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Abstract: This paper focused on the generalized Bott-Duffin (GBD) inverse and the GBD elements in
Banach algebra with involution and C∗-algebra, as well as on the property of the p-positive semidefinite
elements that are a generalization of the L-positive semidefinite matrices closely related to the GBD
inverse. Also, using matrix equalities, inclusion relations of subspaces, and projectors, we established
various characterizations of the GBD property in the matrix sets, especially on the set of L-positive
semidefinite matrices. Additionally, we compared the methods and tools that we have at our disposal
in the matrix set on one side and in Banach and C∗-algebras on the other. Using the GBD inverse as an
example, we would like to compare the results and their proofs in both sets and explain steps to quite
easily skip from one set to the other, as well as situations in which we must pay additional attention in
order to avoid mistakes.
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1. Introduction

Bott and Duffin [1] introduced an important tool called the “constrained inverse” of a square matrix.
This inverse was later called the Bott-Duffin inverse, and it is widely used in linear statistical estimation,
two-dimensional interpolation, optimization, etc. Since for many classes of linear systems, the Bott-
Duffin inverse is not a powerful enough tool, Chen [2] introduced the generalized Bott-Duffin (GBD)
inverse that provides a presentation of an automatic analytical method for a system of simultaneous
linear equations with the subsidiary condition of unknowns and has many applications in static and
dynamic contact analyses.

In [3], we can find some characterizations of the GBD inverse in terms of range, nullspace, and
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certain matrix equations, as well as some relationships between the GBD inverse and two classes of
nonsingular bordered matrices. Some properties and expressions for the GBD inverse of an operator
on a Hilbert space were studied in [4, 5]. More interesting results on the GBD inverse can be found
in [6–10].

Throughout the paper we use ∗-Banach algebra to mean a Banach algebra with an involution ∗ [11–
13]. Let A be a complex ∗-Banach algebra with unity 1. For an element a ∈ A, if there exists some
x ∈ A such that

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa,

then a is called Moore-Penrose invertible (MP-invertible) and x, denoted by a†, is called the
Moore-Penrose inverse of a [14–16]. Let a{i, j, · · · , k} denote the set of all x that satisfy the
equations (i), ( j), · · · , (k) from the above Eqs (1)–(4). In this case x ∈ a{i, j, · · · , k} is a {i, j, · · · , k}-
inverse of a and is denoted by a(i, j,··· ,k). Also, a is called regular (in the sense of von Neumann) if it has
an inner inverse, that is, there exists x ∈ A such that axa = a.
Let a ∈ A and let p ∈ A be idempotent (p = p2). Then, we write

a = pap + pa(1 − p) + (1 − p)ap + (1 − p)a(1 − p),

and use the notations

a1 = pap, a2 = pa(1 − p), a3 = (1 − p)ap, a4 = (1 − p)a(1 − p).

Thus, every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A given by the
following matrix:

a =

[
pap pa(1 − p)

(1 − p)ap (1 − p)a(1 − p)

]
p

=

[
a1 a2

a3 a4

]
p

. (1.1)

For a projector p (self-adjoint and idempotent) by p⊥ we denote 1 − p.
Using the representation of an arbitrary a ∈ A with respect to the projector p we can introduce the
following definition of the GBD inverse in the ∗-Banach algebra case.

Definition 1.1. Let a ∈ A and let p ∈ A be a projector such that ap + p⊥ is MP-invertible. Then,
we call

a(+)
p = p(ap + p⊥)†,

the GBD inverse of a with respect to p.

Koliha [17] studied an element a in a C∗-algebra to commute with its Moore-Penrose inverse, aa† =

a†a, which is later called the EP element [18].
Inspired by the above work, we naturally put forward the question of characterizations of an element
in ∗-Banach algebra to commute with its GBD inverse.

Definition 1.2. Let a ∈ A and let p ∈ A be a projector such that ap + p⊥ is MP-invertible. If
aa(+)

p = a(+)
p a, then a is called a GBD element. In particular, if A is the set of all n × n complex

matrices, then a GBD element is also called a GBD matrix.
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We emphasize the following main contributions of this paper. Initially, we give a representation
of the GBD inverse in the C∗-algebra case (and in general in the ∗-Banach algebra case), as well as
a representation of the GBD inverse for the GBD element together with the necessary and sufficient
conditions for an element to be GBD. Then, we present various characterizations of GBD matrices
related to different matrix equalities, inclusion relations of subspaces, and projectors with a special
emphasis on L-positive semidefinite matrices. Meanwhile, we compare the methods of the proof and
the results in the matrix set on one side and in ∗-Banach algebra and C∗-algebra on the other, as well
as point out difficulties and problems that occur in both cases.

2. Preliminaries

In this section, we introduce some necessary notations, definitions, and results.
Let Cm×n be the set of all m × n complex matrices. We denote the identity matrix in Cn×n by In, and

the null matrix of the appropriate order by 0. Symbols R(A),N(A) and A∗ denote the range space, null
space and conjugate transpose of A ∈ Cm×n, respectively. For two subspaces T ,S ⊆ Cn, PT ,S stands for
an idempotent matrix on T along S. In particular, PT = PT ,T⊥ denotes the projector (self-adjoint and
idempotent) onto T , where T ⊥ is the orthogonal complement of T . For A ∈ Cm×n and two subspaces
T ⊆ Cn and S ⊆ Cm, if X ∈ Cn×m satisfies XAX = X, R(X) = T , and N(X) = S, then X is unique and
is denoted by A(2)

T ,S
.

Definition 2.1. [2] Let A ∈ Cn×n and let L be a subspace of Cn. Then,

A(+)
(L) = PL(APL + PL⊥)†,

is the GBD inverse of A with respect to L.

Definition 2.2. [2] Let A ∈ Cn×n be a Hermitian matrix and let L be a subspace of Cn. If

(1) x∗Ax ≥ 0 for all x ∈ L,
(2) x∗Ax = 0 for x ∈ L, implies that Ax = 0,

then A is called an L-positive semidefinite (L-p.s.d.) matrix.

If L ⊆ Cn is a given subspace and A ∈ Cn×n is an L-p.s.d. matrix, then there exists a unitary matrix
U ∈ Cn×n such that PL and A can be represented as

PL = U
[

Ir 0
0 0

]
U∗, A = U

[
A1 A2

A∗2 A4

]
U∗, (2.1)

where A1 ∈ C
r×r is positive semidefinite, A4 ∈ C

(n−r)×(n−r) is Hermitian, and A2 ∈ C
r×(n−r) is such

that A∗2 = T A1 for some T ∈ C(n−r)×r, where r = dim(L). This decomposition implies many
characterizations of L-p.s.d. matrices and is the motivation for the next definition of a p-positive
semidefinite element in ∗-Banach algebra.

Definition 2.3. Let a ∈ A be a Hermitian element, and let p ∈ A be a projector. If

a =

[
a1 a2

a∗2 a4

]
p

,

where a1 is positive semidefinite, a4 is Hermitian, and a∗2 = ta1 for some t ∈ A, then a is called a
p-positive semidefinite (p-p.s.d.) element.
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Lemma 2.4. [2] Let A ∈ Cn×n be L-p.s.d., and let S = R(PLA) and T = R(APL). Then,

A(+)
(L) = A(2)

S,S⊥
= (PLAPL)†, (2.2)

AA(+)
(L) = PT ,S⊥ , A(+)

(L)A = PS,T⊥ , (2.3)

A(+)
(L)APL = PLAA(+)

(L) = PS. (2.4)

3. Results

We will start this section with the following ∗-Banach algebra result (and later with a comment for
the C∗-algebra case) that gives us a representation of the GBD inverse. This result gives us a deeper
understanding of the structure of the GBD inverse of a C∗-algebra element, and its application in the
matrix set as a result will have very simple proofs of most of the results that avoid long computations.
So, let us suppose that in the next theorem A is a ∗-Banach algebra. We say that p is a projector, if p
is self-adjoint (p = p∗) and idempotent (p = p2).

Lemma 3.1. Let a, p ∈ A be such that p is a projector and ap + p⊥ is MP-invertible. If a is given
by (1.1), then

a(+)
p =

[
a(1,2,3)

1 y
0 0

]
p

,

where a(1,2,3)
1 and y satisfy that

a1y = 0, y(1 + a3a∗3) = a∗3 − a(1,2,3)
1 a1a∗3 and a(1,2,3)

1 a1 + ya3 is Hermitian. (3.1)

Proof. Since p =

[
1 0
0 0

]
p

and p⊥ =

[
0 0
0 1

]
p

, we have that ap + p⊥ =

[
a1 0
a3 1

]
p

. Let us suppose

that (ap + p⊥)† =

[
x y
z w

]
p

, for some x, y, z,w ∈ A. Then, the first MP-equation is equivalent with

a1y = 0, x ∈ a1{1}, a3xa1 + za1 = 0, w = 1 − a3y. (3.2)

Now, having in mind (3.2), we have that the third MP-equation is equivalent with

z = −a3x, x ∈ a1{3}. (3.3)

By (3.2) and (3.3), we get that the second MP-equation is equivalent with x ∈ a1{2}. Finally, the forth
MP-equation is equivalent with the fact that a3y and xa1+ya3 are Hermitian and a3(1−(xa1+ya3)) = y∗.
Hence,

(ap + p⊥)† =

[
a(1,2,3)

1 y
−a3x 1 − a3y

]
p

and a(+)
p = p(ap + p⊥)† =

[
a(1,2,3)

1 y
0 0

]
p

,

for y and a(1,2,3)
1 that satisfy

a1y = 0, a3 − a3(a(1,2,3)
1 a1 + ya3) = y∗ and a(1,2,3)

1 a1 + ya3, a3y are Hermitian. (3.4)
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Now, using the fact that a(1,2,3)
1 a1 + ya3 is Hermitian, the second equality from (3.4) is equivalent with

y = a∗3 − (a(1,2,3)
1 a1 + ya3)a∗3. (3.5)

Now, by (3.5), it is clear that the fact that a(1,2,3)
1 a1 + ya3 is Hermitian implies that a3y is Hermitian.

Thus, (3.4) is equivalent with (3.1).

Notice that a ring R with involution has the Gelfand-Naimark property (GN-property) if 1 + a∗a is
invertible for any a ∈ R and that it is well known that C∗-algebras possess the GN-property. The
element a in a ring R with the Gelfand-Naimark property is MP-invertible if and only if it is regular,
that is, there exists b ∈ R such that aba = a. Thus, in a C∗-algebra, from the above proof we have
that y = (1 − a(1,2,3)

1 a1)a∗3(1 + a3a∗3)−1, which implies that a1y = 0. So, in the following theorem we
directly obtain the representation of the GBD inverse in the C∗-algebra case.

Lemma 3.2. Let a, p ∈ A be such that p is a projector and ap + p⊥ is MP-invertible. If a is given
by (1.1), then

a(+)
p =

[
a(1,2,3)

1 y
0 0

]
p

, (3.6)

where a(1,2,3)
1 and y = (1 − a(1,2,3)

1 a1)a∗3(1 + a3a∗3)−1 satisfy that

a(1,2,3)
1 a1 + ya3 is Hermitian. (3.7)

In the next theorem, we will give a complete characterization of the class of GBD elements and a
representation of its GBD inverse in the case when A is a C∗-algebra. Later, we will give a comment
on our reason to consider the C∗-algebra case and how we can get the analogous result in the case
of ∗-Banach algebra.

Theorem 3.3. Let a, p ∈ A be such that p is a projector and ap + p⊥ is MP-invertible, and let a be
given by (1.1). Then, a is a GBD element if and only if a3 = 0, a1a†1 = a†1a1 and a1a2 = 0, in which
case a(+)

p is given by

a(+)
p =

[
a†1 0
0 0

]
p

.

Proof. By Lemma 3.2, we have that a(+)
p is given by (3.6) for a(1,2,3)

1 that satisfies (3.7) for y = (1 −
a(1,2,3)

1 a1)a∗3(1 + a3a∗3)−1. Now, aa(+)
p = a(+)

p a is equivalent with

a1a(1,2,3)
1 = a(1,2,3)

1 a1 + ya3, (3.8)
a1y = a(1,2,3)

1 a2 + ya4, (3.9)
a3a(1,2,3)

1 = 0, (3.10)
a3y = 0. (3.11)

Now, by (3.10) and (3.11) and the condition that a3−a3(a(1,2,3)
1 a1+ya3) = y∗, we get y∗ = a3. Thus, (3.11)

implies a3 = 0, that is, y = 0.
Now, evidently aa(+)

p = a(+)
p a if and only if a1a(1,2,3)

1 = a(1,2,3)
1 a1, a(1,2,3)

1 a2 = 0, a3 = 0. Now, since y
and a(1,2,3)

1 satisfy (3.7), we get that a(1,2,3)
1 a1 is Hermitian, that is, a(1,2,3)

1 = a†1. Hence, aa(+)
p = a(+)

p a if
and only if a1a†1 = a†1a1, a†1a2 = 0 and a3 = 0, which is further equivalent with a1a†1 = a†1a1, a1a2 = 0
and a3 = 0.
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Remark 3.4. (1) From the above proof, we can easily get an analogous result in the ∗-Banach algebra
case, where in general we do not have the following implication

a3a∗3 = 0⇒ a3 = 0,

which is the fact that we used in the above proof and is valid in C∗-algebras or *-reducing algebras.
So, instead of the conclusion that a3 = 0 that we get in the C∗-algebra case, in the ∗-Banach algebra
case we will get that a3a∗3 = 0.
(2) One more fact that we must comment on here is that we used a†1 without assuming that a1 is
MP-invertible. Indeed, the MP-invertibility of ap + p⊥ implies that a1 is regular, which is in the
C∗-algebra case equivalent with the MP-invertibility of a1. The equivalence between regularity and
MP-invertibility is also valid in a ring with involution that satisfies GN-property (see [19]). On the
other hand, such equivalence is not valid in a ∗-Banach algebra case that is demonstrated by the
following example:

Example 3.5. Let us consider the Banach algebra B(C2, ‖ · ‖) of all bounded and linear maps defined
on (C2, ‖ · ‖), where

‖(x, y)‖ = |x| + |y|, (x, y) ∈ C2,

and |x| is the module of x. Let S (x, y) = (x− y, 0), (x, y) ∈ C2. Then, S is an idempotent (regular), but S
does not have a Moore-Penrose inverse in B(C2, ‖ · ‖).

It is interesting to mention that a necessary and sufficient condition for a Banach space of dimension
greater than 3 to be a Hilbert space is that the set of all regular operators coincides with the one of all
MP-invertible (see [20]).

In some recent literature, we can find many long and mainly computational proofs with a lot
of unnecessary steps that make the reader feels that she/he has spent much time over it without
getting the essence of the argument. If we go deeper into the structures using a number of well-
known decompositions in either set (such as the partial singular value decomposition, core-nilpotent
decomposition, etc.), we will see that the transition from one set to the other will go rather smoothly
and that many proofs can be made much easier. For instance, using our Lemma 3.2, we can give
a very simple proof of Lemma 2.4 in the C∗-algebra case. Indeed, we will prove (2.2) and give a
representation of a(+)

p that will directly imply properties (2.3) and (2.4).

Theorem 3.6. Let a, p ∈ A be such that p is a projector, ap + p⊥ is MP-invertible, and a is p-p.s.d. If
a is given by (1.1), then

a(+)
p =

[
a†1 0
0 0

]
p

. (3.12)

Proof. By Lemma 3.2, we have that a(+)
p is given by (3.6) where a(1,2,3)

1 satisfies (3.7) for y = (1 −
a(1,2,3)

1 a1)a∗3(1 + a3a∗3)−1. Evidently, a1y = 0 and y∗ = a3 − a3(a(1,2,3)
1 a1 + ya3). Since a is p-p.s.d., then

a3 = a∗2 = ta1 for some t ∈ A. Thus,

y∗ = a3 − a3(a(1,2,3)
1 a1 + ya3) = ta1 − ta1a(1,2,3)

1 a1 − ta1ya3 = 0,

that is, y = 0. Now, (3.7) gives that a(1,2,3)
1 a1 is Hermitian, that is, a(1,2,3)

1 = a†1. Hence, a(+)
p is given

by (3.12).

AIMS Mathematics Volume 10, Issue 3, 6469–6479.



6475

Theorem 3.7. Let a, p ∈ A be such that p is a projector, ap + p⊥ is MP-invertible, and a is p-p.s.d.
The following are equivalent:

(a) a is a GBD element,
(b) pa(1 − p) = 0,
(c) ap = pa.

If a is MP-invertible, then any of items (a)–(c) is equivalent with any of the following:

(d) a†p = pa†,
(e) (1 − p)a†p = 0.

Proof. Let us suppose that a is given by (1.1). By Theorem 3.6, we have that a(+)
p is given by (3.12),

which implies that (a) is equivalent with

a3a†1 = 0, a†1a2 = 0. (3.13)

Since a is p-p.s.d, we have that a2 = a1t for some t ∈ A, so we get that (3.13) is equivalent with a2 = 0,
that is, pa(1 − p) = 0. Hence, (a) and (b) are equivalent. Now, using that p is a projector and a is
Hermitian, we can eaisly verify that (c) is equivalent with (b). If we suppose that a is MP-invertible,
then (e) together with the fact that a is Hermitian (so a† is also Hermitian) implies that

a† =

[
b1 0
0 b4

]
p

,

for some b1, b4 ∈ A. So, it is easy to check that both b1 and b4 are MP-invertible and

a = (a†)† =

[
b†1 0
0 b†4

]
p

.

Evidently, pa(1 − p) = 0. Hence, (e) implies (b). That (b) implies (e) follows analogously. Also, (d)
and (e) are equivalent.
Using a completely computational method we can give different characterizations of the GBD property
on the set of L-p.s.d. matrices; however, all of them are just another way to write that PLAPL⊥ = 0
which is by Theorem 3.7, a necessary and sufficient condition for A to be a GBD matrix. The next
theorem will show one good side of the computational method which is sometimes very short and clear.

Theorem 3.8. Let A ∈ Cn×n be L-p.s.d. Then, the following statements are equivalent:

(1) A is a GBD matrix, (2) A(+)
(L) = (A(+)

(L))
2A, (3) PLAA(+)

(L) = A(+)
(L)A,

(4) PLAA(+)
(L) = A(+)

(L)A
2A(+)

(L), (5) AA(+)
(L) = A(A(+)

(L))
2A2A(+)

(L), (6) A(+)
(L) = (A(+)

(L))
2A2A(+)

(L).

Proof. (1) ⇒ (2) : Multiplying AA(+)
(L) = A(+)

(L)A from the left by A(+)
(L) and using the fact that A(+)

(L) is an
outer inverse of A, we get (2).
(2)⇒ (3) : Multiplying (2) with PLA from the left side and using (2.4) and (2.3), we have the following

PLAA(+)
(L) = PLA(A(+)

(L))
2A = PSA(+)

(L)A = A(+)
(L)A.
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(3)⇒ (4) : Multiplying (3) with AA(+)
(L) from the right side and using the fact that AA(+)

(L) is an idempotent,
we directly obtain (4).
(4)⇒ (1) : Obviously, by (2.2), we have that

(A(+)
(L))

∗ = A(+)
(L). (3.14)

Moreover, by (2.4) it follows that

A(+)
(L)A

2A(+)
(L) − PLAA(+)

(L) = A(+)
(L)A

2A(+)
(L) − A(+)

(L)AP(L)P(L)P(L)AA(+)
(L)

= A(+)
(L)A(In − PL)AA(+)

(L) = A(+)
(L)APL⊥AA(+)

(L). (3.15)

Thus, by (4) we have that A(+)
(L)APL⊥AA(+)

(L) = 0. Now, since A(+)
(L)APL⊥AA(+)

(L) = A(+)
(L)APL⊥(A(+)

(L)APL⊥)∗, we
get that A(+)

(L)APL⊥ = 0, that is PL⊥AA(+)
(L) = 0. By (4) we directly get PL⊥A(+)

(L)A
2A(+)

(L) = 0 which together
with PL⊥AA(+)

(L) = 0 gives that
PL⊥(In − A(+)

(L)A)AA(+)
(L) = 0. (3.16)

Using that (4) is equivalent with

PL(In − A(+)
(L)A)AA(+)

(L) = 0,

and by (3.16), we get that (In − A(+)
(L)A)AA(+)

(L) = 0, i.e. AA(+)
(L) = A(+)

(L)A
2A(+)

(L). From the last equality, since
A(+)

(L)A
2A(+)

(L) is Hermitian, we have that AA(+)
(L) is Hermitian which is equivalent with (1).

(4)⇔ (5) : Applying (2.3) and (2.4), we get that (4) is equivalent with

PS = PS,T⊥PT ,S⊥ ,

while (5) is equivalent with
PT ,S⊥ = PT ,S⊥PS,T⊥PT ,S⊥ .

Now, the equivalence between (4) and (5) is evident.
(5)⇔ (6) : Multiplying (5) by A(+)

(L) from the left side, we get (6). Similarly, multiplying (6) by A from
the left side, we get (5).
In the next theorem, we will give a characterization of the GBD property on the set ofL-p.s.d.matrices
in terms of idempotents and projectors. We will omit the proof because the proofs of all items can be
given using computational techniques that are similar to the ones used in the previous theorem.

Theorem 3.9. Let A ∈ Cn×n be L-p.s.d., and let S = R(PLA). Let us define a set N = {AA(+)
(L), A

(+)
(L)A,

A(A(+)
(L))

2A, A(+)
(L)A

2A(+)
(L), AA(+)

(L) − A(+)
(L)A}. The following statements are equivalent:

(1) A is a GBD matrix,
(2) At least one element of the set N is a projector,
(3) All elements of the set N are projectors,
(4) AA(+)

(L) − A(+)
(L)A is idempotent.

Furthermore, if any of the conditions (1)–(4) holds, then

AA(+)
(L) = A(+)

(L)A = A(A(+)
(L))

2A = A(+)
(L)A

2A(+)
(L) = PS. (3.17)
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Now, we will consider a connection between the GBD property on the set of L-p.s.d. matrices and the
appropriate equality, as well as the inclusion of certain subspaces. The next result is a good example
of the evident difference between finite and infinite dimensional spaces. Indeed, using the fact that for
given subspaces T and S the following implication

dim(T ) = dim(S) and T ⊆ S ⇒ T = S,

holds only in the finite-dimensional case, we will get some equivalences that are generally not valid
out of the matrix set.

Theorem 3.10. Let A ∈ Cn×n be L-p.s.d., and let S = R(PLA) and T = R(APL). Then, the following
statements are equivalent:

(1) A is a GBD matrix, (2) S = T , (3) S ⊆ T , (4) T ⊆ S, (5) T ⊆ L.

Proof. Equivalences between (1)–(4) are evident. Indeed, by

AA(+)
(L) = A(+)

(L)A⇔ PT ,S⊥ = PS,T⊥ ⇔ S = T ,

we have that (1) is equivalent with (2). Then, since A is Hermitian, we have that dim(T ) = dim(S), so
any of items (3)–(4) is equivalent with (2).
(5)⇔ (1) : From (2.3), (3.14), and (3.15), we have

T ⊆ L ⇔ PL⊥PT ,S⊥ = 0⇔ PL⊥AA(+)
(L) = 0⇔ (PL⊥AA(+)

(L))
∗PL⊥AA(+)

(L) = 0

⇔ A(+)
(L)APL⊥AA(+)

(L) = 0⇔ A(+)
(L)A

2A(+)
(L) = PLAA(+)

(L).

Hence, T ⊆ L is equivalent with A(+)
(L)A

2A(+)
(L) = PLAA(+)

(L) which is, by Theorem 3.8, equivalent with the
fact that A is a GBD matrix.

Because the first advantage of the matrix sets is the fact that all the elements are inner and MP-
invertible, many situations in the matrix sets are much easier. So, when we skip from matrix sets to any
other (infinite dimensional operator case, ∗-Banach algebras, etc.), we must be very wary and always
have in mind that before using any elemet’s inverses, we must first check their existence. For instance,
some of the equivalences from Theorem 3.10 will not be valid in some other sets—in other words, for
an element a in a C∗-algebra, a projector p, S = paA and T = apA, we will have that (1)⇔ (2)⇔ (4)
and (1) ⇒ (3), but (3) does not imply (1). But unfortunately, as a result of this fact, there are many
papers in the operator case obtained just using the copy-paste method of the appropriate matrix case
results, and in that case, these results are valid only under the restrictive assumption of the existence
of certain inverses. In most of situations, this is not the only option and the problem must and can be
considered in the general case without assuming some restrictive conditions. So, our advice is to be
careful but not limited.

4. Conclusions

We derive a representation of the GBD inverse in C∗-algebras (or ∗-Banach algebras) and several
equivalent conditions for an element (or a p-p.s.d. element) to be GBD. Using different methods, we

AIMS Mathematics Volume 10, Issue 3, 6469–6479.
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consider how an L-p.s.d. matrix can become a GBD matrix. In addition, by comparing results and
proofs given in the paper, we point out difficulties and problems when we skip from matrix sets to
∗-Banach algebras, C∗-algebras, etc., and suggested several ways to overcome them. It is worth noting
that Deng and Chen [6] introduced a generalization of the GBD inverse in the matrix set, that is,
A(+)
T ,S

= PT ,S(APT ,S + PS,T )†, where A ∈ Cn×n and T ,S ⊆ Cn are two subspaces. So, it is a potential
research topic to extend A(+)

T ,S
from the matrix set to a ∗-Banach algebraA, namely, a(+)

q = q(aq+1−q)†,
where a ∈ A and q is an idempotent element such that aq + 1 − q is MP-invertible. Naturally, further
consideration will include certain characterisations of an element a ∈ A such that aa(+)

q = a(+)
q a.
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