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Abstract: The primary objective of this research is to develop a novel high-order symmetric
and energy-preserving method for solving two-dimensional nonlinear wave equations. Initially,
the nonlinear wave equation is reformulated as an abstract Hamiltonian ordinary differential
equation (ODE) system with separable energy in an appropriate infinite-dimensional function space.
Subsequently, an energy-preserving and symmetric continuous-stage Runge-Kutta-Nyström time-
stepping scheme is derived. After approximating the spatial differential operator using the two-
dimensional Fourier pseudo-spectral method, we derive an energy-preserving fully discrete scheme.
A rigorous error analysis demonstrates that the proposed method can achieve at least fourth-order
accuracy in time. Finally, numerical examples are provided to validate the accuracy, efficiency, and
long-term energy conservation of the method.
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1. Introduction

The nonlinear partial differential equations have significant roles in a variety of fields in engineering
and science (see, e.g., [4, 39]), including quantum field theory, nonlinear optics, propagation of
dislocations in crystals, nucleation, and solid state physics. In this paper, we consider the following
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nonlinear wave equation in two dimensions:

∂2u
∂t2 − κ

2
(
∂2u
∂x2 +

∂2u
∂y2

)
= f

(
u(x, y, t)

)
, (x, y) ∈ (0, L1) × (0, L2), t ∈ [t0,T ], (1.1)

subject to the initial conditions

u(x, y, t0) = ϕ0(x, y),
∂u
∂t

(x, y, t0) = ϕ1(x, y), x ∈ [0, L1] × [0, L2], (1.2)

and the periodic boundary conditions

u(x, y, t) = u(x + L1, y, t), u(x, y, t) = u(x, y + L2, t), (x, y) ∈ Ω̄, t ∈ [t0,T ], (1.3)

where κ2 is a dimensionless positive parameter, ϕ0(x, y) and ϕ1(x, y) are the given (L1, L2)- periodic
functions, and L1 and L2 are the basic positive periods. In the literature, many works have been
made to explore the analytical solution for the nonlinear wave equations (see, e.g., [1, 39]). However,
it is difficult to obtain the general exact solutions for all the nonlinear wave equations. Therefore,
the development of efficient and high-precision numerical methods for solving the two-dimensional
nonlinear wave equations has became much more important. A great number of excellent numerical
strategies have been proposed to study the nonlinear wave equations, including the finite difference
methods (see, e.g., [12, 17, 18]), the finite element methods (see, e.g., [2, 3, 33]), the spectral
methods [25], the domain decomposition methods [19], and the radial basis functions methods [11].

If the nonlinear function f (u) is the negative derivative of a nonnegative function F(u), i.e., f (u) =

−
dF(u)

du , and the solution of (1.1) satisfies
(
u, ∂u

∂t

)
∈ H1(Ω) × L2(Ω), then the nonlinear wave Eqs (1.1)–

(1.3) could conserve the energy

E(t) :=
1
2

∫
Ω

(
u2

t (x, y, t) + κ2
∣∣∣∇u(x, y, t)

∣∣∣2 + 2F
(
u(x, y, t)

))
dxdy

≡
1
2

∫
Ω

(
ϕ2

1(x, y) + κ2
∣∣∣∇ϕ0(x, y)

∣∣∣2 + 2F
(
ϕ0(x, y)

))
dxdy = E(t0), t ≥ t0.

(1.4)

The energy conservation (1.4) is a significant property of the nonlinear wave equations, and plays
prominent roles in investigating soliton theory. Under this case, the nonlinear wave equations like (1.1)
are called nonlinear Hamiltonian wave equations. We know that the energy conservation along the
exact flow is one most characteristic properties of the nonlinear Hamiltonian wave Eq (1.1). The
energy-conserving numerical schemes usually yield correct physical phenomenons and numerical
stability (see, e.g., [24, 29, 32]). Therefore, it will be meaningful to design suitable numerical schemes
which could exactly preserve the discrete energy and symmetry of the nonlinear Hamiltonian wave
Eq (1.1).

The development of energy-preserving numerical schemes for nonlinear Hamiltonian wave
equations has garnered significant attention across various fields of mechanics. For example, Li
et al. [21] proposed several finite difference schemes that preserve specific algebraic invariants of the
nonlinear Klein-Gordon equations. Moreover, based on the concept of the discrete line integral method
(see, e.g., [5, 6]), L. Brugnano et al. developed the energy-preserving Hamiltonian boundary value
methods (HBVMs) to solve the nonlinear Hamiltonian PDEs (see, e.g., [7, 8]). The energy-preserving
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average vector field (AVF) method was initially developed for solving Hamiltonian ordinary differential
equations (ODEs). Recently, the AVF method, when combined with appropriate spatial semi-
discretization techniques, has been utilized to numerically investigate nonlinear Hamiltonian wave
equations, thereby attracting significant attention from researchers. For instance, AVF finite element
methods have been introduced to solve one-dimensional Hamiltonian wave equations (see [10, 33]).
In [31,32], combining the AVF method with the spatial fourth-order finite difference semidiscretisation,
the authors developed energy-preserving methods for one- and two- dimensional Hamiltonian wave
equations with Neumann boundary conditions. However, the previous schemes have only second-
order accuracy in time. To enhance temporal accuracy, Hou et al. [17, 18] integrated the fourth-order
AVF temporal integrator with spatial compact finite difference (CFD) discretization to construct and
analyze high-order energy-preserving schemes for solving one- and two-dimensional nonlinear wave
equations with variable coefficients. This represents a significant advancement in the field of energy-
preserving methods for nonlinear Hamiltonian wave equations. Building on these contributions, we
aim to develop and analyze a high-order energy-preserving and symmetric scheme for two-dimensional
nonlinear Hamiltonian wave equations by combining the continuous-stage Runge-Kutta-Nyström time
integrator with Fourier pseudo-spectral spatial discretization.

The rest of the paper is organized as follows: In Section 2, the two-dimensional nonlinear wave
Eq (1.1) will first be reformulated as an abstract infinite-dimensional separable Hamiltonian ODE
system in an appropriate function space. Then, the application of a continuous-stage Runge-Kutta-
Nyström time integrator to the yielded ODE’s system to derive the time-stepping scheme is presented.
The energy preservation and symmetry of the proposed time-stepping scheme will be investigated.
Furthermore, by approximating the spatial differential operator using the two-dimensional Fourier
pseudo-spectral method, we derive a fully discrete scheme. A rigorous analysis of the energy
conservation properties of this scheme is then conducted. The error analysis demonstrates that
the proposed scheme achieves sixth-order accuracy in the relatively low regularity function space
C2([t0,T ],B

)
. Numerical experiments are presented in Section 4. Lastly, a concise conclusion is

provided in Section 5.

2. Temporal semi-discretisation: energy-preserving and symmetric time-stepping scheme

In this section, we will first represent the two-dimensional nonlinear wave Eqs (1.1)–(1.3) as an
abstract nonlinear ODE on an appropriate infinite-dimensional Hilbert space. Then, we will develop
and analyze a novel energy-conserving time-stepping scheme for the abstract ODE.

2.1. Abstract Hamiltonian ODE’s system

According to the analysis in references [30, 37], by defining the mapping

u(t) := [(x, y)→ u(x, y, t)],

we can express the nonlinear wave Eqs (1.1)–(1.3) as the following abstract ODE (e.g., [29, 30, 38]):u′′(t) = −Au(t) + f
(
u(t)

)
:, g

(
u(t)

)
, t ∈ [t0,T ],

u(t0) = ϕ0(x, y), u′(t0) = ϕ1(x, y), (x, y) ∈ Ω̄,
(2.1)
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whereA is the linear differential operator

Au(t) = −κ2∆u(t), ∀u(t) ∈ B,

and B is the infinite-dimensional Hilbert space

B =
{
u ∈ H2(Ω) : u(x, y) = u(x + L1, y), u(x, y) = u(x, y + L2)

}
. (2.2)

For any φ(x, y), ψ(x, y) ∈ B, we introduce the inner product and the norms

(
φ(x, y), ψ(x, y)

)
=

∫
Ω

φ(x, y)ψ(x, y)dxdy, ‖φ‖ =

√(
φ(x, y), φ(x, y)

)
, |φ|1 =

√(
− ∆φ(x, y), φ(x, y)

)
.

Then, by taking the inner product of the abstract ODE’s system (2.1) with u′(t), we are able to find that
system (2.1) can preserve the separable energy

H[u(t), u′(t)] := H1[u′(t)] +H2[u(t)] ≡ H1[u′(t0)] +H2[u(t0)] = H[u(t0), u′(t0)], (2.3)

where the kinetic energy partH1[u′(t)] and the potential energy partH2[u(t)] are

H1[u′(t)] =
1
2

∥∥∥u′(t)
∥∥∥2

and H2[u′(t)] =
κ2

2

∣∣∣∇u(t)
∣∣∣2
1

+
(
F
(
u(t)

)
, 1

)
, (2.4)

respectively. Obviously, the energy H[u(t), u′(t)] of the abstract ODE (2.1) is the same as the
energy E(t) of the two-dimensional nonlinear wave Eqs (1.1)–(1.3). Moreover, the abstract ODE’s
system (2.1) is actually a Hamiltonian system

d
dt

[
u(t)
v(t)

]
= S

[ δH2[u(t)]
δu

δH1[v(t)]
δv

]
, (2.5)

where v(t) = u′(t) and S is a skew-adjoint operator

S =

[
0 1
−1 0

]
.

In light of the definition of the variational derivatives, we are able to check that

δH1[v(t)]
δv

= v(t) and
δH2[u(t)]

δu
= Au(t) − f

(
u(t)

)
= −g

(
u(t)

)
. (2.6)

The main purpose of this work is to design a suitable time-stepping scheme for the two-dimensional
nonlinear wave Eqs (1.1)–(1.3), which could exactly preserve the separable energy H[u(t), u′(t)] or
E(t). To achieve this purpose, the temporal discretization strategy will be first considered for the
abstract ODE (2.1) in the infinite-dimensional function space.
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2.2. Formulation of the energy-preserving time-stepping scheme

For any positive integer N, we define the temporal mesh grid as

ΩN :=
{
tn

∣∣∣ tn = t0 + n∆t, n = 0, 1, . . . ,N
}

(2.7)

with time step size ∆t = (T − t0)/N, and introduce the following approximations:

un ≈ u(tn), vn ≈ u′(tn), Un
τ ≈ u(tn + τ∆t), ∀τ ∈ [0, 1].

Then, applying the energy-preserving integrators, which are proposed for the second-order
Hamiltonian ordinary differential systems (see [22, 26]), to the abstract ODEs (2.1), we can establish
the time-stepping scheme for the two-dimensional nonlinear wave Eqs (1.1)–(1.3).

Definition 2.1. For any one temporal single step tn to tn+1, a continuous-stage Runge-Kutta-Nyström
(RKN) time-stepping scheme for the abstract ODE (2.1) is defined as

Un
τ = un + τ∆tvn + ∆t2

∫ 1

0
P3,2(τ, σ)g(Un

σ)dσ,

un+1 = un + ∆tvn + ∆t2
∫ 1

0
(1 − τ)g(Un

τ )dτ,

vn+1 = vn + ∆t
∫ 1

0
g(Un

τ )dτ,

(2.8)

where the weight function P3,2(τ, σ) is a cubic binary polynomial of the form

P3,2(τ, σ) =
τ

2
(1 − 6σ + 6σ2 + 3τ − 6σ2τ − 2τ2 + 4στ2), ∀(τ, σ) ∈ [0, 1] × [0, 1].

Remark 2.1. In [22, 26], the authors introduced a framework for energy-preserving continuous-
stage RKN methods for solving second-order Hamiltonian ODEs. Drawing upon the methodologies
proposed in [22, 26], we develop a novel energy-preserving time-stepping scheme utilizing the weight
function P3,2(τ, σ), and extend this scheme to the two-dimensional nonlinear wave Eqs (1.1)–(1.3).
Furthermore, it is important to emphasize that the selection of the weight function P3,2(τ, σ) is not
unique. Different choices of weight functions can result in numerical methods exhibiting varying
accuracy.

Now, we focus on verifying the energy conservation of the continuous-stage RKN time-stepping
scheme defined in Definition 2.1 for the two-dimensional nonlinear wave Eqs (1.1)–(1.3).

Theorem 2.1. The continuous-stage Runge-Kutta-Nyström time-stepping scheme (2.8) can exactly
preserve the energyH[u(t), v(t)] of the two-dimensional nonlinear wave Eqs (1.1)–(1.3) or the infinite-
dimensional abstract ODE’s system (2.1), that is,

H[un+1, vn+1] ≡ H[un, vn], n = 0, 1, 2, . . . ,N − 1. (2.9)

Proof. Noticing the form of the separable energy (2.3) and (2.4), we have

H[un+1, vn+1] = H1[vn+1] +H2[un+1] =
1
2
(
vn+1, vn+1) +H2[un+1]. (2.10)
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It follows from inserting the expression of vn+1 into (2.10) and after a careful calculation that

H[un+1, vn+1] =
1
2

(
vn + ∆t

∫ 1

0
g(Un

τ )dτ, vn + ∆t
∫ 1

0
g(Un

τ )dτ
)

+H2[un+1]

=H[un,vn]+∆t
(
vn,

∫ 1

0
g(Un

τ )dτ
)
+

∆t2

2

(∫ 1

0
g(Un

τ )dτ,
∫ 1

0
g(Un

τ )dτ
)
+H2[un+1]−H2[un].

(2.11)

Moreover, it is evident that

H2[un+1] −H2[un] =

∫ 1

0
dH2[Un

τ ] =

∫ 1

0

(δH2[Un
τ ]

δu
,

dUn
τ

dτ

)
dτ = −

∫ 1

0

(
g(Un

τ ),
dUn

τ

dτ

)
dτ. (2.12)

Substituting the expressions of Un
τ into (2.12) leads to

H2[un+1] −H2[un] = −

∫ 1

0

(
g(Un

τ ),∆tvn + ∆t2
∫ 1

0

∂P3,2(τ, σ)
∂τ

g(Un
σ)dσ

)
dτ

= − ∆t
(
vn,

∫ 1

0
g(Un

τ )dτ
)
− ∆t2

∫ 1

0

(
g(Un

τ ),
∫ 1

0

∂P3,2(τ, σ)
∂τ

g(Un
σ)dσ

)
dτ.

(2.13)

Noticing the form of the weight function P3,2(τ, σ), we have

∂P3,2(τ, σ)
∂τ

=
1
2
− 3σ + 3τ + 3σ2 − 3τ2 − 6σ2τ + 6στ2, ∀(τ, σ) ∈ [0, 1] × [0, 1].

Therefore, Eq (2.13) can be simplified as

H2[un+1] −H2[un] = −∆t
(
vn,

∫ 1

0
g(Un

τ )dτ
)
−

∆t2

2

( ∫ 1

0
g(Un

τ )dτ,
∫ 1

0
g(Un

σ)dσ
)
. (2.14)

Comparing (2.11) with (2.14), we obtain

H[un+1, u′n+1] ≡ H[un, u′n], n = 0, 1, 2, . . . ,N − 1.

The conclusion of the theorem is confirmed. �

The symmetric time integration method usually exhibits superior long time computational behavior
along the numerical flows (see Chapter V in [16]). We know that the two-dimensional nonlinear wave
Eqs (1.1)–(1.3) are temporal reversible (see, e.g., [24, 28, 29]). Therefore, it will be significant to
investigate the symmetry of the energy-preserving continuous stage RKN time-stepping scheme.

Theorem 2.2. The energy-preserving continuous-stage Runge-Kutta-Nyström time-stepping
scheme (2.1) for solving the two-dimensional nonlinear wave Eqs (1.1)–(1.3) is temporal reversible.

Proof. According to the concept of the time reversible integration method (see Chapter V in [16]), and
applying the following transformations

∆t ↔ −∆t, un+1 ↔ un, vn+1 ↔ vn, τ = 1 − τ
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to the time-stepping scheme (2.1), we obtain the adjoint scheme

Un
1−τ = un+1 − (1 − τ)∆tvn+1 + ∆t2

∫ 1

0
P3,2(1 − τ, σ)g(Un

σ)dσ,

un = un+1 − ∆tvn+1 + ∆t2
∫ 1

0
σg(Un

σ)dσ,

vn = vn+1 − ∆t
∫ 1

0
g(Un

σ)dσ.

(2.15)

After a careful calculation, the last two equations of the adjoint scheme (2.15) can be rewritten as
un+1 = un + ∆tvn + ∆t2

∫ 1

0
σg(Un

σ)dσ,

vn+1 = vn + ∆t
∫ 1

0
g(Un

σ)dσ.
(2.16)

Inserting Eq (2.16) into the first equation of (2.15), we obtain

Un
1−τ = un + τ∆tvn + ∆t2

∫ 1

0

(
σ − (1 − τ) + P3,2(1 − τ, σ)

)
g(Un

σ)dσ. (2.17)

The integral transformation τ = 1 − ξ yields that

1 − ξ − (1 − τ) + P3,2(1 − τ, 1 − ξ) = P3,2(τ, ξ). (2.18)

Therefore, we see that the adjoint scheme (2.15) is the same as scheme (2.8). That means the energy-
preserving continuous stage RKN time-stepping scheme is symmetric or temporal reversible. �

Utilizing the variation-of-constants formula on the infinite-dimensional abstract ODE system (2.1),
the exact solution of the abstract system (2.1) can be expressed as

u(tn + τ∆t) = u(tn) + τ∆tv(tn) + ∆t2
∫ τ

0
(τ − σ)g

(
u(tn + σ∆t)

)
dσ, ∀τ ∈ [0, 1]. (2.19)

Furthermore, it is easy to obtain from Eq (2.19) that
u(tn+1) = u(tn) + ∆tv(tn) + ∆t2

∫ 1

0
(1 − τ)g

(
u(tn + τ∆t)

)
dτ,

v(tn+1) = v(tn) + ∆t
∫ 1

0
g
(
u(tn + τ∆t)

)
dτ.

(2.20)

Inserting the exact solution u(t) of the infinite-dimensional abstract ODE system (2.1) into the time-
stepping scheme (2.8), we have

u(tn + τ∆t) = u(tn) + τ∆tv(tn) + ∆t2
∫ 1

0
P3,2(τ, σ)g(u(tn + σ∆t))dσ + Rn(τ),

u(tn+1) = u(tn) + ∆tv(tn) + ∆t2
∫ 1

0
(1 − τ)g(u(tn + τ∆t))dτ,

v(tn+1) = v(tn) + ∆t
∫ 1

0
g(u(tn + τ∆t))dτ,

(2.21)

AIMS Mathematics Volume 10, Issue 3, 6764–6787.



6771

where the residual Rn(τ) is a function of τ ∈ [0, 1]. Applying the Taylor expansion with integral
remainder

u(tn + σ∆t) = u(tn) + σ∆tv(tn) + ∆t2
∫ σ

0
(σ − z)u′′(tn + z∆t)dz (2.22)

to the nonlinear integrands appearing in (2.19) and the first equation of (2.21) results in

u(tn+τ∆t) = u(tn)+τ∆tv(tn)+∆t2
∫ τ

0
(τ−σ)g

(
u(tn)+σ∆tv(tn)+∆t2

∫ σ

0
(σ−z)u′′(tn+z∆t)dz

)
dσ, (2.23)

and

u(tn+τ∆t)=u(tn)+τ∆tv(tn)+∆t2
∫ 1

0
P3,2(τ, σ)g

(
u(tn)+σ∆tv(tn)+∆t2

∫ σ

0
(σ−z)u′′(tn+z∆t)dz

)
dσ+Rn(τ). (2.24)

Comparing the formulae (2.23) with (2.24), and noticing g(u) = −Au + f (u), we can approximate the
local residuals Rn(τ), 0 ≤ τ ≤ 1, in the following theorem.

Theorem 2.3. Suppose that the exact solution u of the abstract ODE’s system (2.1) satisfies u ∈
C2([t0,T ],B

)
and the nonlinear function f ′ ∈ L∞

(
[t0,T ],B

)
. Then, the remainder Rn(τ) satisfies the

estimations
‖Rn(τ)‖ ≤ C∆t4, 0 ≤ τ ≤ 1, (2.25)

where C is a constant and independent of ∆t.

Proof. Subtracting (2.24) from (2.23) and noticing g(u) = −Au + f (u), we obtain

Rn(τ) = Θn
1(τ) + Θn

2(τ), (2.26)

where

Θn
1(τ) = − ∆t2

∫ τ

0
(τ − σ)A

(
u(tn) + σ∆tv(tn) + ∆t2

∫ σ

0
(σ − z)u′′(tn + z∆t)dz

)
dσ

+ ∆t2
∫ 1

0
P3,2(τ, σ)A

(
u(tn) + σ∆tv(tn) + ∆t2

∫ σ

0
(σ − z)u′′(tn + z∆t)dz

)
dσ,

(2.27)

and

Θn
2(τ) = ∆t2

∫ τ

0
(τ − σ) f

(
u(tn) + σ∆tv(tn) + ∆t2

∫ σ

0
(σ − z)u′′(tn + z∆t)dz

)
dσ

− ∆t2
∫ 1

0
P3,2(τ, σ) f

(
u(tn) + σ∆tv(tn) + ∆t2

∫ σ

0
(σ − z)u′′(tn + z∆t)dz

)
dσ.

(2.28)

It follows from the definition of the bilinear polynomial weight function P3,2(τ, σ) that∫ τ

0
(τ − σ)dσ =

∫ 1

0
P3,2(τ, σ)dσ =

τ2

2
and

∫ τ

0
σ(τ − σ)dσ =

∫ 1

0
σP3,2(τ, σ)dσ =

τ3

6
. (2.29)

Therefore, it is easy to check that

Θn
1(τ)=−∆t4

∫ τ

0

∫ σ

0
(τ−σ)(σ−z)Au′′(tn+z∆t)dzdσ+∆t4

∫ 1

0

∫ σ

0
P3,2(τ, σ)(σ−z)Au′′(tn+z∆t)dzdσ. (2.30)
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Utilizing the Taylor expansion of f (·), i.e.,

f
(
u(tn)+σ∆tv(tn)+∆t2

∫ σ

0
(σ− z)u′′(tn+z∆t)dz

)
= f

(
u(tn)

)
+ f ′

(
u(tn)

)(
σ∆tv(tn)+∆t2

∫ σ

0
(σ− z)u′′(tn + z∆t)dz

)
+ · · ·

in (2.28) and recalling Eq (2.29), we have

Θn
2(τ) = ∆t4 f ′

(
u(tn)

) ∫ τ

0

∫ σ

0
(τ − σ)(σ − z)u′′(tn + z∆t)dzdσ

− ∆t4 f ′
(
u(tn)

) ∫ 1

0

∫ σ

0
P3,2(τ, σ)(σ − z)u′′(tn + z∆t)dzdσ + O(∆t5).

(2.31)

Inserting the results (2.30) and (2.31) into (2.26), and taking the L2 norms on both sides of (2.29), it is
easy to verify the estimated result of the theorem.

�

3. Structure-preserving fully discrete scheme

In this section, by combing the Fourier pseudo-spectral spatial approximation with the continuous-
stage RKN time-stepping scheme (2.8), we will construct the energy-preserving fully discrete scheme
for the two-dimensional nonlinear wave Eqs (1.1) and (1.2).

Choose M1 and M2 to be any even integers, and define ∆x := L1
M1

and ∆y := L2
M2

as the spatial steps.
Then, the temporal-spatial grid points are denoted as ΩN

M = ΩM × ΩN , where the temporal grid ΩN is
given by (2.7), and the spatial grid ΩM is defined as

ΩM :=
{
(x j, xk)

∣∣∣ x j = j∆x, j = 0, 1, . . . ,M1 − 1, yk = k∆y, k = 0, 1, . . . ,M2 − 1
}
. (3.1)

The grid function space VM defined on ΩM is given by

VM =
{
u
∣∣∣ u = (u j,k) with u j,k = u(x j, yk), (x j, yk) ∈ ΩM

}
.

For any u = (u j,k) ∈ VM, we can reformulate it as the vector form

u =
(
u0,0, · · · , uM1−1,0, u0,1, · · · , uM1−1,1, · · · , u0,M2−1, · · · , uM1−1,M2−1

)>
.

Therefore, the vector space of the grid functionsVM, which is identical to VM, can be presented as

VM =
{
u

∣∣∣ u =
(
u0,0, · · · , uM1−1,0, u0,1, · · · , uM1−1,1, · · · , u0,M2−1, · · · , uM1−1,M2−1

)> with u = (u j,k) ∈ VM

}
.

In addition, the corresponding discrete inner product and norm are defined as

〈
u, v

〉
= ∆x∆y

M1−1∑
j=0

M2−1∑
k=0

un
j,kv

n
j,k, ‖u‖ =

√〈
u,u

〉
, ∀u, v ∈ VM.
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3.1. Spatial semi-discretisation: Fourier pseudo-spectral method

Define the interpolation space as

S
p
M := span

{
g j(x)gk(y), 0 ≤ j ≤ M1 − 1, 0 ≤ k ≤ M2 − 1

}
,

where g j(x) and gk(y) are trigonometric polynomials

g j(x) =
1

M1

M1/2∑
k1=−M1/2

1
ck1

eik1µ1(x−x j), gk(y) =
1

M2

M2/2∑
k2=−M2/2

1
ck2

eik2µ2(y−yk)

with µ1 = 2π
L1
, µ2 = 2π

L2
, and

ck1 =

1, |k1| < M1/2,
2, |k1| = M1/2,

ck2 =

1, |k2| < M2/2,
2, |k2| = M2/2.

Therefore, for any periodic function u(x, y) ∈ L2
p(Ω), the interpolation operator IM : L2

p(Ω)→ Sp
M is

IMu(x, y) =

M1−1∑
j=0

M2−1∑
k=0

u(x j, yk)g j(x)gk(x) =

M1/2∑
k1=−M1/2

M2/2∑
k2=−M2/2

ũk1,k2e
ik1µ1 xeik2µ2y, (3.2)

where the Fourier coefficients ũk1,k2 are

ũk1,k2 =
1

M1ck1

1
M2ck2

M1−1∑
l=0

M2−1∑
k=0

u(xl, yk)e−ik1µ1 xle−ik2µ2yk . (3.3)

Moreover, it is simple to check that

ũ−M1/2,· = ũM1/2,· and ũ·,−M2/2 = ũ·,M2/2.

It follows from applying the differential operatorA to the interpolation IMu(x, y) that

AIMu(x, y)
∣∣∣
x=xi,y=y j

=

M1/2∑
k1=−M1/2

M2/2∑
k2=−M2/2

κ2[(µ1k1)2 + (µ2k2)2]ũk1,k2e
ik1µ1 xieik2µ2y j

=

M1/2∑
k2=−M1/2

 M2/2∑
k1=−M2/2

κ2(µ1k1)2ũk1,k2e
ik1µ1 xi

 eik2µ2y j

+

M2/2∑
k1=−M2/2

 M1/2∑
k2=−M1/2

κ2(µ2k2)2ũk1,k2e
ik2µ2y j

 eik1µ1 xi

=
((

IM2 ⊗ Dx
2 + Dy

2 ⊗ IM1

)
u
)

i, j
,

(3.4)

where IMi , i = 1, 2 are the unity matrices, and Dx
2 = FH

M1
Λ1FM1 and Dy

2 = FH
M2

Λ2FM2 are the spectral
differential matrices. Here, we should point out that FM is the discrete Fourier transform matrix with
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elements (FM) j,k = 1
√

M
e
−2πi( j)(k)

M , j, k = 0, 1, . . . ,M−1, FH
M is the conjugate transformation matrix of FM,

and Λ1,Λ2 are the frequency matrices with entries

Λ1 = diag
(
λDx

2,0, λDx
2,1, . . . , λDx

2,M1−1
)
, λDx

2, j
=

κ2(µ1 j)2, 0 ≤ j ≤ M1/2,

κ2(µ1( j − M1)
)2
, M1/2 < j ≤ M1 − 1,

Λ2 = diag
(
λDy

2,0
, λDy

2,1
, . . . , λDy

2,M2−1
)
, λDy

2, j
=

κ2(µ2 j)2, 0 ≤ j ≤ M2/2,

κ2(µ2( j − M2)
)2
, M2/2 < j ≤ M2 − 1.

(3.5)

Thus, the spectral differential matrix A for approximating the 2D differential operator A can be
expressed as (see, e.g., [13, 14, 40])

Au =
(
IM2 ⊗ Dx

2 + Dy
2 ⊗ IM1

)
u

=
(
FH

M2
IM2 FM2 ⊗ FH

M1
Λ1FM1 + FH

M2
Λ2FM2 ⊗ FH

M1
IM1 FM1

)
u

=
((

FM2 ⊗ FM1

)H(
IM2 ⊗ Λ1

)(
FM2 ⊗ FM1

)
+

(
FM2 ⊗ FM1

)H(
Λ2 ⊗ IM1

)(
FM2 ⊗ FM1

))
u

=
((

FM2 ⊗ FM1

)H(
IM2 ⊗ Λ1 + Λ2 ⊗ IM1

)(
FM2 ⊗ FM1

))
u.

(3.6)

Actually, the spectral differential matrix A is a symmetric and semi-positive matrix, and Au can be fast
computed by the two-dimensional FFT function ifft2

(
Λ. ∗ fft2(u)

)
built in MATLAB.

Using the spectral differential matrix A to approximate the differential operator A, the two-
dimensional nonlinear wave Eqs (1.1) and (1.2) or the abstract ODE system (2.1) can be converted
into the semi-discrete system u′′(t) = g

(
u(t)

)
, t ∈ [t0,T ],

u(t0) = ϕ0, u′(t0) = ϕ1,
(3.7)

where u(t) ∈ VM and g
(
u(t)

)
= −Au(t) + f

(
u(t)

)
with

f
(
u(t)

)
=
(

f
(
u0,0(t)

)
,· · ·, f

(
uM1−1,0(t)

)
, f

(
u0,1(t)

)
,· · ·, f

(
uM1−1,1(t)

)
,· · ·, f

(
u0,M2−1(t)

)
,· · ·, f

(
uM1−1,M2−1(t)

))>
.

Taking the discrete inner product on both sides of the semi-discrete system (3.7) with u′(t), we have〈
u′′(t),u′(t)

〉
+

〈
Au(t),u′(t)

〉
−

〈
f
(
u(t)

)
,u′(t)

〉
= 0,

which means
d
dt

(
1
2

〈
u′(t),u′(t)

〉
+

1
2

〈
Au(t),u(t)

〉
+

〈
F
(
u(t)

)
, 1

〉)
= 0.

Therefore, we can conclude that the semi-discrete system (3.7) is energy-conserving.

Theorem 3.1. Suppose that u(t) ∈ VM is the solution of the semi-discrete system (3.7). Then, the
semi-discrete system (3.7) can conserve the discrete energy

H
[
u(t),u′(t)

]
:= H1[u′(t)] + H2[u(t)], (3.8)

where the discrete kinetic energy H1[u′(t)] and discrete potential energy H2[u(t)] are given by

H1[u′(t)] =
1
2

〈
u′(t),u′(t)

〉
and H2[u(t)] =

1
2

〈
Au(t),u(t)

〉
+

〈
F
(
u(t)

)
, 1

〉
. (3.9)
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Proof. The proof process is straightforward along the above analysis. Therefore, we omit the details.
�

Remark 3.1. Actually, the energies (3.8) and (3.9) the discrete versions of the energies (2.3) and (2.4)
of the the two-dimensional nonlinear wave Eqs (1.1) and (1.2) or the abstract system (2.1). Therefore,
we will explore the fully discrete scheme which can exactly preserve the discrete energies (3.8) and (3.9)
in this work.

3.2. Energy-preserving fully discrete scheme

The main strategy of the construction of the energy-preserving fully discrete scheme is to
approximate the differential operator A in the continuous-stage RKN time-stepping scheme (2.8) by
the spectral differential matrix A. Therefore, the following theorem will show that the fully discrete
scheme could preserve the discrete energy (3.8) and (3.9) exactly.

Theorem 3.2. By following the continuous stage RKN Fourier pseudo-spectral scheme

Un
τ = un + τ∆tvn + ∆t2

∫ 1

0
P3,2(τ, σ)g(Un

σ)dσ,

un+1 = un + ∆tvn + ∆t2
∫ 1

0
(1 − τ)g(Un

τ)dτ,

vn+1 = vn + ∆t
∫ 1

0
g(Un

τ)dτ,

(3.10)

with g(u) = −Au + f (u) and ∆t the time step size, the discrete energies (3.8) and (3.9) are conserved,
i.e.,

H
[
un+1, vn+1] = H

[
un, vn]. (3.11)

Proof. We calculate the separable energy

H
[
un+1, vn+1] = H1[vn+1] + H2[un+1]. (3.12)

Inserting vn+1 into H1[vn+1] and keeping that A is a symmetric matrix in mind gives

H1[vn+1] =
1
2

〈
vn+1, vn+1

〉
=

1
2

〈
vn + ∆t

∫ 1

0
g(Un

τ)dτ, v
n + ∆t

∫ 1

0
g(Un

τ)dτ
〉

=
1
2

〈
vn, vn

〉
+ ∆t

〈
vn,

∫ 1

0
g(Un

τ)dτ
〉

+
∆t2

2

〈 ∫ 1

0
g(Un

τ)dτ,
∫ 1

0
g(Un

τ)dτ
〉

= H1[vn] + ∆t
〈
vn,

∫ 1

0
g(Un

τ)dτ
〉

+
∆t2

2

〈 ∫ 1

0
g(Un

τ)dτ,
∫ 1

0
g(Un

τ)dτ
〉
.

(3.13)

On the other hand, we have

H2[un+1] − H2[un] =

∫ 1

0
dH2[Un

τ] = −

∫ 1

0

〈
g
(
Un
τ

)
,

dUn
τ

dτ

〉
dτ

= −

∫ 1

0

〈
g
(
Un
τ

)
,∆tvn + ∆t2

∫ 1

0

∂P3,2(τ, σ)
∂τ

g
(
Un
σ

)
dσ

〉
dτ.

(3.14)

AIMS Mathematics Volume 10, Issue 3, 6764–6787.



6776

It follows from inserting

∂P3,2(τ, σ)
∂τ

=
1
2
− 3σ + 3τ + 3σ2 − 3τ2 − 6σ2τ + 6στ2

into (3.14) that

H2[un+1] − H2[un] = −∆t
〈 ∫ 1

0
g
(
Un
τ

)
dτ, vn

〉
−

∆t2

2

〈 ∫ 1

0
g
(
Un
τ

)
dτ,

∫ 1

0
g
(
Un
σ

)
dσ

〉
. (3.15)

Combining the results of (3.12), (3.13), and (3.15), we have the desired result. �

Remark 3.2. Similar as the proof process of Theorem 2.2, it can be verified that the continuous stage
RKN Fourier pseudo-spectral scheme (3.10) is time reversible. Moreover, we have noticed that the
authors in [40] considered the integrating factor technique and the 4th-order (2-stage) Gauss-Legendre
Runge-Kutta scheme to propose a symplectic time integration method for three-dimensional nonlinear
water waves. This method can sufficiently use the oscillation generated by the spatial discretisation.
Moreover, we have observed that the authors in [40] employed the integrating factor technique
and the fourth-order (two-stage) Gauss-Legendre Runge-Kutta scheme to develop a symplectic time
integration method for three-dimensional nonlinear water waves. This approach efficiently utilizes the
oscillations resulting from spatial discretization, and typically yields accurate results at a reasonable
computational cost. Perhaps, the combination of our proposed energy-preserving time integrator with
the integrating factor technique could lead to a more efficient energy-preserving scheme. This will be
considered in our future research.

Remark 3.3. In practice, the integrals in the fully discrete scheme usually cannot be easily calculated.
Therefore, the s-point Gauss-Legendre formula (bi, ci)s

i=1 will be used to evaluate the integrals

Un
ci

= un + ci∆tvn + ∆t2
s∑

j=1

b jP3,2(ci, c j)g(Un
c j

), i = 1, 2, . . . , s,

un+1 = un + ∆tvn + ∆t2
s∑

i=1

bi(1 − ci)g(Un
ci

),

vn+1 = vn + ∆t
s∑

i=1

big(Un
ci

).

(3.16)

Since the s-point GL quadrature formula is symmetric, the formula (3.16) is also symmetric.

To date, we have developed an energy-preserving fully discrete scheme for solving the two-
dimensional nonlinear wave Eqs (1.1) and (1.2). This was achieved by initially semidiscretizing the
temporal derivatives using a continuous-stage RKN method, followed by applying the Fourier spectral
differential matrix A to approximate the spatial differential operator A. It has been observed that the
Fourier pseudo-spectral method for approximating spatial derivatives can achieve spectral precision of
order O(M−r) provided that the spatial regularity conditions are adequately satisfied.

Assume that u(t) and v(t) represent the exact solution and its derivative of the abstract ODE’s
system (2.1), while u(t) and v(t) denote the exact solution and its derivative of the semi-discrete
system (3.7). Additionally, un and vn signify the numerical solutions obtained from the continuous
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stage RKN Fourier pseudo-spectral scheme (3.10). It follows from inserting the exact solution u(t) of
the semi-discrete system (3.7) into the continuous stage RKN Fourier pseudo-spectral scheme (3.10)
that 

u(tn + τ∆t) = u(tn) + τ∆tv(tn) + ∆t2
∫ 1

0
P3,2(τ, σ)g(u(tn + σ∆t))dσ + Rn(τ),

u(tn+1) = u(tn) + ∆tv(tn) + ∆t2
∫ 1

0
(1 − τ)g(u(tn + τ∆t))dτ,

v(tn+1) = v(tn) + ∆t
∫ 1

0
g(u(tn + τ∆t))dτ,

(3.17)

where Rn(τ) ∈ VM is the temporal local truncation error. Similar to the analysis of Theorem 2.3, we
obtain the estimation for the residual Rn(τ) in the following theorem.

Theorem 3.3. Suppose that the semi-discrete system (3.7) is well-posed and satisfies u(t) ∈ C2([t0,T ]
)

and the nonlinear function f ′ ∈ L∞
(
[t0,T ]

)
. Then, the local truncation error Rn(τ) could be estimated

as
‖Rn(τ)‖ ≤ C̃∆t4, 0 ≤ τ ≤ 1, (3.18)

where C̃ is a constant and independent of ∆t.

Proof. The details of the proof are similar to the process of Theorem 2.3, so we omit the details. �

Letting

en = u(tn)−un, ηn = v(tn)− vn, en = u(tn)−un, ηn = v(tn)− vn, En
τ = u(tn + τ∆t)−Un

τ, (3.19)

and subtracting (3.10) from (3.17), we obtain

En
τ = en + τ∆tηn + ∆t2

∫ 1

0
P3,2(τ, σ)

(
g
(
u(tn + σ∆t

)
− g

(
Un
σ)

))
dσ + Rn(τ),

en+1 = en + ∆tηn + ∆t2
∫ 1

0
(1 − τ)

(
g
(
u(tn + τ∆t)

)
− g

(
Un
τ

))
dτ,

ηn+1 = ηn + ∆t
∫ 1

0

(
g
(
u(tn + τ∆t)

)
− g

(
Un
τ

))
dτ.

(3.20)

We suppose the two-dimensional nonlinear wave Eqs (1.1) and (1.2) are well-posed. Subsequently, we
present the error estimation for the fully discrete scheme (3.10) as detailed in the following theorem.

Theorem 3.4. If the exact solution u(x, y, t) of the two-dimensional nonlinear wave Eqs (1.1) and (1.2)
satisfies u(x, y, t) ∈ C2([t0,T ],B

)
, and the nonlinear function f (·) satisfies f ′ ∈ L∞

(
[t0,T ],B

)
, then

under the limitation of 0 < ∆t ≤ h0 with a sufficiently small h0 such that h0‖A‖ < 1, we obtain the error
bounds

‖en‖ + ∆t‖ηn‖ . M−r + ∆t4. (3.21)

Here, we should point out that A . B means there is a constant C such that A ≤ CB, and M = M1 = M2

is the spatial grid scale. Moreover, the constant C depends on T , but is independent of M, ‖A‖, and ∆t.
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Proof. The concept of the temporal-spatial error splitting method suggests that

‖en‖ + ∆t‖ηn‖ ≤ ‖u(tn) − u(tn)‖ + ∆t‖v(tn) − v(tn)‖ + ‖u(tn) − un‖ + ∆t‖v(tn) − vn‖

≤ O(M−r) + ‖en‖ + ∆t‖ηn‖.
(3.22)

Therefore, to obtain the accuracy of the fully discrete scheme, it is essential to concentrate on the
analysis of temporal accuracy. Taking norms on both sides of (3.20) leads to

‖En
τ‖ . ‖e

n‖ + τ∆t‖ηn‖ + ∆t2‖A‖
∫ 1

0
‖En

σ‖dσ + O(∆t4),

‖en+1‖ . ‖en‖ + ∆t‖ηn‖ + ∆t2‖A‖
∫ 1

0
(1 − τ)‖En

τ‖dτ,

‖ηn+1‖ . ‖ηn‖ + ∆t‖A‖
∫ 1

0
‖En

τ‖dτ.

(3.23)

Then, under the restriction of the time step size ∆t ≤ h0 with sufficiently small h0 satisfying h0‖A‖ < 1,
the first inequality of (3.23) results in∫ 1

0
‖En

τ‖dτ . ‖e
n‖ + ∆t‖ηn‖ + O(∆t4). (3.24)

Summing up the last two inequalities of (3.23), we have

‖en+1‖ + ∆t‖ηn+1‖ . ‖en‖ + 2∆t‖ηn‖ + ∆t2‖A‖
∫ 1

0
‖En

τ‖dτ. (3.25)

Moreover, the third inequality of (3.23) results in

‖ηn‖ . ∆t‖A‖
n−1∑
k=0

∫ 1

0
‖Ek

τ‖dτ. (3.26)

Combining (3.25) and (3.26), we obtain

‖en+1‖ + ∆t‖ηn+1‖ . ‖en‖ + ∆t‖ηn‖ + ∆t2‖A‖
n∑

k=0

∫ 1

0
‖Ek

τ‖dτ. (3.27)

The mathematical induction will be an efficient approach to prove the result of the theorem.
Step I. Letting n = 0 in (3.24) and noticing e0 = 0,η0 = 0, we have∫ 1

0
‖E0

τ‖dτ = O(∆t4).

Furthermore, noticing the limitation of the time step size again, the inequality (3.25) leads to

‖e1‖ + ∆t‖η1‖ . ∆t2‖A‖
∫ 1

0
‖E0

τ‖dτ = O(∆t4).
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Step II. Now, we assume that the estimation (3.21) is valid for 1 ≤ n ≤ m − 1. That is,

‖en‖ + ∆t‖ηn‖ = O(∆t4), n = 1, 2, . . . ,m − 1.

Then, by mathematical induction, we only need to verify that the estimation (3.21) is still valid for
n = m. Setting n = m − 1 in (3.27) and using the above assumptions leads to

‖em‖ + ∆t‖ηm‖ . ‖em−1‖ + ∆t‖ηm−1‖ + ∆t2‖A‖
m−1∑
k=0

∫ 1

0
‖Ek

τ‖dτ

= O(∆t4) + ∆t2‖A‖
m−1∑
k=0

O(∆t4) . ∆t4.

Therefore, the proof of (3.21) is completed. �

Remark 3.4. The conclusion of Theorem 3.4 indicates that the continuous-stage RKN Fourier pseudo-
spectral scheme has at least fourth-order accuracy in the temporal domain. Owing to the temporal
reversibility of the scheme (3.10), the forthcoming numerical experiments demonstrate that the
proposed energy-preserving continuous-stage RKN Fourier pseudo-spectral scheme (3.10) can achieve
sixth-order convergence in time.

Remark 3.5. In general, the preservation of energy typically ensures the stability of the fully discrete
scheme. The analysis process of Theorem 3.2 demonstrates that the proposed energy-preserving
scheme (3.10) is unconditionally stable. However, according to the result presented in Theorem 3.4,
it can be concluded that the continuous stage RKN Fourier pseudo-spectral scheme (3.10) exhibits
convergence under the condition 0 < ∆t ≤ h0 with h0‖A‖ < 1. In fact, the constraint h0‖A‖ < 1
corresponds to the CFL condition, as the differential matrix is intrinsically linked to the spatial
discretization scale.

4. Numerical experiments

We observe that the weight function P3,2(τ, σ) of the the continuous stage RKN Fourier pseudo-
spectral scheme defined in Definition 2.1 is a cubic binary polynomial. Hereafter, the continuous stage
RKN Fourier pseudo-spectral scheme will be denoted as EP3-FP. In this section, we will calculate the
two-dimensional Klein-Gordon equation and the two-dimensional sine-Gordon equation to verify the
precision, the efficiency, and the energy preservation of the derived EP3-FP scheme. Additionally, the
following energy-preserving time integrators are chosen for comparison:

• AVF: the energy-preserving second-order averaged vector field method (see, e.g., [15, 16]);
• HEP3: the symmetric sixth-order energy-preserving integrator constructed by Hairer in [15];
• SRKN3: the continuous-stage symplectic RKN method of order six (see, e.g., [34–36]).

The fully discrete scheme is obtained after discretizing the spatial derivatives with the Fourier pseudo-
spectral method. We compute the temporal convergence rate by the following formula:

Rate = log2
GE(h)

GE(h/2)
with GE(h) = ‖U(T ; h) − u(T ; h)‖, (4.1)
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where the global error GE(h) is the difference of the exact solution U(T ; h) with the numerical solution
u(T ; h) at time T with step h. Moreover, it is known that the exact solution of the two-dimensional
sine-Gordon equation could not be explicitly represented. Therefore, we will use the posterior error
(see, e.g., [9, 20]) to calculate the convergence rate, i.e.,

Rate = log2
PE(h)

PE(h/2)
with PE(h) = ‖u(T ; h) − u(T ; h/2)‖. (4.2)

Furthermore, it is important to emphasize that the energy-preserving continuous-stage RKN time-
stepping method introduced in this work, as well as the numerical methods selected for comparison,
are closely associated with nonlinear integrals. To approximate these nonlinear integrals, the four-point
Gauss-Legendre quadrature formula will be employed in numerical simulation.

Problem 1. Consider the two-dimensional nonlinear periodic Klein-Gordon equation (see, e.g., [18])
∂2u
∂t2 − c2

(
∂2u
∂x2 +

∂2u
∂y2

)
+ au + bu3 = f (x, y, t), (x, y) ∈ (−2, 2) × (−2, 2), t ∈ (0, 100],

u(x, y, 0) = cos
(
π(x + y)

)
,

∂u(x, y, 0)
∂t

= π sin
(
π(x + y)

)
, (x, y) ∈ [−2, 2] × [−2, 2],

(4.3)

with the right-hand function f (x, y, t) = cos
(
π(x + y − t)

)
+ cos3 (

π(x + y − t)
)
. The exact solution is

given by
u(x, y, t) = cos

(
π(x + y − t)

)
.

We choose the parameters as a = 1, b = 1, and c2 = 1
2 . In Table 1, we list the errors and the

corresponding convergence rates of the proposed EP3-FP scheme by varying the spatial and temporal
step sizes. In Figure 1, we set the spatial grid scales as M = Mx = My = 64, and the logarithms of
the global errors log10(GE) against different time steps and the CPU times are plotted in Figure 1(a)
and Figure 1(b), respectively. The logarithms of the energy errors of the EP3-FP scheme are plotted
in Figure 1(b), which show that the proposed scheme is energy-preserving. The numerical results
in Table 1 and Figure 1(a) illustrate that the proposed EP3-FP scheme achieves sixth-order temporal
accuracy. Figure 1(c) shows that the EP3 time-stepping scheme has better computational efficiency
than the chosen numerical methods.

Table 1. The global errors and temporal convergence rates of the “EP3-FP” scheme for
solving Problem 1.

Error ∆t = 0.08 ∆t = 0.04 ∆t = 0.02 ∆t = 0.01
M = 8 4.7423E − 08 7.4247E − 10 1.1636E − 11 2.0639E − 13
Rate – 5.9971 5.9957 5.8170
M = 16 5.5603E − 08 8.7012E − 10 1.3624E − 11 2.4547E − 13
Rate – 5.9978 5.9970 5.7944
M = 32 5.9563E − 08 9.3049E − 10 1.4581E − 11 2.4236E − 13
Rate – 6.0003 5.9958 5.9108
M = 64 5.9670E − 08 9.3484E − 10 1.4611E − 11 2.4836E − 13
Rate – 5.9962 5.9996 5.8785
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Figure 1. Results for Problem 1 with Mx = My = 64. (a) the log-log plot of the global error
against different steps h. (b) the log-log plot of the global error against CPU time. (c) the log
plot of the relative energy error against integrate time with H(0) = 123.9352528130722.

Problem 2. Consider the two-dimensional sine-Gordon equations (see, e.g., [23, 26, 27])

∂2u
∂t2 − κ

2
(
∂2u
∂x2 +

∂2u
∂y2

)
+ sin

(
u(x, y, t)

)
= 0, (x, y) ∈ [−1, 1] × [−1, 1], t ∈ (0, 100], (4.4)

with the dimensionless parameter κ = 1/20, and the initial conditions

u(x, y, 0) = 4 arctan
(

exp
(
3 −

√
x2 + y2/κ2)), ∂u(x, y, 0)

∂t
= 0.

Suppose that the two-dimensional sine-Gordon Eq (4.4) is equipped with periodic boundary conditions.
Some snapshots of the numerical solution by the EP3-FP scheme are shown in Figure 2. These results
demonstrate that the proposed EP3-EP scheme can efficiently simulate the two-dimensional sine-
Gordon Eq (4.4) in a relatively long time domain. Moreover, it can be clearly observed from Figure 2
that the ring soliton shrinks during the initial stage, and oscillations and radiations have emerged by
t = 34.2. Furthermore, the graphs also illustrate that the pulse simulated by the 2D sine-Gordon
equation exhibits periodic oscillation. These phenomena are indeed valid, as other numerical methods
have been employed to simulate this problem and exhibit similar phenomena. Here, we do not display
the graphs obtained by other numerical methods. The numerical data listed in Table 2 demonstrates
the convergence rate of the proposed EP3-FP scheme by varying the spatial and temporal step sizes. In
Figure 3, after discretizing the spatial derivatives by the Fourier pseudo-spectral method with the fixed
spatial mesh grid scales M = Mx = My = 64, the problem is calculated by a different time-stepping
scheme. These phenomena further validate the accuracy, efficiency, and long-term energy conservation
of the EP3-FP scheme.
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(a) T = 0 (b) T = 15.50 (c) T = 34.20

(d) T = 48.45 (e) T = 80.20 (f) T = 96.70

Figure 2. Snapshots of the numerical solution of the proposed EP3-FP scheme for solving
Problem 2 at different times with the spatial mesh grid scales M = Mx = My = 256 and time
step size ∆t = 0.01.

Table 2. The posterior errors and temporal convergence rates of the “EP3-FP” scheme for
solving Problem 2.

Error ∆t = 0.4 ∆t = 0.2 ∆t = 0.1 ∆t = 0.05
M = 8 5.0772E − 06 8.1347E − 08 1.2794E − 09 1.9459E − 11
Rate – 5.9638 5.9906 6.0388
M = 16 3.4833E − 05 5.6543E − 07 8.9029E − 09 1.4501E − 10
Rate – 5.9449 5.9889 5.9401
M = 32 3.0811E − 04 5.3090E − 06 8.5278E − 08 1.3415E − 09
Rate – 5.8588 5.9601 5.9902
M = 64 1.8629E − 03 2.9562E − 05 4.7003E − 07 7.3794E − 09
Rate – 5.9777 5.9748 5.9931
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Figure 3. Results for Problem 2 with Mx = My = 64. (a) the log-log plot of
the posterior error against different steps h. (b) the log-log plot of the posterior error
against CPU time. (c) the log plot of the relative energy error against integrate time with
H(0)=0.377193865036316.

5. Conclusions

In this paper, based on the blend of the energy-preserving continuous-stage RKN time integrator
with the Fourier pseudo-spectral spatial discretization, we presented a novel energy-preserving and
symmetric fully discrete scheme for solving the two-dimensional nonlinear wave equations. The
discrete energy of the two-dimensional nonlinear wave Eqs (1.1) and (1.2) is well conserved by
the proposed scheme. Meanwhile, another significant discovery is that the derived EP3-FP scheme
can achieve sixth-order temporal accuracy under the low regularity assumption u ∈ C2([t0,T ],B

)
.

Numerical experiments are presented to illustrate the accuracy, efficiency, and long-term energy
conservation of the derived EP3-FP scheme.

In light of a similar process, the derived EP3-FP scheme could be generalized to investigate other
Hamiltonian PDEs, including the fractional nonlinear Hamiltonian wave equation, the Klein-Gordon
equation with weak nonlinearity, the Klein-Gordon equation in the nonrelativistic limit regime, and the
Klein-Gordon-Zakharov system.
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