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1. Introduction

The phenomenon of flocking behavior, which is both mesmerizing and widespread in nature and
society, has attracted considerable interest in recent years due to its efficiency and self-organizing
features. This behavior exemplifies how individuals, by sharing local information and following simple
coordination rules, can evolve from disorder to cohesive unity. From the harmonious flight patterns
of birds [1] to the coordinated movements of fish schools [2] and the intricate formations of drones
in modern applications [3], these collective behaviors highlight the unique charm and far-reaching
implications of flocking.

In an effort to understand the underlying dynamics and evolutionary principles that drive
this phenomenon, researchers have developed several classic mathematical models for detailed
analysis [4–6]. For instance, tracing back to 2007, Cucker and Smale jointly introduced the celebrated
Cucker-Smale (called C-S) model [6]. This model bears a resemblance to Newton’s equations in
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classical mechanics, with its ingenuity rooted in modeling the force terms as a weighted average of
velocity differences among the agents. This approach vividly replicates the attributes of interactions
occurring within a flocking. The C-S model is formulated as the following dynamical system:

dxi(t)
dt

= vi(t), i = 1, · · · ,N,

dvi(t)
dt

=
1
N

N∑
j=1

θ̂(‖x j(t) − xi(t)‖)(v j(t) − vi(t)),

where xi ∈ R
d denotes the position of i-th particle and vi ∈ R

d indicates velocity. ‖ · ‖ denotes the
Euclidean norm. The communication rate θ̂ is described as

θ̂(r) =
K̂

(σ̂2 + r2)β̂
, K̂, σ̂, β̂ > 0,

which quantifies the strength of influence between two particles. It is crucial to note that the parameter
β̂ in the C-S model acts as a decisive threshold for flocking formation. When β̂ ≥ 1

2 , flocking emerges
under specific initial conditions (xi(0), vi(0)), otherwise known as conditional flocking (i.e., flocking
that occurs under specific initial conditions). Strikingly, when β̂ < 1

2 , the occurrence of flocking
becomes independent of the initial state, resulting in unconditional flocking (i.e., flocking that occurs
independently of the initial conditions). Afterward, the C-S model was rapidly extended in other
domains, such as multi-cluster flocking [7–9], time delay [10–12], pattern formation [13–15], nonlinear
velocity couplings [16–18] and external disturbances [19, 20]. Currently, the model has advanced to
become an indispensable and powerful tool for analyzing flocking behavior, demonstrating significant
superiority both theoretically and practically.

Be it basic flocking or precise formation, convergence time is a key index for evaluating system
performance. Previous studies have primarily focused on asymptotic flocking [21, 22], where systems
eventually reached a flocking state at infinite time. However, recent scholarly attention has shifted
toward the research of finite-time flocking [23–25], which implies that the system can achieve flocking
within a finite time. For example, in 2016, Han et al. innovatively proposed a non-Lipschitz continuous
C-S model [23], which achieves finite-time flocking while ensuring the existence of the lower bound
of the communication weight. In particular, when the settling time is independent of the initial state, it
is referred to as fixed-time flocking [26].

For analyzing flocking behavior, the impact of external disturbances is an indispensable factor.
During the flocking process, the system is subject to various random disturbances [27, 28]. However,
the role of deterministic disturbances [9,29]—such as external wind forces, terrain changes, and human
control commands—remains equally important and deserves further attention. These disturbances have
clear patterns and are predictable, but their specific effects on the formation and maintenance of the
flock still require further investigation.

In recent research, many studies have adopted various control strategies. However, in the context
of large-scale groups, continuous control methods often result in unnecessary resource waste, which
highlights the advantages of intermittent control schemes in optimizing resource use and enhancing
efficiency [30–32]. To better understand the intermittent control strategy, we will visually depict its
fundamental principles in Figure 1. For a time sequence t0 < t1 < · · · < tk < · · · , k ∈ N+, the control
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works at [t2k, t2k+1), which is called work interval, while the rest works at t ∈ [t2k+1, t2k+2). Specifically,
if the intervals satisfy t2k+1 − t2k ≡ Ta∗ and t2k+2 − t2k+1 ≡ Tb∗ , the control strategy becomes a periodic
intermittent control. Notably, when Tb∗ = 0, the controller degenerates from intermittent control to
continuous control. Recently, there has been a significant amount of research on finite-time flocking
under intermittent control. For instance, fixed-time collision-avoidance flocking of C-S models with
periodic intermittent control was investigated by Liu et al. [30].

Figure 1. The intermittent control operating principle.

Unfortunately, to date, there has been no research on the finite-time flocking problem of the C-
S model with external disturbances and intermittent control. Inspired by Liu et al. [30], a novel
Cucker-Smale system with external perturbation and intermittent control is investigated here. The
main contributions of this article are summarized below:

(1) Based on the Lyapunov function method, sufficient conditions for collision-avoidance flocking
are derived, without the necessity of setting a lower bound on communication weights.

(2) A new finite-time stability lemma is proposed, which is applicable to both periodic intermittent
control and aperiodic intermittent control. Different from [31], the settling time is related to the length
of the control interval and independent of the length of the non-control interval.

(3) Compared to existing work [30], finite-time flocking can be successfully achieved without the
sign function, which avoids the chattering phenomenon within the work time interval.

The rest of this article is structured as follows: Section 2 introduces some fundamental definitions
and lemmas. Section 3.2 presents the proof of flocking estimation. Section 3.3 derives the sufficient
conditions for ensuring collision avoidance. Following this, simulation examples and parameter
sensitivity analysis are provided in Section 4. The article concludes with Section 5.

2. Preliminaries

In this section, we introduce a series of essential definitions and lemmas that form the foundation
for the following discussions.

Definition 2.1. The system reaches finite-time flocking if the solutions {xi, vi}
N
i=1 satisfy

lim
t→∞
‖x j(t) − xi(t)‖ < ∞ and lim

t→T
‖v j(t) − vi(t)‖ = 0,

where T is the settling time. Moreover, if the minimum distance between particles meets

‖x j(t) − xi(t)‖ > 0, i , j, t ≥ 0,
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then we claim that the system achieves finite-time collision-avoidance flocking. Furthermore, when T
is independent of the initial data, it is called a fixed-time flocking.

Lemma 2.1. [33] Let ξ1, ξ2, . . . , ξm ≥ 0, then m∑
i=1

ξi

λ ≤ m∑
i=1

ξλi ≤ m1−λ

 m∑
i=1

ξi

λ , 0 < λ ≤ 1,

and

m1−λ

 m∑
i=1

ξi

λ ≤ m∑
i=1

ξλi ≤

 m∑
i=1

ξi

λ , λ > 1.

Lemma 2.2. Assume that a continuous, non-negative function V(t) is defined on t ∈ [0,+∞), and the
following inequality is met:

dV(t)
dt
≤

 − ρV(t) − αV p(t), t ∈ [t2k, t2k+1),
0, t ∈ [t2k+1, t2k+2),

(2.1)

in which α > 0, ρ > 0, 0 < p < 1. The settling time T is estimated by

T = t2k∗ +
1

ρ(1 − p)
ln

(
1 +

ρ

α
V1−p(0)

)
−

k∗−1∑
i=0

(t2i+1 − t2i),

where

k∗ = max{k ∈ N+ : ln
(
1 +

ρ

α
V1−p(0)

)
− ρ(1 − p)

k−1∑
i=0

(t2i+1 − t2i) > 0}.

Proof. We consider the following comparison system:
dv(t)

dt =

{
−ρv (t) − αvp (t) , t ∈ [t2k, t2k+1) ,
0, t ∈ [t2k+1, t2k+2) ,

v (0) = V (0) ,
(2.2)

from (2.1) and (2.2), it is clear that 0 ≤ V(t) ≤ v(t). This indicates that if there exists a constant T > 0
such that v(T ) = 0 and v(t) ≡ 0 for t > T , it follows that V(t) ≡ 0 for t > T . Thus, to achieve the
desired conclusion, we only need to show that the solution of (2.2) is finitely stable.

Note that Eq (2.2) is a standard Bernoulli equation, therefore we set

G(t) = v1−p(t),

then system (2.2) reduces to
dG(t)

dt =

{
−ρ(1 − p)G(t) − α(1 − p), t ∈ [t2k, t2k+1) ,
0, t ∈ [t2k+1, t2k+2) ,

G(0) = V1−p(0).
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After a straightforward calculation, we obtain

G(t) =

(
G(t2k) +

α

ρ

)
e−ρ(1−p)(t−t2k) −

α

ρ
, t ∈ [t2k, t2k+1), (2.3)

and
G(t) = G(t2k+1), t ∈ [t2k+1, t2k+2). (2.4)

When t ∈ [0, t1), it follows from (2.3) that

G(t) =

(
G(0) +

α

ρ

)
e−ρ(1−p)t −

α

ρ
,

and when t → t−1 , we have

G(t1) =

(
G(0) +

α

ρ

)
e−ρ(1−p)t1 −

α

ρ
, (2.5)

when t ∈ [t1, t2), one derives from (2.4) to (2.5) that

G(t) = G(t1) =

(
G(0) +

α

ρ

)
e−ρ(1−p)t1 −

α

ρ
= G(t2), (2.6)

when t ∈ [t2, t3), from (2.3) to (2.6) one has

G(t) =

(
G(t2) +

α

ρ

)
e−ρ(1−p)(t−t2) −

α

ρ

=

(
G(0) +

α

ρ

)
e−ρ(1−p)t1−ρ(1−p)(t−t2) −

α

ρ
,

and similar to (2.5), we obtain

G(t3) =

(
G(0) +

α

ρ

)
e−ρ(1−p)t1−ρ(1−p)(t3−t2) −

α

ρ
.

Now, we use a similar induction to obtain

G(t) =


(
G(0) +

α

ρ

)
e−ρ(1−p)

∑k−1
i=0 (t2i+1−t2i)−ρ(1−p)(t−t2k) −

α

ρ
, t ∈ [t2k, t2k+1),(

G(0) +
α

ρ

)
e−ρ(1−p)

∑k−1
i=0 (t2i+1−t2i) −

α

ρ
, t ∈ [t2k+1, t2k+2).

(2.7)

From the definition of k∗, it follows that G(t2k∗) > 0 and G(t2(k∗+1)) = 0. According to the second
equation in (2.7), G(t) is non-decreasing on [t2k∗+1, t2k∗+2), leading to G(t2k∗+1) = 0. Moreover, since
Ġ(t) < 0 on [t2k∗ , t2∗+1), it implies that there is only one T ∈ [t2k∗ , t2k∗+1) such that G(T ) = 0. Thus,
we obtain

T = t2k∗ +
1

ρ(1 − p)
ln

(
1 +

ρ

α
V1−p(0)

)
−

k∗−1∑
i=0

(t2i+1 − t2i).

This completes the proof.
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Corollary 2.1. Note that for ρ → 0, the system corresponds to a special case of system (2.1). Under
this condition, we obtain

lim
ρ→0

[
1

ρ(1 − p)
ln

(
1 +

ρ

α
V1−p(0)

)]
=

1
α(1 − p)

V1−p(0),

thus, the settling time T is estimated by

T = t2k∗ +
1

α(1 − p)
V1−p(0) −

k∗−1∑
i=0

(t2i+1 − t2i),

where

k∗ = max{k ∈ N+ :
1

α(1 − p)
V1−p(0) −

k−1∑
i=0

(t2i+1 − t2i) > 0}.

Remark 2.1. Unlike the approach in a previous study [31], our proposed lemmas simplify the settling
time, making it dependent solely on the length of the control interval rather than the non-control
interval. The expression for the settling time T shows that a wider control interval results in a shorter
convergence time under given parameters, which is consistent with practical engineering applications.
Furthermore, our lemmas can be applied to both periodic and aperiodic intermittent controllers,
thereby enhancing their flexibility.

3. Finite-time flocking

3.1. Model description

Motivated by previous findings [16, 30], we further explore the impact of external perturbation and
intermittent control on system dynamics. In this context, we consider the following dynamical system:

dxi(t)
dt

= vi(t), i = 1, · · · ,N,

dvi(t)
dt

=
K
N

N∑
j=1

ψ(‖x j(t) − xi(t)‖)(v j(t) − vi(t)) + g(t, vi(t)) + u1(t),
(3.1)

where

u1(t) =


K0

N

N∑
j=1

ϕ(‖x j(t) − xi(t)‖)Γλ(v j(t) − vi(t)), t ∈ [t2k, t2k+1),

0, t ∈ [t2k+1, t2k+2).

(3.2)

where K > 0 and K0 > 0 represent the coupling strengths, and Γλ(v) denotes the nonlinear velocity
coupling, which is given by

Γλ(v) = v‖v‖2(λ−1),
1
2
< λ < 1. (3.3)

The communication weights ψ(r) and ϕ(r) are positive and non-increasing functions. g(t, vi(t))
describes the external deterministic perturbation of agent i at time t, and we assume that g satisfies
the following condition:
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Assumption 3.1. The external perturbation function g(t, vi(t)) satisfies

‖g(t, vi(t)) − g(t, v j(t))‖ ≤ L‖vi(t) − v j(t)‖, L > 0. (3.4)

Remark 3.1. When u1(t) = 0 for t ∈ [t2k, t2k+1) and g(t, vi(t)) = 0, system (3.1) reduces to the classical
C-S model [6], leading to asymptotic flocking behavior. Inspired by Ha et al. [16], we introduce
a intermittent controller u1(t) based on the C-S model. This allows the system to transition from
asymptotic flocking to finite-time flocking without inducing chattering in work interval.

Set the center of the mass system (xc(t), vc(t)) as follows:

xc(t) =
1
N

N∑
i=1

xi(t), vc(t) =
1
N

N∑
i=1

vi(t). (3.5)

When t ∈ [t2k, t2k+1), a straightforward calculation yields

dvc(t)
dt

=
1
N

N∑
i=1

g(t, vi(t)), (3.6)

obviously, when t ∈ [t2k+1, t2k+2), the relation (3.6) remains valid.
We define

x̂i(t) = xi(t) − xc(t), v̂i(t) = vi(t) − vc(t),

when t ∈ [t2k, t2k+1), then the fluctuations (x̂i(t), v̂i(t)) satisfy the following system:

dx̂i(t)
dt

= v̂i(t), i = 1, · · · ,N,

dv̂i(t)
dt

=
K
N

N∑
j=1

ψ(‖x̂ j(t)− x̂i(t)‖)(v̂ j(t)−v̂i(t))

+
K0

N

N∑
j=1

ϕ(‖x̂ j(t)− x̂i(t)‖)Γλ(v̂ j(t)−v̂i(t)) +
1
N

N∑
j=1

(g(t, vi(t)) − g(t, v j(t))),

(3.7)

when t ∈ [t2k+1, t2k+2), similarly we have
dx̂i(t)

dt
= v̂i(t), i = 1, · · · ,N,

dv̂i(t)
dt

=
K
N

N∑
j=1

ψ(‖x̂ j(t) − x̂i(t)‖)(v̂ j(t) − v̂i(t)) +
1
N

N∑
j=1

(g(t, vi(t)) − g(t, v j(t))).
(3.8)

To simplify the following analysis, we let

X(t) =

 1
N

N∑
i=1

‖x̂i(t)‖2


1
2

, V(t) =

 1
N

N∑
i=1

‖v̂i(t)‖2


1
2

.
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3.2. Flocking estimation

Lemma 3.1. Let {(x̂i(t), v̂i(t))}Ni=1 be the solution of systems (3.7) and (3.8). Assume that Assumption 3.1
holds, then X(t) andV(t) satisfy the following relations:∣∣∣∣∣dX(t)

dt

∣∣∣∣∣ ≤ V(t), (3.9)

and
dV(t)

dt
≤

−C1V(t)−2λ−1K0N2λ−2ϕ
(
2
√

NX(t)
)
V2λ−1(t), t ∈ [t2k, t2k+1),

−C1V(t), t ∈ [t2k+1, t2k+2).

where
C1 = Kψ

(
2
√

NX(t)
)
−
√

2L. (3.10)

Proof. Based on the definition of X(t), for t ≥ 0, we have∣∣∣∣∣∣dX2(t)
dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1
N

d
dt

N∑
i=1

‖x̂i(t)‖2
∣∣∣∣∣∣∣ ≤ 2

 1
N

N∑
i=1

‖x̂i(t)‖2


1
2
 1

N

N∑
i=1

‖v̂i(t)‖2


1
2

= 2X(t)V(t),

this yields the desired estimate (3.9). Next, we will discuss the two cases of t ∈ [t2k, t2k+1) and t ∈
[t2k+1, t2k+2), k ∈ N+.

For t ∈ [t2k, t2k+1), the following holds:

dV2(t)
dt

=
1
N

d
dt

N∑
i=1

‖v̂i(t)‖2

=
2
N

N∑
i=1

〈v̂i(t),
K
N

N∑
j=1

ψ(‖x̂ j(t) − x̂i(t)‖)(v̂ j(t) − v̂i(t)) + u1(t)〉

=
2K
N2

N∑
i, j=1

〈v̂i(t), ψ(‖x̂ j(t) − x̂i(t)‖)(v̂ j(t) − v̂i(t))〉

+
2K0

N2

N∑
i, j=1

〈v̂i(t), ϕ(‖x̂ j(t) − x̂i(t)‖)Γλ(v̂ j(t) − v̂i(t))〉

+
2
N

N∑
i=1

〈v̂i(t),
1
N

N∑
j=1

(g(t, vi(t)) − g(t, v j(t))〉

= J1 +J2 +J3.

For J1, we obtain

J1 = −
K
N2

N∑
i, j=1

ψ(‖x̂ j(t) − x̂i(t)‖)||v̂ j(t) − v̂i(t)||2,

note that
‖x̂ j(t) − x̂i(t)‖ ≤ ‖x̂ j(t)‖ + ‖x̂i(t)‖ ≤

√
NX(t) +

√
NX(t) = 2

√
NX(t), (3.11)
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and from the property of ψ, it follows that

J1 ≤ −2Kψ
(
2
√

NX(t)
)
V2(t), (3.12)

where we use
N∑

i, j=1

‖v̂ j(t) − v̂i(t)‖2 = 2N2V2(t).

For J2, we derive that

J2 ≤ −
K0

N2ϕ
(
2
√

NX(t)
) N∑

i, j=1

〈v̂ j(t) − v̂i(t),Γλ(v̂ j(t) − v̂i(t))〉

= −
K0

N2ϕ
(
2
√

NX(t)
) N∑

i, j=1

‖v̂ j(t) − v̂i(t)‖2λ,

(3.13)

and we apply the property of Γλ being an odd function to arrive at

N∑
i, j=1

ϕ(‖x̂ j(t) − x̂i(t)‖)〈v̂i(t),Γλ(v̂ j(t) − v̂i(t))〉

= −
1
2

N∑
i, j=1

ϕ(‖x̂ j(t) − x̂i(t)‖)〈v̂ j(t) − v̂i(t),Γλ(v̂ j(t) − v̂i(t))〉.

(3.14)

When 1
2 < λ < 1, Lemma 2.1 directly implies

N∑
i, j=1

‖v̂ j(t) − v̂i(t)‖2λ ≥

 N∑
i, j=1

‖v̂ j(t) − v̂i(t)‖2

λ

,

then Eq (3.13) now reads
J2 ≤ −2λK0N2λ−2ϕ

(
2
√

NX(t)
)
V2λ(t). (3.15)

For J3, we have

J3 =
2
N

N∑
i=1

〈v̂i(t),
1
N

N∑
j=1

(g(t, vi(t)) − g(t, v j(t)))〉

≤
2

N2

N∑
i, j

‖v̂i(t)‖‖g(t, vi(t)) − g(t, v j(t))‖

≤
2L
N2

N∑
i, j

‖v̂i(t)‖‖v̂i(t) − v̂ j(t)‖

≤
2L
N2

 N∑
i, j

‖v̂i(t)‖2


1
2
 N∑

i, j

‖v̂i(t) − v̂ j(t)‖2


1
2

≤ 2
√

2LV2(t),

(3.16)
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where the second inequality is based on Assumption 3.1.
Combining (3.12), (3.15), and (3.16), we obtain

dV(t)
dt
≤−C1V(t)−2λ−1K0N2λ−2ϕ

(
2
√

NX(t)
)
V2λ−1(t), t ∈ [t2k, t2k+1), (3.17)

where C1 is defined in (3.10).
For t ∈ [t2k+1, t2k+2), the following holds:

dV(t)
dt

≤ −C1V(t). (3.18)

In summary, combining (3.17) and (3.18), we obtain the desired result. This completes the proof.
Next, we will present the main theorem of this paper.

Theorem 3.1. Let Assumption 3.1 hold and {(x̂i(t), v̂i(t))}Ni=1 be the solution of systems (3.7) and (3.8).
If the initial state {(x̂i(0), v̂i(0))}Ni=1 satisfies

(H1): Kψ
(
2
√

NX(0)
)
−
√

2L > 0,
(H2): there exists a positive constant r∗ > X(0) such that

V(0) <
∫ r∗

X(0)

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω,Kψ
(
2
√

Nr∗
)
−
√

2L > 0. (3.19)

Then, there exists a positive constant XM0 such that

X(t) ≤ XM0 , t ≥ 0, (3.20)

where XM0 is given by

V(0) =

∫ XM0

X(0)

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω. (3.21)

Proof. From Lemma 3.1, we obtain

dV(t)
dt

≤ −
[
Kψ

(
2
√

NX(t)
)
−
√

2L
]
V(t), ∀t ≥ 0,

inspired by the method in Ru and Xue’s research [34], we introduce the following Lyapunov function:

Ξ(t) := V(t) +

∫ X(t)

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω,

now, we compute the derivative of the above equation, yielding

dΞ(t)
dt

=
dV(t)

dt
+

[
Kψ

(
2
√

NX(t)
)
−
√

2L
] dX(t)

dt

=
[
Kψ

(
2
√

NX(t)
)
−
√

2L
] (
−V(t) +

∣∣∣∣∣dX(t)
dt

∣∣∣∣∣) .
To show that Ξ(t) is non-increasing, since inequality (3.9) holds (i.e.,−V(t) +

∣∣∣dX(t)
dt

∣∣∣ ≤ 0), we only need
to verify that Kψ

(
2
√

NX(t)
)
−
√

2L > 0 for t ≥ 0. For this purpose, we define

T =
{
s > 0 : ∀t ∈ [0, s),Kψ

(
2
√

NX(t)
)
−
√

2L > 0
}
, T̃ = supT , (3.22)
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due to Kψ
(
2
√

NX(0)
)
−
√

2L > 0, r∗ > X(0) and the strictly deceasing property of ψ, we have

Kψ
(
2
√

NX(0)
)
−
√

2L > 0. Since X(t) is a continuous function, there exists a constant t1 such that

Kψ
(
2
√

NX(t)
)
−
√

2L > 0 for all t ∈ [0, t1). This implies T , ∅. Now we claim T̃ = +∞. Suppose
now, we obtain T̃ < ∞, it follows that

Kψ
(
2
√

NX(t)
)
−
√

2L > 0, t ∈ [0, T̃ ),Kψ
(
2
√

NX(T̃ )
)
−
√

2L = 0, (3.23)

which implies X(T̃ ) > r∗ and
dΞ(t)

dt
≤ 0, t ∈ [0, T̃ ), (3.24)

where we use (3.9). Since Kψ
(
2
√

Nr∗
)
−
√

2L ≥ 0, it follows that Kψ
(
2
√

Nω
)
−
√

2L > 0, ω ∈
(X(0), r∗). According to (3.19), there exists a constant XM0 ∈ [X(0), r∗) such that

V(0) =

∫ XM0

X(0)

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω,Kψ
(
2
√

NXM0

)
−
√

2L > 0, (3.25)

together with (3.24), we have

V(T̃ ) +

∫ X(T̃ )

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω

≤ V(0) +

∫ X(0)

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω

=

∫ XM0

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω.

(3.26)

For ∀r ∈ [0,X(T̃ )), we have Kψ
(
2
√

Nr
)
−
√

2L > 0. Combining (3.19) and (3.24), XM0 < r∗ < X(T̃ ).
Therefore, we have

V(T̃ ) +

∫ X(T̃ )

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω>
∫ XM0

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω, (3.27)

this finding contradicts (3.26). Consequently, T̃ = ∞, ensuring that Ξ(t) is non-increasing on [0,∞).
For t ≥ 0, we derive

V(t) +

∫ X(t)

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω

≤ V(0) +

∫ X(0)

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω

≤

∫ XM0

0

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω,

(3.28)

this implies X(t) ≤ XM0 . Together with (3.11), we obtain

‖x j(t) − xi(t)‖ = ‖x̂ j(t) − x̂i(t)‖ ≤ 2
√

NX(t) ≤ 2
√

NXM0 . (3.29)

This indicates that the distance between any two agents in the group always has a well-defined upper
bound. This concludes the proof.
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Theorem 3.2. If Assumption 3.1 holds and system (3.1) satisfies conditions (H1) and (H2), then
system (3.1) achieves finite-time flocking, and the settling time is estimated by

T = t2k∗ +
1

(2 − 2λ)CM
ln (QM∗ + 1) −

k∗−1∑
i=0

(t2i+1 − t2i), (3.30)

where

k∗ = max{k∈N+ :
1

(2 − 2λ)CM
ln (QM∗ + 1) −

k−1∑
i=0

(t2i+1 − t2i) > 0},

and

CM = Kψ
(
2
√

NXM0

)
−
√

2L,QM∗ =
CMV

2−2λ(0)

2λ−1K0N2λ−2ϕ
(
2
√

NXM0

) .
Proof. From Theorem 3.1, we obtain Kψ

(
2
√

NXM0

)
−
√

2L > 0. From Lemma 3.1 and (3.29), we have

dV(t)
dt

≤

 −CMV(t) − 2λ−1K0N2λ−2ϕ
(
2
√

NXM0

)
V2λ−1(t), t ∈ [t2k, t2k+1),

−CMV(t) ≤ 0, t ∈ [t2k+1, t2k+2),

where
CM = Kψ

(
2
√

NXM0

)
−
√

2L > 0. (3.31)

By applying Lemma 2.2 and Definition 2.1, flocking occurs in a finite time, and the settling time T is
defined in (3.30). This leads to

V(t) ≡ 0, ∀t ≥ T.

This completes the proof.

Remark 3.2. When t2k+1 − t2k ≡ Ta > 0 and t2k+2 − t2k+1 ≡ Tb > 0, then the control strategy becomes
periodic intermittent control. Further, the settling time is determined by

T = k∗(Ta + Tb) +
1

ρ(1 − p)
ln

(
1 +

ρ

α
V1−p(0)

)
− k∗Ta

= k∗Tb +
1

ρ(1 − p)
ln

(
1 +

ρ

α
V1−p(0)

)
,

where
k∗ = max{k ∈ N+ :

1
ρ(1 − p)

ln
(
1 +

ρ

α
V1−p(0)

)
− kTa > 0}.

Remark 3.3. When t2k+2 − t2k+1 = 0, the control system switches to continuous control. Furthermore,
system (3.1) can still achieve finite-time flocking, and the settling time is estimated by

T =
1

(2 − 2λ)CM
ln (QM∗ + 1) ,

where CM and QM∗ are defined in Theorem 3.2.

When g(t, vi(t)) = 0, we obtain the following corollary.
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Corollary 3.1. If there exists r∗1 > X(0) such that V(0) <
∫ r∗1
X(0)

Kψ
(
2
√

Nω
)

dω, then there exists a
positive constant XM1 such that

X(t) ≤ XM1 ,

where XM1 is defined by V(0) =
∫ XM1

X(0)
Kψ

(
2
√

Nω
)

dω. Then, system (3.1) can achieve finite-time
flocking, and the settling time is given by

T = t2k∗ +
1

(2 − 2λ)Kψ
(
2
√

NXM1

) ln(Q1 + 1) −
k∗−1∑
k=0

(t2i+1 − t2i),

where

k∗ = max{k∈N+ :
1

(2 − 2λ)Kψ
(
2
√

NXM1

) ln (Q1 + 1) −
k−1∑
i=0

(t2i+1 − t2i) > 0},

and Q1 = Kψ
(
2
√

NXM1

)
V2−2λ(0)/2λ−1K0N2λ−2φ

(
2
√

NXM1

)
.

3.3. Collision avoidance

Many studies have primarily focused on velocity synchronization and position boundedness, with
relatively little attention given to collision avoidance. However, collision avoidance plays a central role
in drone formations and tactical operations. It is the foundation for ensuring drones operate safely and
efficiently in complex and dynamic environments, and it is also a critical means to mitigate potential
collision risks, prevent mission interruptions, and reduce unnecessary resource consumption.

Theorem 3.3. Assuming Assumption 3.1 holds and system (3.1) satisfies conditions (H1) and (H2), the
initial condition {xi(0), vi(0)}Ni=1 satisfies

min
i, j
‖Xi j(0)‖ >

√
2NTV(0),

1
2
< λ < 1, (3.32)

then for any solution of (3.1), the agent trajectory remains non-collisional for t ≥ 0.

Proof. Let
Xi j(t) = ‖x j(t) − xi(t)‖, Vi j(t) = ‖v j(t) − vi(t)‖, i , j,

based on the definition ofV(t), we obtain

Vi j(t) ≤
√

2NV(t).

In the case of Xi j(t), it is easy to see that

dX2
i j(t)

dt
≤ 2‖x j(t) − xi(t)‖‖v j(t) − vi(t)‖ = 2Xi j(t)Vi j(t),

which implies ∣∣∣∣∣∣dXi j(t)
dt

∣∣∣∣∣∣ ≤ Vi j(t),
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by integrating both sides from 0 to t, it follows that

‖Xi j(t) − Xi j(0)‖ ≤
∫ t

0
|Vi j(τ)|dτ ≤

√
2N

∫ t

0
|V(τ)|dτ. (3.33)

From Theorem 3.2, we have
V(t) ≤ V(0), (3.34)

combining (3.33) and (3.34), we obtain

‖Xi j(t) − Xi j(0)‖ ≤
√

2N
∫ T

0
|V(τ)|dτ ≤

√
2NTV(0),

this gives
‖Xi j(t)‖ > min

i, j
‖Xi j(0)‖ −

√
2NTV(0).

It is easy to see
‖x j(t) − xi(t)‖ > 0, t ≥ 0,

from Definition 2.1, system (3.1) reaches finite-time collision-free flocking. Thus, during the flocking
process, no collisions between any two agents will occur, ensuring the agent’s safe and efficient
operation. This conclusion will be further validated in Section 4.

4. Simulations

To validate our theoretical results, we use the fourth-order Runge-Kutta algorithm in MATLAB
for numerical simulations. The initial position and velocity are listed in Table 1. Following this, we
will then present numerical examples to illustrate these results. To more accurately characterize the
flocking behavior, we define the following two indicators:

δx(t) =
1
N

√√
N∑

i=1

[xi(t) − xc(t)]2, δv(t) =
1
N

√√
N∑

i=1

[vi(t) − vc(t)]2,

where xc(t) and vc(t) are defined as in Section 3.1. It is worth noting that the system can be said to have
successfully achieved flocking at time T ∗ if, for t ≥ T ∗, δv(t) < 10−7 and δx(t) < ∞.

Table 1. The initial data.

Agents Initial position Initial velocity

1 (0.0100,0.0101) (0.0043, 0.0046)
2 (0.0102,4.0110) (0.0014, 0.0088)
3 (4.0100, 0.0400) (0.0095, 0.0149)
4 (0.0130, 7.9902) (0.0145, 0.0043)
5 (8.0012, 0.0111) (0.0050, 0.0122)
6 (7.9923, 4.0130) (0.0038, 0.0066)
7 (8.0011, 8.0003) (0.0040, 0.0022)
8 (4.0052, 8.0104) (0.0077, 0.0163)
9 (4.0032, 4.0021) (0.0030, 0.0010)
10 (12.0005, 2.0052) (0.0012, 0.0034)
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Example 4.1. Let N = 10,K = 5,K0 = 7, λ = 0.88, ψ(r) = 1
(1+r)0.81 , φ(r) = 1

(1+r)1.5 , g(t, vi(t)) = l
N (vi(t) −

vc(t)), l = 1, L = 0.1, r∗ = 5.1,T = 10.

u1(t) =


K0

N

N∑
j=1

ϕ(‖x j(t) − xi(t)‖)Γλ(v j(t) − vi(t)), t ∈ [2k, 2k + 0.3),

0, t ∈ [2k + 0.3, 2k + 1).

Through simple calculation, we have

V(0) = 0.0064 <
∫ r∗

X(0)

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω = 0.0117,XM0 = 5.0653,

and
min
i, j
‖Xi j(0)‖ = 3.9621 >

√
2NTV(0) = 3.0786.

Figure 2(a) shows the position trajectories of ten agents. The curve trajectories of ‖vi(t) − vc(t)‖
over time are displayed in Figure 2(b). We observe significant velocity fluctuations within the control
intervals, while outside these regions, changes are relatively slower. From Figure 2(b), despite the
external interference g(t, vi(t)), system (3.1) still achieves flocking. Combining the expression for
g(t, vi(t)) and (3.6), we easily obtain dvc(t)

dt = 0, i.e., vc(t) = vc(0). Further, according to Theorem 3.2,
the final velocity of flocking is the average of the initial velocities. Therefore, under this disturbance
condition, we can control the final flocking velocity by adjusting the initial velocities. Figure 3(a)
illustrates the curve of the maximum and minimum distances between any two agents during the
flocking process, confirming that no collisions occur. The time trajectory of the control output u1(t) is
depicted in Figure 3(b). According to Theorem 3.2, a few basic computations yield k∗ = 107, leading
to T = 107.1526. From Figure 4(a),(b), it is evident that system (3.1) achieves collision-free finite-time
flocking at approximately t = 6.03 < T .
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Figure 2. (a) The position trajectory of agents. (b) The trajectory of ‖vi(t) − vc(t)‖.
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Figure 3. (a) The evolution of the maximum and minimum distances. (b) The trajectory
of u1(t).
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Figure 4. (a) The trajectory of δx(t). (b) The trajectory of δv(t).

Example 4.2. Inspired by numerical simulations [34], we let

g(t, vi(t)) = 2(sin(8t)sin(v1
i /30), cos(12t)cos(v2

i /20)), L =
√

2
10 ,T = 20.

Other parameters are consistent with Example 4.1. Through similar verification, we obtain

V(0) = 0.0064 <
∫ r∗

X(0)

[
Kψ

(
2
√

Nω
)
−
√

2L
]

dω = 0.0074,XM0 = 5.0901,

and
min
i, j
‖Xi j(0)‖ = 3.9621 >

√
2NTV(0) = 2.9922.
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From Figure 5(a), it can be observed that under this disturbance condition, the system’s flocking
velocity is neither the average of the initial velocities nor remains constant, but eventually all agents
achieve a consistent speed. According to Theorem 3.2, the calculation yields k∗ = 104, and
consequently, T = 104.1457. As shown in Figure 5(b), system (3.1) achieves finite-time flocking
at approximately t = 17.77 < T .
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10-3 v
(t) over time

(b)

Figure 5. (a) The trajectory of ‖vi(t)‖. (b) The trajectory of δv(t).

Example 4.3. We provide a traditional finite-time control protocol:

u2(t) =
K0

N

N∑
j=1

ϕ(‖x j(t) − xi(t)‖)sig(v j(t) − vi(t))0.7, t ∈ [t2k, t2k+1).

Other parameters are consistent with Example 4.1. For the purpose of comparison, we focus solely on
the results of the finite-time control protocol within the control interval.

In Figure 6(a),(b), the variation trajectories of the finite-time control protocols u1(t) and u2(t) are
presented, respectively. We observed that the traditional finite-time control protocol u2(t) causes
chattering, whereas the protocol u1(t) proposed in this paper effectively avoids this phenomenon and is
both continuous and smooth.

To further explore the impact of control parameters on control performance, we present the
following comparisons under the disturbance conditions described in Example 4.1. First, as can be
seen from Figure 7(a),(b), the larger the values of K and K0, the faster the convergence speed of the
flock. Moreover, changes in K have a relatively more noticeable impact on the convergence speed.
Additionally, from Figure 8(a), it is evident that as λ decreases, the convergence speed of the flock
increases. Finally, Figure 8(b) demonstrates that the longer the length of the control interval, the faster
the convergence speed of the flock, further validating Remark 2.1. Based on the above analysis, we
can adjust the relevant parameters according to practical application requirements.
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Figure 6. (a) The trajectory of u1(t). (b) The trajectory of u2(t).
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Figure 7. (a) The trajectory of δv(t) with different K. (b) The trajectory of δv(t) with different K0.
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Figure 8. (a) The trajectory of δv(t) with different λ. (b) The trajectory of δv(t) with different
control interval.
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In practical applications, it is critical to examine how model parameters influence the settling time of
flocking. This not only provides insight into how subtle or significant parameter changes affect the time
required for the system to reach stability but also lays a solid foundation for optimizing design, thereby
enhancing system efficiency and reliability. Next, we will conduct parameter sensitivity analysis with
Example 4.1.

As shown in Figures 9(a), the settling time decreases significantly as the values of λ and the length
of control interval increase. However, from Figure 9(b), the impact of L on the settling time is minimal
and can be almost negligible. Figure 10(a) illustrates that an increase in K markedly shortens the
settling time, whereas the impact of K0 on the settling time is negligible. Additionally, as shown in
Figure 10(b), the settling time increases as the number of individuals N in the group grows, which is
consistent with previous findings [35]. From the analysis presented, it is evident that parameters such
as K, λ, N, and control interval significantly influence the settling time. Therefore, we can focus on
optimizing these most sensitive parameters to achieve the best balance between cost and performance,
thereby avoiding unnecessary resource wastage.
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Figure 9. (a) The effect of λ and control interval (t2k+1 − t2k) on T . (b) The effect of λ and L
on T .
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Contour Plot of T vs. N and K with Color Bar
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Figure 10. (a) The effect of K and K0 on T . (b) The effect of N and K on T .
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5. Conclusions

This article mainly investigated the finite-time flocking of the C-S model with external perturbation
and intermittent control. By constructing the appropriate Lyapunov function, system (3.1) can achieve
collision-avoidance flocking without using the lower bound on communication weight. A new finite-
time stability lemma is proposed, and the settling time is related to the length of the control interval and
is independent of the length of the non-control interval. The finite-time flocking can be successfully
achieved without using the sign function, and an upper bound on the settling time is obtained. In
contrast to traditional finite-time flocking controllers, we effectively avoid the chattering phenomenon
caused by the sign function during the working time intervals. Furthermore, sensitivity analysis helps
us identify the parameters that critically affect the settling time, offering key insights for optimizing
the system design. This process highlights the practical engineering significance of the main research
findings presented in this paper.

As observed by Yin et al. [18], the precise convergence rate does not rely on the number N of agents.
Deriving an upper bound on the settling time that is also independent of N is of significant interest, and
we intend to explore this in our future work.
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