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Abstract: This study investigates the fixed-time control problem for a class of second-order nonlinear
systems. Acknowledging that most existing fixed-time sliding mode controllers encounter singularity
issues, this paper aims to design a non-singular fixed-time sliding mode controller. Initially, a novel
fixed-time sliding mode surface incorporating a sinusoidal function is proposed. Utilizing Lyapunov
stability theory, it is rigorously demonstrated that the closed-loop system achieves fixed-time stability
under the proposed controller. Furthermore, improvements are introduced to the controller design to
mitigate the chattering phenomenon. It is shown that the tracking error converges to a small region
around zero within a fixed time. Finally, comparative simulations conducted in MATLAB confirm the
effectiveness and superiority of the proposed control algorithm.
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1. Introduction

Owing to its remarkable robustness in handling systems with parameter uncertainties and external
disturbances, sliding mode control (SMC) has been widely applied across various fields [1-6],
including mobile robotics, missile guidance, unmanned aerial vehicles (UAVs), and industrial
automation. The design of a sliding mode controller involves two primary steps: first, constructing
a sliding mode surface that accurately characterizes the system state’s behavior on this surface; and
second, formulating a control law based on the system’s state equations to drive the system state
toward and maintain it on the sliding surface. Despite the switching function’s contribution to SMC’s
robustness, the high-frequency switching associated with the discontinuous control law introduces a
chattering problem. To address this issue, numerous methods have been developed. Shen et al. [7]
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proposed a higher-order sliding mode control (HOSMC) scheme, in which the discontinuity term is
embedded into the higher-order derivatives of the sliding mode surface, effectively eliminating the
chattering observed in lower-order sliding mode surfaces. In [8], Bartolini et al. introduced the super-
twisting algorithm (STA), where the control input is derived from an integral term, thus avoiding
high-frequency switching and consequently reducing system chattering. Furthermore, [9] presented
a continuous sliding mode control law for robotic systems equipped with flexible actuators, which
successfully eliminates system chattering.

Conventional linear sliding mode control (LSMC) only ensures that the system state asymptotically
approaches zero [10]. For example, Pan et al. [11] developed a time-varying linear sliding surface,
achieving exponential convergence for quadrotor states. However, LSMC guarantees only exponential
asymptotic convergence of the system error, meaning the system error converges to zero as time
approaches infinity. To address this limitation, terminal sliding mode control (TSMC) was introduced,
which ensures finite-time convergence. In [12], TSMC was applied to manipulator tracking control,
enabling the output tracking error to converge to zero within a finite time. In [13], a multi-input fast
non-singular terminal sliding mode control (FNTSMC) strategy was adopted for trajectory tracking
in UAVs, ensuring singularity-free finite-time stability and robustness. However, the convergence
rate of TSMC is slower compared to LSMC. To achieve faster convergence speeds, a fast terminal
sliding mode (FTSM) structure combining LSMC and TSMC was developed [14, 15]. It should be
noted that the upper bound function for convergence time in finite-time sliding mode control is a
complex nonlinear equation dependent on system states and controller parameters. Therefore, when
the initial state of the system is uncertain, an accurate upper bound for convergence time cannot be
determined. For fixed-time convergence, the convergence time of the system state is independent of
the initial conditions. Compared to finite-time convergence, fixed-time stability offers various superior
performance characteristics and has garnered significant attention. Polyakov et al. [16] proposed a
fixed-time sliding mode control scheme for nonlinear systems, ensuring that the stabilization time is
independent of the initial state. In [17], fixed-time sliding mode control schemes were utilized to
solve the adaptive fixed-time attitude stabilization problem for rigid spacecraft. However, a common
shortcoming of many fixed-time sliding mode controllers is the introduction of negative exponential
coefficients, which can lead to singularity issues. To address this challenge, several mature solutions
have been proposed. Zhao et al. [18] introduced a control scheme with switchable sliding surfaces to
avoid the singularity problem. Wang et al. [ 19] resolved the singularity issue by replacing the fractional
power term with a quadratic polynomial function. In [20], an exponential non-singular terminal sliding
mode was proposed to eliminate singularities and enhance the convergence rate. Although these control
schemes effectively solve the singularity problem, they often involve multiple controller parameters,
complicating the parameter tuning process. Therefore, developing a non-singular fixed-time sliding
mode controller with a simpler structure remains a valuable area for further investigation. Additionally,
system parameter uncertainties and external disturbances significantly affect the tracking accuracy of
the controller. To mitigate these effects, disturbance observers have been widely applied in various
control systems [21-24]. Xiao et al. [25] proposed an asymptotically stable disturbance observer.
Unlike the work documented in [26], the disturbance observer presented in [25] does not assume
that the disturbance is smooth or that its time derivative decays over time. However, when the time
derivative of the disturbance does not converge, the estimation error will converge to a region near the
origin, failing to guarantee the asymptotic stability of the estimation error.
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Based on the aforementioned problems, this paper develops a non-singular and chattering-free
fixed-time sliding-mode control surface that features a simple structure (i.e., it does not require many
controller parameters for adjustment). Additionally, a fixed-time disturbance observer is introduced.
With the help of this disturbance observer, a novel fixed-time sliding mode control scheme is proposed,
which achieves high-performance trajectory tracking for a second-order nonlinear system. The primary
contributions of this paper can be summarized as follows:

(1) This paper introduces a novel fixed-time sliding mode controller based on a sine function. Unlike
traditional controllers that employ piecewise functions to avoid singularities due to power function
differentiation, our approach using a sine function effectively mitigates these issues. In contrast,
our method requires fewer control parameters for adjustment, simplifying the tuning process.

(2) This paper proposes a fixed-time disturbance observer to enhance the accuracy of the sliding
mode controller. Compared with existing methods [25, 26], the designed observer relaxes the
assumptions on the disturbance: it does not require the total disturbance to be continuously
differentiable or its derivative to be zero. This enables the observer to estimate rapidly changing
disturbances. Furthermore, by estimating the higher-order derivatives of the system states, the
requirements for using the observer are reduced, thereby extending its applicability.

2. Problem statement

2.1. Preliminaries

Consider the nonlinear system described by:
X(1) = f(t,x) + bu(t) + d(t, x, %),  x(0) = xo, (2.1)

where x € R represents the system state, f : R, X R — R is a known nonlinear function of time and
state, b is a known scalar input coefficient, u(¢) € R denotes the control input, and d(¢, x, X) represents
the uncertain term, which encompasses parameter uncertainties and external disturbances.

Definition 2.1. The equilibrium of system (2.1) is said to be finite-time stable if it is Lyapunov stable
and achieves convergence in finite time. Specifically, for all x € R, there exists an upper bound
convergent time function T (xo) > 0 such that lim,_, 7, x(t) = 0, and for all t > T (xo), x(¢) = 0.

Definition 2.2. The equilibrium of system (2.1) is said to be fixed-time stable if it is globally finite-time
stable and there exists an upper bound T > 0 for the convergence time function, where T is independent
of the system’s initial condition.

Definition 2.3. The system (2.1) is said to be practical fixed-time stable if the system (2.1) is fixed-time
stable and there exists a bounded region Q C R and a positive scalar T € R such that the system state
x(t) converges to the bounded region Q after the time T.

Assumption 2.1. It is assumed that the uncertainties and disturbances in the nonlinear system are
unknown but bounded. Specifically, it is assumed that |d| < a, where a is a positive constant.
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2.2. Control objective

In this paper, the following second-order nonlinear system is considered:

{fq(r) = x:(0),

(2.2)
Xo(2) = f(t,x) + bu(t) + d(t,x),

where X = [x], x,]7 € R? is the system state vector, f(z,X) represents a known nonlinear function, b is a
known scalar, u(f) € R is the control input, and d(z, x) denotes the uncertain term caused by parameter
uncertainties and external disturbances.

For the nonlinear system (2.2), the tracking error is defined as:

el(t) = x1(0) = x, (1), ex(®) = X1 (1) = X:(1) = x2(0) — X2,

where x,(f) is the reference trajectory.
Taking the time derivative of the tracking errors yields:

e; = ey,
2.3)
{éz f(t,X) + bu(t) + d(t,x) — X,(),

This study aims to design a fixed-time disturbance observer-based sliding mode controller to ensure that
the tracking errors of the closed-loop system (2.3) converge to zero within a fixed time, independent of
the initial conditions.

3. Main results

3.1. Fixed-time convergence

Consider the following nonlinear function:

~ ky sin®(yl) + ka(lyl + 1), [yl < 1,
2=y e 3.1
kalyls vl > 1,

where ki, k,, and k3 are positive constants.
To ensure the continuity of the function Z(y) in (3.1) and its derivative with respect to y at |[y| = 1,
the following conditions must be satisfied:

ky sin®(1) + 2k, = ks,
2ky sin(1) cos(1) + ky = k.

From these conditions, we derive:
7
5k3

. sin(2) — & sin*(1)
"7 2sin(2) — sin¥(1)

1.26k;, Ky =
T 2kin(2) — sin(1)

ks ~ 0.05ks. (3.2)

Clearly, the parameters satisfy the following conditions:

ki > ks >k, > 0. (3.3)
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Property 3.1. For the function Z(y), y € R with parameters as in (3.2), the following holds:

{E(y) >k,  Dl<]1,

34
20) = kablf, > 1. 34)

Proof. The function Z(y) in (3.1) is an even function with respect to y. Define g(y) = sin*(y) + y + 1.
The minimum value of g(y) in 0 < y < 1 equals the minimum value of sin*(|y|) + [y| + 1 in [y] < 1.
Taking the derivative of g(y) with respect to y, we have:

g0 =sin2y)+1>0, 0<y<l.

Thus, g(y) monotonically increases in the interval 0 <y < 1. Therefore, g(y) > g(0) = 1.
Further, we obtain:

E(y) = min(ky, ko)(sin*(y]) + [yl + 1) > min(ky, k2)g(0) > ko.
From (3.2), we know k| > k3 > k, > 0, so min(ky, k;) = k,. Therefore, for [y| < 1, Z(y) > k. O
Theorem 3.1. Consider the following nonlinear system:
y = —sign(y)E(y). (3.5)

The system state approaches 0 within a fixed time, and the upper bound of the convergence time T is
estimated by:

5 1
To=—+—.
"k k
Proof. Define the function V() as:
1
Vo(t) = Eyz(t)- (3.6)
Taking the derivative of V(#) with respect to time, we have:
Vo(t) = y0)3(1) = =YIE(y(@)). (3.7)

For |y(#)| > 1, according to Property 3.1 and (3.6), we have:
. 11
Vo(t) =~k (D)5 = ka2 V().

This can be rewritten as: )
Vo(1)

1
V' (1)

3=

= —k32710,

Solving the differential equation yields:

100V, ™ (1) — V, ™(0))

k3210

Since |y(#)| > 1 and (3.6), we have:
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Further, we obtain:
5
< —. 3.8
s (3.8)

Namely, for ¢ > 1, [y(#)| < 1 is guaranteed, where #; = ks_}
For |y(7)| < 1, according to Property 3.1, (3.3), and (3.6), we have:

Vo(1) = =ly(@)llky sin*(y) + kx(lyl + D] < —min(ky, kp)ly(0)] < —k22%V§ (0.

This can be rewritten as: _
Vo (1)

1

Ve (@

< —ky22.

Solving the differential equation yields:

1 1
22(V2(t)) — Vit
(< ZG W=V ) (3.9)
ky

Since t > t;, [y(¢)] < 1 and (3.6), we have:
Vi) <2t

Finally, we obtain that for r > Ty, y = 0 holds. O

3.2. Non-singular sliding mode controller design

In order to conveniently analyze the stability and fixed convergence time of the sliding mode
controller, some theorems are given as follows.

Theorem 3.2. For the tracking error system (2.3), when the system state is on the designed sliding

surface S| = e, + Aysign(e|)Z(ey), the system state converges to 0 within a fixed time ty|, where
1

_ 5,1
=1 (2 + %)
Proof. When S| = 0, we have
e, = —Aysign(e))Z(ey). (3.10)
Define V| = 1el. Taking the derivative of V; yields
Vi =eie) = —Ailel|E(er). (3.11)
According to Theorem 3.1, when ¢ > ¢, ¢; = 0 holds. O

To ensure that §; = 0 can be realized within a fixed time, the control law is designed as
u=-b" [f +ysign(S 1)E(S 1) — X, + A;sign(e;)Z(ey) + Asign(S 1)E(S 1)] , (3.12)

where 4, > 0, 4, > 0, and vy is a positive constant that satisfies y > %. The function Z(e,) is given by

: ki sin(2 ky, 1
E(el):{lsm( e + ks ler] < G13)

6 i ’
zksleq s, le] > 1

Next, we will discuss the fixed-time stability of system (2.3) with the control input (3.12) and sliding
surface .
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Theorem 3.3. For the tracking error system (2.3) with the control input (3.12) and sliding surface S |,
fort >t e; = 0and e, =0 always hold, where t, = (;—1 + %2) (% + é)
Proof. First, we prove that all system states converge to the sliding surface within a fixed time ¢,,
where 1,; = i (% + é)
Define V, = %S f The derivative of V, yields:
Vz = Slsl =5 [62 + /llsign(el)E(el)] .
Substituting (2.3) and (3.12) into the equation, we obtain:

V2= S [d—ysign(S DE(S ) + disign(enE(er) — disign(enE(er) — sign(S EES )|
<1S11(d] = YE(S 1) = IS 11E(S ).

For the term —yZ(S ), based on Property 3.1 and (3.3), we get:

_ < —ky, ISq] < 1,
_H(Sl) 2 6 :
= —k3|S15 < —k3, |Si]>1.

Thus,
—’)/E(Sl) < —ymin(kz,kg) < —’ykz. (314)

When y > %, we have:
Vo < 1S11(d] = yka) — IS 112(S 1) < —2IS11E(S ).

According to Theorem 3.1, for ¢ > t,1, S1 = 0 holds, where ¢,; = /1—12 (5—3 + é) Further, according to
Theorem 3.2, when ¢ > f,;, e; = 0 and e, = 0 hold. Therefore, when ¢ >t + £, = (/1_11 + /1—12) (1(57 + é),
e; = 0 and e, = 0 can be guaranteed. ‘ O
Remark 3.1. In fixed-time sliding mode controller design, the sliding mode surface is often designed

as:
S = e + kysign”' (ey) + kpsign™(ey),

where ky > 0, k, > 0, v > 1, and 0 < vy, < 1. To obtain the control law, the derivative of the sliding
function S is given by:
$ =er+er(kilel™" +kale [”7).

For the system (2.3), the control law can be developed as:

u=—b"|f+d+asign(S) - % + &1 (Kiles ™ + kaler*™") + kssign”(S) + kusign™($)| .

Since 0 < y, < 1, it follows that 1 =y, < 0. As |e;| = 0, |e;[">™! — oo, leading to a singularity problem.
In our controller, the sliding mode surface is designed to avoid the singularity issue in its derivative
function.
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3.3. Improved fixed-time sliding mode controller and disturbance observer design

Asy — 0, we have lim,_,+ sign(y)Z(y) = k, and lim,_,o- sign(y)=(y) = —k,. This indicates that the
terms sign(s)Z(s) and sign(e;)=(e;) are discontinuous, leading to chattering in sliding mode control.
To eliminate this issue, we will improve the controller by making these terms continuous.

Initially, we improve the function (3.1) to a new continuous function, which is given as:

kol | =51yl + 2+ 1] + ksyilks = Iyll. - Iyl < o
D(y) = { kg sin’(yl) + kallyl + 11, o<phl<l, (3.15)
kalyl3, vl = 1.

Based on (3.1), ®(y) and ®(y) are continuous at [y| = 1. In order to make them continuous at [y| = o,
the parameters k, and ks must satisfy the following equations:

k50'[k4 - O'] = kl sin2(0'),
k4k5 - 2k50' = k] SIH(ZO')

Solving above equations gives:

ke = [ sin’(0) .\ 1]’ Lk [sin’(0) — o sin(20)]

ks = = . (3.16)

- sin’(0) — o sin(207)
By choosing parameters k; and &, in (3.3) k4 and ks in (3.16), the new function (3.15) is continuous
at|lyl=1and |yl = o.

Remark 3.2. By selecting appropriate values for o and k3 and substituting them into Egs (3.3)
and (3.16), all parameters of the function ®(y) can be determined. The improved function ®(y) is
a continuous even function that passes through the origin, that is ®(0) = 0. As y approaches zero, we
have: lim,_,g+ sign(y)®(y) = lim,_,o- sign(y)®(y) = 0, which indicates that sign(y)®(y) is a continuous
odd function. By replacing the discontinuous terms sign(-)Z(-) in the control input u and sliding surface
s with sign(-)®(-), the modified sliding mode controller effectively eliminates the chattering effect.

Theorem 3.4. Considering the nonlinear system

y = —sign(y)®(y), (3.17)

the system state is practically fixed-time stable. Specifically, when t > T\, |y| < o. The time T can be

estimated by
5 1

== +—.
ky  ky

Proof. According to Property 1, the function ®(y) can be defined as

T, (3.18)

k>, ifo <y <1,
<D(y):{2 if o <yl

kalyl®f, if |yl = 1.

Similar to the proof of Theorem 3.1, we select the Lyapunov function V = %yz. Taking the derivative
of V with respect to time, we obtain

V= yy = o).
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For [y| > 1
=~k = —ks2V) "1,
Solving this differential inequality, we get
5
< —.
LS4
Foro <[y <1
V < —kalyl = —ka(2V)'2.

Solving this differential inequality, we get

Therefore, when ¢ > % + é, we have |y| < 0. m]

Before designing the sliding mode controller, a fixed-time disturbance observer is proposed to
mitigate the impact of external disturbances on the controller. Inspired by previous work [25], an
auxiliary system is designed as:

E=f+bu+ak, (3.19)

where @ > 0 and E = x, —¢. Following this, a fixed-time disturbance observer is introduced to estimate
the external disturbance d:

d=aFE+E, (3.20)
. Et+AnH-E@®
E = . 3.21
At (3.21)
The estimation of E is defined by
E = E + Bsign(E)D(E), (3.22)

where E = E — E is the estimation error and 8 > 0.

Theorem 3.5. Under the action of the fixed-time disturbance observer (3.20) and (3.22), the
disturbance observation error d is practically fixed-time stable. Namely, ld| < € holds when t > Ty,

1(5 1
where T, = 3 (E + k—z)

Proof. By combining Eqs (3.19) and (3.22), the equation for the state estimation error can be derived
as:
E = —Bsign(E)D(F), (3.23)

According to Theorem 3.4, we can conclude that E is practically fixed-time stable. When ¢ >

é(% + k]—z), we have |E| < o. Therefore, under the action of the fixed-time disturbance observer,

the estimation error £ converges to within the bound o in a fixed time.
Based on Egs (2.2), (3.19), and (3.20), the disturbance estimation error can be calculated as:
d=d-d=d-aFE -, +&=aE.

Thus, it follows that when 7 > T, we have: |d| < . O
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Remark 3.3. The proposed observer in this paper differs from the disturbance observer in [25] and
offers the following advantages: (1) it ensures that the estimation error converges to the origin
within a fixed time, rather than asymptotically; (2) it relaxes the assumptions on the disturbance,
enabling accurate estimation even when the first derivative of the disturbance is non-zero, making it
not only suitable for systems with smooth disturbances but also particularly effective for nonlinear
systems subject to abrupt disturbances; and (3) it addresses the challenge of directly measuring the
higher-order derivative x, by introducing (3.21), which eliminates the need for x, information, thereby
significantly improving its practical applicability.

Remark 3.4. When tuning the parameters of the disturbance observer, the following guidelines should
be noted. Selecting a smaller value of o and increasing the value of a can improve the estimation
accuracy of the observer. On the other hand, increasing the values of B and ks can accelerate the
convergence speed of the estimation error and reduce the convergence time. In practical applications,
the parameters should be carefully chosen to ensure that the observer achieves accurate disturbance
estimation within a short time.

Next, we improve the sliding mode controller to eliminate system chattering. The improved sliding
surface and control input are represented as

S =e+ /llsign(el)d)(el), (324)

u=-b"'[f+ d+ ysign(S)D(S) — X, + A;sign(e;)D(er) + Arsign(S)D(S)], (3.25)
where 4; > 0,4, > 0, v is a positive constant that satisfies y > % and d denotes the estimation of

disturbance. The function ®(e;) is given by

—Ller] + k(2 + 1) + kaks — 2Kkslerl, les] < o,

D(e)) = ey {k; sin2ley]) + ko, o<lel <1, (3.26)
Sksle I3, le| > 1.

Remark 3.5. In some recent works [27-29], to achieve fixed-time convergence, the sliding surface has
been designed as the sum of two nonlinear terms and piecewise sliding surfaces have been adopted
to avoid singularity issues. This undoubtedly increases the number of controller parameters, thereby
complicating parameter tuning. Owing to the proposed piecewise function (3.15), the controller gains
ky and k, depend on k3 (see (3.2)), and the gains k4 and ks depend on o (see (3.16)). Our sliding surface
requires fewer parameters to be tuned, which simplifies parameter adjustment and is more suitable for
engineering applications.

Theorem 3.6. For the nonlinear system (2.3), if the sliding mode surface is chosen as (3.24) and
the control law is designed as (3.25), and the disturbance observer (3.20) is used to estimate
external disturbances, then the sliding mode variable S remains within the region |S| < o when
t > t. Additionally, the system states converge to the region defined by |e;| < o and |e;| <

5 1-o

2 -t =1(5 4 1< =
o+ 44 [kz (; + 1) + k4k5] owhent>t +t,+ T, where: t, = yH (k3 + 5 ), and t; = et oo

Proof. To begin, let us analyze the time required for the system state to reach the sliding mode surface.
Define the Lyapunov function as V, = %S 2. The derivative of V, with respect to time is given by:

V, = S (&, + Aisign(e))D(e)).

AIMS Mathematics Volume 10, Issue 3, 6745-6763.



6755

For |S| > 1, using Egs (2.3), (3.15) and (3.25) and Property 3.1, we have

Vo =S(f+bu+d- i)+ S |D(e;)
< ISI(1d = dl = yky) = IS |O(S).

Id dl

When choosing y > , it follows that

Vo < =2,|S|0(S).

According to Theorem 3.1, fort > ¢, = % ( + —) the condition |S| < o holds.
For |S| < o, consider the function V3 = 1e?. The derivative of V3 with respect to time yields:

V3 = e[S — Aysign(e;)D(ey)].
For |e;| > 1, based on Eq (3.15), we have

V3 < leilo — Ailei|@(e;)
< lerlo — Aiksley|s

< —(A1ks — )(2V3)T.

This can be rewritten as

Vs
< —(Aiks — 0)2 .

Voo
Solving this differential inequality gives us

|
—10V, | < —(Aiks — 0)2B(1 = 1,).

tr

Therefore,
10(vy “’(t) - ]O(tr))
t<t + )
(A1ks — 0')2|0
Given that |e;| > 1, we obtain
1
V, () < 2.
Further simplifying, we get
1(5 1-0 5
t<—[—+ + . 3.27
- /12 (k3 k2 ) /l]k3 -0 ( )
Thus, for t > t,;, where t,; = %2 (% + 1];—2‘7) + M —, the condition |e;| < 1 holds.

For o < |ej| < 1, according to Property 3.1, we have

Vs < lejlo — Aler|@(ey)
< leilo — Aiksle;|

< —(Aiky — )(2V3)2.
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This can be rewritten as _
V.
= < (ks — 022,
vy

Solving this differential inequality gives

|
V2 < —(iky — 0)23( — 1)

151

Therefore,
1 1
2(Vi(@) = Vi)
t <ty + . .
(/l[kz —0)22
Given o < |e;| < 1, we obtain
1
o< VI<—
TSN
Hence,
PP )
=l /llkz - 0'.

Therefore, when t > ¢ > ¢, + t, + T, the condition |e;| < o holds. Based on Eq (3.24), for |S| < 0~ and
le1] < o, we have

lea] < IS = A1|D(ey)|

1 2
<o+ 4 [k2|€1| (——2|€1| +—+ 1) + ksleq|[ks — |€1|]]
o o
2
<o+ A [kz(— + 1) +k4k5]0'.
o

O

Remark 3.6. When tuning the controller parameters, the following issues should be noted: (1)
increasing the values of A1, A,, and k3 can accelerate the convergence speed of the system and reduce
the convergence time; (2) although changing the value of o can adjust the convergence speed, it may
also affect the tracking accuracy. Therefore, the controller parameters should be carefully selected to
achieve the desired control performance.

The parameter selection procedure is as follows: Step 1, select o such that 0 < o < 1; Step 2,
choose ks > 0 and set 11 = A, = 1 to ensure system stability; Step 3, adjust the values of A, and A, to
tune the system convergence time.

Remark 3.7. Although the proposed control scheme in this paper avoids the singularity and chattering
issues commonly associated with sliding mode control and simplifies parameter tuning, there are still
some limitations that need to be addressed. For example, in practical engineering applications,
achieving fast fixed-time convergence requires larger control inputs, which may lead to actuator
saturation and degrade the controller’s performance. Additionally, the presence of unknown nonlinear
terms in the system may limit the applicability of the proposed algorithm. In future work, we plan to
integrate other control techniques, such as anti-windup control [30] and reinforcement learning-based
control [31), to further improve the tracking performance of the proposed scheme.
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4. Simulation results and analysis

In this section, numerical simulation results are presented to demonstrate the performance of the
proposed control algorithm . The dynamics of the one-link manipulator system is given by

mg + bg +nsin(q) = u +d,

where ¢, ¢, and ¢ represent the position, velocity, and acceleration of the manipulator, respectively; u
denotes the control input; and d represents an unknown disturbance.
Letting ¢; = g — g, and e, = ¢ — ¢,, we obtain:

e) = ey,

é = —%(b[] + nsin(q)) + iu + %d = gy
The parameters for the manipulator system are as follows: m = 1kg, b = 1 Nms/rad and n = 1 Nm.
The reference trajectory is g, = sin(z).
Example 1. In this experiment, to better demonstrate the superiority of the proposed non-singular
sliding mode control scheme, simulations are conducted on a single-link manipulator with varying
initial positions. An external disturbance with rapidly changing characteristics is introduced to test the
performance of the disturbance observer. The controller parameters are as follows: 4; = 3, 4, = 3,
o = 0.5, and k3 = 2.5. For the proposed observer, the parameters are configured with @ = 10, 8 = 10,
o = 0.5, and k3 = 4. The initial positions of the manipulator are set at three different conditions: Case 1
with x = (=1,0)7, Case 2 with x = (2,0)7, and Case 3 with x = (-=2,0)”. The external disturbance

is designed to have rapidly changing characteristics to test the disturbance observer’s performance,
defined as

0.5 cos(1), t<2,
d(t) =105cos(t)+2, 2<t<6,
-1, t>6.

As shown in the three subfigures of Figure 1, the simulation results are presented. Figure 1(a)
illustrates the response curves of the trajectory tracking error and velocity tracking error for a single-
link manipulator under different initial conditions. According to Theorems 3.4 and 3.6, the maximum
stabilization time of the system is Ty,,x = 1.565 seconds. The actual convergence times of the system
are 0.62 s, 0.66 s, and 0.71 s, respectively, all achieving stability within the fixed time. It is evident
that, despite the different initial states, both the velocity error e; and the position error e, stabilize
before the maximum stabilization time. This confirms that the convergence time of the system depends
solely on the controller parameters and is independent of the initial system state. Figure 1(b) depicts
the response curve of the sliding mode variable S. Despite the different initial values, it converges to
zero before the maximum stabilization time. Additionally, as shown in the figure, the system exhibits
no chattering, demonstrating the effectiveness of the proposed control strategy. Figure 1(c) presents
the estimation curve of the disturbance observer. At ¢ = 2 seconds, the disturbance abruptly changes
from one smooth signal to another, and at ¢+ = 6 seconds, the disturbance becomes a constant. As
can be observed from the figure, the observer accurately estimates the disturbance even during sudden
changes. This highlights its robustness and superiority, as it is not only suitable for smooth disturbances
but also effective for disturbances with abrupt changes.
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Figure 1. Results of example 1.

Example 2. In this section, we compare the proposed sliding mode controller with Li’s
controller (FTSMC) and Liu’s controller (FNTSMC). The initial state of the single-link manipulator is
the same as Case 1 in Example 1. The control parameters are shown in Table 1.

Table 1. Control parameters for different controllers.

Controller Parameters

Proposed controller =3, 1=30=05k=25a=10,8=10

Li’s controller ki =5ky=5ki=5ki=5a =r=05a=rn=15=0.05
Liu’s controller a=5B=5r=5rn=5§¢=005m =15 m=0.5

For Li’s controller [32]:

s = ey + kysign(e))™ + kpsign(e;)®?,
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u = m(=bx, + nsin(x;) — d + g, — ex(kraqler | + koanler|271) — kssign(s)™" — kusign(s)™).

For Liu’s controller [33]:

s=ey+kif(e)+ kzsign(el)ﬁ,
if le)| <&,
if le;| > &,

kael + kbsign(e1)2,

sign(e)*,

fler)

u = m(=bx, + nsin(x;) — d + g, — ex(k1 f(e1) + BkalealP ") — ¢1sign(s)” — cosign(s)’?).
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Figure 2. Response curves of different controllers.

The subfigures in Figure 2 present the simulation results. Based on calculations, the maximum
convergence times for the three fixed-time controllers are 1.565 s, 1.634 s, and 1.741 s, respectively.
The simulation results show that the actual convergence times are 0.62 s, 0.74 s, and 0.83 s. Figures 2(a)
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and 2(b) display the response curves of the robot tracking errors. It is evident that all three controllers
ensure the system tracking errors converge to zero within the fixed time. Compared to the controllers
proposed by Li and Liu, the controller presented in this paper exhibits faster convergence speed
and shorter transient adjustment time. Notably, Li’s controller demonstrates the largest overshoot.
Figures 2(c) and 2(d) illustrate the curves of the sliding mode variable S and the control input
u for different controllers, respectively. Clearly, all three controllers successfully avoid chattering
phenomena. However, the proposed controller in this paper requires the largest control input.

To provide a more comprehensive comparison, we employ two performance indices: IAE (Integral
of Absolute Error) and ISE (Integral of Squared Error). These metrics are defined as follows:

¢ Integral of absolute error (IAE):

T
TIAE = f le(?)| dt,
0
¢ Integral of squared error (ISE):
T
ISE = f e(t) dt,
0

where e(t) is the position error signal at time ¢, and 7 is the total simulation time.

As shown in Table 2, the proposed controller demonstrates lower values for both IAE and ISE
compared to Li’s and Liu’s controllers. This indicates that the proposed controller has the least
cumulative error and better suppression of instantaneous errors. In contrast, Li’s controller shows
higher cumulative and instantaneous errors, making it less effective in maintaining precision over time.
Therefore, the proposed controller excels in improving tracking accuracy and enhancing disturbance
rejection. These advantages make it particularly suitable for applications requiring high precision and
rapid response.

Table 2. Performance indices for different controllers.

Controller IAE ISE

Proposed controller 0.102 0.063
Li’s controller 0.167 0.107
Liu’s controller 0.106 0.067

5. Conclusions

In this paper, a fixed-time non-singular sliding mode control scheme incorporating a disturbance
observer is proposed for a class of second-order nonlinear systems. The primary advantages of
this control strategy include ensuring fixed-time convergence of the system’s tracking error while
simultaneously avoiding the singularity problem. Additionally, enhancements to the proposed
controller have successfully mitigated the chattering problem, guaranteeing the fixed-time convergence
of the system states. The effectiveness and robustness of the proposed algorithm were demonstrated
through simulations conducted in MATLAB using an example of a single-link manipulator. The results
indicate that the proposed control scheme achieves superior performance in terms of both tracking
accuracy and disturbance rejection compared to existing methods. These characteristics make the
proposed approach particularly suitable for applications requiring high precision and rapid response.
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