 − zt

(
c1 +

∫ τ b2(τ′)
τ′

dτ′
))−1

dτ


y(t) = x3(t)
1
z

ln
{

1 − zt
(
c1 +

∫ t b2(τ)
τ

dτ
)}

• Case II a(x) = x−1 arbitrary b1(t) Ξ(x) = x−1

ω =
1
xy

dx ∧ dy hz,1 =
y
x

hz,2 = x ln x
exp

(
−

zy
x

)
− 1

zy
hz,3 =

x ln x
y

exp
(
−

zy
x

)
dx
dt
= y + b1(t) x ln x

(
x

exp
( zy

x

)
− 1

zy
− 1

)
exp

(
−

zy
x

)
− b2(t)

(
x2 + zxy

)
ln x

y
exp

(
−

zy
x

)
dy
dt
=

y2

x
+ b1(t)

(
x

1 − exp
(
−

zy
x

)
z

(1 + ln x) − y exp
(
−

zy
x

)
ln x

)
− b2(t)

(
x + (x + zy) ln x

)
exp

(
−

zy
x

)
ln x(t) =

1
z

ln
{

1 − zeγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)} (

e−γ(t) − z
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
))

×

c2 +

∫ t (
e−γ(τ) − z

(
c1 +

∫ τ

e−γ(τ
′)b2(τ′)dτ′

))−1

dτ


y(t) = x(t)

1
z

ln
(
1 − zeγ(t)

(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
))

• Case III a(x) = α x−1 (α , 1) arbitrary b1(t) Ξ(x) = x−α

ω =
1

xαy
dx ∧ dy hz,1 =

y
xα

hz,2 = x
exp

(
−zyx−α

)
− 1

zy(1 − α)
hz,3 =

x
y(1 − α)

exp
(
−zyx−α

)
dx
dt
= y + b1(t)

x
1 − α

(
xα

exp
(
zyx−α

)
− 1

zy
− 1

)
exp

(
−zyx−α

)
− b2(t)

x1+α + zxy
(1 − α)y

exp
(
−zyx−α

)
dy
dt
=
α y2

x
+ b1(t)

1
1 − α

(
xα

exp
(
zyx−α

)
− 1

z
− αy

)
exp

(
−zyx−α

)
− b2(t)

xα + zαy
1 − α

exp
(
−zyx−α

)
x1−α(t) = (1 − α)

1
z

ln
{

1 − zeγ(t)
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
)} (

e−γ(t) − z
(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
))

×

c2 +

∫ t (
e−γ(τ) − z

(
c1 +

∫ τ

e−γ(τ
′)b2(τ′)dτ′

))−1

dτ


y(t) = xα(t)

1
z

ln
(
1 − zeγ(t)

(
c1 +

∫ t

e−γ(τ)b2(τ)dτ
))

∗Note: For each case we show the coefficients a(x) and b1(t), always with an arbitrary b2(t), the symplectic form (2.6), the
functions Ξ(x) and γ(t), the Hamiltonian functions (7.8), the system (7.9), and its general solution (7.10).
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8. Higher-dimensional deformed generalized Buchdahl equations

As a final stage, it seems pertinent to discuss the mathematical and physical roles played by the
quantum deformation parameter z in more detail.

In general, given a system, considering a quantum deformation induced by introducing z (or q = ez)
implies dealing with an additional degree of freedom which, in turn, can be regarded as a modification
of the initial system. One approach is to interpret this presence as a (integrable) perturbation of the
initial system, as we have considered here, but, in addition, it also allows the construction of analytical
models from experimental results. In other words, in some cases, it would be possible to fix a certain
value of z in some quantum algebra that matches with the data for some model, arriving at an underlying
quantum group symmetry and, therefore, analytical expressions. For instance, this was exactly the
procedure used in [32] to determine the spectrum in quantum optical models and in [33] to describe
fermion–boson interactions in a nuclear physics context.

Furthermore, the introduction of z usually leads to a coupling of the differential equations of the
initial system, as shown by the explicit expressions in Sections 5 and 7; this has consequences with
respect to linearization and maximal symmetry which are broken.

Beyond these comments, a quantum deformation, i.e., a Poisson–Hopf deformation of LH systems
in our framework, has profound implications when constructing higher-dimensional systems. In
particular, let us address this point by taking the oscillator h4-LH algebra of Section 6 and its quantum
deformation hz,4 from Section 7 in canonical variables (q, p), as they give rise to the most general
systems of this work.

The tool which enables one to obtain higher-dimensional systems is the coproduct map, which, for
any LH algebra, is always (trivial) primitive and denoted ∆. Let (v1, v2, v3, v0) be a basis of h4, fulfilling
the Lie brackets

[v2, v1] = −v1, [v2, v3] = v3, [v3, v1] = v0, [v0, · ] = 0,

and thus they are formally similar to (6.2).
The Hopf structure is determined by the coproduct (i = 0, 1, 2, 3)

∆(vi) = vi ⊗ 1 + 1 ⊗ vi.

If we denote the “one-particle” symplectic representation of h4 (6.1) as

D(vi) = hi(q1, p1) := h(1)
i ,

then the “two-particle” representation is obtained as [12]

(D ⊗ D)(∆(v1)) = h1(q1, p1) + h1(q2, p2) = −q1 − q2 := h(2)
1 ,

(D ⊗ D)(∆(v2)) = h2(q1, p1) + h2(q2, p2) = q1 p1 + q2 p2 := h(2)
2 ,

(D ⊗ D)(∆(v3)) = h3(q1, p1) + h3(q2, p2) = p1 + p2 := h(2)
3 ,

(D ⊗ D)(∆(v0)) = h0(q1, p1) + h0(q2, p2) = 1 + 1 := h(2)
0 .

These Hamiltonian functions satisfy the same commutation relations (6.2) with respect to the canonical
symplectic form

ω(2)
can = dq1 ∧ dp1 + dq2 ∧ dp2.
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In the same way, one can construct higher-dimensional representations. The relevant point is that any
system with h4-LH algebra symmetry in any dimension is equivalent to considering several copies of
the initial system, which is a well-known property in Lie systems; in other words, they can trivially
be reduced to the initial “one-particle” one. In our case, the two-particle version of the t-dependent
Hamiltonian ht (6.3) reads as

h(2)
t = h(2)

1 + b1(t)h(2)
2 + b2(t)h(2)

3 = ht(q1, p1) + ht(q2, p2)

=
(
−q1 + b1(t)q1 p1 + b2(t)p1

)
+

(
−q2 + b1(t)q2 p2 + b2(t)p2

)
.

This situation changes drastically when a Poisson–Hopf deformation is introduced, since the
deformed coproduct ∆z naturally entails a coupling of the representation [20, 25]. From the deformed
coproduct ∆z (7.1) and representation Dz (7.2) of hz,4, we obtain its “two-particle” representation in
the form

(Dz ⊗ Dz)(∆z(v1)) =hz,1(q1, p1) + hz,1(q2, p2) = −q1 − q2 := h(2)
z,1,

(Dz ⊗ Dz)(∆z(v2)) =hz,2(q1, p1)e−zhz,1(q2,p2) + hz,2(q2, p2)

=

(
ezq1 − 1

z

)
p1ezq2 +

(
ezq2 − 1

z

)
p2 := h(2)

z,2,

(Dz ⊗ Dz)(∆z(v3)) =hz,3(q1, p1)e−zhz,1(q2,p2) + hz,3(q2, p2)

+ zhz,2(q1, p1)e−zhz,1(q2,p2)hz,0(q2, p2)

=ezq1 p1ezq2 + ezq2 p2 + z
(
ezq1 − 1

z

)
p1ezq2 := h(2)

z,3,

(Dz ⊗ Dz)(∆z(v0)) =hz,0(q1, p1) + hz,0(q2, p2) = 1 + 1 := h(2)
z,0.

They fulfill the deformed commutation relations (7.3) with respect to ω(2)
can. The “two-particle” version

of the Hamiltonian hz,t (7.5) turns out to be

h(2)
z,t = h(2)

z,1 + b1(t)h(2)
z,2 + b2(t)h(2)

z,3,

and, consequently, is no longer the sum of two copies of (7.5) as hz,t(q1, p1) + hz,t(q2, p2). The
corresponding Hamilton equations are given by

dq1

dt
= b1(t)

(ezq1 − 1
z

)
ezq2 + b2(t)

(
2 ezq1 − 1

)
ezq2 ,

dp1

dt
= 1 − b1(t)ezq1ezq2 p1 − 2zb2(t)ezq1ezq2 p1,

dq2

dt
= b1(t)

(ezq2 − 1
z

)
+ b2(t)ezq2 ,

dp2

dt
= 1 − b1(t)ezq2

((
ezq1 − 1

)
p1 + p2

)
− zb2(t)ezq2

((
2ezq1 − 1

)
p1 + p2

)
,

showing that there are coupling terms and that the resulting system is intrinsic in the sense that it
is completely different from the initial one (7.6), and hence finding that the corresponding solutions
should be seen as a new problem.
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9. Concluding remarks

In this work, using the general approach proposed in [14], the generalized Buchdahl equation has
been revisited from the perspective of LH systems. Although the Buchdahl equation can be solved
directly by means of integrating factors (and is further linearizable by point transformations), its
reformulation in terms of a book b2-LH system is of interest, as the solution method can be extended
to Poisson–Hopf deformations from the quantum algebra bz,2, providing a systematic procedure to
determine the general solution of differential equations that, in general, do not admit more than one
Lie point symmetry and are not related to exact equations. Further, truncation of the series expansion
in the quantum deformation parameter z provides perturbations of the equation of an arbitrary order,
which under certain circumstances, can also be solved explicitly. Certain special cases of the
generalized Buchdahl equation and their quantum deformations have been analyzed, as well as the
first-order approximations in the deformation parameter z. The next natural step, namely extending
the underlying Lie algebra to the oscillator algebra h4 ⊃ b2, provides additional generalizations of the
Buchdahl equation that still preserve the property of allowing an explicit solution, including the
quantum deformations hz,4 ⊃ bz,2. An interesting question in this context is whether equivalence
criteria for the first-order approximation of the deformed equations can be obtained, eventually
making possible the obtainment of canonical forms of such perturbations and simplifying the
computation of exact solutions.

To summarize the results obtained in this paper, the most general cases have been presented in
Propositions 7.1 and 7.2, by considering the deformed oscillator algebra hz,4. From them, the different
generalized systems of Buchdahl equations can be recovered through the nondeformed limit z → 0 or
by setting the additional t-dependent coefficient b2(t) = 0, as shown in Figure 3:

Extended generalized
Buchdahl equations: h4

Proposition 6.1
Table 1

b2(t) = 0

""E
EE

EE
EE

EE
E

Deformed extended generalized
Buchdahl equations: hz,4
Propositions 7.1 and 7.2

Table 2
b2(t) = 0

##G
GG

GG
GG

GG

z→ 0
::vvvvvvvvv

Generalized
Buchdahl equations: b2

Proposition 2.1
Sections 3.1–3.3

Deformed generalized
Buchdahl equations: bz,2
Propositions 4.1 and 4.2

Sections 5.1–5.3

z→ 0
==zzzzzzzzz

Figure 3. The different generalized systems of Buchdahl equations.
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As a general remark, it is worth observing that any perturbation at an arbitrary order in z of the
generalized Buchdahl equation (in particular, (5.13)) always admits a Lagrangian formulation, as
actually happens with any scalar second-order ODE [34]. For example, restricting it to the case of
perturbations of the type

d2x
dt2 ≃

3
x

(
dx
dt

)2

+
1
t

dx
dt
+ ϕz(t, x)

dx
dt
, (9.1)

such that
lim
z→0
ϕz(t, x) = 0,

setting

u =
∂L

∂ẋ2 ,

a (nonstandard) Lagrangian L can be obtained as a solution of the first-order linear partial differential
equation

∂u
∂t
+ ẋ
∂u
∂x
+

(
3
x

ẋ2 +

(
1
t
+ ϕz(t, x)

)
ẋ
)
∂u
∂ẋ
+

(
6
x

ẋ +
1
t
+ ϕz(t, x)

)
u = 0, (9.2)

which is deeply connected with the Jacobi multipliers [35]. Clearly, an admissible solution must satisfy
the constraint that

L0 = lim
z→0
L(z, t, x, ẋ)

provides a (nonstandard) Lagrangian for the undeformed Buchdahl equation (1.4). It can be easily
verified that the Lagrangian

L0 = t3x6 ẋ−2

given in [6] is a particular solution of (9.2) for

ϕz(t, x) = 0,

as well as the alternative Lagrangian

L1 =
t3x6

ẋ2 + kt2x6 ,

where k is an arbitrary nonzero constant∥.
The solution procedure is valid for other types of scalar ordinary differential equations that can be

expressed as LH systems based on the book algebra b2, encompassing, among others, complex
Bernoulli equations with real parameter functions, some types of Lotka–Volterra systems and various
oscillator systems, as well as their corresponding quantum deformations [14, 15]. The same holds for
equations leading to LH systems governed by the oscillator algebra h4. In this context, a physically
relevant class of differential equations that deserves a deeper analysis in connection with the LH
formalism is given by the three-dimensional Hamiltonians associated with metric tensors in (3+1)
dimensions, in the specific context of integrable cosmological models [36].

Finally, concerning the extension of the method of exact solutions to other LH systems (and their
corresponding quantum deformations) based on Lie algebras that contains b2 as a subalgebra, let us

∥In this context, we observe that the second Lagrangian L2 =
(
kẋ2t3 x6 + t

)−1 given in [6] does not provide Eq (1.4) but the equation
d2 x
dt2 = −

(
3
x

(
dx
dt

)2
+ 1

t
dx
dt

)
.
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mention that the remaining possibilities in the classification of [11, 12] are the simple Lie algebra
sl(2,R) and the two-photon one h6 ⊃ h4 ⊃ b2. However, no exact solution is yet known to be obtainable
for such LH systems, so that the LH approach considered here merely provides t-independent constants
of the motion and superposition rules [12, 20, 25], from which, eventually, the generic solution can be
derived once a sufficient number of particular solutions has been determined. A detailed analysis of
these further generalizations is currently in progress.
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Appendix

Symmetry generators of Eq (1.5)

The Lie point symmetries of the generalized Buchdahl equations are obtained using the standard
Lie symmetry method [37].

Let us write
A(x) =

∫ x

a(ξ)dξ

and

B(t) =
∫ t

b(τ)dτ.

The Lie symmetry generators are given by

Y1 = eA(x) ∂

∂x
, Y2 = eA(x)

(∫
e−A(x)dx

)
∂

∂x
,

Y3 = e−B(t) ∂

∂t
, Y4 = e−B(t)

(∫
eB(t)dt

)
∂

∂t
,

Y5 = eA(x)
(∫

eB(t)dt
)
∂

∂x
, Y6 = e−B(t)

(∫
e−A(x)dx

)
∂

∂t
,

Y7 = e−B(t)
(∫

e−A(x)dx
) (∫

eB(t)dt
)
∂

∂t
+ eA(x)

(∫
e−A(x)dx

)2
∂

∂x
,

Y8 = e−B(t)
(∫

eB(t)dt
)2
∂

∂t
+ eA(x)

(∫
e−A(x)dx

) (∫
eB(t)dt

)
∂

∂x
.

The corresponding nontrivial commutators are

[Y1,Y2] = Y1, [Y1,Y6] = Y3, [Y1,Y7] = Y4 + 2Y2, [Y1,Y8] = Y5,

[Y2,Y5] = −Y5, [Y2,Y6] = Y6, [Y2,Y7] = Y7, [Y3,Y4] = Y3, [Y3,Y5] = Y1,

[Y3,Y7] = Y6, [Y3,Y8] = 2Y4 + Y2, [Y4,Y5] = Y5, [Y4,Y6] = −Y6,

[Y4,Y8] = Y8, [Y5,Y6] = Y4 − Y2, [Y5,Y7] = Y8, [Y6,Y8] = Y7,

which are easily seen to generate a Lie algebra isomorphic to sl(3,R), implying that the equation is
linearizable via a point transformation [10, 37]. We further observe that two-dimensional Lie point
symmetry algebras of the canonical types LI

2,1, LII
2,1, LI

2,2, and LII
2,2 (see [10] for details) that also imply

linearization are, respectively, generated by the following vector fields:

LI
2,1 : Y1, Y3, [Y1,Y3] = 0, δ = −eA(t)e−B(t) , 0,

LII
2,1 : Y1, Y5, [Y1,Y5] = 0, δ = 0,

LI
2,2 : Y2, Y6, [Y2,Y6] = Y6, δ = −eA(x)e−B(t)

(∫
e−A(x)dx

)2

, 0,

LII
2,2 : Y1, Y2, [Y1,Y2] = Y1, δ = 0,
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where

δ = det
(
ξ1 η1

ξ2 η2

)
and

Zi = ξi
∂

∂t
+ ηi
∂

∂x
are the infinitesimal symmetry generators for i = 1, 2.

The point symmetries of Eqs (5.4), (5.9), and (5.13) are computed similarly. On the other hand,
equations of the type in (9.1) admit point symmetries of the type

Z = β1
∂

∂t
+

(
α1

x3 + α2x
)
∂

∂x

for perturbation terms of the form

ϕz(t, x) =
1
t
Φ

(
z,

1
α2

t
−4α2
β1

(
α2x4 + α1

))
.
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