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1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane C, its boundary the unit circle T = {z :
Izl = 1}. L? is the space of square-integrable functions on T with respect to the normalized Lebesgue
measure do. It is known that L? is a Hilbert space with the inner product

fog) = f fador.

Let e,(z) = 7%,z € T,n € Z; then {e, : n € Z} forms a standard orthogonal basis for L?. For each
h e L?, it is well known that

h = anZ<h’ en>en

and

P = > Khe)P.

nez

The classical Hardy space H? is a closed subspace of L? consisting of & with h = Y,.((h, e,)e,. So
L? = H?> ® zH?, where zH? = {zf : f € H?}. Since the evaluation at each point in D is continuous, then
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H? becomes a reproducing Hilbert space with the reproducing kernel given by

1
ky(z) = ——, weD,zeT.
1-wz

Let P be the orthogonal projection from L? onto H?; then

Pf(z) =(f.k), felL’

Denote L and H* as the algebras of bounded functions in L? and H?, respectively. Define the
Toeplitz operator T, on the Hardy space H* with symbol ¢ € L™ by

T,f = Plefl, fe€H.

It is obvious that T, is a bounded linear operator on H>.

If 6 € H* has |6] = 1 almost everywhere on the unit circle T, then 6 is called an inner function, and
the corresponding model space Kj is the orthogonal complement of 6H? in H?, i.e., Ky = H*> © 6H>.
It is known that for inner functions # and v, K,, = K, ® uK,. The shift operator S is defined by
S f(z) = zf(z); its adjoint operator is called the backward unilateral shift operator, which is $*f(z) =
w. The model space is an invariant subspace of the backward unilateral shift operator S*, and
also a reproducing kernel Hilbert space whose reproducing kernel is

1 - 6(w)8(z)

, weD, zeT.
1-wz

kn(2) =
Since k%, is bounded, the set K;° = Ky N H™ is dense in K.
For ¢ € L™, the truncated Toeplitz operator (TTO) AZ systematically studied by Sarason in [7] is
defined on the model space K, by

Alf = Polef), f €K,

where Py is the orthogonal projection from L? onto Ky. As is known to all, TTO is a natural
generalization of Toeplitz matrices that appear in many contexts, such as in the study of finite-interval
convolution equations, signal processing, control theory, probability, and diffraction problems [4,5,7].
Actually, AZ is the compression of T, on the model space K, i.e., Ag = PyT,lg,. Sedlock [8] has
ever defined the Sedlock class to study the product problem of truncated Toeplitz operators. For more
information about model spaces and their operators, one is referred to [4].
Notice that L
Ky = L*©K, = zH? ® 6H".

It is easy to see that {e_, : n > 1} and {fe,, : n > 0} are standard orthonormal bases for zH? and 6H?,
respectively, and so
{e_, :n>1}U{0be, : n > 0}

forms a standard orthonormal basis for K.

Let Qyp = P; = I — Py be the orthogonal projection from L? onto K;.So Qyf = Qf + OP(6f), where
Q = 1-P. In 2018, Ding and Sang [3] introduced the dual truncated Toeplitz operator (DTTO), which
is defined on K; by

Dif = Qilef). feKi,
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or written as
Dif = Qlefl+ 6POef, f€Ky.
It is clear that (Df;)* = D%. Furthermore, for any complex constant A, we have D = Al.
Camara [2] discussed the asymmetric dual truncated Toeplitz operator (ADTTO), which is defined
on K, by
D f = Pylef1= Qlefl+ aPlagf]l, feKj.

Also, (DZ"’)* = Dg"). DTTO and ADTTO, acting on these spaces, have realizations, for example, in
long—distance communication links with several regenerators along the path that cancel low—frequency
noise using high—pass filters, or in the description of wave propagation in the presence of finite—length
obstacles.

In 1964, Brown and Halmos [1] proved that a bounded operator A on H? is a Toeplitz operator if
and only if A — $*AS = 0. This operator equation plays a significant role in the study of Toeplitz
operators and related topics. In 2007, Sarason proved a result on truncated Toeplitz operators in [7]
that is similar to Brown and Halmos: Let Sy = Af, the compressed shift operator on Ky, then a bounded
operator A on Kj is a truncated Toeplitz operator if and only if A — S7AS is at most a rank-2 operator,
more precisely, L

A-S;ASo= Yy ki +ki®x
for some ¥, y € Ky, where .
kS = Z[0(z) — 6(0)].

In 2021, Gu [6] studied the dual truncated Toeplitz operators, and obtained that a bounded operator
A on K is a dual truncated Toeplitz operator if and only if A — DgADf is at most a rank-2 operator and

—_ nY *n _ 0\
A0 =D, A'0=(D')0

for some ¢ € L™, where Df is the compressed shift on K;. This result is similar to Sarason’s.

For the product problem of when two Toeplitz operators are another Toeplitz operator, Brown and
Halmos in [1] established a necessary and sufficient condition based on the above operator equation
characterization of the Toeplitz operator. In 2011, N. Sedlock did the same thing for truncated Toeplitz
operators in [8].

Inspired by the above work, in this paper, we will establish an operator equation to obtain an
equivalent characterization of the ADTTO, which is similar to Sarason’s; see Theorem 3.1. Based
on this, we follow a method taken in Sedlock’s paper [8] and study the product problem of when the
product of two ADTTOs with symbols in model spaces is another ADTTO; see Theorem 4.1.

2. preliminaries

In what follows, for g € L*(T), we write g, (n € Z) as the n-th Fourier coefficient (4, e,) of g, unless
otherwise stated.
The following lemmas come from [6].

Lemma 2.1. For any function h € K, we have

Dlh = zh + (h, e )(608 — e);
Dlh =Zh+ (h,0)(6) — O)e_;.
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Lemma 2.2. On K, we have

I—(D)D} = (1~16)e-1 ®e-i;
1- DYDY = (1-161")0® 6.

We also need the following result, which says that an ADTTO satisfies an operator equation.

0,a

Lemma 2.3. The operator D" satisfies the following equation.

— 0,
D" = DIDGD; = e ® (B = (B, Zhe1) + (B + be_) @ e,

where -, —
By’ = Pylgz(l — @), & = bulpbks, o).

Proof. For h € Kel © span{e_;}, using Lemma 2.1, direct calculations show that

DD} DI[h] = DD [zh]
= 2D [zh] + (D" [zh], a)(a — @)z
= 20lzh] + zaPlapzh] + (pzh, a) (@ — @)z
= Qlph] — 2(ph)_1 + aPlayh] + za(aph)_, + (@ph)_i (@) — @)z
= Dy°[h] = (¢ph — ao(@ph), )z
= D[R] = (h, Pyl@z(l — @)z
= D*[h] — e_y ® B3 [A].

Setr = (Df;" - D‘;DZ;"D?)[Z], then for & + zc, where 1 € K; © span{e_;} and c is a constant, we have

D} [h +zc] — (DZDS*DY)[h + Zc]
_ 0, a o,a o o0, a o, NYON[T=—
= D[] — (DEDE DY) [h] + (DL — DYDY DY) [zc]

.0 = — 60 - — /= paf (2.1)
= (h,BL"e s +Tr = (h+ 30, B2)e +Tr — TEBL0)e
= (e.1 ® (B3 = (B De_ ) + 7] + r@ e [+ Zel.
Now we calculate r = (DZ’“ - DgDZ’“Df)[Z]. Since
(D2DS"D)IZ] = D[Qlwbo] + arPlagb,]]
= ZQ[@06,] + ZaPlagby] + (@b, eo)a — @)z
= P, [¢660z] — (¢8)ofoe-1 + (pab)oboaoe_1,
thus, we obtain
— (7R a No.a NS
r=(D;" - D:D;D,)Iz]
= Pé[(pZ(l - 909)] + <Q0990 - (,0&900&0, 60>€_1
= ,6’%" + 9_()(900%, epye_; = ,B%" + de_.
Substituting the above into (2.1) proves the result. O

AIMS Mathematics Volume 10, Issue 3, 6560-6573.



6564

When 6 = «, the above result becomes the following one, which was obtained by Gu [6].
Corollary 2.1. The operator Dfa satisfies the following equation:
D - DIDiD} = e ® (B, = (B},2) e-1) + (BL + e ) ® ey,
where o o
,33; = Pylpz(1 = 600)], & = Gp{p(6 — b0, €).

It is remarked passing that Camara [2] also obtained that
. by — 0, pha
Dy —=DID"D; = e_1 ® B +B; ®ei.
It is not true. The following is a counterexample.

Example 2.1. When 0 = a, 60, # 0 and ¢ = Z, then using Lemma 2.1 we obtain
(D) - DIDIDNIZ] = (1 - 167
and o
(.1 ®B) +po®@e )zl = (1 - 160)@) — 60612,
so it is clear that
(D}, — DIDIDY[Z] # (e ® B + By ® e 1)[Z.

Using a proof similar to Lemma 2.3, we can show that the operator Dﬁ;“ satisfies the following
equations:
Dy D!~ DID" = a ® Pylgz(a — a0)] ~ Pyle(1 — 6f)] ® e
and
D} - DIDG DL = a ® [RE) — (R, 6)6] + [RL + 6o{p(@ — @), e)a] ® 6,

where RZ’G = Py [pz(a —ayp)]. The first equation was also obtained by Camara using a different method
in [2].

3. Characterization when an operator being an ADTTO

We denote B(K;, K;) as the set of all bounded linear operators from K to K,;. For A € B(K;, K;),
suppose A = D?AD!. Note that
Dﬁe_n = €_n-1),

then we have
Ae_, = (D2)'ADY)'[e-y] = (D2)'AD{[e1], n>1, (3.1)

and foreachn >0,m > 1,

(A(Ge,,), e—m) = <(Dg)mA[0€n+m]a e—m>

a\m @ (32)
= <A[6€n+m]’ (Dz e—m) = <A[Hen+m]’ DZ e—l)-

The above observations will be used frequently in the proof of the following result.
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Proposition 3.1. Let A € B(K;, K;) and A — DEAD] = 0.
(a) If g = O, then there exist y € H” and w € L™ such that A = F, + G, where F,, and G, are
defined by

F,h = aP[wbPh], G,h = 6yaP[yQh]

forh € K; and y = Pw.
(b) If ap # O, then there exist y,w € H™ such that A = F, + Gy, where F,, G, are defined as
follows: for h € K,

F,h = 60(Z@)Qh + Q[zwbPh] + aﬁop[w_eph],
Gyh = 6o Q[ Oh] + Opa Pl Qh] + ayy@Ph.
In particular, A0 = Zw + ay.
Proof. (a) ay = 0. For this case, DYe_; = 0. There are two cases to be discussed:
(al) 6y = 0. In this case, D%e_; = 0 and (D?)*0 = 0. Then by (3.1) we have
Ae_, = (D2)'AD{[e_11=0, n>2,
SO ALﬁ = 0. Furthermore, for n > 0, m > 1, by (3.2) we obtain

(Abey, e_) = (Albeniml, Die_1) =0. (3.3)

So we can regard A as a bounded operator from 6H? to aH?. For n > 0, there exists a function sequence
{h,} € H?, such that
Abe, = ah,,.

Define a linear operator B on H> by Be, = h,. Since 6 and « are inner functions, B is bounded, and
l1BIl = [IAll. For A,
ah, = Abe, = DIAD![0e,] = DZA[0e,.1]

= Di[ah,.1] = aPlazahy.] = aPzhy].
So h, = P|zh,.], and therefore

Be, = h, = P|zh,1] = T;Be,,; = T; BT e,, n > 0.

It implies that B = T BT,. By the Brown-Halmos theorem [1], it tells that B is a Toeplitz operator, so
there exists w € L™ such that B = T,,. Hence Ah = aP[wOPh].

(a2) 8y # 0. For this case, when n > 0 and m > 1, by (3.3) we may regard A as a bounded operator
from K to aH?, so there exists ¢ € H? such that A6 = ayy. Note that Dle_; = 600, then for n > 1,
by (3.1) again we have

Ae_, = (D2)"AD [e-1] = 6y(D2)"A6 = 6y(D)"(ah). (3.4)

Write ¢ = ) ayei. Notice that
k=0

Di[a] = ae_; + {a,a)ay— a)e; =0
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and
Diaarer] = aarere; + {(aare;, a)(ay — @)e_| = aare;

for k > 1, combining with (3.4), we obtain

Ae_, = Q_O(D‘;)” [a Z akek]

k>0
= Oo( ) avery) = BoaPle_ ).

k>n

Therefore, for h € zﬁ we have Ah = Q_OQP[l//h]. _
When h € §H?, similar to (al), it can be shown that there exists w € L™ such that Ah = aP[wOPh].
Hence, we obtain that

Ah = aP[wOPh] + 6,aP[yQh) = F,[h] + G,[h], he K;.

The above gives A0 = aPw, by A6 = ayf obtained before, we get ¥ = Pw.
(b) We first suppose ay # 0 and 6, # 0. In this case, by Lemma 2.1, we see that Die_, = e_1 for
n>1; Dga/ = ape_1; Dg(a/emﬂ) = ae,, form > 0. So Dg is invertible, and

-1 -1
(DF) e—us1) = €, (D) ey =a/ay, n2=1,

(Dg)_l(ozem) =ae,y, m=0.

Let
Al = mee_m +aZakek =Zw + ay,

m>1 k>0

where w, ¥ € H.
Assume that A9 = zw, w € H*. For n > 1, like (3.4), it has

Ae_, = 6(D2)'A0 = 6,(D2)"[Z0] = Oy Zwe-.

Therefore, for g € H?, we have
Alzg] = Opzwzg.

Because
Af = (D2)"A(DYY'0 = (D2)'A(be,),
we have
A(e,) = (D2Y"A6 = (D) " [Zw].
So
A(e,) = (D2™"(Z@] = (DX Y bue_]
m>1
= Z bkgen—k + Z Dime_min
= o men+1

= gP[z_a)en] + Qlzwe,].
@y
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Therefore,

AOf) = aﬁop[z—wéef] + Qlzwbo ]

for f € H.
Forhe K;, h =7g + 0f = Qh + Ph, we get

Ah = 8, Z00h + Q[Z@0Ph] + < P[Z00Ph],
(o4}

denote the right side of the above equation as Fh.
Now, assuming A6 = ey, where € H*, and for n > 1, by (3.4) we have

Ae_, = 6y(D2Y' ] = Boo Qe + GoaPlyre._,].
Therefore, . .
Alzg] = oo Qlyzg] + boaPlyzg]
for g € H*. On the other hand, for n > 0, we obtain that

A(Be,) = (D2)™"A6 = (DY) "[a]

= (D" Y we] = eafa Y- aer] = ey

k>0 k=0

Hence, A[6f] = ay66f for f € H>.
For h € K, h =zg + 0f = Qh + Ph, it induces that

Ah = 600 Q[ Oh] + 6Pl Qh] + /6P,

denote the right side of the above equation as Gh.
Therefore, it follows that A = F,, + Gy, and A6 = zw + ayp. The proof is similar for the case of @ # 0
and 6, = 0. |

By Proposition 3.1, we have the following result.

Corollary 3.1. Let A € B(K;, K;).
(a) If g = 0, then A = 0 if and only if A — D‘ZEADf =0,A0=0,and A*a = 0;
b)) If ap # 0, then A = 0 if and only if A — DgADZ =0and A6 = 0.

Proof. 1t only needs to show the sufficiency.
(a) @p = 0. The proof is divided into the following two cases.
(al) Suppose 6y = 0. By Proposition 3.1, we have

Ah = aP[wOPh] = PD’°.Ph,

where h € K. Therefore, A = PDZ;;P and A* = PDZ;(%P. Since A0 = aP[w] = 0 and A*a = OP[w] =
0, we have w = 0. Thus, A = 0.
(a2) Suppose 6y # 0. In this case, by Proposition 3.1 we have

Ah = aP[wOPh] + 6paP[yQh], he€ K,
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and A6 = ay. So by A8 = 0, we have ¢ = 0. Then, Ah = aP[wOPH] for h € K. Similar to (al), we
can obtain w = 0. Hence, A = 0.
(b) @y # 0. By Proposition 3.1, A6 = zw + ey = 0, thus we have w = 0 and ¥ = 0, which induces

A=0. O
Let
A-DIAD! = e_; ® (BY" — (B’ Dye_y) + (ﬁg“ +04e_1)® e, (3.5)
where

peL>, p¥=Pilgz(l —-ama)l, 6, = O(edks, eo).

It follows from Lemma 2.3 that A = fo;" satisfies the above equation, then by Proposition 3.1, we
can easily obtain the following theorem.

Theorem 3.1. Let A € B(K;, Ky ) and ¢ € L*.
(@) Ifap =0, then A = DZ"’ if and only if A satisfies (3.5), AG = DZ’;”H and A*a = (DZ’(")*a;
(b) If ap # O, then A = D3}* if and only if A satisfies (3.5) and A8 = D}"0.

It is remarked that in [2], the authors also obtained the characterization for ADTTO with different
presentations.

4. The product problem of two ADTTOs for certain symbols

For the inner function 6, we define a class of conjugation linear operators Cy : L*> — L* by
(Cof)@) = b2f, feL?,
which satisfies that (C, f, Cog) = (g, f), and (Cy)* = 1. According to the definition of Cy, we have
Coe_, =0e,_1, Co(Oe,_1)=e_,, n=>1.

Hence, it is clear CyKy = Ky, Co(0H?) = zH? and Cy(zH?) = O0H>.
Before we present the result of the product problem of when the product of two ADTTOs is another
ADTTO for certain symbols, we first give the following lemma.

Lemma 4.1. Suppose ¢, € H*, h € L, and K, C K, C Ky. If
Dy"D;’[6] = Dy°[6], DL"Dj[z] = D)"[Z),
then h = .

Proof. First note that K, € K, € K, means that y/a, 6/, and 6/y all are inner functions.

Notice that DZ,’“D?[Q] = o6 and DZ’“[O] = Q[h6] + aP[ahb], so it is obvious that #6 € H? and
P[@ht] = apy6.

Let @hf = agyl + zf + zg, where f € K,, g € aH?, then

ho = o + Cof +C,g.
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Because h6 € H?, the above means that C,g € H?, which gives g = 0 since C,g € zH?. Thus
h =@y + 0C,f. 4.1)
Also, it 1s noted that
DY D}[zZ] = g + aPlapy PIyzy]l,
D;*[z] = Qlhz] + aPlahz].
So Q[hZ] = pooZ, and we see that h € H* and hy = @gir. Now by (4.1),

h=op+0C,f =y +70/af.
Since z0/a f € zH? and h € H?, it has f = 0and hence h = ¢y, so we obtain the desired conclusion. O

It is worth noting that we can use the result of Ding [3, Theorem 4.7] and Lemma 4.1 to obtain the
following characterization of the product problem for DTTOs.

Corlllary 4.1. For ¢, € H™, DZDZ = DY if and only if there exists A € C such that p(6 — 1), (-
), o(0 — 1) € H? or one of ¢ and  is a constant, in which case h = @y

We are ready to solve the product problem of two ADTTOs with certain analytic symbols.

Theorem 4.1. Let ¢, € K, C K, C Ky and ¢, € H®, ¢** = aP[adz].
(a) If ag = 0, then D}, “Dey Deo‘for some h € L™ if and only if h = oy € K.,
(b) If &g # 0, then D}, “Dgy D} for some h € L™ if and only if h = ¢y € K., and

OP[0zr] = Boo{ Colo — @0l — (67)0C, [ — @0l

+90q™ = 9q"™ = @o(B7)og”"}. (42
Proof. First, suppose that D} “Dgy D}". We notice that when ¢,y € K, C K, C K,
By’ = @z - aP;[Copl = @2,
Bg" = ¢z =GP ICpl = (1 = 1600z = Oopod™ = 60Cole = ol (4.3)
= Oo{pb — appba, 1) = 0
and
B2 =90, (B2 = (1~ 160 )0.
So by (3.5) we obtain
D" = DIDJ"DY = ey ® (92— 902) + (907 — 6o Py [Cop)) @ €y )

= e ®(92) — (BoPi[Cop]) ® €.
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By Lemma 2.2, we have
Dr°D}” - DEDL D, D! = DL D} — DD (DYDY + (1 - lyol*)y ® y)D” D!
= D}*D}” - DD} D!D!D;" D! 4.5)
— (1= yoP)IDED} Y] ® [DIDY7y].
Making use of (4.3) and (4.4), it follows that
DD} DID!D D! = [D}" — e_; ® (¥2) + (voP5[C,p)) ® e_i]
X [D}” = e_; ® 2) + (OoPy[Coy]) ® 1]
= DD, + (6D} Py [Coy)) ® e
—e_1 ® (pz) — e ® ((@z, (B P [Cop]))e_1)
+ (7P [C,2]) ® ((e_1, 80Py [Coy])e_1)
= DYDY + (DL (106w + Oowroq™ + BoColtr — o)) ® ey
— .1 ® (py2) — e_1 ® (@2, (160" Y0Z + Ooroq™

_ o o (4.6)
+ 00Colyr = Yoe-1) + (1ol @0z + Yowoq”* + ¥oCyle = @o))
® ((e-1, (180 WoZ + Bowog™ + BoColtr — o))de-1)
= DD} + (goolfol*e-1 + Bowowq™ + ¢BoColty — o)) ® -
—e_1 ® (pz — (¥)o2) — e_1 ® (w)oe—1 — otboldol’ e ® e_)
+ 160" Wo (1Yo @0z + Yowoq™ + YoCyl = ol ® e
= D2"DyY - e_y ® [@z — (@)o7]
+ (Lotolfol*lyol® — woto)e-1 ® e_i + ¢ ® ey,
where ¢ denotes
Botropq” + BopCalth — ol + @otbolol¥oq™ + wolol*YoC L = @ol.
which satisfies ¢ L e_;. Also,
[DIDZy]1® [Dngg)’] = Yobo(07)0lC, e = g0l + pog” "1 @ e_1 + (ool ey ® ey
By (4.6) and the above equation, (4.5) becomes that
o3 0. Q s 0, (2
DyDy" - DD Dy DY )

= e 1 ®[pYz — (PY)oz]l = D@ ey + [(1 = 16o|potbole-s ® e_y,

where ® denotes

Booeq™ + B0pColth — ol + @otoBo(8Y)oq”® + wobo(67)0Cy I — @ol.

By Lemma 2.4, we see that 4 = . In this case, we have
B = gz = WPy [Coleyll,
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ﬂ%a = [(1 = 601" ot0]Z + OP[Ozpwr] — BoCalpwr — (@i )o] — Bo(ph)og™,
op =0,

and

20,2) = (e¥)o — @o(Coley], 2), (B%’“i) = (1 = 1661 potbo.
So

D} - D¢D; D!
= e_1 ® [pyz — (¢y)oz — @o(Py [Coley]] — (Colpy], 2)2)]

_ - - = 4.8)
+ [0P[0z¢y] = 66Colpr — (@)o] = Bo(pi)og” 1 ® e
+ (1 = |60l )pothoe ®e_;.
Now, by comparing the equalities (4.7) and (4.8), we obtain
@ Py [Calpy]] = @(Caley], 2)2 (4.9)
and
OP[0zpu] = Ooo{Col = @0l = (67)0Cy 1 = ol @.10)

+¢0q™" = g™ = go(@y)og” "}
The above is (4.2).
If oy # 0, then (4.9) gives that
PF[Colpy)] = (Calpy], 2)2.

Simple computation shows that it is

azpy — Plazpy) = (azpy, 2)z,
or

apy — zP(azpy) = (azpy, 2),
which is equivalent to that agy € H?. Thus gy € aH? = zK, ® H?, which implies that ¢y € K,,.
Hence, by Theorem 3.1, we see (b) holds.

If @y = 0, then also 6y = 0 sin_ce 0/« is an inner function. In this case, the equality (4.9) holds
naturally and (4.10) yields that P[6z¢y] = 0, to obtain gy € H?. On the other hand, it is easily seen
that (D} D"y = (D) is

Ba)o(@)of = Qlpga) + (Ba)o(@i)ob,

or Q(@a) = 0, that is, a/w € H?. Also by Theorem 3.1, we have (a).
It is easy to see the converse holds. We finish the proof. O

We notice that when § = y = a, it has ¢*® = ¢ = ¢»* = 0, so we can derive quickly a result: Let
@, ¥ € Ky, then DD}, = Dy if and only if i = oy € K.

Obviously, it is a special case of Corollary 4.1 for the dual truncated Toeplitz operators.

The following corollary is also obvious.
Corollary 4.2. Let o,y € K, C K, C Ky and ¢,y € H*, then DZ;“DZ” = 0ifand only if p = 0 or
Y =0.
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5. Conclusions

In this paper, we studied ADTTO acting on the orthogonal complement of two different model
spaces. More precisely, we characterized when a given operator is an ADTTO with an operator
equation. As applications of this result, we solved the product problem of two ADTTOs with certain
analytic symbols. In future work, we will investigate the product problem of two ADTTOs with general
symbols.
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