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1. Introduction

Fractional differential inclusions (FDIs), as an extension of fractional differential equations
(FDEs), have gained popularity among mathematical researchers due to their importance and value
in optimization and stochastic processes in economics [1, 2] and finance [3]. In addition to
their applications in understanding engineering [4] and dynamic systems [5, 6] in biological [7, 8],
medical [9], physics [10] and chemical sciences [11], FDIs are also relevant in various other scientific
fields [12].


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025294

6449

Sousa and Oliveira [13] introduced the new fractional derivative ¢-Hilfer to unify different types of
fractional derivatives into a single operator, expanding fractional derivatives to the types of operators
with potentially applicable value. After that, Asawasamrit et al. [14] investigated the following Hilfer-
FDE under nonlocal integral boundary conditions (BCs):

Hprm200(v) = 1 (v, %(v)), 1<r<2,0<rn<l,veV:=[5b],

e s s 1.1
%#(5) =0, #(b) = Z 6 N3x(&), i>0,6€R, §€U. -
i=1

In [15], an existence outcome was shown by employing the FPTs (fixed-point theorems) for a
sequential FDE of the type,

b
(HDn,rz,c (Cbr3’§%)) (s) = 3(5, %(s), RLSrs,c%(U),f #(V) dv), vE B = [()’ [;]’
~ 0
% (0) +mx(b) = 0,
CDr4+r3—1,g%(O) + 1, CD6+r3—1,g%([;) =0,
where r; € (0,1),i = 1,23, rs=r +rn(1—r), rs +r3 > 1,9,m € R, rs > 0, and ] € C(B x R?)

is a nonlinear function. In 2024, Ahmed et al. [16] investigated a class of separated boundary value
problems of the form

("2 (“Dpx)) () = 3 ( 2(w)), ge(0,1), ve D,
#(0) + A, D r(0) = #(B) + 4, D k(b)) = 0, A1, 4 €R,
where 0 < r,r3 < 1, € [0,1] withry =7 + (1 —r), s +rs > 1and ] € C(B x R). Lachouri

et al., in [17], established the existence of solutions to the nonlinear neutral FDI involving ¢-Caputo
fractional derivative with ¢-Riemann—Liouville (RL) fractional integral boundary conditions:

{ Cpyns (C@rz,c% V) -y (,x (v))) €, %), vel0,b),

x(a) = R375%(b) = 0, a € (0,b),

where J: 8B xR — P(R) is a set-valued map. Surang et al., in [18], studied the ¢-Hilfer type sequential
FDEs and FDIs subject to integral multi-point BCs of the form

(B2 4 & B2 () = o, (), veU,

(3 =0, (b) = > Nm W (sy(s)ds + Y 0% (£)), (-2
i=1 5 =1

where 7, € (1,2), , € [0,1],3 € C(UXR), k,u;,6; € R, and 1, &; € (3,b],i = 1, n, j = 1, m. Etemad
et al. [19] introduced and studied a novel existence technique based on some special set-valued maps
(SVMs) to guarantee the existence of a solution for the following fractional jerk inclusion problem
involving the derivative operator in the sense of Caputo—Hadamard

(o7 (UMD (MDRX))) @) € 1 (v, x(@), PDRx), (D (TDRX)) )
(1) + #(exp(1) = D) = (D (D)) (exp(1) = 0,

AIMS Mathematics Volume 10, Issue 3, 6448—6468.



6450

for v € [1,exp(1)], where r; € (0,1],i = 1,2,3, 7 € (1,exp(1)), and the operator J : [1,exp(1)] x R* —
P(R) is an SVM, where P(R) denotes all nonempty subsets of R.

The boundary conditions (BCs) used in (1.1) and (1.2), share a common feature: the requirement
of a zero initial condition, which is essential for the solution to be well-defined. Consequently, certain
classes of Hilfer FDEs cannot be addressed, including cases with BCs such as,

o %(0) = —x(b), »'(0) = —«’(b) (anti-periodic),

e %(0) + 1%/ (0) = 0, (D) + 2’ (b) = 0 (separated),

e %(0) + m#(b) = 0, %’ (0) + o2’ (b) = 0 (non-separated), etc.

To address this limitation and study Hilfer FDEs with such BCs, regardless of whether they are anti-
periodic, separated, or non-separated, we propose a novel approach in this research. Specifically, we
combine the Hilfer and Caputo fractional derivatives, enabling the study of boundary value problems

under these conditions. More specifically, we aimed to analyze a class of FDEs for FDI, subject to
non-separated BCs of the form,

Hpres (Comsx (v) - y (v, 2 (W) €3 (W, 2(W)), v EB,
#(0) + mx(b) =0, (1.3)
Cb(5+r3—1,g‘%(0) + 7 C®5+r3—1,§%(5) — O,

wherer; € (0,1),i =1,2,3,0 =ri+rn(1 —=r)),0+r; > 1,n;,m € R,y € C(BxR)and ] : BXR — P(R)
denotes a SVM, with power set P(R) of R.

The paper is structured as follows. Section 2 is devoted to discussing the fundamental concepts
fractional calculus and set-valued analysis, while Section 3 presents important findings on the
qualitative properties of solutions to the ¢-Hilfer inclusion FDI (1.3) utilizing FPTs. Finally, Section 4,
includes three illustrative examples.

2. Background concepts

2.1. Fractional calculus

We outline the background material that is pertinent to our study. We consider the Banach spaces
E = C (B) and L' (B) of the Lebesgue integrable functions equipped with the norms ||x|| = sup { | (v)| :

v € B} and
el = f I ()| dv,
B

respectively. Let ¢ € C" (*B) be an increasing function such that ¢’ (v) # 0O, for any v € B.

Definition 2.1 ([20]). The ¢-RL fractional integral and derivative of order r, for a given function x are
expressed by

M31% (v) = f 9 ()" @) du,  G) = s) - s(w),
0

and

n
RL®r1,§% (U) — D[gn] RL(:SH—VIS% (U) , D[gn] = (g’%v)i) s

where n = [r1] + 1, n € N, respectively.
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Definition 2.2 ([21,22]). The Caputo sense of s-fractional derivative of the x € C" (B) of order ry is
given as,

D (3) = RS (5), Wl (s) = (S 4) ().

Lemma 2.3 ([20,22]). Let r,r, > 0. Then

D @) = g @)

L(ri+r2)
i) D (o) = FrB (o)
Lemma 2.4 ([20]). For x € C" (B), we have
n—1
RS D53 (5) = () — ] ") (@), m-l<n<n,
k=0

and 0 < ry < 1. Furthermore, if r; € (0, 1), then RLgr16 Cs g (v) = ¢o(v).

Definition 2.5 ([13]). The ¢-Hilfer fractional derivative for » € C" (B), of order n — 1 < r; < n and
type 0 < ry < 1, is defined by

Hyrir.g,, (v) = (R]—Srz(n_rl)S (D[gn] (RLﬁ(l—rz)(n—rl),g%))) ).
Lemma 2.6 ([13,23]). Let ri,ry,u > 0. Then
i) RReRysy (v) = K95y (v),

.. r —
i) M (o)) = i (o)

Lemma 2.7 ([13]). Foru>0,r e (n—1,n),and0 <r, <1,

r1,F - r —r-
M () = s (@) T, u> .

In particular, if ry € (1,2) and 1 < u < 2, then D25 (go(v)y~' = 0.

Lemma 2.8 ([13]). If x € C"(B),n—1 <r <nandtype 0 < r, <1, then

n

. RLxri.c Hyror, _

i) JEID2% (v) = (V) — (rg(‘:;”,)m)
=1

)(51(

D[n k] RL(1=r2)(n=r1)5,, 0),
i) MRSy (v) = % (V).

2.2. Auxiliary notions of set-valued maps

Consider the Banach space (E, ||-|]) and SVM ©® : E — P (E). ® is a) closed (convex), b) bounded
and c¢) measurable, whenever ® (x) is closed (convex) for every x € E, @(B) = U, 30 (%) is bounded
for any bounded set B C E, that is

sup{suplpl :pe@(%)}<oo

xeB
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and Yp € R, the function
vodp.0w) =inf{lp-1 : 1eOW)},

is measurable, respectively. One can find the definitions of completely continuous and upper semi-
continuous in [24]. Additionally, the set of selections of ] is described as

Rip =o€ L'(B) : 0 (v) €1(w,p), Yv € B},

Next, we take

P (E) = {Q € P(E) : Q # @ with has a property B},

where P, P, Py, and P, represent the classes of every compact, bounded, closed, and convex subset
of E, respectively.

Definition 2.9 ([25]). An SVM ] : B X R — P (R) is called Carathéodory if the mapping v — 1 (v, x)
is measurable for all x € R, and x — 1(v,x) is upper semicontinuous for almost every v € B.
Additionally, we say ) is L'-Carathéodory whenever for all m > 0, exists z € L' (B,R") such that for
a.e. v e€'B,

.0l =sup{lo| : o €l@.0)} <z). VYl <m.

To achieve the intended outcomes in this search, the following lemmas are necessary.

Lemma 2.10 ([25], Proposition 1.2). Consider SVM © : E — P(Z) with the graph, Gr(®) = { (x,p) €
EXZ : p € O(x)}. Gr(®) is a closed subset of EXZ whenever O is upper semi-continuous. Conversely,
O is upper semi-continuous, when it has a closed graph and is completely continuous.

Lemma 2.11 ([26]). Consider a separable Banach space E along with a L'-Carathéodory SVM ) :
B X R — P, (E) and a linear continuous map Y : L' (B,E) — C (B,E). Then, the composition

{ ToRy: C(B,E) = Pe,c (C(B,E)),
%= (ToRy) (%) =T (Rex)

is a closed graph map in C (B,E) X C (B, E).
3. Existence results for fractional differential inclusion (1.3)

In relation to the FDI (1.3), the auxiliary Lemma 3.1 is required.

Lemma 3.1. Fory,l e C(B), the solution of linear-type problem

Hyyrirs (CQFM‘% (v) - y(v)) =1v), ve B\ {B},
% (0) + mx(b) = 0, G-
C36+r3—1,g% (0) + 1 C®5+F3—1,§%(5) =0,

is obtained as follows:
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% (v) = R3Sy (v) + B35 (v)

+ [A3 (co(®)""" = A, (§0(U))r3+6_1] (M1 Psy(B) + M (D))

A, (RLSr3’§y(l;) + RLSr1+r3,§J(E)) , (32)
where for ni,n, # —1,
Ay = (n2+1;7F2(r3+6)’ Az = # As = <nz+?>lr"(zr3+6> (3.3)

Proof. Applying the ¢-fractional integral ®3" to the first equation of (1.3), and using Lemma 2.4,
we get

D39 (v) = y) + ST (W) + ¢ (o))’ veB, c; R, (3.4)
where 6 = r; + r, (1 — ). Now, by taking RLyr¢ in (3.4) from Lemma 2.3, we get
%) = Y ) + KT ) + S (G) T 4, €R (3.5)

According to Lemma 2.3, we can obtain
=Ly (v) = R0y (v) + RIS+ 1(v) + T (6) . (3.6)
Next, by combining the BCs # (0) + 1,%(b) = 0 and
CRO+ILS5(0) + 17, D15 (B) = 0

with (3.6), we get

c2 (14 m) +m1 M5y (B) + ) RIw) + clr'g,'ffg)( o®)"" = (3.7)
c1 (1 + ) T(S) + mp N31795y(D) + p R0+ 15 3(D) = 0. (3.8)
From (3.7) and (3.8), we find
¢l = WU)ZF@ (RLSI—(S,gy(E) 4 Ry —5+1,g3([;)) ,
C2 = gt (0@ (M1 Sy(go(w)) + MO A(D))

— s (3 y(0) + I ).
By substituting the values of ¢; and ¢, into (3.5), we arrive at the fractional integral equation (3.2). O

Definition 3.2. An element x € C' (B) can be a solution of (1.3), if there is o € L' (B) with o (v) €
1(v, %) for every v € B fulfilling the non-separated BC’s, % (0) + m,%(b) = 0,

DI (0) + 1 D (B) = 0
and
% (v) = RISy (0,1 (W) + NS0 () + | As (50(B)
= A1 (o@) | (17 (B, #(D)) + 1Y 5o (D)
= Ay (R75y (B (D)) + RIS o (B)) (3.9)

)r3+6—1
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3.1. The upper semi-continuous case

The first consequence addresses the convex-valued J using the nonlinear alternative for contractive
maps [27].

Theorem 3.3. Suppose that

P1) 1: BXR = Py, (R) is a L'-Carathéodory SVM;
P2) There is a exist @, € C (B,R*) and a nondecreasing @, € C (R*,R*) with,

B @.2)llp = sup{lol : p € Iw.0)} <@ W) B (). ¥ (v.%) € BXR;

P3) There is a constant I, < /151 such that |y (v, %) =Y (U, %) < Iy %) — x|,
P4) There is a exist 9y € C (B, R") such that |y (v, »)| < ¥y (v), for each (v,x%) € B X R;
P5) There is an N > 0 satisfying

> 1, (3.10)

N
Al@ 1@ (N)+22| [y ||

where

_ N3 JAsI+HA 1+]Aa]
A= (g‘o(b)) [T(rsl—6+12) + F(r1+r32+1)] )
— N3 [1AslHALL | 1+HA,
A = (g‘o(b)) [ F22—6)l + F(r3+21)]' (3.11)

Then, (1.3) admits a solution of ‘B.

Proof. At first, to convert the sequential-type FDI (1.3) into a problem of the FP type, we write © :
E — P (E) as follows:

z€C(B):

R3Sy (v, % () + K50 (v)

0= . +(A3 (0®)""" = A (go(v))”+‘5‘1) : (3.12)
z) =

X(RLSI Xy ( %(b)) 4 Ry 5+1g0_(b))

—A, (RL:»r3 S ( %(b)) 4+ Riyri+rs, go_(b))

for o € R, .. Consider two operators ¥, : E - Eand ¥, : E — P (E) as follows:

Wi @) = [ A (B) ™ = A (o | NSy (5,#(6)
+ R3Sy (2 () = Ay N5y (b, #(D)).

and
zeE:

¥, (%) = () = [A3 (S‘()(l~7))r3+5_l - A (go(v))”*“] Ryn=0+bsor(b)

+ R]_L:Sr1+r3,g0_ (U) _ Az RL::srl +r3,§0_(l~?)
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Obviously, ® = ¥ + ¥,. In the following, we demonstrate that ¥, and ¥, fulfill the conditions of
the nonlinear alternative for contractive maps [27, Corollary 3.8]. Initially, we consider the set,

Qp={xeE: <y} v >0 (3.13)

which is bounded, and show that ¥'; define the SVMs ¥; : Q,. — P, (E), j = 1,2. To achieve this,
we need to prove that ¥, and ¥, are compact and convex-valued. The proof will proceed in five steps.

Step 1. ¥, is bounded on bounded sets of E. Let Q- be a bounded set in E. Then for every z € ¥, (%)
and x € Q,., o € Ry, exists such that,

z (U) _ )r3+6—

~ 1 ~
As (S‘o(b) = A (§0(U))r3+5_1] M= sa(b)
+ RLynins o (v) — A, R3S o (b).
Let (P1) holds. For any v € B, we obtain,

)r3+($—

2@ <1831 (so(B)
+ R Jor ()] + Ao N o (D)
~ = * N3 AsHAL 1+]A,|
<@l B (v) (50(B)) " [l 4 el

Indeed, [|zl| < 4, ll@]l @2 (v7).

N (§0(U))r3+6_1] RLyn=0+15 | ()|

Step 2. ¥, maps bounded sets of E into equicontinuous sets. Let % € Q.. and z € ¥, (). In this case,
an element o € R;,, exists such that

2@ = |As ()" = A (@ Ko p)

+ RLgninss o (v) — A, RS1+735(b), veSDB.
Let vy, v € B, v; < v,. Then

l2(v2) = 2wl < ”m”mxﬁi(;)) (1A1] (50(w2))* ™" = (so(w))™*™)

+ 420 (o)™ = (Go(v))™"].

As vy — v,, we obtain, |z(v2) — z(vy)| — 0. Therefore, ¥, (Q2,+) is equicontinuous. Combining the
results from Steps 1 and 2, and employing the theorem of Arzela-Ascoli, we can confirm the completely
continuity of ‘¥,.

Step 3. ¥, (%) is convex for all » € E. Let 7,2, € ¥, (%). Then o, 0, € Ry, exist such that for each
veB

r3+0—

~ 1 ~
5w = [ A (90®) ™ = A oyt K3 )
i RLSr1+r3,§O.j (V) — A, RLSr1+r3,s‘O-j([)), j=1,2.

Let u € [0, 1]. Then for any v € B,
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)r3+6—1

(21 @) + (1= ) 22 )) = [As (s0(B)
= A (o) RS0 (o (B) + (1 = ) (D))
+ R oy () 4+ (1= ) 02 () = AL NS (e (B) + (1 = ) 02 (D)).

Since 1 has convex values, R;,, is convex, and for u € [0, 1], (uo (v) + (1 — @) 02 (v)) € Ry, Therefore,
uzi(v) + (1 — w) zo (v) € ¥, (%), which shows that ¥, is convex-valued. Moreover, ¥, is compact and
convex-valued.

Step 4. We prove that Gr (¥,) is closed. Let %, — x., z, € ¥Y>(x%,) and z, — z.. We show that
z. € ¥ (%,). Since z, € ¥, (x,), there is a o, € Ry, such that,

~ \73+0—1 _ - ~
mw{&@@f —mmwwﬂk%&wmw
+ Rl3ritnso (v) — A, B35 g, (b).
Therefore, we need to prove the existence of 0. € R;,, such that for each v € B,
~ \"3+o—1 . ~
2 @) = | A (0®)™ = Aoy R (B)
+ R (v) — A RIS135 0, (b), veB.
Let T : L' (B,R) — C (B, R) be a continuous linear operator defined as follows:
~ \/3+0-1 _ ar— ~
= T@ @) = [As(50®) = A o) [ 1150 (B)
+ RE3rtns o (v) — Ay RS+ o(b), veSB.
Notice that

lew =20l = [[As (s0®) ™ = As o)™ [R5 (o,(B) - 0. (B)

+ RLSr1+r3,§ (0, W) — 7. (V) = Ay Rh:jl’l +13,6 (O’n(B) — o-*(l;) ' — 0,

when n — oo. Therefore, by Lemma 2.11, T o R;, is a closed graph operator. Additionally, z, €
T (R:,)- Since %, — x., Lemma 2.11 gives

)r3+6—1

2@ = [As (o) = A ot Mo B)

+ RI_Sr1+r3,<;O_>k (U) _ Az RL::S”_H’S’;O'*(E),

for some o, € R;,.. Thus, the graph of ¥, is closed. As a result, ¥, is compact and upper semi-
continuous.

Step 5. We prove that ' is a contraction in E. Let %, %, € E. By using the assumption (P3), we get,

W11 () = Wi )] <y (60(B)) " (Vb + 22228 ) Iy — all.
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Thus, [[¥i%; — Y%l < A2l —¢ll. As lyd, < 1, we conclude that ¥ is a contraction. Thus, the
operators ¥; and ¥, meet the theorem [27] hypotheses. As a result, we conclude that either of the two
following conditions holds, (a) ® has an FP in E, (b) we have » € 0E and £ € (0, 1) with % € &F (x).
We show that conclusion (b) is not possible. If x € &V (%) + &Y, (%) for &€ € (0,1). Then, o € Ry,
exists such that

% (v)| = ‘f RL‘:ngy (v, % (v)) + fRL‘:srl 35 (v) + f[A3 (5‘0(5))”%71

— A (S‘O(U))r3+6_] ] (RI_SI—(S,gy( %(b)) 4+ Rixri—o+1, g'o_(b))
— &N, (RLi”S”’gy( %(b)) + Kbyt gO’(b)) | <A@l @2 () + 22 |

which implies that |x (v)| < A, ||@|| @2 (%) + A, | [27, Theorem-(b)]
is true, then & € (0,1) and ¥ € OE with x = £0O (x) exist. Therefore, » is a solution of (1.3) with
llxll = . Now, thanks to [ (v)] < A, @1 @2 () + 1z |

<1,

N
Al@ @ N +a|[oy]] =

which contradicts (3.10). Thus, it follows from the theorem [27] that ® admits an FP, and it is a
solution of (1.3). O
3.2. The Lipschitz case

We try to establish a more general existence criterion for the FDI (1.3) under new hypotheses.
Specifically, we demonstrate the desired existence result for a nonconvex-valued right-hand side using
the theorem of Covitz and Nadler [28]. For a metric space (E, 0), we define

2P (E) x P(E) > R U {oo},

%Q(El,ﬁz) = maX{ sup Q(F],Eg), sup Q(E,?z)},

71 €R; 72€R2

where Q(R1 ,1p) = inf; 7 0(r1,0,) and o(71, Rz) = inf; .z, 0 (1, 72). Then (Ppa(E), 7#7°) forms a metric
space [29].

Definition 3.4. An SVM Q : E — P(E) is a p-Lipschitz if and only if 7 > 0 exists such that
T (Q (1), Q7)) <0 (%1, %2) Vi, %y € E.

In particular, Q is a contraction whenevern < 1.
Theorem 3.5. Assume that (P3) and the following conditions hold:

P6) Themapl: B xR — P, (R) is such that 1(-, ¢) : B — Pp(R) is measurable for any » € R;
P7) The condition 7° (1(v,x,),1(v, %)) < W(v) %, — x5| holds for a.e. v € B and »1,%, € R with
neC(B,R") and 0(0,1(v,0)) < n(v) for a.e. v € B.

Then FDI (1.3) has at least one solution for B whenever |n||A; + lyd, < 1, where A, A, are given
in (3.11).
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Proof. By assumption (P6) and [30, Theorem II1.6], 1 has a measurable selection o : B — R, with
o € L'(B), which implies that J is integrability bounded. Therefore, R;,, # @. We demonstrate that the
operator QQ : E — P(E) described in (3.12) meets the conditions required by Nadler and Covitz’s FPT.
Specifically, we prove that €(x) is closed for each # € E. Assume a sequence such that {u,},-o € Q(x)
and u, = u (n — oo) in E. Then u € E and 0, € Rg,,, exists such that

u, W) = R3Sy(v, %x(v)) + NS0, (v) + [ As (go(i)))rsw—l

— A (<o (U))r3+6—1 ] (Rh:sl—é,gy( %(b)) RI_:»rl —6+1, go_n(b))
_ A (RL~r3g ( %(b)) RL~r1+r3 Sor (b))
So there is a subsequence o, that converges to o in L' (B), because ] has compact values. As a result,

o € R,,, and we get

u, (V) = u () = Iy (v, x(v)) + IS0 (V) + [ As (s (E))r3+6—1

Yy (go(v))r3+6—1 ] (RLSI—é,gy( %(b)) 4 Rixri—o+1, go_(b))
— A, (RLSr3’gy( %(b)) RLmr1+r3 go_(b))
Hence u € Q(x). Next, we show thata A € (0, 1), (A = |[n]| 4, + [yA,) exists such that
H2(Q (1), Q%)) < Alley — 2l V1, % € E.

Letx;,%, € Eand v; € Q (). Then o (v) € 1(v, »#; (v)) exists such that for all v € B and

Vq (U) = RLSr3,gy (U’%l (U)) + Rh:sr. +r3,g0_1(v) " [A3 (gO(E))r3+6—1

— A (o (U))r3+(5—1](RI;~1 —b.s (b py (b)) 4+ Riyri—o+1¢ (b))
A, (RLz»rgg (b % (b)) R]_r\'r]+}’3 go_ (b))

By (P7), we have
H (I, %1 (V) , IV, %2 (V))) < (V) %1 (V) — 22(V)] .

Thus, y(v) € (v, x%,) exists such that |o; (v) — x| < n(v) |%1(v) — %2(v)|, for each v € B. We build an
SVM, O : B — P(R) as follows:

OW) = {x € R 1 o) () = x| < 1) b1 V) — W)}

Notice that oy and w = n|x; — x%,| are measurable, so it follows that O(v) N 1 (v, %,) is measurable.
Next, we select the function o (v) € 1 (v, %,) such that,

lo1(v) — o2 (V)] < (V) 1 (V) — %2(V)I, Yv € B.
Define

v(v) = N335y (v, %43 (v)) + TR0y (v) + [ Ay (S‘o (B))rzﬂi—l
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A (go(v))r3+6—1](Rh~1 = (b py (b)) RLri=0+16 (b))
A, (RLA‘Vrg sy (b %z(b)) 4 RLxri+73,6 o (b))

As a results, we arrive at,
Vi) —va()| < (Il Ay + L) lIey — 22]|,

which implies [[v; — v,|| < (Inl] A1 + IyA2) |1 — %,||. Now, by interchanging the roles of #; and »x,, we
obtain,
A (Q(x1), Q206)) < (Il A1 + Lydz) |l — %2l

Since Q is a contraction, it follows that the Covitz and Nadler theorem that Q has an FP, which is a
solution of the FDI (1.3). O

4. Examples

In order to validate the theoretical findings, we provide specific cases of FDIs in this section. In
fact, we focus on the FDI with the following form:

Hprs (CDrsu(v) - y (v, 2(v)) € I, x(v)), veE D,
%(0) + mx(b) = 0, 4.1)
C©6+r3—1,§%(0) + 7 Cbé+r3—1,g%(l;) — 0

The examples below are special cases of FDIs given by (4.1).

Example 4.1. Using the FDIs defined by (4.1) and taking r, € {%, %,%}, = % r3 = é sv) = V%

n = }P n = é, 6 = 0.666,0.777,0.888, and b = 1, the problem (4.1) is reduced to

HpR IR (O (1) - y (v, 2(v))) € 1w, (V)
% (0) + i%(l) =0, 4.2)
D (0) + LD (1) = 0

for v € B. With these data, it follows from (3.3), that we have

0.1302, r; =1/,

A= s =1 01409, 1 =7,
0.1494, }"1 = 5/6,
0.2000, r; = 1/2,

Ay =5 = 102000, 1y =3,
0.2000, r, = 5s,

0.0325, r; =1/2,
Ay= L =0 00352, r =3,
0.0373, ri =5
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We define the function 'y and the SVM 1: B X R — P(R) as follows:

yw.x)=S2 (), Y(@w.x)eBxR, 4.3)
and
_ 1 % 1 ]
I, %) = [(5v2+7 exp(v)) 3+3)” V2416 |%|+1] ) (4.4)

For »x,x € R, we have

cosw) [ x| || 1 |7 =
V242 (|}(|+1 |%|+1) < 2+2 ((1+|%|)(1+|%|) < ly |% xl, (4.5)

v (W, %) -y (v, 7)| =

with ly = % and also,

Y. %) < o = @), V(%) € BXR.
Thus, the assumptions (P3) and (P4) hold. It is also clear that the SVM 1 satisfies the assumption (P1)
and

12, 2)llp = sup {Inl : 1 € Jv,2)} < H= =BT (I,

where ||@|| = JT and @, (||%||) = 1. Thus, (P2) holds, and by (P5),

. 1494, r,
1= (co®) [y e )y g6,

T(ri—6+2) ' T(ri+r3+1)

1/,
2/3,
1.374, ry =5,

1.489, r =1/2,

_ N2 [1AslHAL | 1+A] ] o _
A= (@) [T + | = L300, =
M b r1: 67

for which the curves are shown in Figure 1, Moreover,

1.140, r =11,
N > @il @ (N) + A ||0y[| = { 1.117, =23,
1.086, r; =5/,

whenever N = 1.15, which it is shown in Figure 2. As seen in Table 1, the effect of the order of the
derivative ry is very insignificant. So all assumptions of Theorem 3.3 are valid. Hence the FDI (4.2)
has a solution for ‘B.
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Figure 1. Graphical representation of the A;, i

values of r1.

(@) 4,

—f—r1=1/2
——r1=213|
r1=5/6

(b) 2,

1,2 of the FDI (4.2) with three different

N> M@ @2 (V) + Ay

—8—r1=1/2
——n1=213|
11=5/6

v

Figure 2. Graphical representation of the AV of the FDI (4.2) for ry € {1, 3, 2}.

Table 1. The data obtained for the FDI (4.2) with three different values of r;.

v n=j n=3% n=2>

A A N> .. Ay A N> .. A1 A N> ..
0.00  0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
0.10  0.059  0.593 0.316 0.027 0.597 0.307 0.012  0.599 0.303
0.20  0.157 0.782 0.443 0.089 0.788 0.423 0.049  0.790 0.411
030  0.277 0.920 0.552 0.179 0.927 0.523 0.114  0.929 0.502
040 0414 1.032 0.653 0.295 1.040 0.618 0.207 1.043 0.590
0.50 0.566 1.129 0.751 0.435 1.137 0.712 0.328 1.140 0.678
0.60 0.731 1.214 0.849 0.597 1.223 0.809 0.478 1.226 0.771
0.70  0.907 1.291 0.945 0.779 1.301 0.908 0.657 1.304 0.869
0.80 1.093 1.362 1.042 0.982 1.372 1.011 0.866 1.376 0.974
0.90 1.289 1.428 1.140 1.205 1.438 1.117 1.105 1.442 1.086
1.00 1.494 1.489 1.238 1.446 1.500 1.228 1.374 1.504 1.206
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In the next example, we check the changes in the derivative order r,.
Example 4.2. Using the FDI defined by (4.1) and taking r, = %, ry € {15, %, %}, r3 = %, c) = v,
m =1 M=t 0=0.533,0.571,0.666, and b = 1, 4.1 is reduced to

N (D) — y (v, %)) € 1w, x(v)), v E B,
#(0) + 12(1) = 0, (4.6)
D) + ¢ DTn(1) = 0.

With these data, we find

0.114, r, = /15, 0.200, r, = 115, 0.028, r, = /15,
A =2 0119, r, =1/7, Ay =4 0200, r, =1/7, Az =23 0.029, r,=1/7,
0.130, r, =1/3, 0.200, r, =1/3, 0.032, r, =1/3.

Consider the SVM 1: B X R — P(R) is defined by, ¢ — 1(v,x) = [O, % + 11—2], and the function

Yy defined in (4.3). From (4.5), we see that the assumption (P3) is satisfied with ly = % Next, we have
2° (A (v,%),1(v,%)) < n(v) |% - %|, where 1 (v) = Svﬁ and 0 (0,3 (v,0)) = ﬁ < n(v) for a.e. v € B.
Figure 3 shows the curves of A;, i = 1,2, whenever r, varies in the interval B. By comparing the curves

and data in Table 2, it can be clearly seen that as r, approaches zero, A; decreases.

—f—r2=-1/15
——r2=117

r2=1/3

05F / 05 1
/ ——12-1/15
) |

——r2-1/7

r2=1/3

(@) 4 (b) 1,
Figure 3. Graphical representation of the A;, i = 1,2 of the FDI (4.6) with three different
values of r,.

Furthermore, we obtain |n|| = %, resulting in
0.881, rp =1/15,
Il A + Ly, =~ 4 0.885, ry=1/7, <1 4.7)

0.894, r, =1/3.

These results are shown in Table 2. Furthermore, the curves of Eq (4.7) for three cases of r, are shown
in Figure 4.
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Table 2. The data obtained for the FDI (4.6) with three different values of ;.

1

1

v n=i n=j =3
A A2 [ml A1 + Iy, A A2 [l A1 + Iy, A A [m| A1 + Iyds
0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.292 0.927 0.493 0.294 0.931 0.495 0.298 0.940 0.500
020 0475 1.064 0.580 0.478 1.069 0.582 0.484 1.079 0.588
030 0.631 1.154 0.640 0.635 1.159 0.643 0.643 1.171 0.650
040 0.772 1.223 0.688 0.776  1.228 0.692 0.787 1.240 0.699
0.50 0902 1.278 0.729 0907 1.284 0.733 0919 1.296 0.740
0.60 1.025 1.326 0.765 1.031 1.332 0.769 1.045 1.345 0.777
0.70 1.142 1.367 0.798 1.148 1.374 0.802 1.164 1.387 0.810
0.80 1.254 1.404 0.828 1.261 1.411 0.831 1.278 1.424 0.840
090 1361 1.438 0.855 1.369 1.444 0.859 1.388 1.458 0.868
1.00 1.466 1.468 0.881 1.474 1.475 0.885 1.494 1.489 0.894

Figure 4. Graphical representation of |n||A; + lyd, in Eq (4.7) of the FDI (4.6) for r, €
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Therefore, all the assumptions of Theorem 3.5 are satisfied, which implies that at least one solution
to the problem (4.6) for B.

In Example 4.3, we examine our proven theorems for changes of function ¢(v).

Example 4.3. Using the FDIs defined by (4.1) and taking ry € %, r) = %, r3 =

si(v) = UZ,

o) =v,

s3(v) = \/5,

n = }V n = %, 6 =0.777, b = 1, the problem (4.1) is reduced to

AIMS Mathematics

%2 (0) + i%(l) =0,

CDWy(0) + £ DTII(1) = 0,

B0 (DS (v) - y (v, (1)) € 1w, 2(v))

=

’

¢4(v) = In(v + 0.01),

(4.8)

4.9)
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for v € B. With these data, it follows from (3.3) that

Ay = ——B— ~0.1409, A,=-1~02000, A;=_—ALZ __ ~(.0352.

T (m+DI(r3+6) N+l (m+DI(r3+0)

We define the function 'y and the SVM 1 : B x R — P(R) as follows:

y(U,%) — cos(U)( x| ), V(U,%) € B x R,

V242 \ x|+1

and

_ 1 % 1 ||
v, %) = [(5U2+7exp(v)) 5¢+3) V2416 |%|+1] )

For x,x € R, we have

1 |

v2+2 ((1+|%|)(1+|%|)

ly @) -y (. %)| =

)

cosw) (b _[7 =
) (|%|+1 |%|+1) < )Sly|"’ %

with ly = %, aswell as y (v, %) < W = Oy(v), for each (v,x) € B X R. Thus, the assumptions (P3)
and (P4) hold. It is also clear that the SVM ] satisfies the assumption (P1) and

Bl = sup {Inl : 7 € Mv.2)} < == = T )T ().
where ||@|| = % and @, (||%||) = 1. Thus, (P2) holds, and by (P5)

1.494, ¢ (v) =2,

_ ~ \I3+r1 IAs]+A] 14| - 1.446, g‘z(v) =,
A= (@) [ + 7] = 137 aw = VB
1.374, ¢4(v) = In(v +0.01),

1.494, ¢ (v) =2,

~\"3 14469 g (U) = U,
_ |A3]+A] I+Aol | o 2
A = (S‘O(b)) [ FZZ—(S) + F(r3+21)] ] 1374, &3(v) = W,

1.374, 4(v) = In(v + 0.01),

for which the curves are shown in Figure 5. Moreover

1.117, ¢ () =2,
1.114, ¢ (v) = v,

1.138, &3(v) = Vo,
1.142, ¢4(v) = In(v + 0.01),

N > 4, 13115, (N) + 4, ||y ]| =

whenever N = 1.15, which is shown in Figure 6. As seen in Table 3, the effect of ¢(v) is very
remarkable.

So all the assumptions of Theorem 3.3 are valid. Hence the FDI (4.9) has a solution for B.
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(@) 4,

(b) 2,

Figure 5. Graphical representation of the 4;, i = 1,2 of the FDI (4.9) with four cases of ¢(v).

Figure 6. Graphical representation of the N of the FDI (4.9) with four cases of ¢(v) as

defined in (4.8).

Table 3. The data obtained for the FDI (4.2) with four cases of ¢(v).

v si(w) =? Q) =v () = W s4(v) = In(v + 0.01)
A Ao N> . A1 A N > .. Ay A N > .. A Ao N>...
0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
0.10 0.027 0.597 0.307 0.197 0.946 0.530 0.533 1.192 0.739 3.086 1.787  1.008
0.20 0.089 0.788 0.423 0.358 1.087 0.647 0.720 1.277 0.832 3795 1.874  1.078
0.30 0.179 0.927 0.523 0.509 1.179 0.736 0.858 1.330 0.895 4213 1920 1.116
0.40 0.295 1.040 0.618 0.654 1.249 0.812 0.972 1369 0.945 4508 1950 1.142
0.50 0435 1.137 0.712 0.793 1.306 0.881 1.071 1.400 0.987 4737 1973 1.162
0.60 0.597 1.223 0.809 0.929 1.354 0.944 1.159 1.425 1.023 4923 1990 1.178
0.70 0.779 1.301 0.908 1.062 1.397 1.004 1.239 1.447 1.056 5.081 2.005 1.191
0.80 0.982 1.372 1.011 1.192 1.435 1.060 1.313 1.467 1.085 5216 2.017 1.202
090 1.205 1438 1.117 1.320 1469 1.114 1.382 1.484 1.113 5336 2.027 1.212
1.00 1.446 1.500 1.228 1.446 1.500 1.166 1.446 1500 1.138 5443 2.037 1.220
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5. Conclusions

In the investigation of FDEs and FDIs that contain Hilfer fractional derivative operators, a zero
initial condition is typically required. To address this limitation, we proposed a novel approach that
combines Hilfer and Caputo fractional derivatives. In this research, we applied this method to study
a class of FDEs for FDIs with non-separated BCs, incorporating both Hilfer and Caputo fractional
derivative operators. The existence results are established by examining cases where the set-valued
map has either convex or nonconvex values. For convex SVMs, the Leray-Schauder FPT was applied,
whereas Nadler’s and Covitz’s FPTs are used for nonconvex SVMs. The findings are well demonstrated
with two relevant illustrative examples. The findings of this study contribute significantly to the
emerging field of FDIs. In future work, we aim to apply this method to study other types of FDEs
with nonzero initial conditions, as well as coupled systems of FDEs that incorporate both Hilfer and
Caputo FDs.
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