
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(3): 6560–6573.
DOI: 10.3934/math.2025300
Received: 06 December 2024
Revised: 08 March 2025
Accepted: 19 March 2025
Published: 25 March 2025

Research article

Characterizations of the product of asymmetric dual truncated Toeplitz
operators

Zhenhui Zhu, Qi Wu* and Yong Chen

Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China

* Correspondence: Email: whuqwu@whu.edu.cn.

Abstract: The asymmetric dual truncated Toeplitz operator (ADTTO) is a compression multiplication
operator acting on the orthogonal complement of two different model spaces. In this paper, we present
an operator equation characterization of an ADTTO using the compressed shift operator. As an
application, the product of two ADTTOs with certain symbols being another ADTTO is obtained.

Keywords: asymmetric dual truncated Toeplitz operator; Hardy space; model space; product problem
Mathematics Subject Classification: Primary 47B35, Secondary 32A37

1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane C, its boundary the unit circle T = {z :
|z| = 1}. L2 is the space of square-integrable functions on T with respect to the normalized Lebesgue
measure dσ. It is known that L2 is a Hilbert space with the inner product

〈 f , g〉 =

∫
T

f ḡdσ.

Let en(z) = zn, z ∈ T, n ∈ Z; then {en : n ∈ Z} forms a standard orthogonal basis for L2. For each
h ∈ L2, it is well known that

h = Σn∈Z〈h, en〉en

and
‖h‖2 =

∑
n∈Z

|〈h, en〉|
2.

The classical Hardy space H2 is a closed subspace of L2 consisting of h with h =
∑

n≥0〈h, en〉en. So
L2 = H2 ⊕ zH2, where zH2 = {z f : f ∈ H2}. Since the evaluation at each point in D is continuous, then
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H2 becomes a reproducing Hilbert space with the reproducing kernel given by

kw(z) =
1

1 − wz
, w ∈ D, z ∈ T.

Let P be the orthogonal projection from L2 onto H2; then

P f (z) = 〈 f , kz〉, f ∈ L2.

Denote L∞ and H∞ as the algebras of bounded functions in L2 and H2, respectively. Define the
Toeplitz operator Tϕ on the Hardy space H2 with symbol ϕ ∈ L∞ by

Tϕ f = P[ϕ f ], f ∈ H2.

It is obvious that Tϕ is a bounded linear operator on H2.
If θ ∈ H∞ has |θ| = 1 almost everywhere on the unit circle T, then θ is called an inner function, and

the corresponding model space Kθ is the orthogonal complement of θH2 in H2, i.e., Kθ = H2 	 θH2.
It is known that for inner functions u and v, Kuv = Ku ⊕ uKv. The shift operator S is defined by
S f (z) = z f (z); its adjoint operator is called the backward unilateral shift operator, which is S ∗ f (z) =
f (z)− f (0)

z . The model space is an invariant subspace of the backward unilateral shift operator S ∗, and
also a reproducing kernel Hilbert space whose reproducing kernel is

kθw(z) =
1 − θ(w)θ(z)

1 − wz
, w ∈ D, z ∈ T.

Since kθw is bounded, the set K∞θ = Kθ ∩ H∞ is dense in Kθ.
For ϕ ∈ L∞, the truncated Toeplitz operator (TTO) Aθ

ϕ systematically studied by Sarason in [7] is
defined on the model space Kθ by

Aθ
ϕ f = Pθ[ϕ f ], f ∈ Kθ,

where Pθ is the orthogonal projection from L2 onto Kθ. As is known to all, TTO is a natural
generalization of Toeplitz matrices that appear in many contexts, such as in the study of finite-interval
convolution equations, signal processing, control theory, probability, and diffraction problems [4,5,7].
Actually, Aθ

ϕ is the compression of Tϕ on the model space Kθ, i.e., Aθ
ϕ = PθTϕ|Kθ

. Sedlock [8] has
ever defined the Sedlock class to study the product problem of truncated Toeplitz operators. For more
information about model spaces and their operators, one is referred to [4].

Notice that
K⊥θ = L2 	 Kθ = zH2 ⊕ θH2.

It is easy to see that {e−n : n ≥ 1} and {θen : n ≥ 0} are standard orthonormal bases for zH2 and θH2,
respectively, and so

{e−n : n ≥ 1} ∪ {θen : n ≥ 0}

forms a standard orthonormal basis for K⊥θ .
Let Qθ = P⊥θ = I −Pθ be the orthogonal projection from L2 onto K⊥θ . So Qθ f = Q f + θP(θ f ), where

Q = I − P. In 2018, Ding and Sang [3] introduced the dual truncated Toeplitz operator (DTTO), which
is defined on K⊥θ by

Dθ
ϕ f = Qθ[ϕ f ], f ∈ K⊥θ ,
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or written as
Dθ
ϕ f = Q[ϕ f ] + θP[θϕ f ], f ∈ K⊥θ .

It is clear that (Dθ
ϕ)∗ = Dθ

ϕ
. Furthermore, for any complex constant λ, we have Dθ

λ = λI.
Câmara [2] discussed the asymmetric dual truncated Toeplitz operator (ADTTO), which is defined

on K⊥θ by
Dθ,α
ϕ f = P⊥α [ϕ f ] = Q[ϕ f ] + αP[αϕ f ], f ∈ K⊥θ .

Also, (Dθ,α
ϕ )∗ = Dα,θ

ϕ
. DTTO and ADTTO, acting on these spaces, have realizations, for example, in

long–distance communication links with several regenerators along the path that cancel low–frequency
noise using high–pass filters, or in the description of wave propagation in the presence of finite–length
obstacles.

In 1964, Brown and Halmos [1] proved that a bounded operator A on H2 is a Toeplitz operator if
and only if A − S ∗AS = 0. This operator equation plays a significant role in the study of Toeplitz
operators and related topics. In 2007, Sarason proved a result on truncated Toeplitz operators in [7]
that is similar to Brown and Halmos: Let S θ = Aθ

z , the compressed shift operator on Kθ, then a bounded
operator A on Kθ is a truncated Toeplitz operator if and only if A − S ∗θAS θ is at most a rank-2 operator,
more precisely,

A − S ∗θAS θ = ψ ⊗ k̃θ0 + k̃θ0 ⊗ χ

for some ψ, χ ∈ Kθ, where
k̃θ0 = z[θ(z) − θ(0)].

In 2021, Gu [6] studied the dual truncated Toeplitz operators, and obtained that a bounded operator
A on K⊥θ is a dual truncated Toeplitz operator if and only if A−Dθ

z ADθ
z is at most a rank-2 operator and

Aθ = Dθ
ϕθ, A∗θ = (Dθ

ϕ)∗θ

for some ϕ ∈ L∞, where Dθ
z is the compressed shift on K⊥θ . This result is similar to Sarason’s.

For the product problem of when two Toeplitz operators are another Toeplitz operator, Brown and
Halmos in [1] established a necessary and sufficient condition based on the above operator equation
characterization of the Toeplitz operator. In 2011, N. Sedlock did the same thing for truncated Toeplitz
operators in [8].

Inspired by the above work, in this paper, we will establish an operator equation to obtain an
equivalent characterization of the ADTTO, which is similar to Sarason’s; see Theorem 3.1. Based
on this, we follow a method taken in Sedlock’s paper [8] and study the product problem of when the
product of two ADTTOs with symbols in model spaces is another ADTTO; see Theorem 4.1.

2. preliminaries

In what follows, for g ∈ L2(T), we write gn (n ∈ Z) as the n-th Fourier coefficient 〈h, en〉 of g, unless
otherwise stated.

The following lemmas come from [6].

Lemma 2.1. For any function h ∈ K⊥θ , we have

Dθ
zh = zh + 〈h, e−1〉(θ0θ − e0);

Dθ
zh = zh + 〈h, θ〉(θ0 − θ)e−1.
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Lemma 2.2. On K⊥θ , we have

I − (Dθ
z)
∗Dθ

z = (1 − |θ0|
2)e−1 ⊗ e−1;

I − Dθ
z(D

θ
z)
∗ = (1 − |θ0|

2)θ ⊗ θ.

We also need the following result, which says that an ADTTO satisfies an operator equation.

Lemma 2.3. The operator Dθ,α
ϕ satisfies the following equation.

Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z = e−1 ⊗ (βα,θϕ − 〈β
α,θ
ϕ , z〉e−1) + (βθ,α

ϕ
+ δe−1) ⊗ e−1,

where
βα,θϕ = P⊥θ [ϕz(1 − α0α)], δ = θ0〈ϕθkα0 , e0〉.

Proof. For h ∈ K⊥θ 	 span{e−1}, using Lemma 2.1, direct calculations show that

Dα
z Dθ,α

ϕ Dθ
z[h] = Dα

z Dθ,α
ϕ [zh]

= zDθ,α
ϕ [zh] + 〈Dθ,α

ϕ [zh], α〉(α0 − α)z

= zQ[ϕzh] + zαP[αϕzh] + 〈ϕzh, α〉(α0 − α)z
= Q[ϕh] − z(ϕh)−1 + αP[αϕh] + zα(αϕh)−1 + (αϕh)−1(α0 − α)z
= Dθ,α

ϕ [h] − 〈ϕh − α0(αϕh), z〉z

= Dθ,α
ϕ [h] − 〈h, P⊥θ [ϕz(1 − α0α)]〉z

= Dθ,α
ϕ [h] − e−1 ⊗ β

α,θ
ϕ [h].

Set r = (Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z)[z], then for h + zc, where h ∈ K⊥θ 	 span{e−1} and c is a constant, we have

Dθ,α
ϕ [h + zc] − (Dα

z Dθ,α
ϕ Dθ

z)[h + zc]

= Dθ,α
ϕ [h] − (Dα

z Dθ,α
ϕ Dθ

z)[h] + (Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z)[zc]

= 〈h, βα,θϕ 〉e−1 + cr = 〈h + zc, βα,θϕ 〉e−1 + cr − c〈z, βα,θϕ 〉e−1

=
(
e−1 ⊗ (βα,θϕ − 〈β

α,θ
ϕ , z〉e−1)

)
[h + zc] + r ⊗ e−1[h + zc].

(2.1)

Now we calculate r = (Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z)[z]. Since

(Dα
z Dθ,α

ϕ Dθ
z)[z] = Dα

z [Q[ϕθθ0] + αP[αϕθθ0]]

= zQ[ϕθθ0] + zαP[αϕθθ0] + 〈ϕαθθ0, e0〉(α0 − α)z

= P⊥α [ϕθθ0z] − (ϕθ)0θ0e−1 + (ϕαθ)0θ0α0e−1,

thus, we obtain

r = (Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z)[z]

= P⊥α [ϕz(1 − θ0θ)] + 〈ϕθθ0 − ϕαθθ0α0, e0〉e−1

= βθ,α
ϕ

+ θ0〈ϕθkα0 , e0〉e−1 = βθ,α
ϕ

+ δe−1.

Substituting the above into (2.1) proves the result. �
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When θ = α, the above result becomes the following one, which was obtained by Gu [6].

Corollary 2.1. The operator Dθ
ϕ satisfies the following equation:

Dθ
ϕ − Dθ

z Dθ
ϕDθ

z = e−1 ⊗ (βθϕ − 〈β
θ
ϕ, z〉 e−1) + (βθϕ + δe−1) ⊗ e−1,

where
βθϕ = P⊥θ [ϕz(1 − θ0θ)], δ = θ0〈ϕ(θ − θ0, e0〉.

It is remarked passing that Câmara [2] also obtained that

Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z = e−1 ⊗ β
α,θ
ϕ + βθ,α

ϕ
⊗ e−1.

It is not true. The following is a counterexample.

Example 2.1. When θ = α, θ0θ1 , 0 and ϕ = z̄, then using Lemma 2.1 we obtain

(Dθ
ϕ − Dθ

z Dθ
z Dθ

z)[z] = (1 − |θ0|
2)z2

and
(e−1 ⊗ β

θ
ϕ + βθϕ ⊗ e−1)[z] = (1 − |θ0|

2)(z2) − θ0θ1z,

so it is clear that
(Dθ

ϕ − Dα
z Dθ

z Dθ
z)[z] , (e−1 ⊗ β

θ
ϕ + βθϕ ⊗ e−1)[z].

Using a proof similar to Lemma 2.3, we can show that the operator Dθ,α
ϕ satisfies the following

equations:
Dθ,α
ϕ Dθ

z − Dα
z Dθ,α

ϕ = α ⊗ P⊥θ [ϕz(α − α0)] − P⊥α [ϕ(1 − θ0θ)] ⊗ e−1

and
Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z = α ⊗ [Rα,θ
zϕ − 〈R

α,θ
zϕ , θ〉θ] + [Rθ,α

zϕ + θ0〈ϕ(α − α0), e0〉α] ⊗ θ,

where Rα,θ
ϕ = P⊥θ [ϕz(α−α0)]. The first equation was also obtained by Câmara using a different method

in [2].

3. Characterization when an operator being an ADTTO

We denote B(K⊥θ ,K
⊥
α ) as the set of all bounded linear operators from K⊥θ to K⊥α . For A ∈ B(K⊥θ ,K

⊥
α ),

suppose A = Dα
z̄ ADθ

z . Note that
Dθ

ze−n = e−(n−1),

then we have
Ae−n = (Dα

z )nA(Dθ
z)

n[e−n] = (Dα
z )nADθ

z[e−1], n > 1, (3.1)

and for each n ≥ 0, m ≥ 1,

〈A(θen), e−m〉 = 〈(Dα
z )mA[θen+m], e−m〉

= 〈A[θen+m], (Dα
z )me−m〉 = 〈A[θen+m], Dα

z e−1〉.
(3.2)

The above observations will be used frequently in the proof of the following result.
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Proposition 3.1. Let A ∈ B(K⊥θ ,K
⊥
α ) and A − Dα

z ADθ
z = 0.

(a) If α0 = 0, then there exist ψ ∈ H∞ and ω ∈ L∞ such that A = Fω + Gψ, where Fω and Gψ are
defined by

Fωh = αP[ωθPh], Gψh = θ0αP[ψQh]

for h ∈ K⊥θ and ψ = Pω.
(b) If α0 , 0, then there exist ψ,ω ∈ H∞ such that A = Fω + Gψ, where Fω,Gψ are defined as

follows: for h ∈ K⊥θ ,

Fωh = θ0(zω)Qh + Q[zωθPh] +
α

α0
P[zωθPh],

Gψh = θ0α0Q[ψQh] + θ0αP[ψQh] + αψθPh.

In particular, Aθ = zω + αψ.

Proof. (a) α0 = 0. For this case, Dα
z e−1 = 0. There are two cases to be discussed:

(a1) θ0 = 0. In this case, Dθ
ze−1 = 0 and (Dθ

z)
∗θ = 0. Then by (3.1) we have

Ae−n = (Dα
z )nADθ

z[e−1] = 0, n ≥ 2,

so A|zH2 = 0. Furthermore, for n ≥ 0, m ≥ 1, by (3.2) we obtain

〈Aθen, e−m〉 = 〈A[θen+m], Dα
z e−1〉 = 0. (3.3)

So we can regard A as a bounded operator from θH2 to αH2. For n ≥ 0, there exists a function sequence
{hn} ⊂ H2, such that

Aθen = αhn.

Define a linear operator B on H2 by Ben = hn. Since θ and α are inner functions, B is bounded, and
||B|| = ||A||. For A,

αhn = Aθen = Dα
z ADθ

z[θen] = Dα
z A[θen+1]

= Dα
z [αhn+1] = αP[αzαhn+1] = αP[zhn+1].

So hn = P[z̄hn+1], and therefore

Ben = hn = P[zhn+1] = T ∗z Ben+1 = T ∗z BTzen, n ≥ 0.

It implies that B = T ∗z BTz. By the Brown-Halmos theorem [1], it tells that B is a Toeplitz operator, so
there exists ω ∈ L∞ such that B = Tω. Hence Ah = αP[ωθPh].

(a2) θ0 , 0. For this case, when n ≥ 0 and m ≥ 1, by (3.3) we may regard A as a bounded operator
from K⊥θ to αH2, so there exists ψ ∈ H2 such that Aθ = αψ. Note that Dθ

ze−1 = θ0θ, then for n ≥ 1,
by (3.1) again we have

Ae−n = (Dα
z )nADθ

z[e−1] = θ0(Dα
z )nAθ = θ0(Dα

z̄ )n(αψ). (3.4)

Write ψ =
∑
k≥0

akek. Notice that

Dα
z [α] = αe−1 + 〈α, α〉(α0 − α)e−1 = 0

AIMS Mathematics Volume 10, Issue 3, 6560–6573.



6566

and
Dα

z [αakek] = αakeke−1 + 〈αakek, α〉(α0 − α)e−1 = αakek−1

for k ≥ 1, combining with (3.4), we obtain

Ae−n = θ0(Dα
z )n

[
α
∑
k≥0

akek

]
= θ0

(
α
∑
k≥n

akek−n

)
= θ0αP[e−nψ].

Therefore, for h ∈ zH2, we have Ah = θ0αP[ψh].
When h ∈ θH2, similar to (a1), it can be shown that there exists ω ∈ L∞ such that Ah = αP[ωθPh].

Hence, we obtain that

Ah = αP[ωθPh] + θ0αP[ψQh] = Fω[h] + Gψ[h], h ∈ K⊥θ .

The above gives Aθ = αPω, by Aθ = αψ obtained before, we get ψ = Pω.
(b) We first suppose α0 , 0 and θ0 , 0. In this case, by Lemma 2.1, we see that Dα

z e−n = e−(n+1) for
n ≥ 1; Dα

zα = α0e−1; Dα
z (αem+1) = αem for m ≥ 0. So Dα

z is invertible, and

(Dα
z )−1e−(n+1) = e−n, (Dα

z )−1e−1 = α/α0, n ≥ 1,

(Dα
z )−1(αem) = αem+1, m ≥ 0.

Let
Aθ =

∑
m≥1

bme−m + α
∑
k≥0

akek = zω + αψ,

where ω, ψ ∈ H2.
Assume that Aθ = zω, ω ∈ H∞. For n ≥ 1, like (3.4), it has

Ae−n = θ0(Dα
z )nAθ = θ0(Dα

z )n[zω] = θ0 zωe−n.

Therefore, for g ∈ H2, we have
A[zg] = θ0zωzg.

Because
Aθ = (Dα

z )nA(Dθ
z)

nθ = (Dα
z )nA(θen),

we have
A(θen) = (Dα

z )−nAθ = (Dα
z )−n[zω].

So
A(θen) = (Dα

z )−n[zω] = (Dα
z )−n

[∑
m≥1

bme−m

]
=

n∑
k=1

bk
α

α0
en−k +

∑
m≥n+1

bme−m+n

=
α

α0
P[zωen] + Q[zωen].
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Therefore,
A(θ f ) =

α

α0
P[zωθ̄θ f ] + Q[zωθ̄θ f ]

for f ∈ H2.
For h ∈ K⊥θ , h = zg + θ f = Qh + Ph, we get

Ah = θ0 zωQh + Q[zωθPh] +
α

α0
P[zωθPh],

denote the right side of the above equation as Fωh.
Now, assuming Aθ = αψ, where ψ ∈ H∞, and for n ≥ 1, by (3.4) we have

Ae−n = θ0(Dα
z )n[αψ] = θ0α0Q[ψe−n] + θ0αP[ψe−n].

Therefore,
A[zg] = θ0α0Q[ψzg] + θ0αP[ψzg]

for g ∈ H2. On the other hand, for n ≥ 0, we obtain that

A(θen) = (Dα
z )−nAθ = (Dα

z )−n[αψ]

= (Dα
z )−n

[
α
∑
k≥0

akek

]
= en

[
α
∑
k≥0

akek

]
= enαψ.

Hence, A[θ f ] = αψθ̄θ f for f ∈ H2.
For h ∈ K⊥θ , h = zg + θ f = Qh + Ph, it induces that

Ah = θ0α0Q[ψQh] + θ0αP[ψQh] + αψθPh,

denote the right side of the above equation as Gψh.
Therefore, it follows that A = Fω+Gψ and Aθ = zω+αψ. The proof is similar for the case of α0 , 0

and θ0 = 0. �

By Proposition 3.1, we have the following result.

Corollary 3.1. Let A ∈ B(K⊥θ ,K
⊥
α ).

(a) If α0 = 0, then A = 0 if and only if A − Dα
z ADθ

z = 0, Aθ = 0, and A∗α = 0;
(b) If α0 , 0, then A = 0 if and only if A − Dα

z ADθ
z = 0 and Aθ = 0.

Proof. It only needs to show the sufficiency.
(a) α0 = 0. The proof is divided into the following two cases.
(a1) Suppose θ0 = 0. By Proposition 3.1, we have

Ah = αP[ωθ̄Ph] = PDθ,α

ωαθ̄
Ph,

where h ∈ K⊥θ . Therefore, A = PDθ,α

ωαθ̄
P and A∗ = PDα,θ

ωαθ
P. Since Aθ = αP[ω] = 0 and A∗α = θP[ω] =

0, we have ω = 0. Thus, A = 0.
(a2) Suppose θ0 , 0. In this case, by Proposition 3.1 we have

Ah = αP[ωθPh] + θ0αP[ψQh], h ∈ K⊥θ ,
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and Aθ = αψ. So by Aθ = 0, we have ψ = 0. Then, Ah = αP[ωθPh] for h ∈ K⊥θ . Similar to (a1), we
can obtain ω = 0. Hence, A = 0.

(b) α0 , 0. By Proposition 3.1, Aθ = zω + αψ = 0, thus we have ω = 0 and ψ = 0, which induces
A = 0. �

Let
A − Dα

z ADθ
z = e−1 ⊗ (βα,θϕ − 〈β

α,θ
ϕ , z〉e−1) + (βθ,α

ϕ
+ δϕe−1) ⊗ e−1, (3.5)

where
ϕ ∈ L∞, βα,θϕ = P⊥θ [ϕz(1 − α0α)], δϕ = θ0〈ϕθkα0 , e0〉.

It follows from Lemma 2.3 that A = Dθ,α
ϕ satisfies the above equation, then by Proposition 3.1, we

can easily obtain the following theorem.

Theorem 3.1. Let A ∈ B(K⊥θ ,K
⊥
α ) and ϕ ∈ L∞.

(a) If α0 = 0, then A = Dθ,α
ϕ if and only if A satisfies (3.5), Aθ = Dθ,α

ϕ θ and A∗α = (Dθ,α
ϕ )∗α;

(b) If α0 , 0, then A = Dθ,α
ϕ if and only if A satisfies (3.5) and Aθ = Dθ,α

ϕ θ.

It is remarked that in [2], the authors also obtained the characterization for ADTTO with different
presentations.

4. The product problem of two ADTTOs for certain symbols

For the inner function θ, we define a class of conjugation linear operators Cθ : L2 → L2 by

(Cθ f )(z) = θz f , f ∈ L2,

which satisfies that 〈Cθ f ,Cθg〉 = 〈g, f 〉, and (Cθ)2 = I. According to the definition of Cθ, we have

Cθe−n = θen−1, Cθ(θen−1) = e−n, n ≥ 1.

Hence, it is clear CθKθ = Kθ, Cθ(θH2) = zH2 and Cθ(zH2) = θH2.

Before we present the result of the product problem of when the product of two ADTTOs is another
ADTTO for certain symbols, we first give the following lemma.

Lemma 4.1. Suppose ϕ, ψ ∈ H∞, h ∈ L∞, and Kα ⊆ Kγ ⊆ Kθ. If

Dγ,α
ϕ Dθ,γ

ψ [θ] = Dθ,α
h [θ], Dγ,α

ϕ Dθ,γ
ψ [z] = Dθ,α

h [z],

then h = ϕψ.

Proof. First note that Kα ⊆ Kγ ⊆ Kθ means that γ/α, θ/α, and θ/γ all are inner functions.
Notice that Dγ,α

ϕ Dθ,γ
ψ [θ] = ϕψθ and Dθ,α

h [θ] = Q[hθ] + αP[αhθ], so it is obvious that hθ ∈ H2 and
P[αhθ] = αϕψθ.

Let αhθ = αϕψθ + z f + zg, where f ∈ Kα, g ∈ αH2, then

hθ = ϕψθ + Cα f + Cαg.
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Because hθ ∈ H2, the above means that Cαg ∈ H2, which gives g = 0 since Cαg ∈ zH2. Thus

h = ϕψ + θCα f . (4.1)

Also, it is noted that

Dγ,α
ϕ Dθ,γ

ψ [z] = ϕ0ψ0z + αP[αϕγP[γzψ]],

Dθ,α
h [z] = Q[hz] + αP[αhz].

So Q[hz] = ϕ0ψ0z, and we see that h ∈ H2 and h0 = ϕ0ψ0. Now by (4.1),

h = ϕψ + θCα f = ϕψ + zθ/α f .

Since zθ/α f ∈ zH2 and h ∈ H2, it has f = 0 and hence h = ϕψ, so we obtain the desired conclusion. �

It is worth noting that we can use the result of Ding [3, Theorem 4.7] and Lemma 4.1 to obtain the
following characterization of the product problem for DTTOs.

Corollary 4.1. For ϕ, ψ ∈ H∞, Dθ
ϕDθ

ψ = Dθ
h if and only if there exists λ ∈ C such that ϕ(θ − λ), ψ(θ −

λ), ϕψ(θ − λ) ∈ H2 or one of ϕ and ψ is a constant, in which case h = ϕψ.

We are ready to solve the product problem of two ADTTOs with certain analytic symbols.

Theorem 4.1. Let ϕ, ψ ∈ Kα ⊆ Kγ ⊆ Kθ and ϕ, ψ ∈ H∞, qθ,α = αP[αθz].
(a) If α0 = 0, then Dγ,α

ϕ Dθ,γ
ψ = Dθ,α

h for some h ∈ L∞ if and only if h = ϕψ ∈ Kzα.
(b) If α0 , 0, then Dγ,α

ϕ Dθ,γ
ψ = Dθ,α

h for some h ∈ L∞ if and only if h = ϕψ ∈ Kzα and

θP[θzϕψ] = θ0ψ0
{
Cθ[ϕ − ϕ0] − (θγ)0Cγ[ϕ − ϕ0]

+ ϕ0qθ,α − ϕqθ,γ − ϕ0(θγ)0qγ,α
}
.

(4.2)

Proof. First, suppose that Dγ,α
ϕ Dθ,γ

ψ = Dθ,α
h . We notice that when ϕ, ψ ∈ Kα ⊆ Kγ ⊆ Kθ,

βα,θϕ = ϕz − α0P⊥θ [Cαϕ] = ϕz,

βθ,α
ϕ

= ϕ0z − θ0P⊥α [Cθϕ] = (1 − |θ0|
2)ϕ0z − θ0ϕ0qθ,α − θ0Cθ[ϕ − ϕ0], (4.3)

δϕ = θ0〈ϕθ − α0ϕθα, 1〉 = 0,

and
〈βα,θϕ , z〉 = ϕ0, 〈β

θ,α
ϕ
, z〉 = (1 − |θ0|

2)ϕ0.

So by (3.5) we obtain

Dθ,α
ϕ − Dα

z Dθ,α
ϕ Dθ

z = e−1 ⊗ (ϕz − ϕ0z) + (ϕ0z − θ0P⊥α [Cθϕ]) ⊗ e−1

= e−1 ⊗ (ϕz) − (θ0P⊥α [Cθϕ]) ⊗ e−1.
(4.4)
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By Lemma 2.2, we have

Dγ,α
ϕ Dθ,γ

ψ − Dα
z Dγ,α

ϕ Dθ,γ
ψ Dθ

z = Dγ,α
ϕ Dθ,γ

ψ − Dα
z Dγ,α

ϕ (Dγ
z Dγ

z + (1 − |γ0|
2)γ ⊗ γ)Dθ,γ

ψ Dθ
z

= Dγ,α
ϕ Dθ,γ

ψ − Dα
z Dγ,α

ϕ Dγ
z Dγ

z Dθ,γ
ψ Dθ

z

− (1 − |γ0|
2)[Dα

z Dγ,α
ϕ γ] ⊗ [Dθ

z Dγ,θ

ψ
γ].

(4.5)

Making use of (4.3) and (4.4), it follows that

Dα
z Dγ,α

ϕ Dγ
z Dγ

z Dθ,γ
ψ Dθ

z = [Dγ,α
ϕ − e−1 ⊗ (ϕz) + (γ0P⊥α [Cγϕ]) ⊗ e−1]

× [Dθ,γ
ψ − e−1 ⊗ (ψz) + (θ0P⊥γ [Cθψ]) ⊗ e−1]

= Dγ,α
ϕ Dθ,γ

ψ + (θ0Dγ,α
ϕ P⊥γ [Cθψ]) ⊗ e−1

− e−1 ⊗ (ϕψz) − e−1 ⊗ (〈ϕz, (θ0P⊥γ [Cθψ])〉e−1)

+ (γ0P⊥α [Cγϕ]) ⊗ (〈e−1, θ0P⊥γ [Cθψ]〉e−1)

= Dγ,α
ϕ Dθ,γ

ψ + (Dγ,α
ϕ (|θ0|

2ψ0z + θ0ψ0qθ,γ + θ0Cθ[ψ − ψ0])) ⊗ e−1

− e−1 ⊗ (ϕψz) − e−1 ⊗ (〈ϕz, (|θ0|
2ψ0z + θ0ψ0qθ,γ

+ θ0Cθ[ψ − ψ0])〉e−1) + (|γ0|
2ϕ0z + γ0ϕ0qγ,α + γ0Cγ[ϕ − ϕ0])

⊗ (〈e−1, (|θ0|
2ψ0z + θ0ψ0qθ,γ + θ0Cθ[ψ − ψ0])〉e−1)

= Dγ,α
ϕ Dθ,γ

ψ + (ϕ0ψ0|θ0|
2e−1 + θ0ψ0ϕqθ,γ + ϕθ0Cθ[ψ − ψ0]) ⊗ e−1

− e−1 ⊗ (ϕψz − (ϕψ)0z) − e−1 ⊗ (ϕψ)0e−1 − ϕ0ψ0|θ0|
2e−1 ⊗ e−1)

+ |θ0|
2ψ0(|γ0|

2ϕ0z + γ0ϕ0qγ,α + γ0Cγ[ϕ − ϕ0]) ⊗ e−1

= Dγ,α
ϕ Dθ,γ

ψ − e−1 ⊗ [ϕψz − (ϕψ)0z]

+ (ϕ0ψ0|θ0|
2|γ0|

2 − ϕ0ψ0)e−1 ⊗ e−1 + φ ⊗ e−1,

(4.6)

where φ denotes

θ0ψ0ϕqθ,γ + θ0ϕCθ[ψ − ψ0] + ϕ0ψ0|θ0|
2γ0qγ,α + ψ0|θ0|

2γ0Cγ[ϕ − ϕ0],

which satisfies φ ⊥ e−1. Also,

[Dα
z Dγ,α

ϕ γ] ⊗ [Dθ
z Dγ,θ

ψ
γ] = ψ0θ0(θγ)0[Cγ[ϕ − ϕ0] + ϕ0qγ,α] ⊗ e−1 + (ϕ0ψ0|θ0|

2)e−1 ⊗ e−1.

By (4.6) and the above equation, (4.5) becomes that

Dγ,α
ϕ Dθ,γ

ψ − Dα
z Dγ,α

ϕ Dθ,γ
ψ Dθ

z

= e−1 ⊗ [ϕψz − (ϕψ)0z] − Φ ⊗ e−1 + [(1 − |θ0|
2)ϕ0ψ0]e−1 ⊗ e−1,

(4.7)

where Φ denotes

θ0ψ0ϕqθ,γ + θ0ϕCθ[ψ − ψ0] + ϕ0ψ0θ0(θγ)0qγ,α + ψ0θ0(θγ)0Cγ[ϕ − ϕ0].

By Lemma 2.4, we see that h = ϕψ. In this case, we have

βα,θh = ϕψz − α0P⊥θ [Cα[ϕψ]],
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βθ,α
h

= [(1 − |θ0|
2)ϕ0ψ0]z + θP[θzϕψ] − θ0Cθ[ϕψ − (ϕψ)0] − θ0(ϕψ)0qθ,α,

δh = 0,

and

〈βα,θh , z〉 = (ϕψ)0 − α0〈Cα[ϕψ], z〉, 〈βθ,α
h
, z〉 = (1 − |θ0|

2)ϕ0ψ0.

So

Dθ,α
h − Dα

z Dθ,α
h Dθ

z

= e−1 ⊗ [ϕψz − (ϕψ)0z − α0(P⊥θ [Cα[ϕψ]] − 〈Cα[ϕψ], z〉z)]

+ [θP[θzϕψ] − θ0Cθ[ϕψ − (ϕψ)0] − θ0(ϕψ)0qθ,α] ⊗ e−1

+ (1 − |θ0|
2)ϕ0ψ0e−1 ⊗ e−1.

(4.8)

Now, by comparing the equalities (4.7) and (4.8), we obtain

α0P⊥θ [Cα[ϕψ]] = α0〈Cα[ϕψ], z〉z (4.9)

and
θP[θzϕψ] = θ0ψ0{Cθ[ϕ − ϕ0] − (θγ)0Cγ[ϕ − ϕ0]

+ ϕ0qθ,α − ϕqθ,γ − ϕ0(θγ)0qγ,α}.
(4.10)

The above is (4.2).
If α0 , 0, then (4.9) gives that

P⊥θ [Cα(ϕψ)] = 〈Cα[ϕψ], z〉z.

Simple computation shows that it is

αzϕψ − P(αzϕψ) = 〈αzϕψ, z〉z,

or
αϕψ − zP(αzϕψ) = 〈αzϕψ, z〉,

which is equivalent to that αϕψ ∈ H2. Thus ϕψ ∈ αH2 = zKα ⊕ H2, which implies that ϕψ ∈ Kzα.
Hence, by Theorem 3.1, we see (b) holds.

If α0 = 0, then also θ0 = 0 since θ/α is an inner function. In this case, the equality (4.9) holds
naturally and (4.10) yields that P[θzϕψ] = 0, to obtain θϕψ ∈ H2. On the other hand, it is easily seen
that (Dγ,α

ϕ Dθ,γ
ψ )∗α = (Dθ,α

ϕψ )∗α is

(θ̄α)0(ϕψ)0θ = Q(ϕψα) + (θ̄α)0(ϕψ)0θ,

or Q(ϕψα) = 0, that is, αϕψ ∈ H2. Also by Theorem 3.1, we have (a).
It is easy to see the converse holds. We finish the proof. �

We notice that when θ = γ = α, it has qθ,α = qθ,γ = qγ,α = 0, so we can derive quickly a result: Let
ϕ, ψ ∈ Kθ, then Dθ

ϕDθ
ψ = Dθ

h if and only if h = ϕψ ∈ Kzθ.
Obviously, it is a special case of Corollary 4.1 for the dual truncated Toeplitz operators.
The following corollary is also obvious.

Corollary 4.2. Let ϕ, ψ ∈ Kα ⊆ Kγ ⊆ Kθ and ϕ, ψ ∈ H∞, then Dγ,α
ϕ Dθ,γ

ψ = 0 if and only if ϕ = 0 or
ψ = 0.
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5. Conclusions

In this paper, we studied ADTTO acting on the orthogonal complement of two different model
spaces. More precisely, we characterized when a given operator is an ADTTO with an operator
equation. As applications of this result, we solved the product problem of two ADTTOs with certain
analytic symbols. In future work, we will investigate the product problem of two ADTTOs with general
symbols.
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