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1. Introduction

Fractional differential inclusions (FDIs), as an extension of fractional differential equations
(FDEs), have gained popularity among mathematical researchers due to their importance and value
in optimization and stochastic processes in economics [1, 2] and finance [3]. In addition to
their applications in understanding engineering [4] and dynamic systems [5, 6] in biological [7, 8],
medical [9], physics [10] and chemical sciences [11], FDIs are also relevant in various other scientific
fields [12].
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Sousa and Oliveira [13] introduced the new fractional derivative ς-Hilfer to unify different types of
fractional derivatives into a single operator, expanding fractional derivatives to the types of operators
with potentially applicable value. After that, Asawasamrit et al. [14] investigated the following Hilfer-
FDE under nonlocal integral boundary conditions (BCs):

H
D

r1,r2κ(υ) = ג (υ, κ(υ)), 1 < r1 < 2, 0 ≤ r2 ≤ 1, υ ∈ f :=
[
s̃, b̃

]
,

κ(s̃) = 0, κ(b̃) =

m∑
i=1

δi
RL
I
ςiκ

(
ξ̃i
)
, ϕi > 0, δi ∈ R, ξ̃i ∈ f.

(1.1)

In [15], an existence outcome was shown by employing the FPTs (fixed-point theorems) for a
sequential FDE of the type,

(
H
D

r1,r2,ς
(

C
D

r3,ςκ
))

(s) = ג
(
s, κ(s), RL

I
r5,ςκ(υ),

∫ b̃

0
κ(v) dv

)
, υ ∈ B :=

[
0, b̃

]
,

κ (0) + η1κ
(
b̃
)

= 0,
C
Dr4+r3−1,ςκ(0) + η2

C
Dδ+r3−1,ςκ

(
b̃
)

= 0,

where ri ∈ (0, 1), i = 1, 2, 3, r4 = r1 + r2 (1 − r1), r4 + r3 > 1, η1, η2 ∈ R, r5 > 0, and ג ∈ C
(
B × R3)

is a nonlinear function. In 2024, Ahmed et al. [16] investigated a class of separated boundary value
problems of the form

(
H
D

r1,r2
q

(
C
D

r3
q κ

))
(υ) = ג (υ, κ(υ)) , q ∈ (0, 1), υ ∈ B,

κ(0) + λ1
C
D

r3+r4−1
q κ(0) = κ

(
b̃
)

+ λ2
C
D

r3+r4−1
q κ

(
b̃
)

= 0, λ1, λ2 ∈ R,

where 0 < r1, r3 < 1, r2 ∈ [0, 1] with r4 = r1 + r2(1 − r1), r3 + r4 > 1 and ג ∈ C(B × R). Lachouri
et al., in [17], established the existence of solutions to the nonlinear neutral FDI involving ς-Caputo
fractional derivative with ς-Riemann–Liouville (RL) fractional integral boundary conditions: C

D
r1,ς

(
C
D

r2,ςκ (υ) − y (υ, κ (υ))
)
∈ ג (υ, κ(υ)) , υ ∈ [0, b̃),

κ(a) = RL
I

r3,ςκ(b̃) = 0, a ∈ (0, b̃),

where ג : B×R→ P(R) is a set-valued map. Surang et al., in [18], studied the ς-Hilfer type sequential
FDEs and FDIs subject to integral multi-point BCs of the form

(
H
D

r1,r2,ς + k H
D

r1−1,r2,ς
)
κ(υ) = ,υ)ג κ(υ)), υ ∈ f,

κ(s̃) = 0, κ(b̃) =

n∑
i=1

µi

∫ ηi

s̃
ψ′(s)κ(s) ds +

m∑
j=1

θ jκ
(
ξ j

)
,

(1.2)

where r1 ∈ (1, 2), r2 ∈ [0, 1], ג ∈ C (f × R), k, µi, θ j ∈ R, and ηi, ξ j ∈ (s̃, b̃], i = 1, n, j = 1, m. Etemad
et al. [19] introduced and studied a novel existence technique based on some special set-valued maps
(SVMs) to guarantee the existence of a solution for the following fractional jerk inclusion problem
involving the derivative operator in the sense of Caputo–Hadamard

(
CH
D

r1
1+

(
CH
D

r2
1+

(
CH
D

r3
1+κ

)))
(υ) ∈ ג

(
υ, κ(υ), CH

D
r3
1+κ(υ),

(
CH
D

r2
1+

(
CH
D

r3
1+κ

))
(υ)

)
,

κ(1) + κ(exp(1)) = CH
D

r3
1+κ(η) =

(
CH
D

r2
1+

(
CH
D

r3
1+κ

))
(exp(1)) = 0,
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for υ ∈ [1, exp(1)], where ri ∈ (0, 1], i = 1, 2, 3, η ∈ (1, exp(1)), and the operator ג : [1, exp(1)] × R3 →

P(R) is an SVM, where P(R) denotes all nonempty subsets of R.
The boundary conditions (BCs) used in (1.1) and (1.2), share a common feature: the requirement

of a zero initial condition, which is essential for the solution to be well-defined. Consequently, certain
classes of Hilfer FDEs cannot be addressed, including cases with BCs such as,

• κ(0) = −κ
(
b̃
)
, κ′(0) = −κ′

(
b̃
)

(anti-periodic),
• κ (0) + η1κ

′(0) = 0, κ
(
b̃
)

+ η2κ
′
(
b̃
)

= 0 (separated),
• κ(0) + η1κ

(
b̃
)

= 0, κ′ (0) + η2κ
′
(
b̃
)

= 0 (non-separated), etc.

To address this limitation and study Hilfer FDEs with such BCs, regardless of whether they are anti-
periodic, separated, or non-separated, we propose a novel approach in this research. Specifically, we
combine the Hilfer and Caputo fractional derivatives, enabling the study of boundary value problems
under these conditions. More specifically, we aimed to analyze a class of FDEs for FDI, subject to
non-separated BCs of the form,

H
D

r1,r2,ς
(

C
D

r3,ςκ (υ) − y (υ, κ (υ))
)
∈ ג (υ, κ(υ)) , υ ∈ B,

κ(0) + η1κ
(
b̃
)

= 0,
C
D
δ+r3−1,ςκ(0) + η2

C
D
δ+r3−1,ςκ

(
b̃
)

= 0,

(1.3)

where ri ∈ (0, 1), i = 1, 2, 3, δ = r1+r2 (1 − r1), δ+r3 > 1, η1, η2 ∈ R, y ∈ C(B×R) and ג : B×R→ P(R)
denotes a SVM, with power set P(R) of R.

The paper is structured as follows. Section 2 is devoted to discussing the fundamental concepts
fractional calculus and set-valued analysis, while Section 3 presents important findings on the
qualitative properties of solutions to the ς-Hilfer inclusion FDI (1.3) utilizing FPTs. Finally, Section 4,
includes three illustrative examples.

2. Background concepts

2.1. Fractional calculus

We outline the background material that is pertinent to our study. We consider the Banach spaces
E = C (B) and L1 (B) of the Lebesgue integrable functions equipped with the norms ‖κ‖ = sup

{
|κ (υ)| :

υ ∈ B
}

and

‖κ‖L1 =

∫
B

|κ (υ)| dυ,

respectively. Let ς ∈ Cn (B) be an increasing function such that ς′ (υ) , 0, for any υ ∈ B.

Definition 2.1 ([20]). The ς-RL fractional integral and derivative of order r1 for a given function κ are
expressed by

RL
I

r1,ςκ (υ) =

∫ υ

0

ς′(u)
Γ(r1) (ςu(υ))r1−1 κ (u) du, ςu(υ) := ς(υ) − ς(u),

and
RL
D

r1,ςκ (υ) = D[n]
ς

RL
I

n−r1,ςκ (υ) , D[n]
ς :=

(
1

ς′(υ)
d

dυ

)n
,

where n = [r1] + 1, n ∈ N, respectively.
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Definition 2.2 ( [21, 22]). The Caputo sense of ς-fractional derivative of the κ ∈ Cn (B) of order r1 is
given as,

C
D

r1,ςκ (s) = RL
I

(n−r1),ςκ[n] (s) , κ[n] (s) =
(

1
ς′(s)

d
ds

)n
κ (s) .

Lemma 2.3 ([20, 22]). Let r1, r2 > 0. Then

i) RL
I

r1,ς (ς0(υ))r2−1 =
Γ(r2)

Γ(r1+r2) (ς0(υ))r1+r2−1 ,

ii) C
D

r1,ς (ς0(υ))r2−1 =
Γ(r2)

Γ(r2−r1) (ς0(υ))r1+r2−1 .

Lemma 2.4 ([20]). For κ ∈ Cn (B), we have

RL
I

r1,ς C
D

r1,ςκ (s) = κ(s) −
n−1∑
k=0

κ[n](0+)
k! (ς0(s))k , n − 1 < r1 < n,

and 0 < r2 < 1. Furthermore, if r1 ∈ (0, 1), then RL
Ir1,ς C

Dr1,ς κ (υ) = ς0(υ).

Definition 2.5 ( [13]). The ς-Hilfer fractional derivative for κ ∈ Cn (B), of order n − 1 < r1 < n and
type 0 ≤ r2 ≤ 1, is defined by

H
D

r1,r2,ςκ (υ) =
(

RL
I

r2(n−r1),ς
(
D[n]
ς

(
RL
I

(1−r2)(n−r1),ςκ
)))

(υ) .

Lemma 2.6 ([13, 23]). Let r1, r2, µ > 0. Then

i) RL
I

r1,ς RL
I

r2,ςκ (υ) = RL
I

r1+r2,ςκ (υ) ,

ii) RL
I

r1,ς (ς0(υ))µ−1 =
Γ(µ)

Γ(r1+µ) (ς0(υ))r1+µ−1 .

Lemma 2.7 ([13]). For µ > 0, r1 ∈ (n − 1, n), and 0 ≤ r2 ≤ 1,

H
D

r1,r2,ς (ς0(υ))µ−1 =
Γ(µ)

Γ(µ−r1) (ς0(υ))µ−r1−1 , µ > n.

In particular, if r1 ∈ (1, 2) and 1 < µ ≤ 2, then H
Dr1,r2,ς (ς0(υ))µ−1 = 0.

Lemma 2.8 ([13]). If κ ∈ Cn (B), n − 1 < r1 < n and type 0 < r2 < 1, then

i) RL
I

r1,ς H
D

r1,r2,ςκ (υ) = κ (υ) −
n∑

k=1

(ς0(υ))δ−k

Γ(δ−k+1) D[n−k]
ς

RL
I

(1−r2)(n−r1),ςκ (0) ,

ii) H
D

r1,r2,ς RL
I

r1,ςκ (υ) = κ (υ) .

2.2. Auxiliary notions of set-valued maps

Consider the Banach space (E, ‖·‖) and SVM Θ : E → P (E). Θ is a) closed (convex), b) bounded
and c) measurable, whenever Θ (κ) is closed (convex) for every κ ∈ E, Θ(B) = ∪κ∈BΘ (κ) is bounded
for any bounded set B ⊆ E, that is

sup
κ∈B

{
sup |ρ| : ρ ∈ Θ (κ)

}
< ∞,
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and ∀ρ ∈ R, the function

υ→ d (ρ,Θ (υ)) = inf
{
|ρ − λ| : λ ∈ Θ (υ)

}
,

is measurable, respectively. One can find the definitions of completely continuous and upper semi-
continuous in [24]. Additionally, the set of selections of ג is described as

Rג,ρ =
{
σ ∈ L1 (B) : σ (υ) ∈ ג (υ, ρ) , ∀υ ∈ B

}
.

Next, we take

Pβ (E) =
{
Ω ∈ P (E) : Ω , ∅ with has a property β

}
,

where Pcl, Pc, Pb, and Pcp represent the classes of every compact, bounded, closed, and convex subset
of E, respectively.

Definition 2.9 ( [25]). An SVM ג : B × R → P (R) is called Carathéodory if the mapping υ → ג (υ, κ)
is measurable for all κ ∈ R, and κ → ג (υ, κ) is upper semicontinuous for almost every υ ∈ B.
Additionally, we say ג is L1-Carathéodory whenever for all m > 0, exists z ∈ L1 (B,R+) such that for
a.e. υ ∈ B,

ג‖ (υ, κ)‖ = sup
{
|σ| : σ ∈ ג (υ, κ)

}
≤ z (υ) , ∀ ‖z‖ ≤ m.

To achieve the intended outcomes in this search, the following lemmas are necessary.

Lemma 2.10 ([25], Proposition 1.2). Consider SVM Θ : E→ Pcl(Z) with the graph, Gr(Θ) =
{
(κ, ρ) ∈

E×Z : ρ ∈ Θ(κ)
}
. Gr(Θ) is a closed subset of E×Z whenever Θ is upper semi-continuous. Conversely,

Θ is upper semi-continuous, when it has a closed graph and is completely continuous.

Lemma 2.11 ( [26]). Consider a separable Banach space E along with a L1-Carathéodory SVM ג :
B × R→ Pcp,c (E) and a linear continuous map Υ : L1 (B,E)→ C (B,E). Then, the composition Υ ◦ Rג : C (B,E)→ Pcp,c (C (B,E)) ,

κ→ (Υ ◦ Rג) (κ) = Υ
(
Rג,κ

)
,

is a closed graph map in C (B,E) ×C (B,E).

3. Existence results for fractional differential inclusion (1.3)

In relation to the FDI (1.3), the auxiliary Lemma 3.1 is required.

Lemma 3.1. For y, ג ∈ C(B), the solution of linear-type problem
H
Dr1,r2,ς

(
C
Dr3,ςκ (υ) − y (υ)

)
= ג (υ) , υ ∈ B \

{
b̃
}
,

κ (0) + η1κ
(
b̃
)

= 0,
C
Dδ+r3−1,ςκ (0) + η2

C
Dδ+r3−1,ςκ

(
b̃
)

= 0,

(3.1)

is obtained as follows:
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κ (υ) = RL
I

r3,ςy (υ) + RL
I

r1+r3,ςג (υ)

+

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃
)

+ RL
I

r1−δ+1,ςג
(
b̃
))

− Λ2

(
RL
I

r3,ςy
(
b̃
)

+ RL
I

r1+r3,ςג
(
b̃
))
, (3.2)

where for η1, η2 , −1,

Λ1 =
η2

(η2+1)Γ(r3+δ) , Λ2 =
η1
η1+1 , Λ3 =

η1η2
(η2+1)Γ(r3+δ) . (3.3)

Proof. Applying the ς-fractional integral RL
Ir1,ς to the first equation of (1.3), and using Lemma 2.4,

we get
C
D

r3,ςκ (υ) = y(υ) + RL
I

r1,ςג (υ) + c1 (ς0(υ))δ−1 , υ ∈ B, c1 ∈ R, (3.4)

where δ = r1 + r2 (1 − r1). Now, by taking RL
Ir3,ς in (3.4) from Lemma 2.3, we get

κ (υ) = RL
I

r3,ςy (υ) + RL
I

r1+r3,ςג (υ) +
c1Γ(δ)

Γ(r3+δ) (ς0(υ))r3+δ−1 + c2, c2 ∈ R. (3.5)

According to Lemma 2.3, we can obtain
C
D
δ+r3−1,ςκ (υ) = RL

I
1−δ,ςy (υ) + RL

I
r1−δ+1,ςג (υ) + c1Γ (δ) . (3.6)

Next, by combining the BCs κ (0) + η1κ
(
b̃
)

= 0 and
C
D
δ+r3−1,ςκ(0) + η2

C
D
δ+r3−1,ςκ

(
b̃
)

= 0

with (3.6), we get

c2 (1 + η1) + η1
RL
I

r3,ςy
(
b̃
)

+ η1
RL
I

r1+r3,ςג(υ) + c1
η1Γ(δ)

Γ(r3+δ)

(
ς0

(
b̃
))r3+δ−1

= 0, (3.7)

c1 (1 + η2) Γ(δ) + η2
RL
I

1−δ,ςy
(
b̃
)

+ η2
RL
I

r1−δ+1,ςג
(
b̃
)

= 0. (3.8)

From (3.7) and (3.8), we find

c1 =
−η2

(1+η2)Γ(δ)

(
RL
I

1−δ,ςy
(
b̃
)

+ RL
I

r1−δ+1,ςג
(
b̃
))
,

c2 =
η1η2

(1+η2)Γ(r3+δ) (ς0(υ))r3+δ−1
(

RL
I

1−δ,ςy(ς0(υ)) + RL
I

r1−δ+1,ςג
(
b̃
))

−
η1

(1+η1)

(
RL
I

r3,ςy
(
b̃
)

+ RL
I

r1+r3,ςג (υ)
)
.

By substituting the values of c1 and c2 into (3.5), we arrive at the fractional integral equation (3.2). �

Definition 3.2. An element κ ∈ C1 (B) can be a solution of (1.3), if there is σ ∈ L1 (B) with σ (υ) ∈
ג (υ, κ) for every υ ∈ B fulfilling the non-separated BC’s, κ (0) + η1κ

(
b̃
)

= 0,

C
D
δ+r3−1,ζκ (0) + η2

C
D
δ+r3−1,ζκ

(
b̃
)

= 0,

and

κ (υ) = RL
I

r3,ςy (υ, κ (υ)) + RL
I

r1+r3,ςσ (υ) +
[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃, κ(b̃)

)
+ RL
I

r1−δ+1,ςσ
(
b̃
))

− Λ2

(
RL
I

r3,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1+r3,ςσ
(
b̃
))
. (3.9)
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3.1. The upper semi-continuous case

The first consequence addresses the convex-valued ג using the nonlinear alternative for contractive
maps [27].

Theorem 3.3. Suppose that

P1) ג : B × R→ Pcp,c (R) is a L1-Carathéodory SVM;
P2) There is a exist $̃1 ∈ C (B,R+) and a nondecreasing $̃2 ∈ C (R+,R+) with,

ג‖ (υ, κ)‖P = sup
{
|ρ| : ρ ∈ ג (υ, κ)

}
≤ $̃1 (υ) $̃2 (‖κ‖) , ∀ (υ, κ) ∈ B × R;

P3) There is a constant ly < λ−1
2 such that |y (υ, κ1) − y (υ, κ2)| ≤ ly |κ1 − κ2|;

P4) There is a exist ϑy ∈ C (B,R+) such that |y (υ, κ)| ≤ ϑy (υ), for each (υ, κ) ∈ B × R;
P5) There is an N > 0 satisfying

N

λ1‖$̃1‖$̃2(N)+λ2‖ϑy‖
> 1, (3.10)

where

λ1 =
(
ς0

(
b̃
))r3+r1

[
|Λ3 |+|Λ1 |

Γ(r1−δ+2) +
1+|Λ2 |

Γ(r1+r3+1)

]
,

λ2 =
(
ς0

(
b̃
))r3

[
|Λ3 |+|Λ1 |

Γ(2−δ) +
1+|Λ2 |

Γ(r3+1)

]
. (3.11)

Then, (1.3) admits a solution of B.

Proof. At first, to convert the sequential-type FDI (1.3) into a problem of the FP type, we write Θ :
E→ P (E) as follows:

Θ (κ) =



z ∈ C(B) :

z (υ) =



RL
I

r3,ςy (υ, κ (υ)) + RL
I

r1+r3,ςσ (υ)

+

(
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
)

×
(

RL
I

1−δ,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1−δ+1,ςσ
(
b̃
))

−Λ2

(
RL
I

r3,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1+r3,ςσ
(
b̃
))


, (3.12)

for σ ∈ Rג,κ. Consider two operators Ψ1 : E→ E and Ψ2 : E→ P (E) as follows:

Ψ1κ (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

1−δ,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r3,ςy (υ, κ (υ)) − Λ2
RL
I

r3,ςy
(
b̃, κ

(
b̃
))
,

and

Ψ2 (κ) =


z ∈ E :

z (υ) =


[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσ
(
b̃
)

+ RL
I

r1+r3,ςσ (υ) − Λ2
RL
I

r1+r3,ςσ
(
b̃
)

 .
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Obviously, Θ = Ψ1 + Ψ2. In the following, we demonstrate that Ψ1 and Ψ2 fulfill the conditions of
the nonlinear alternative for contractive maps [27, Corollary 3.8]. Initially, we consider the set,

Ωγ∗ =
{
κ ∈ E : ‖κ‖ ≤ γ∗

}
, γ∗ > 0, (3.13)

which is bounded, and show that Ψ ̊ define the SVMs Ψ ̊ : Ωγ∗ → Pcp,c (E), ̊ = 1, 2. To achieve this,
we need to prove that Ψ1 and Ψ2 are compact and convex-valued. The proof will proceed in five steps.

Step 1. Ψ2 is bounded on bounded sets of E. Let Ωγ∗ be a bounded set in E. Then for every z ∈ Ψ2 (κ)
and κ ∈ Ωγ∗ , σ ∈ Rג,κ exists such that,

z (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσ
(
b̃
)

+ RL
I

r1+r3,ςσ (υ) − Λ2
RL
I

r1+r3,ςσ
(
b̃
)
.

Let (P1) holds. For any υ ∈ B, we obtain,

|z (υ)| ≤
[
|Λ3|

(
ς0

(
b̃
))r3+δ−1

+ |Λ1| (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ς
∣∣∣σ(

b̃
)∣∣∣

+ RL
I

r1+r3,ς |σ (υ)| + |Λ2|
RL
I

r1+r3,ς
∣∣∣σ(

b̃
)∣∣∣

≤ ‖$̃1‖ $̃2 (γ∗)
(
ς0

(
b̃
))r3+r1

[
|Λ3 |+|Λ1 |

Γ(r1−δ+2) +
1+|Λ2 |

Γ(r1+r3+1)

]
.

Indeed, ‖z‖ ≤ λ1 ‖$̃1‖ $̃2 (γ∗).

Step 2. Ψ2 maps bounded sets of E into equicontinuous sets. Let κ ∈ Ωγ∗ and z ∈ Ψ2 (κ). In this case,
an element σ ∈ Rג,κ exists such that

z (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσ
(
b̃
)

+ RL
I

r1+r3,ςσ (υ) − Λ2
RL
I

r1+r3,ςσ
(
b̃
)
, υ ∈ B.

Let υ1, υ2 ∈ B, υ1 < υ2. Then

|z(υ2) − z(υ1)| ≤
‖$̃1‖$̃2(γ∗)

(
ς0

(
b̃
))r1−δ+1

Γ(r1−δ+2)

(
|Λ1| (ς0(υ2))r3+δ−1

− (ς0(υ1))r3+δ−1
)

+
‖$̃1‖$̃2(γ∗)
Γ(r1+r3+1)

[
(ς0(υ2))r1+r3 − (ς0(υ1))r1+r3

]
.

As υ1 → υ2, we obtain, |z(υ2) − z(υ1)| → 0. Therefore, Ψ2
(
Ωγ∗

)
is equicontinuous. Combining the

results from Steps 1 and 2, and employing the theorem of Arzelà-Ascoli, we can confirm the completely
continuity of Ψ2.

Step 3. Ψ2 (κ) is convex for all κ ∈ E. Let z1, z2 ∈ Ψ2 (κ). Then σ1, σ2 ∈ Rג,κ exist such that for each
υ ∈ B

z j (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσ j
(
b̃
)

+ RL
I

r1+r3,ςσ j (υ) − Λ2
RL
I

r1+r3,ςσ j
(
b̃
)
, j = 1, 2.

Let µ ∈ [0, 1]. Then for any υ ∈ B,
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(
µz1(υ) + (1 − µ) z2 (υ)

)
=

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ς
(
µσ1

(
b̃
)

+ (1 − µ)σ2
(
b̃
))

+ RL
I

r1+r3,ς (µσ1 (υ) + (1 − µ)σ2 (υ)) − Λ2
RL
I

r1+r3,ς
(
µσ1

(
b̃
)

+ (1 − µ)σ2
(
b̃
))
.

Since ג has convex values, Rג,κ is convex, and for µ ∈ [0, 1], (µσ1 (υ) + (1 − µ)σ2 (υ)) ∈ Rג,κ. Therefore,
µz1(υ) + (1 − µ) z2 (υ) ∈ Ψ2 (κ), which shows that Ψ2 is convex-valued. Moreover, Ψ1 is compact and
convex-valued.

Step 4. We prove that Gr (Ψ2) is closed. Let κn → κ∗, zn ∈ Ψ2 (κn) and zn → z∗. We show that
z∗ ∈ Ψ2 (κ∗). Since zn ∈ Ψ2 (κn), there is a σn ∈ Rג,κn such that,

zn (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσn
(
b̃
)

+ RL
I

r1+r3,ςσn (υ) − Λ2
RL
I

r1+r3,ςσn
(
b̃
)
.

Therefore, we need to prove the existence of σ∗ ∈ Rג,κ∗ such that for each υ ∈ B,

z∗ (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσ∗
(
b̃
)

+ RL
I

r1+r3,ςσ∗(υ) − Λ2
RL
I

r1+r3,ςσ∗
(
b̃
)
, υ ∈ B.

Let Υ : L1 (B,R)→ C (B,R) be a continuous linear operator defined as follows:

σ→ Υ (σ) (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

Ia1−δ+1,ςσ
(
b̃
)

+ RL
I

r1+r3,ςσ (υ) − Λ2
RL
I

r1+r3,ςσ
(
b̃
)
, υ ∈ B.

Notice that

‖zn − z∗‖ =
∥∥∥∥[Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ς
(
σn

(
b̃
)
− σ∗

(
b̃
))

+ RL
I

r1+r3,ς (σn (υ) − σ∗(υ)) − Λ2
RL
I

r1+r3,ς
(
σn

(
b̃
)
− σ∗

(
b̃
)) ∥∥∥∥→ 0,

when n → ∞. Therefore, by Lemma 2.11, Υ ◦ Rג,κ is a closed graph operator. Additionally, zn ∈

Υ
(
Rג,κn

)
. Since κn → κ∗, Lemma 2.11 gives

z∗ (υ) =

[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
]

RL
I

r1−δ+1,ςσ∗
(
b̃
)

+ RL
I

r1+r3,ςσ∗ (υ) − Λ2
RL
I

r1+r3,ςσ∗
(
b̃
)
,

for some σ∗ ∈ Rג,κ∗ . Thus, the graph of Ψ2 is closed. As a result, Ψ2 is compact and upper semi-
continuous.

Step 5. We prove that Ψ1 is a contraction in E. Let κ1, κ2 ∈ E. By using the assumption (P3), we get,

|Ψ1κ1 (υ) − Ψ1κ2 (υ)| ≤ ly
(
ς0

(
b̃
))r3

(
|Λ3 |+|Λ1 |

Γ(2−δ) +
1+|Λ2 |

Γ(r3+1)

)
‖κ1 − κ2‖ .
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Thus, ‖Ψ1κ1 − Ψ1κ2‖ ≤ lyλ2 ‖ϕ − ϕ‖. As lyλ2 < 1, we conclude that Ψ1 is a contraction. Thus, the
operators Ψ1 and Ψ2 meet the theorem [27] hypotheses. As a result, we conclude that either of the two
following conditions holds, (a) Θ has an FP in E, (b) we have κ ∈ ∂E and ξ ∈ (0, 1) with κ ∈ ξF (κ).
We show that conclusion (b) is not possible. If κ ∈ ξΨ1 (κ) + ξΨ2 (κ) for ξ ∈ (0, 1). Then, σ ∈ Rג,κ
exists such that

|κ (υ)| =
∣∣∣∣ξ RL
I

r3,ςy (υ, κ (υ)) + ξ RL
I

r1+r3,ςσ (υ) + ξ
[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1−δ+1,ςσ
(
b̃
))

− ξΛ2

(
RL
I

r3,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1+r3,ςσ
(
b̃
)) ∣∣∣∣ ≤ λ1 ‖$̃1‖ $̃2 (κ) + λ2

∥∥∥ϑy

∥∥∥ ,
which implies that |κ (υ)| ≤ λ1 ‖$̃1‖ $̃2 (κ) + λ2

∥∥∥ϑy

∥∥∥, for each υ ∈ B. If criterion of [27, Theorem-(b)]
is true, then ξ ∈ (0, 1) and κ ∈ ∂E with κ = ξΘ (κ) exist. Therefore, κ is a solution of (1.3) with
‖κ‖ = N . Now, thanks to |κ (υ)| ≤ λ1 ‖$̃1‖ $̃2 (κ) + λ2

∥∥∥ϑy

∥∥∥, we get

N

λ1‖$̃1‖$̃2(N)+λ2‖ϑy‖
≤ 1,

which contradicts (3.10). Thus, it follows from the theorem [27] that Θ admits an FP, and it is a
solution of (1.3). �

3.2. The Lipschitz case

We try to establish a more general existence criterion for the FDI (1.3) under new hypotheses.
Specifically, we demonstrate the desired existence result for a nonconvex-valued right-hand side using
the theorem of Covitz and Nadler [28]. For a metric space

(
E, %

)
, we define

H % : P (E) × P (E)→ R+ ∪ {∞} ,

H %(R̃1, R̃2
)

= max
{

sup
r̃1∈R̃1

%
(̃
r1, R̃2

)
, sup

r̃2∈R̃2

%
(
R̃1, r̃2

)}
,

where %
(
R̃1, r̃2

)
= inf r̃1∈R̃1

% (̃r1, %2) and %
(̃
r1, R̃2

)
= inf r̃2∈R̃2

% (̃r1, r̃2). Then
(
Pb,cl(E),H %) forms a metric

space [29].

Definition 3.4. An SVM Ω : E→ Pcl(E) is a η̃-Lipschitz if and only if η̃ > 0 exists such that

H % (Ω (κ1) ,Ω (κ2)) ≤ η̃% (κ1, κ2) , ∀κ1, κ2 ∈ E.

In particular, Ω is a contraction whenever η̃ < 1.

Theorem 3.5. Assume that (P3) and the following conditions hold:

P6) The map ג : B × R→ Pcp (R) is such that ג (·, ϕ) : B→ Pcp(R) is measurable for any κ ∈ R;
P7) The condition H % ג) (υ, κ1) , ג (υ, κ2)) ≤ n(υ) |κ1 − κ2| holds for a.e. υ ∈ B and κ1, κ2 ∈ R with
n ∈ C (B,R+) and % (0, ג (υ, 0)) ≤ n(υ) for a.e. υ ∈ B.

Then FDI (1.3) has at least one solution for B whenever ‖n‖ λ1 + lyλ2 < 1, where λ1, λ2 are given
in (3.11).
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Proof. By assumption (P6) and [30, Theorem III.6], ג has a measurable selection σ : B → R, with
σ ∈ L1(B), which implies that ג is integrability bounded. Therefore, Rג,κ , ∅. We demonstrate that the
operator Ω : E→ P(E) described in (3.12) meets the conditions required by Nadler and Covitz’s FPT.
Specifically, we prove that Ω(κ) is closed for each κ ∈ E. Assume a sequence such that {un}n≥0 ∈ Ω(κ)
and un → u (n→ ∞) in E. Then u ∈ E and σn ∈ RG,κn exists such that

un (υ) = RL
I

r3,ςy(υ, κ(υ)) + RL
I

r1+r3,ςσn (υ) +
[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1−δ+1,ςσn
(
b̃
))

− Λ2

(
RL
I

r3,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1+r3,ςσn
(
b̃
))
.

So there is a subsequence σn that converges to σ in L1 (B), because ג has compact values. As a result,
σ ∈ Rג,κ, and we get

un(υ)→ u (υ) = RL
I

r3,ςy (υ, κ(υ)) + RL
I

r1+r3,ςσ (υ) +
[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1−δ+1,ςσ
(
b̃
))

− Λ2

(
RL
I

r3,ςy
(
b̃, κ

(
b̃
))

+ RL
I

r1+r3,ςσ
(
b̃
))
.

Hence u ∈ Ω(κ). Next, we show that a ∆ ∈ (0, 1),
(
∆ = ‖n‖ λ1 + lyλ2

)
exists such that

H % (Ω (κ1) ,Ω (κ2)) ≤ ∆ ‖κ1 − κ2‖ , ∀κ1, κ2 ∈ E.

Let κ1, κ2 ∈ E and v1 ∈ Ω (κ1). Then σ1 (υ) ∈ ג (υ, κ1 (υ)) exists such that for all υ ∈ B and

v1 (υ) = RL
I

r3,ςy (υ, κ1 (υ)) + RL
I

r1+r3,ςσ1(υ) +
[
Λ3

(
ς0

(
b̃
))r3+δ−1

− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃, κ1

(
b̃
))

+ RL
I

r1−δ+1,ςσ1
(
b̃
))

− Λ2

(
RL
I

r3,ςy
(
b̃, κ1

(
b̃
))

+ RL
I

r1+r3,ςσ1
(
b̃
))
.

By (P7), we have
H % ג) (υ, κ1 (υ)) , ג (υ, κ2(υ))) ≤ n(υ) |κ1(υ) − κ2(υ)| .

Thus, χ(υ) ∈ ג (υ, κ2) exists such that |σ1 (υ) − χ| ≤ n(υ) |κ1(υ) − κ2(υ)|, for each υ ∈ B. We build an
SVM, O : B→ P(R) as follows:

O(υ) =
{
χ ∈ R : |σ1 (υ) − χ| ≤ n(υ) |κ1(υ) − κ2(υ)|

}
.

Notice that σ1 and ω = n |κ1 − κ2| are measurable, so it follows that O(υ) ∩ ג (υ, κ2) is measurable.
Next, we select the function σ2(υ) ∈ ג (υ, κ2) such that,

|σ1(υ) − σ2(υ)| ≤ n(υ) |κ1(υ) − κ2(υ)| , ∀υ ∈ B.

Define

v2(υ) = RL
I

r3,ςy (υ, κ2(υ)) + I RL
I

r1+r3,ςσ2(υ) +
[
Λ3

(
ς0

(
b̃
))r3+δ−1
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− Λ1 (ς0(υ))r3+δ−1
] (

RL
I

1−δ,ςy
(
b̃, κ2

(
b̃
))

+ RL
I

r1−δ+1,ςσ2
(
b̃
))

− Λ2

(
RL
I

r3,ςy
(
b̃, κ2

(
b̃
))

+ RL
I

r1+r3,ςσ2(b̃)
)
.

As a results, we arrive at,

|v1(υ) − v2(υ)| ≤
(
‖n‖ λ1 + lyλ2

)
‖κ1 − κ2‖ ,

which implies ‖v1 − v2‖ ≤
(
‖n‖ λ1 + lyλ2

)
‖κ1 − κ2‖. Now, by interchanging the roles of κ1 and κ2, we

obtain,
H % (Ω (κ1) ,Ω (κ2)) ≤

(
‖n‖ λ1 + lyλ2

)
‖κ1 − κ2‖ .

Since Ω is a contraction, it follows that the Covitz and Nadler theorem that Ω has an FP, which is a
solution of the FDI (1.3). �

4. Examples

In order to validate the theoretical findings, we provide specific cases of FDIs in this section. In
fact, we focus on the FDI with the following form:

H
D

r1,r2,ς
(

C
D

r3,ςκ(υ) − y (υ, κ(υ))
)
∈ ג (υ, κ(υ)) , υ ∈ B,

κ(0) + η1κ
(
b̃
)

= 0,
C
D
δ+r3−1,ςκ(0) + η2

C
D
δ+r3−1,ςκ

(
b̃
)

= 0.

(4.1)

The examples below are special cases of FDIs given by (4.1).

Example 4.1. Using the FDIs defined by (4.1) and taking r1 ∈
{ 1

2 ,
2
3 ,

5
6

}
, r2 = 1

3 , r3 = 1
5 , ς(υ) = υ2,

η1 = 1
4 , η2 = 1

6 , δ = 0.666, 0.777, 0.888, and b̃ = 1, the problem (4.1) is reduced to
H
D

1/2,1/3,υ2 (C
D

1/5,υ2
κ(υ) − y (υ, κ(υ))

)
∈ ג (υ, κ(υ)) ,

κ (0) + 1
4κ (1) = 0,

C
D
−2/15,υ2

κ(0) + 1
6

C
D
−2/15,υ2

κ(1) = 0,

(4.2)

for υ ∈ B. With these data, it follows from (3.3), that we have

Λ1 =
η2

(η2+1)Γ(r3+δ) '


0.1302, r1 = 1/2,

0.1409, r1 = 2/3,

0.1494, r1 = 5/6,

Λ2 =
η1
η1+1 '


0.2000, r1 = 1/2,

0.2000, r1 = 2/3,

0.2000, r1 = 5/6,

Λ3 =
η1η2

(η2+1)Γ(r3+δ) '


0.0325, r1 = 1/2,

0.0352, r1 = 2/3,

0.0373, r1 = 5/6.
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We define the function y and the SVM ג : B × R→ P(R) as follows:

y (υ, κ) =
cos(υ)
υ2+2

(
|κ|
|κ|+1

)
, ∀ (υ, κ) ∈ B × R, (4.3)

and

ג (υ, κ) =

[
1

(5υ2+7 exp(υ))
κ

5(κ+3) ,
1

√
υ2+16

|κ|
|κ|+1

]
. (4.4)

For κ, κ ∈ R, we have

∣∣∣y (υ, κ) − y
(
υ, κ

)∣∣∣ =

∣∣∣∣∣ cos(υ)
υ2+2

(
|κ|
|κ|+1 −

|κ|
|κ|+1

)∣∣∣∣∣ ≤ 1
υ2+2

(
|κ−κ|

(1+|κ|)(1+|κ|)

)
≤ ly

∣∣∣κ − κ∣∣∣ , (4.5)

with ly = 1
2 and also,

y (υ, κ) ≤ 1
exp(υ2)+1

= ϑy(υ), ∀(υ, κ) ∈ B × R.

Thus, the assumptions (P3) and (P4) hold. It is also clear that the SVM ג satisfies the assumption (P1)
and

ג‖ (υ, κ)‖P = sup
{
|η| : η ∈ ,υ)ג κ)

}
≤ 1
√
υ2+16

= $̃1(υ)$̃2 (‖κ‖) ,

where ‖$̃1‖ = 1
4 and $̃2 (‖κ‖) = 1. Thus, (P2) holds, and by (P5),

λ1 =
(
ς0

(
b̃
))r3+r1

[
|Λ3 |+|Λ1 |

Γ(r1−δ+2) +
1+|Λ2 |

Γ(r1+r3+1)

]
'


1.494, r1 = 1/2,

1.446, r1 = 2/3,

1.374, r1 = 5/6,

λ2 =
(
ς0

(
b̃
))r3

[
|Λ3 |+|Λ1 |

Γ(2−δ) +
1+|Λ2 |

Γ(r3+1)

]
'


1.489, r1 = 1/2,

1.500, r1 = 2/3,

1.504, r1 = 5/6,

for which the curves are shown in Figure 1, Moreover,

N > λ1 ‖$̃1‖ $̃2 (N) + λ2

∥∥∥ϑy

∥∥∥ '


1.140, r1 = 1/2,

1.117, r1 = 2/3,

1.086, r1 = 5/6,

whenever N = 1.15, which it is shown in Figure 2. As seen in Table 1, the effect of the order of the
derivative r1 is very insignificant. So all assumptions of Theorem 3.3 are valid. Hence the FDI (4.2)
has a solution for B.
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Figure 1. Graphical representation of the λi, i = 1, 2 of the FDI (4.2) with three different
values of r1.

υ

1 2 3 4 5 6 7 8 9 10 11

N
>

·
·
·

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N > λ1‖ ˜̟ 1‖ ˜̟ 2(N ) + λ2‖ϑy‖

r1=1/2

r1=2/3

r1=5/6

Figure 2. Graphical representation of the N of the FDI (4.2) for r1 ∈
{ 1

2 ,
2
3 ,

5
6

}
.

Table 1. The data obtained for the FDI (4.2) with three different values of r1.

υ r1 = 1
2r1 = 1
2r1 = 1
2 r1 = 2

3r1 = 2
3r1 = 2
3 r1 = 5

6r1 = 5
6r1 = 5
6

λ1 λ2 N > ... λ1 λ2 N > ... λ1 λ2 N > ...

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.059 0.593 0.316 0.027 0.597 0.307 0.012 0.599 0.303
0.20 0.157 0.782 0.443 0.089 0.788 0.423 0.049 0.790 0.411
0.30 0.277 0.920 0.552 0.179 0.927 0.523 0.114 0.929 0.502
0.40 0.414 1.032 0.653 0.295 1.040 0.618 0.207 1.043 0.590
0.50 0.566 1.129 0.751 0.435 1.137 0.712 0.328 1.140 0.678
0.60 0.731 1.214 0.849 0.597 1.223 0.809 0.478 1.226 0.771
0.70 0.907 1.291 0.945 0.779 1.301 0.908 0.657 1.304 0.869
0.80 1.093 1.362 1.042 0.982 1.372 1.011 0.866 1.376 0.974
0.90 1.289 1.428 1.140 1.205 1.438 1.117 1.105 1.442 1.086
1.00 1.494 1.489 1.238 1.446 1.500 1.228 1.374 1.504 1.206
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In the next example, we check the changes in the derivative order r2.

Example 4.2. Using the FDI defined by (4.1) and taking r1 = 1
2 , r2 ∈

{ 1
15 ,

1
7 ,

1
3

}
, r3 = 1

5 , ς (υ) = υ,
η1 = 1

4 , η2 = 1
6 , δ = 0.533, 0.571, 0.666, and b̃ = 1, 4.1 is reduced to

H
D

1/2,1/3,υ
(

C
D

1/5,υκ(υ) − y (υ, κ(υ))
)
∈ ג (υ, κ(υ)) , υ ∈ B,

κ(0) + 1
4κ(1) = 0,

C
D
−2/15,υκ(0) + 1

6
C
D
−2/15,υκ(1) = 0.

(4.6)

With these data, we find

Λ1 '


0.114, r2 = 1/15,

0.119, r2 = 1/7,

0.130, r2 = 1/3,

Λ2 '


0.200, r2 = 1/15,

0.200, r2 = 1/7,

0.200, r2 = 1/3,

Λ3 '


0.028, r2 = 1/15,

0.029, r2 = 1/7,

0.032, r2 = 1/3.

Consider the SVM ג : B × R→ P(R) is defined by, ϕ→ ג (υ, κ) =
[
0, sin(κ)

5
√
υ2+4

+ 1
12

]
, and the function

y defined in (4.3). From (4.5), we see that the assumption (P3) is satisfied with ly = 1
2 . Next, we have

H % ג) (υ, κ) , ג (υ, κ)) ≤ n(υ)
∣∣∣κ − κ∣∣∣, where n (υ) = 1

5
√
υ2+4

and % (0, ג (υ, 0)) = 1
12 ≤ n(υ) for a.e. υ ∈ B.

Figure 3 shows the curves of λi, i = 1, 2, whenever r2 varies in the intervalB. By comparing the curves
and data in Table 2, it can be clearly seen that as r2 approaches zero, λi decreases.

υ

1 2 3 4 5 6 7 8 9 10 11

λ
1

0

0.5

1

1.5

r2=1/15

r2=1/7

r2=1/3

(a) λ1

υ

1 2 3 4 5 6 7 8 9 10 11

λ
2

0

0.5

1

1.5

r2=1/15

r2=1/7

r2=1/3

(b) λ2

Figure 3. Graphical representation of the λi, i = 1, 2 of the FDI (4.6) with three different
values of r2.

Furthermore, we obtain ‖n‖ = 1
10 , resulting in

‖n‖ λ1 + lyλ2 '


0.881, r2 = 1/15,

0.885, r2 = 1/7,

0.894, r2 = 1/3.

 < 1. (4.7)

These results are shown in Table 2. Furthermore, the curves of Eq (4.7) for three cases of r2 are shown
in Figure 4.
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Table 2. The data obtained for the FDI (4.6) with three different values of r2.

υ r2 = 1
15r2 = 1
15r2 = 1
15 r2 = 1

7r2 = 1
7r2 = 1
7 r2 = 1

3r2 = 1
3r2 = 1
3

λ1 λ2 ‖n‖ λ1 + lyλ2 λ1 λ2 ‖n‖ λ1 + lyλ2 λ1 λ2 ‖n‖ λ1 + lyλ2

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.292 0.927 0.493 0.294 0.931 0.495 0.298 0.940 0.500
0.20 0.475 1.064 0.580 0.478 1.069 0.582 0.484 1.079 0.588
0.30 0.631 1.154 0.640 0.635 1.159 0.643 0.643 1.171 0.650
0.40 0.772 1.223 0.688 0.776 1.228 0.692 0.787 1.240 0.699
0.50 0.902 1.278 0.729 0.907 1.284 0.733 0.919 1.296 0.740
0.60 1.025 1.326 0.765 1.031 1.332 0.769 1.045 1.345 0.777
0.70 1.142 1.367 0.798 1.148 1.374 0.802 1.164 1.387 0.810
0.80 1.254 1.404 0.828 1.261 1.411 0.831 1.278 1.424 0.840
0.90 1.361 1.438 0.855 1.369 1.444 0.859 1.388 1.458 0.868
1.00 1.466 1.468 0.881 1.474 1.475 0.885 1.494 1.489 0.894

υ

1 2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

‖n‖λ1 + lyλ2 < 1

r2=1/15

r2=1/7

r2=1/3

Figure 4. Graphical representation of ‖n‖ λ1 + lyλ2 in Eq (4.7) of the FDI (4.6) for r2 ∈{ 1
15 ,

1
7 ,

1
3

}
.

Therefore, all the assumptions of Theorem 3.5 are satisfied, which implies that at least one solution
to the problem (4.6) for B.

In Example 4.3, we examine our proven theorems for changes of function ς(υ).

Example 4.3. Using the FDIs defined by (4.1) and taking r1 ∈
2
3 , r2 = 1

3 , r3 = 1
5 ,

ς1(υ) = υ2, ς2(υ) = υ, ς3(υ) =
√
υ, ς4(υ) = ln(υ + 0.01), (4.8)

η1 = 1
4 , η2 = 1

6 , δ = 0.777, b̃ = 1, the problem (4.1) is reduced to
H
D

2/3,1/3,ς j(υ)
(

C
D

1/5,ς j(υ)κ(υ) − y (υ, κ(υ))
)
∈ ג (υ, κ(υ)) ,

κ (0) + 1
4κ (1) = 0,

C
D
−2/15,ς j(υ)κ(0) + 1

6
C
D
−2/15,ς j(υ)κ(1) = 0,

(4.9)
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for υ ∈ B. With these data, it follows from (3.3) that

Λ1 =
η2

(η2+1)Γ(r3+δ) ' 0.1409, Λ2 =
η1
η1+1 ' 0.2000, Λ3 =

η1η2
(η2+1)Γ(r3+δ) ' 0.0352.

We define the function y and the SVM ג : B × R→ P(R) as follows:

y (υ, κ) =
cos(υ)
υ2+2

(
|κ|
|κ|+1

)
, ∀ (υ, κ) ∈ B × R,

and

ג (υ, κ) =

[
1

(5υ2+7 exp(υ))
κ

5(κ+3) ,
1

√
υ2+16

|κ|
|κ|+1

]
.

For κ, κ ∈ R, we have

∣∣∣y (υ, κ) − y
(
υ, κ

)∣∣∣ =

∣∣∣∣∣ cos(υ)
υ2+2

(
|κ|
|κ|+1 −

|κ|
|κ|+1

)∣∣∣∣∣ ≤ 1
υ2+2

(
|κ−κ|

(1+|κ|)(1+|κ|)

)
≤ ly

∣∣∣κ − κ∣∣∣ ,
with ly = 1

2 , as well as y (υ, κ) ≤ 1
exp(υ2)+1

= ϑy(υ), for each (υ, κ) ∈ B × R. Thus, the assumptions (P3)
and (P4) hold. It is also clear that the SVM ג satisfies the assumption (P1) and

ג‖ (υ, κ)‖P = sup
{
|η| : η ∈ ,υ)ג κ)

}
≤ 1
√
υ2+16

= $̃1(υ)$̃2 (‖κ‖) ,

where ‖$̃1‖ = 1
4 and $̃2 (‖κ‖) = 1. Thus, (P2) holds, and by (P5)

λ1 =
(
ς0

(
b̃
))r3+r1

[
|Λ3 |+|Λ1 |

Γ(r1−δ+2) +
1+|Λ2 |

Γ(r1+r3+1)

]
'


1.494, ς1(υ) = υ2,

1.446, ς2(υ) = υ,

1.374, ς3(υ) =
√
υ,

1.374, ς4(υ) = ln(υ + 0.01),

λ2 =
(
ς0

(
b̃
))r3

[
|Λ3 |+|Λ1 |

Γ(2−δ) +
1+|Λ2 |

Γ(r3+1)

]
'


1.494, ς1(υ) = υ2,

1.446, ς2(υ) = υ,

1.374, ς3(υ) =
√
υ,

1.374, ς4(υ) = ln(υ + 0.01),

for which the curves are shown in Figure 5. Moreover

N > λ1 ‖$̃1‖ $̃2 (N) + λ2

∥∥∥ϑy

∥∥∥ '


1.117, ς1(υ) = υ2,

1.114, ς2(υ) = υ,

1.138, ς3(υ) =
√
υ,

1.142, ς4(υ) = ln(υ + 0.01),

whenever N = 1.15, which is shown in Figure 6. As seen in Table 3, the effect of ς(υ) is very
remarkable.

So all the assumptions of Theorem 3.3 are valid. Hence the FDI (4.9) has a solution for B.
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Figure 5. Graphical representation of the λi, i = 1, 2 of the FDI (4.9) with four cases of ς(υ).
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Figure 6. Graphical representation of the N of the FDI (4.9) with four cases of ς(υ) as
defined in (4.8).

Table 3. The data obtained for the FDI (4.2) with four cases of ς(υ).

υ ς1(υ) = υ2ς1(υ) = υ2ς1(υ) = υ2 ς2(υ) = υς2(υ) = υς2(υ) = υ ς3(υ) =
√
υς3(υ) =
√
υς3(υ) =
√
υ ς4(υ) = ln(υ + 0.01)ς4(υ) = ln(υ + 0.01)ς4(υ) = ln(υ + 0.01)

λ1 λ2 N > ... λ1 λ2 N > ... λ1 λ2 N > ... λ1 λ2 N > . . .

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.027 0.597 0.307 0.197 0.946 0.530 0.533 1.192 0.739 3.086 1.787 1.008
0.20 0.089 0.788 0.423 0.358 1.087 0.647 0.720 1.277 0.832 3.795 1.874 1.078
0.30 0.179 0.927 0.523 0.509 1.179 0.736 0.858 1.330 0.895 4.213 1.920 1.116
0.40 0.295 1.040 0.618 0.654 1.249 0.812 0.972 1.369 0.945 4.508 1.950 1.142
0.50 0.435 1.137 0.712 0.793 1.306 0.881 1.071 1.400 0.987 4.737 1.973 1.162
0.60 0.597 1.223 0.809 0.929 1.354 0.944 1.159 1.425 1.023 4.923 1.990 1.178
0.70 0.779 1.301 0.908 1.062 1.397 1.004 1.239 1.447 1.056 5.081 2.005 1.191
0.80 0.982 1.372 1.011 1.192 1.435 1.060 1.313 1.467 1.085 5.216 2.017 1.202
0.90 1.205 1.438 1.117 1.320 1.469 1.114 1.382 1.484 1.113 5.336 2.027 1.212
1.00 1.446 1.500 1.228 1.446 1.500 1.166 1.446 1.500 1.138 5.443 2.037 1.220
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5. Conclusions

In the investigation of FDEs and FDIs that contain Hilfer fractional derivative operators, a zero
initial condition is typically required. To address this limitation, we proposed a novel approach that
combines Hilfer and Caputo fractional derivatives. In this research, we applied this method to study
a class of FDEs for FDIs with non-separated BCs, incorporating both Hilfer and Caputo fractional
derivative operators. The existence results are established by examining cases where the set-valued
map has either convex or nonconvex values. For convex SVMs, the Leray-Schauder FPT was applied,
whereas Nadler’s and Covitz’s FPTs are used for nonconvex SVMs. The findings are well demonstrated
with two relevant illustrative examples. The findings of this study contribute significantly to the
emerging field of FDIs. In future work, we aim to apply this method to study other types of FDEs
with nonzero initial conditions, as well as coupled systems of FDEs that incorporate both Hilfer and
Caputo FDs.
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