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Abstract: In this paper, stability of highly nonlinear hybrid neutral stochastic differential delay
equations (NSDDEs) is discussed. In contrast to the white noise examined in previous literature,
we incorporate colored noise into the highly nonlinear hybrid NSDDEs. Under some assumptions,
we can show that highly nonlinear hybrid NSDDEs have a unique global solution. Meanwhile, we
establish some criteria related to noise-to-state stability (NSS) of global solutions. Additionally, some
theorems are given to guarantee asymptotic stability in L and almost surely asymptotic stability of
global solution. These related discriminant rules are delay-dependent. Finally, an example is provided
to demonstrate the validity of theoretical results.
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1. Introduction

Numerous stochastic dynamical systems demonstrate dependencies on both current and previous
states, while also integrating delayed derivatives. In order to more accurately describe and simulate
such systems, neutral stochastic differential equations are commonly employed [1]. In practical
applications, the time delay effect is a critical factor in characterizing the dynamical behavior of
systems [2]. For instance, synaptic signal transmission in biological neural networks involves axonal
conduction delay. At the same time, communication delay in industrial networked control systems
also requires modeling through a delay term [3], such as W(®(t — 9)). Neutral stochastic differential
delay equations (NSDDEs) with Markov switching constitute a significant class of hybrid dynamical
systems [4]. Due to their ability to exhibit complex dynamical behavior, hybrid NSDDEs are widely
applied in various fields, such as being used to simulate the signal transmission and inter-neuron
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interactions of neural networks in biomedicine, and for designing control systems to achieve precise
control of complex systems in engineering. In recent years, the stability of hybrid NSDDEs has
received much attention. There have been a number of achievements on the issue of hybrid
NSDDEs [5].

In real-world scenarios, many dynamical systems are usually subjected to random abrupt changes
caused by different kinds of environmental noise [6]. Typically, dynamical systems with white noise
perturbations are modeled by Ito stochastic differential equations (SDEs) [7]. Research on the
stability analysis of SDEs has been abundant up to now [8, 9]. However, sensor noise in engineering
applications is usually time-correlated, and white noise models cannot accurately capture this
characteristic. Moreover, the noise intensity is often related to the system state, such as the power of
thermal noise in circuits varying with temperature. Therefore, introducing colored noise can better
describe the spectral characteristics of real-world noise. As a result, dynamical systems with colored
noise are typically described using SDEs where the noise has finite second-order moments. Such
models can better capture the non-linearities and correlations that exist in many natural systems, thus
enhancing the understanding and explanation of the behavior for various systems. Lately, the
noise-to-state stability (NSS) of hybrid SDEs with colored noise was studied in [10], and the NSS of
stochastic impulse-delayed systems with multiple random impulses was discussed in [11].

Currently, The majority of stability criteria apply only to stochastic systems where the coefficients
meet the linear growth condition (LGC). Currently, The majority of stability criteria apply only to
stochastic systems where the coefficients meet the linear growth condition (LGC). However, the
nonlinear dynamic behaviors in real-world systems [12], such as the Duffing equation in mechanical
vibrations or the nonlinear rate equations in chemical reaction networks, require model coefficients to
satisfy polynomial growth conditions (PGC) [13], rather than the traditional LGC. As research has
advanced, researchers have increasingly focused on the stability of highly nonlinear SDEs as research
has progressed [14, 15]. For example, the stability of hybrid variable multiple-delay SDEs, which are
highly nonlinear, was considered in [16], and the stability of hybrid NSDDEs under PGC has been
addressed in [17]. As we all know, these stability criteria can generally be divided into
delay-independent stability (DIS) and delay-dependent stability (DDS) [18]. The DDS criterion
contains information about time delay, considering the size of time delay, and is therefore generally
less conservative than the DIS criterion, which is suitable for time delay of any size [19]. There are
many theoretical results about DDS for SDEs [20,21]. Recently, the DDS of highly nonlinear hybrid
NSDDEs was studied in [22], while the DDS criterion for hybrid NSDDEs was derived using
Lyapunov functionals in [23].

In fields such as engineering control, biological neural networks, and environmental science,
neutral stochastic differential systems are often subject to the coupled influence of multiple factors,
including time delay effect, colored noise, high nonlinearity, and Markov switching mechanisms. This
complexity imposes higher demands on model construction. However, existing models are largely
constrained by linear growth conditions and white noise assumptions, neglecting the dynamic
interplay among time delay, noise, and switching behaviors, which results in insufficient accuracy in
modeling real systems. Therefore, there is an urgent practical need to develop neutral stochastic
differential delay models that integrate high nonlinearity, colored noise, and Markov switching.

To better explain our purpose, consider the voltage regulation problem in power systems, where the
dynamical behavior is affected by equipment failures (Markov switching) and environmental vibrations
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(colored noise). The system dynamics can be modeled as hybrid NSDDEs with colored noise, as
follows:

d | (1) = W(D(t - 6))] =f(@(1), Dt - 6), 7(1), 1)t
+ 0 (D), D(t - 6), n(2), NE(N)d,
where W(O(t — 9§)) = 0.10(¢ — ), n(¢) is a Markov chain taking values from the set S={1, 2}, with
n(t) = 1 representing the normal mode and n(f) = 2 representing the failure mode, and its generator

matrix given by I' = [-3,3; 1, —1]. We generate £(f) € R using the formula £(¢) = 0.5cos(2¢+ @), where
@ is a uniformly distributed random variable in the interval [0, 27r] and E£(¢)* < 0.125. We define

(1.1

Frvid) -6’ —15v, i=1,
b ”t =
& 60— 1y, i=2,
_ 0.1v, i=1,
o(@,v,i,1) = )
02v, i=2.

If 6 takes a value of 0.015, it can be observed from Figure 1 that the highly nonlinear hybrid
NSDDEs (1.1) are asymptotically stable. In contrast, if ¢ is set to 2, Figure 2 shows that the same
highly nonlinear hybrid NSDDEs (1.1) become unstable. Put differently, the size of time delay affects
the stability of system (1.1). However, for the highly nonlinear hybrid NSDDEs with colored noise,
there are few DDS criteria that can be utilized to obtain a sufficient bound on the time delay ¢ and
ensure the stability of its solution. Therefore, the focus of this paper is on exploring a class of highly
nonlinear hybrid NSDDEs with colored noise and establishing applicable DDS criteria.

25

0.5\

-0.5

o 1 2 s 4 5 6 7 8 9 10
t
Figure 1. The state trajectory of NSDDEs (1.1) with 6=0.015.
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o 1 2 s 4 s & 7 8 o 10
Figure 2. The state trajectory of NSDDEs (1.1) with 6=2.

The primary contributions are summarized as follows: (1) Colored noise is introduced in hybrid
NSDDE:s, and the coeflicients of hybrid NSDDEs are highly nonlinear. (2) The existence of a global
solution for highly nonlinear hybrid NSDDEs with colored noise is proved under PGC. (3) The
Lyapunov functional considered in this paper involves time delay, which makes our stability criteria
delay-dependent and thus less conservative.

Notations: If ® € R", |®| represents its Euclidean norm. The set of continuous functions o :
[-6,0] — R" is denoted by C ([-6,0];R") for 6 > 0, with its norm defined as |lol| = sup_s.,olo (u)|.
Let CH(R"xSx R, ; R,) represent the family of all continuous functions U(®, i, f) that are continuously
differentiable once with respect to @ and ¢, respectively. The family of all quasi-polynomial functions
H(t) with non-negative continuous coeflicients are defined as H(R";R,), and H(¢) is expressed as
HO) = ald® + ap )™ + - + aqlo witha; >0@G =1,2,--- ,k)and dy > dj_y = -+ > dy > 1.
A continuous function 8 € C(R,;R,) is considered to belong to the set of K-function if it is strictly
increasing and B(0) = 0. If B(:) is also radially unbounded, then it is said to belong to the set of
K'R-functions. Additionally, a function E(®, ) € C(R; X R,;R,) is considered to belong to the set of
K L-functions if it is a K-function for every fixed ¢ and decreases to zero for every fixed ® as t — oo.

2. Model description and preliminaries

Suppose (Q, F, {F:}=0, P) is a complete probability space, where {F}( is a filtration that satisfies
right continuity, and ¥, contains all P-null sets. For any ¢ > 0, let 7(¢) be a right-continuous Markov
chain on the complete probability space with state space S = {1,2,..., N} and generator I' = [y;;]yxn.
Here, y;; > 0 and y; = — Zyzl,/# % < 0.

Next, we analyze the given highly nonlinear hybrid NSDDE with colored noise

d [(D(t) - W(D(t - 6))] =f(D(1), D(t — 9), n(¢), H)dt
+ o (O(1), O(t — 0), n(t), H)é(t)dt,

2.1
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and initial condition

() : - = - ([- ;R
{@@): 6 <t <0} =ne Lz (-6,0];R", 22)
7(0) =m € S,

where ®(f) € R" denotes the state vector, and &(f) € R? represents colored noise. The f € C(R" x R" x
SxR.;R"), 0 € C(R" x R* x 8 xR,; R™Y) and W € C (R"; R") denote Borel-measurable functions.
In the following, we provide some assumptions for (2.1).

Assumption 2.1. [17]. For any & > 0 and for all &, ¥, #,v € R", where || V |i| V |i| v || < h, there
exists a constant L, > 0 such that

|f(@a,v,i,0) = f@,v,i,0)| Vv |o@@,v,i,t) — o, ,1,1)| < Lp(lit — a| + |V = V]) (2.3)

with (i,1) € S X R,.

Assumption 2.2. [17]. For any i1, 7 € R", there are constants Q > 0, a; > 1 and a, > 1 satisfying

|f@, 9, i,0l < Q1 +|al™ + [7™),

o . (2.4)
lo(it, ¥, i, )] < Q(1 + @™ + [7]™)
with (i, f) € S X R,. Furthermore, there also is a constant @ € (0, ﬁ) satisfying
W(i) - WO)| < dlia — | (2.5)

with W(0) = 0.

Remark 2.1. Assumptions 2.1 and 2.2 ensure that the coefficients f and o satisfy the local Lipschitz
condition and the PGC.

Remark 2.2. Assumption 2.2 in condition (2.5) shows that the function W is globally Lipschitz
continuous and satisfies the LGC: |W(@)| < @li.

Assumption 2.3 [10]. Given the process &(f) is both piecewise continuous and ¥;-adapted.
Furthermore, it satisfies sup,_,., El£()? < oo.

Remark 2.3. By Assumption 2.3, for any ¢ > 0, it can be checked that £(f) < co almost surely (a.s.).

For convenience, we assume that @; > 1, although it is sufficient to have only max {a@;, a;} > 1. The
PGC (2.4) is referred to as Assumption 2.2, and it is well-known that under Assumptions 2.1-2.3, the
hybrid NSDDE (2.1) has a unique maximal local solution, but this solution may blow up in finite time.
To prevent this phenomenon, some restrictions are given below.

Assumption 2.4. Let U € CH'(R"x Sx R,;R,) and H € H(R",R.). y(-) € KR and is convex, along
with by, by, b3 > 0 and @ > 2(a; V a@»), such that

b3 < by, 0" < U(®,i,7) < H(®), (2.6)
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and
dU(D — W(D(t - 5)),i,t) = U(D — W(D(t - 95)),i,1)

+ Ugp(® — W(D(t - 5)),i, 1) f(D,,i,1)

+ Up(D — W(D(t - 6)), i, o (D, v, i, &)
2.7)

N
+ 3 iU = W(@( = 6)). j.1)
j=1

< by — byH(®) + bsH() + y(E@D))
for any (@, v,i,1) e R”" X R" X S X R,.

Remark 2.4. Assumption 2.4 is the key to the presence of a global solution for hybrid NSDDE (2.1)
in the nonlinear scenario.

Remark 2.5. Assumption 2.4 is an improvement of Assumption 2.4 in [10] since this paper assumes
that W(-) satisfies Assumption 2.1. Therefore, Assumption 2.4 is valid in this paper.

Definition 2.1. [24]. For @ > 0, assume that = € KL and 5 € K exist, satisfying

Elx(®l* < ElInll, 1) +,3(SUP EI§(S)|2)

0<s<t

wheret € R, andn € .E;O( [-0,0];R"). Then hybrid NSDDE (2.1) is said to be NSS in the ath moment
(NSS-a-M). In particular, when @ = 2, it is commonly referred to as NSS in the mean square.
Lemma 2.1. [25]. If Assumption 2.2 is satisfied and there exists a constant & > 1, then

- WEI* < (1 +@)* (@l + alvl),

co o mgega = WO

|u| < (U|V| +--ZI—:?255;:]-.
holds, where &, v € R".

3. Main results

This section presents a sufficient condition for proving the existence of a unique global solution to
hybrid NSDDE (2.1). Additionally, it explores the NSS and DDS criteria for global solutions.

3.1. Noise-to-state stability

Theorem 3.1. Assuming that Assumptions 2.1-2.4 are satisfied, we can make the following assertions
for hybrid NSDDE (2.1).

(1) Hybrid NSDDE (2.1) has a unique global solution on the interval [-d, c0) .

(i1) The global solution satisfies

1
lim sup E|®(7)|* <
. AL — Vo)1 - @)e!

by +vy ( sup EIf(S)IZ)] , (3.1)

0<s<t
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VYt € R, where nj € .E“%([—(S, 0];R") and A > 0 is the only solution of
by — 2% — e (b3 + 229471 = 0, (3.2)

where d;, = deg(H(x)).
(iii)) When by =0 and 7 € L‘;O ([-0,0];R™), the global solution satisfies

1
E|D(s)|* < Mge™ Bl&(s)) )
|D(s5)|* < Mye +/1(1— @)(1_@0_17(5;2 If(s)l) (3.3)

where r € R,, My = %EIIUII“ + C,H(|Inl]). In other words, the global solution of hybrid

NSDDE (2.1) is NSS-a-M.

N N
(1-Va)(1-@)!

Proof. To better understand the proof process, we can illustrate it in three steps.

Step 1. By relying on Assumptions 2.1-2.3, it can be easily demonstrated that hybrid NSDDEs (2.1)
possesses a unique maximal local solution on the interval [—6, ¢.,), Where ¢, represents the explosion
time. We choose an integer i, > 0 that is large enough to ensure ||| < hy. We define the stopping time
¢, = inf {t € [0, ¢e0) : D) = fz} for every integer i > hy, where inf ) = co. It is an obvious fact that
¢7, increases as h — oo and ¢, = limj_,., ¢; < Yo a.s. If ¢, = o0 a.s., in that case, there is one unique
global solution for hybrid NSDDE (2.1) on the interval [, ¢.,).

We can obtain from (2.6) and (2.7) that

EU(®(t A ¢) = W(D(t A ¢ = 6), w(t A ¢p), t A )
AP},

< H(®(0) — W(D(=5))) + byt — b,E O H(D(s))ds (3.4)

tAD,

AP}
+ b3E H(®(s — 6))ds +E f y(IE(s)P)ds.
0 0

Based on the information about the time delay, one gets

(AD tAP),

0
H(®(s — 6))ds < f H(®(s))ds + H(®(s))ds. (3.5)
-5

0 0

Substituting (3.5) into (3.4) and applying the Jensen inequality, one has
BU(D(t A ¢) = W(D(t A ¢ = 6)), m(t A Gp), t A )
AP (3.6)
<M + (b1 +y(sup E|§(s)|2)) t—(by - b3)E H(D(s))ds

0<s<t 0

with M, = H((1 + @)|Inll) + b30H(||n||). Combining (2.6) and (3.6), we can deduce

ElD(t A @) — W(D(t A ¢j, — ) < My + (b1 + y(sup Elf(s)lz)) 1.

0<s<t

Let us define w;; = infjy5_z)p50 [YI*. In accordance with the definition of ¢;, for ¢ € [, ¢7], one
has |®(7)| < h. We observe that

[D(¢5) = W(DR(d7, — Oy, <) = (1D(dp)] = IW(D(s — )DLy, <1)
2 (1D(5)] = ID(Pj — 6Dy}
>h—oh=(1-d)h.
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Noting that
EIO(¢; A 1) = W5 A 1= 6)I" 2 E[I0(d) — W5 — ) Ty

inf ay
[|)’|>(1 —@)h,t>0 |y| ¢h<’}:|

Pigs <1},

we see that
PP gn < 1) < My + (bl +¥(sup E|§<s>|2>) 3

0<s<t

Clearly, one obtains lim;_,, uj = co. Letting 1 — oo, we have P {¢., < t} = 0, which in turn leads
to P{¢p, >t} = 1. As welett — oo, we find that P{¢,, = oo} = 1, which means that ¢,, = oo a.s.
Therefore, we can conclude that assertion (i) holds as required.
Step 2. Since H € H(R";R,), we set H(t) = ailt|* + aj_1]t|%" + --- + a;t/'. Combining Lemma 2.1
and @ € (0, ﬁ), we derive

H(®(s) — W(D(s - 9)))

= @i ®(s) = W(D(s — O))* + aj_1|D(s) — W(D(s — 6)|*!
+ o4 ap|O(s) — W(D(s — 6))|"

< ay(1 + @)% 1(D()|% + D|D(s — 6)|%) + - - -
+ai(1+ @) (0" + @|Dd(s — 6)")

< de_l[ak(ICD(S)ldk +10(s = %) + -+ + ar (IO + | D(s = 5)|")
< 24N H(D(5)) + H(D(s - 5))).

By using the zero-point theorem and (2.6), it can be concluded that Eq (3.2) has a unique solution
A>0.Forany 1 € (O,/_l A 35 log(é)], we get

Be D T(D(t A g5) = W(D( A g5 = 8)), 7(t A ¢5), £ A 6)
<U(D(0) + W(D(=5)), 7(0),0) + E fo o e“[bl + AH(D(s) — W(D(s — 5)))
— byH(D(s)) + by H(D(s 5))]ds +E fo sy () ds
<E fo o e“(zdk-u (H(D(s)) + H(D(s — 0))) + by — byH(D(s))
+ by H(D(s — 6)))ds +E fo " "y (&)1 ds (3.7)

AP,
<E f e“(b1 (2% Z by)H(D(s)) + (bs + A29 ) H(d(s — 6)))ds
0
NGy,
+E f ey (1Es)P) ds
0
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Since

0 tAG;;
f (e H(D(s — 6))ds = e¥ f e“H(D(s))ds + " f e H(D(s))ds,
_ 0

0

from (3.2) and (3.7), one has
BT (D(1 A ¢f) = WD A ¢ = 6)), 71t A ¢p), 1 A ¢7)
— U(D(0) — W(D(=5)), 7(0), 0)
by +vy ( sup EIf(S)IZ)] e

0<s<t

1
< -
A

0
P (b3 + /12""‘1)]5 f B H(D(s))ds.

-0

From the Fatou lemma and (2.6), it follows that (3.8) yields

1
Ee"|®(r) = W(D(t = &) < CiH(|Inll) + 3

by +vy ( sup E|§(S)|2)] eV,
0<s<t
where C, = [de +eY§ (b3 + /lde‘l)] . It is also evident from (3.9) and Lemma 2.1 that

eVE|O()|” < @eVE|D(t — 6)|* + %M’E@(z) — W(D(t - o))
(1 — @)

1
< Vo OB - 5)° + W{CAH(HTI”)
1
t bt 7( OssusgtElf(S)lz)] e”}-

Thus, we get
sup e“E|®(s)* <V (Ellnll" + sup e“‘EICD(s)I")

0<s<t 0<s<t
1 1
+ —~_1{CAH<||n||) = by + 7| sup Big)P eﬂf}.
(I - ) A O<s<t
Thus,

Vo 1

sup ¢“E|d(s)|" < Ellnll® + C:H(Inl)

OSSIS)I 1 - \/(,?,_) (1 — \/5)(1 — a))a—l A4

1
R

by +vy ( sup Elf(s)|2)] e,
0<s<t

In particular,

1
E|D(1)|* < Mye™ b E 2)]
|D(1)|* < Mye +A(1— N [1+7(0s<l§1<3t 1£Cs)|

(3.8)

(3.9)

(3.10)

AIMS Mathematics Volume 10, Issue 3, 6379-6405.
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where M, = %Ellnll“ + C,H(|Inl]). Hence, setting t — oo yields the following inequality:

.t
(1-Va)(1-@)!

1
lim sup E|®(1)|* <
f00 A1 = Vo)1 = @)

by +y ( sup E|§(5)|2)] ;

0<s<t

showing that assertion (ii) is satisfied.
Step 3. When b; = 0, (3.10) still holds. Thus, when b; = 0, there holds

1
E|D(1)|* < Mye™ + y(sup Elf(s)lz).
A1 = V)1 — @)1 \oss=t
By Definition 2.1, we can easily know that the global solution of hybrid NSDDE (2.1) is NSS-a-M.
As a result, we can infer that the expected assertion (iii) is valid. O

3.2. Delay-dependent asymptotic stability

Assumption 3.1. Given that {(#) is both piecewise continuous and 7,-adapted, one can conclude the
existence of a positive scalar y such that sup,., ElE@)? < p.

Remark 3.1. To discuss the asymptotic properties of the global solution for hybrid NSDDE (2.1),
a stricter assumption about the colored noise &£(¢), namely Assumption 3.1, is required. It is evident
that when Assumption 3.1 holds, Assumption 2.3 also holds. Therefore, under the conditions that
Assumptions 2.1, 2.2, 2.4, and 3.1 are satisfied, the conclusions in Theorem 3.1 still hold for hybrid
NSDDE (2.1).

Next, for t € R,, we define @, = (Pt +): -20<<0Vand 7, = {n(t+): =26 < <0},
Furthermore, let ®() = n(-9) for { € [-28, —0) and n({) = my for € [-26,0). For all ®,v € R"
and (i,1) € S X [-26,0), let f(D,v,i,l) = f(D,v,i,0) as well as o(D, v, i,) = o(D, v, i,0). Define the
following delay-dependent Lyapunov functional:

0 ¢
V(®,, 7, 1) = U(D(t) — W(D(t - 6)), n(1), 1) + Qf f F(u)duds,
-0 Jt+s

where U € CH(R" x S x R,; R,) satisfies limyg 0 [Inf (4 jyer, xs U(D, i, )] = o0, 6 > 0 is a constant that
requires identification, and F(u) = 6|f(®(u), ©(u — 6), n(u), u)|* + ud|o(®(u), ®(u — 6), (), u)|*. Then,

we have _
dV(®;, 7, 1) =Ug(D(f) — W(D(t — 96), n(r), 1)

X [f(D@), D(t = 0), n(t), 1) — f(P(), D(D), n(t),1)]
+ LU(D(1) — W(D(t - 6), D(t - 6), (1), 1)) (3.11)

+ 00F () — Gf F(u)du,
=6
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where
LUD — W(D(t - 9)),D(t—9),i,1)

= U/(D - W(D(t—9)),1,1)

+ Up(D — W(D(t - 9)), i, t)[f(CD, D,i,1)

(3.12)
+ (D, O(t - 0), i, t)f(t)]

N
£ U@ = W(( = 5)), . 1).
j=1

In order to analyze the DDS of hybrid NSDDE (2.1), additional assumptions are required.

Assumption 3.2. Consider the functions U € C"'(R" x Sx R,;R,), U; € H(R";R,), G € C(R"; R,),
and the constants 8; > 0 (i = 1,2,3) and ¥ > 0 (k = 1, 2) satisfying

B1 > B2+ uBs (3.13)

and
LU — W), v,i,1) + H|Ugp(® — W), i, 1)

+ Dol f(D, v, i, 1) + ud|o (D, v, i, 1) (3.14)
< = BiUND) + BU 1 (v) + B UL (D)ED — G(D — W(r))

for all (O, v,i,1) € R" X R" x S X R,. In addition, G also satisfies the following condition:

G(®) =0 only when @ =0. (3.15)

Assumption 3.3. Assume there exists a constant L > 0 satisfying the following inequality:
IA(@,®,i,1) — f(®,D,i,0)] < LIO ~ D (3.16)

where (©,D,i,1) e R”" X R" X S X R,.

Remark 3.2. Assumption 3.2 imposes the necessary requirement on the operator £. Assumption 3.3
states that f satisfies the Lipschitz condition.

Theorem 3.2. Under Assumptions 2.1, 2.2, 2.4, and 3.1-3.3, the condition
L’6* < (1 =200, (3.17)
holds, which implies that the solution to the hybrid NSDDE (2.1) satisfies the following conditions:
fow EU,(D(2))dt < oo, (3.18)

sup EU(D(7) — W(D(t - 9)), n(t), 1) < oo. (3.19)

0<t<o0
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Proof. Let p, = inf{t >0 :|D(r) — W(D(t — 6))| > h}. Using the ordinary differential formula, we
obtain

A
Ev(q_)t/\ph’ ﬁt/\ph’ LAY Ph) = V(&)O’ 7_1'05 0) + Ef dV((i)S, ﬁsa S)~ (320)
0
Let 6 = L?/(9,(1 — 2&?%)). From Assumption 3.3, there holds

Ua(D(1) = W(D(1 = 6), (1), 1) X [f(R(1), D(t = 6), 2(D), 1) = f(D(1), D(2), (1), 1)]

12 (3.21)
<H|Up(D(F) — W(D(t — 6), n(t), H)|* + H|c1>(r) — ®(r - )]
1

According to condition (3.17), it is not difficult to get 86> < ¥,. Then, combining (3.11), (3.14),
and (3.21), we have

dV(d,, 7y, 5) <LUD(s) — W(D(s — 6)), D(s — 8), 71(s), 5)
+ 91| Uo(D(1) — W(D(t — 6), 7(1), 1)
L2 5
+ Hl(b(t) —®(t - 9)|
+ 01| f(D(s), D(s — 6), 7(s), )|
+ U | (D(s), D(s — 8), 7(s), 5)|*

L2 §
T (1 - 20?) fs_a Fladu
< =B1U(D(s)) + BU(D(s — 9))

+ B3 UL (Q(5))IE(s)IP = G(D(s) = W(D(s — 6)))
2

L 2
+ 49,100 = 0 =9)

2 S
- F(u)du.
9,(1-20?) fs_a o
Substituting this into (3.20) gives

EV((i),,\ph,ﬁ',,\ph, tApp) < V(q_)o,ﬁ'o, 0)+Ci—Cr+C3—Cy4, (3.22)
where o
Ci=E fo (=B U®(s)) + oUs (@(s — )
+ B @()IECs)Pds,
C=F fo ™ Gas) - Was - s,

2

APk
—E D(s) — O(s — )|
19, f |D(s) — D(s — O)|"ds,

APk
Cy= 191(1— w2) f fF(u)duds
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Noting that
A vy
f Ui(D(s —9))ds < f U,(®(u))du
0 -5
0 iAo (3.23)
< f U (D(u))du + f Ui(D(u))du,
-5 0
it yields from (3.23) that
v

0
G Sﬁzf Ui(@(s)ds — (B1 — B> —ﬂﬁ3)E£ Ui (D(s))ds.
-5

Bringing this into (3.22) leads to

IAOR
E f U (D(s))ds < [V(cbo,fro,O)
0

1
B1 — B2 — s
0
+52Ef Ul(q)(S))dS —Cr+C3— C4]

0

(3.24)

As we let h — oo and apply the Fatou lemma along with the Fubini theorem to (3.24), we derive

E f U (D(s))ds < —Co+Cs— 0‘4] , (3.25)
0

1
S
B1 = B2 — uBs

where 0

Ky = V(®y, 7o, 0)+,32Ef U(@(s))ds,
-5

C, = Ef G(D(s) — W(D(s = 9)))ds,
0

_ L? !
Cy=— 1 z% E|<1>(s) O(s — 6)[*ds,

Cy= 191(1—2a)2) ff F(u)duds.

Considering that G € C(R"; R,), we can deduce from (3.25) that

f U, (D(s))ds < X [K1 +Cs— C'4] . (3.26)
0

1
B — B2 — upBs
On the one hand, for ¢ € [0, 6], one has

C; < 2—01‘[ (E|D(s)]* + E|D(s — 6)|P)ds

oL?

< ﬂ_( sup El®d(W)P) =: K>.
1 —6<v<o

On the other hand, for ¢ > ¢, we get

. L
C; <K+ — f E|D(s) — O(s — 6)|ds.
49, Js
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Combining (2.1) and (2.5) results in
|D(s) — D(s — )| <[[P(s) = W(D(s — 6))] — [P(s — ) — W(D(s — 20))]
+ [W(D(s — 9)) — W(D(s — 209))|
<@|O(s — 0) — D(s — 20)|

f [ A, o= .
s—0
+ o (O(u), D(u — 6), m(u), u)é(u)dul.

Hence, together with Assumption 3.1, we obtain
E|D(s) — D(s — 6)* <20°E|D(s — &) — D(s — 20)|*
+ 2F| f S F( D), D(u — 6), 7(u), u)
+ O'(CD(;_)(j D(u — ), m(u), u)é(u)dul®
<2”E|D(s — 6) — D(s — 26)[* + 4E f S F(u)du,
s—0

which implies

f E|D(s) — D(s — 6)[*ds <2&* f E|D(s — 8) — (s — 26)|*ds
0 0

! S
+4E f f F(u)duds
0 §—0

!
<2&* f E|D(s) — O(s — 8)|*ds
0

! S
+ 4Ef f F(u)duds.
0 s—0

~2

Noting that 0 < « < ﬁ, then

f E|D(s) — O(s — §)[*ds < f E|D(s) — O(s — 8)|*ds
)

1- 2a)
F(u)duds
Hence,
L2 2a* (° 5
C3 <K, + Tm(m f E|D(s) — (s — O)|°ds + f f F(u)duds
267512 ] (3.27)
<K)+ —— EldW))? + C
<ot T 2amy, S0, B0+ G
=K; + 64,
where K5 = K, + (12‘;‘% 5 SUD_scpcs E|®(v)|*. Bringing (3.27) into (3.26) and letting t — oo, we derive
0 1
Ef Uij(D(s)ds < ———(K; + K3). (3.28)
0 : Bi— B2 — uBs : ’
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Applying the Fubini theorem again to (3.27) yields the result (3.18). Letting 7 — oo and combining
(3.20), (3.22), and (3.27), we calculate

EU(D(r) — W(D(t —0)),n(2),1) < K| + K3 < o0,

which indicates
sup EU(D(r) — W(D(t — 6)), n(t), 1) < oo.

0<t<oo

Hence, (3.19) holds. m|

Corollary 3.1. Suppose that the conditions of Theorem 3.2 are true and that there exist two constants
d > 0 and & > 0, satisfying
d|®|* < U(D)

for any ® € R". Then, we can obtain the solution of the hybrid NSDDE (2.1), satisfying
f ElO(1)|*dt < co. (3.29)
0

Namely, hybrid NSDDE (2.1) is H.,.-stable in L%,

Remark 3.3. Theorem 3.1 proves that NSDDE (2.1) possesses NSS-a-M. This result describes the
asymptotic behavior of system states under the influence of noise and tends to be stable under certain
conditions. Theorem 3.2 further establishes the integral boundedness of the function U, (®), that is,

f ) EU,(D(t))dt < oo,
0

which demonstrates that the cumulative energy of the system state over time is finite. Corollary 3.1
states that NSDDE (2.1) is H,,.-stable in L%. This is a special case of Theorem 3.2. Specifically, when
d|®|* < U,(®), the integral boundedness of U, (®(r)) directly implies the integral boundedness of |®|?,
that is,

f E|®D(r)|%dt < o,
0

thereby ensuring that NSDDE (2.1) is H-stable in L?.

Next, we establish a theorem regarding the asymptotic stability in L% for hybrid NSDDE (2.1).
Theorem 3.3. Suppose that the conditions of Corollary 3.1 are true. If & > 2 and 2(@ — 1) V (& + a; —
1) V2(& + a; — 1) < a, then the solution of hybrid NSDDE (2.1) satisfies

lim E|®|® = 0.

t—00

Namely, hybrid NSDDE (2.1) is asymptotically stability in L?.
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Proof. Using this inequality |ab| < &lal* + -|b|* with any a,b € Rand ¢ > 0. Forany 0 < 1, < 1, < o0,
from Assumptions 2.2 and 3.1, there holds

[El®(t2) = W(D(1, = 6)I* = E|O(1)) = W(D(1; = 6))I°]

=|E f a|®(r) = W(D(r - 5))|@_1(f (@(1), D( = 6), (1), 1)

1

+ o (D(2), D(t - 6), (1), t)f(t))dtl

<E f 2 (&Qld)(t) — W@ -0 x (1 +|D* +|D(r — 5)|™)

n

+&QID(1) — W(D(r = &)™ X (1 + |@*2 +|D(t ~ 6)|*2) If(t)l)dt

<E f (3000 - W@ - o) x (1 + 101 +10( - 9)")

14l

+ 2@ QYD) = W(D(F — 62 x (1 + D2 + |D(t — 6)|2)* + f—é)dr.

Forany 1 < p < a, we get
ElD(t + 5)” < 1+ E|D(t + 5)|%,

which further leads to )
sup E|O(t+ 5)|P <1+ sup E|®( + s)|”
—0<s5<0 —0<s5<0
<1+ sup E|D(®)".

—0<t<oco

Therefore, according to Theorem 3.1, it follows that

E|D(t — 0)I” < sup E|D(t + )|

—-6<s<0

<1+ sup E|D(®)" < co.

—0<t<oc0

(3.30)

By applying the inequality

|D(1) — W(D( — 6))I* < 2% (D) + [W(D(t - 5))|%)
< 271D + &t - )|Y),

D@ < 1+ D))",

[OOPED < 1+ |D(1),

O D(r = 0)|™ < |O@IH ! + | D(t — 51

DOPEDID( = 6P < (D@ + @ - HP,
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and (3.29), we can get
[EID(12) — W(D(t; — 6))* — E|®(ty) — W(D(1; — )|

<E f " [&sz (10" + & - o))

n

X (1+[D@" + 107 = 6)*)
+ Eé\«/zQ 22@—4 (lq)(t)|ﬁ/—l ~a 1|(I)(t 6)|ﬁ'—1)2

X (14O + 100 = =) + 2 ]dt

153
<E f [2““&Q(1 + sup E|O()|) + ca*Q?2%+?
1

—0<t<co

X (1+ sup E|D®@)|") + —]dt

—0<t<o0

<Ku(t; — 1),

where
Ky = f_ +2%140 +2771262Q%| (1 + sup EIO()[)
—0<t<co
< 09,

As a consequence, E|®(f) — W(D(t — 6))|? is uniformly continuous. Based on (3.29), one has

f ) E|D(t) — W(D(t — 6))|*dt < f ) 20-1g (|c1>(t)|@ + O D(r — 5)|@) dt
0

0

<2%71(1 + &%) f E|O(0)|"dt + 2%~ @%6linl| < o,
0

applying the Barbalat lemma, we have lim,_,, E|®(r) — W(®(¢ - 6))|* = 0. Next, applying the following
inequality
m+n)® <1+ (m*+&n%, Ymn>0,a>1,&>0,

we derive X X
Eld0)" < E[IO(1) — W(D( = )| + IW(D(@E — o)

< E|(1 + &)1 (|D®) — W(D(t - 6))|? + e 20Dt — 6)|)|.

Taking £ = ==

-0’

E|D(1)|® < ( )” 'BlD() — W(D(r — )% + OE|D(r — 6)|2.

Then, letting t — oo, we obtain

lim sup E|®(?)|* < @ lim sup E|®(5)|*  a.s.
—00 —o0

By (3.29), one obtains lim,_,., E|®(#)|* = 0. |
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Theorem 3.4. If the conditions of Theorem 3.2 are met and there exist two positive constants d > 0
and & > 0 satisfying
do|* < Uy(®), (3.31)

then the solution of hybrid NSDDE (2.1) is almost surely asymptotically stability, i.e., lim,_,o, ®(¢) = 0
a.s.

Proof. Combined with (3.18), (3.25), and (3.27), we get
fom EG(D(1) — W(D(t - 6)))dt < co.
According to Fubini’s theorem, we get
E ‘[000 G(O(2) — W(D(t — 6)))dt < oo,

which means .
f G(D(t) — W(D(t — 6)))dt < o0 a.s. (3.32)
0

Setting ®(1) = (1) - W(®(t - 6)) for £ > 0 and py, = inf {t > 0 : |D(1)| = A}, by (3.32),
liminf G(®() =0 a.s. (3.33)
1—00

According to Corollary 3.1, we denote K5 := fooo E|®(7)|*dt < co. Then, the proof follows a similar
process to that of Theorem 3.3, and we obtain that

EID(T A pp)l* < Ko + K7 f ) E|D(1)|*dt
= Ko + K5K7O =K, VT >0,
where Kq = 257 '@%|nll, K7 = 2% '(1 + &%). This implies
hP(p, < T) < K.

Letting 7 — oo, it follows that
hP(p, < o0) < K. (3.34)

The remainder of the proof will be segmented into three steps. First, we assert that
lim G(®(7)) =0 a.s. (3.35)
t—o00
If Eq (3.35) is not fulfilled, then a sufficiently small constant € € (0, ‘1—‘) can be found which satisfies
P(A)) > 4e, (3.36)

where A; = {lim,_m sup G(D(r)) > 26}. From (3.34), there exists a sufficiently large constant / with
P(p; < o) < €, which means that
P(Ay) > 1 -, (3.37)
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where A, = {|®(¢)| < I for ¥¢ > —5}. From (3.36) and (3.37), we can obtain
P(A; N Ay) > P(A)) — P(AS) > 3e. (3.38)
For t > -6, let ¢(f) = ®(t A p;). It is clear that ¢(f) is bounded and
de(t) = f(tdt + G(DEDL, (3.39)

where

f(t) = f( @), (t — 6), 7(t), Dlj0,(1),
(1) = o(@(1), D(t — 6), n(1), o ().

For 0 <t < p;, from (2.5), we can get
|D®@)| < D) — W(D(r — 0))| + [W(D(r - 9))|
<1+ @Dt - 9)|,

which indicates
sup | @) < [+ @lnl| + @ sup |D(1)).

0<t<p; 0<t<p;
Therefore, there holds
sup @) < ( —(1+ &)Ilnll)) Vv inll. (3.40)
—0<t<p; 1 - W

From Assumption 2.2 and (3.40), it can be seen that f (#) and &7(¢) are bounded processes, and
IfOIVI6M < Ks  a.s. (3.41)

where all # > 0 and some Kg > 0. From the definition of p,, it is easy to get |¢(¢)| < [ for any ¢ > —0.
Set the stopping time

1 = inf{r > 0 : G(s(0) > 2€},
Yog =inf{t 2 yo 1 : Get) <€}, g=12,...,
Ynge =inf{t 2 Yo, 1 G(s(1) 2 2¢}, q=1,2,....

Based on (3.33), as well as the definitions of A; and A,, it follows that
A1 0 Ay € {pr= oo} N (N, {y < ). (3.42)
For all w € Aj N A, and g > 1, there are

G(s(Y24-1)) — G(s(Yy)) = € and

(3.43)
G(g(t)) > €, re ['702(1—1"//%1]'

We know that G(-) is uniformly continuous in §; = {® € R" : |®| < [}. It is possible to find 7 =
7(e) > 0 small enough to make

IG(s1) — G(s2)l < €, 61, 61 €Sy, with g — 62| < T. (3.44)
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We highlight that, for w € A; N Ay, if [g(Y2g-1 +V) — ¢(f24-1)| < T for all v € [0, Y] and some 1" > 0,
then Yy, — g1 = Y. Accordingly, there exists a small enough constant T > 0 and a large enough
integer go > 0 such that

2K;V*(1+u) <er” and E f G(D(1)dt < €*Yqp. (3.45)
0

By (3.38) and (3.42), there exists a constant 7" large enough such that

Py, < T) > 2. (3.46)

If Yo, < T, then |g(¢ag,)| < I, and thus yrp,, < p;. So, forany 0 <1 < ¢y, , as wellasw € {%qo < T},
there holds
¢(t,w) = D(t, w). (3.47)

Together with Assumption 3.1 and (3.41), for 1 < g < gy, we obtain

E( sup l§(Wog—1 AT + 1) — c(ag-1 A T)|2)

0<t<T

ll’2q—1 AT N qu—] AT
< 2TE f If($)Pds + 2uYE f 16(s)2ds (3.48)
¥

2g-IAT+T Yog- 1 NT+T

< 2K303(1 + p).
Based on the Chebyshev inequality and (3.45), there holds
P( sup lsWag—1 AT +1) —s(Wog-1 ANT)| 2 T) <e (3.49)
0<t<T
If Yy, < T, then yp,—; < T, and combining (3.46) and (3.49) yields

P({quo < T} N { sup lsWrag—1 +1) — s(Wag-1)| < T})

0<t<T

=P(Yoy, < T) — P ({wz% <T|n { SUp |5(g-1 + 1) = g1l r})

0<t<T

>P(Wog, < T) - P( sup lgWag—1 +1) = s(Wag-1)| T)

0<t<Y
>E.

Based on (3.44), this implies that

P ({02 < T} 0 {2y — 201 2 T}) 2 € (3.50)
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By (3.32), (3.47), and (3.50), we conclude

00 B 90 W2g _
E fo G(d(1)dt > ZE(I{MQ} f _ G(CD(t))dt)

g=1 Y2g-1

90
> EZ E(I{(/,Z%ST}(I/’Z(] - ‘//Zq—l))
g=1

> GTZ P({lﬂzqo < T} N {l//zq —Yg1 2 T})
gq=1
> equO,
which conflicts with (3.45). Thus, (3.35) must hold.
The second step involves proving that

lim®(#) =0 a.s.

t—00

If this is false, then & = P(As) > 0, where Ay = {limsup, ., [®()| > 0}. By (3.34), there exists a
large enough integer m, > 0 such that P(p,,, < 00) < %60. Let Ay = {p,,, = oo}. Then,

1
P(As N Ag) > P(A3) = P(AY) > 6o

Note that, for any w € A3 N Agand t > 0, ®(t, ) is bounded. It is possible to find a sequence
{t;};>1 satisfying #; — oo as well as O(t;, w) = D(w) # 0asi — oo. It is worth noting that, since G is
continuous, we can obtain

]11_>I£10 G(O(t;, w)) = G(P(w)) > 0.

Therefore, for all w € As N Ay,
lim sup G(®(t, w)) > 0.

1—00

But, this contradicts (3.35). Thus, we can obtain lim,_,., ®(f) = 0 a.s. Further, we can get

sup |®(1)| < 0 a.s. (3.51)

0<t<oo
The third step involves claiming assertion (3.31). It follows from (2.5) that

D] < (1) = W(D(£ = )] + [W(D(7 - )l

= - (3.52)
< |O@)| + O|D(t —90)|  a.s.

Then, for any T > 0,

sup [®(1)| < sup |D(H)| + @yl + @ sup |@@)|  a.s.
0<t<T 0<t<T 0<t<T

Consequently, we have

sup |D(7)] <

0<t<T -

(sup ()] + d)llnll) a.s.

0<t<T
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Making use of (3.51) and allowing 7" — oo, we get
sup |O(#)] < o0 a.s. (3.53)

0<t<oo
Letting ¢ — oo in (3.52) and combining lim,_,., ®(¢) = 0 a.s., we have

lim sup |®(7)| < @ lim sup |D(?)| a.s.

—00 t—00

Since @ € (0, ﬁ), and by (3.53), we obtain
lim |®(r)] =0 a.s.
—o0

O

Remark 3.4. When the noise considered in hybrid NSDDE (2.1) is white noise, we obtain that
Theorems 3.2-3.4 that are consistent with those in [17].

Remark 3.5. In contrast to [10], in this paper, we develop new mathematical techniques to address the
challenges posed by the neutral term, since the presence of the neutral term fundamentally alters the
issue.

Remark 3.6. The nonlinear functions considered in [24] satisfy the linear growth condition. When
a; = ap = 1 in Assumption 2.2, the PGC simplifies to the LGC, and thus the nonlinear functions under
consideration throughout the paper are more universal.

4. Numerical examples

We will validate the correctness of the theoretical results through examples in this section.

Let us examine the highly nonlinear hybrid NSDDE with colored noise (1.1). Based on the
coeflicients of (1.1), Assumptions 2.1-2.3, and 3.1 hold when Q = 6, @; = 3, a2, = 1, ® = 0.1 and
u=0.15. Let U(®,1,i) = |®°. Then, we get

—20.0248D% + 11.5968®° + 2.46v® + 3.5811v° + 0.025|£(0)**, i=1,

dU((i),V, i,t) < 3 6 3 6 24 .
—20.0247®° + 8.5525®" + 2.535v" + 2.4771v° + 0.05|£(0)|, i=2,

which shows
dU(®,v,i,1) < 15.2968 — 3.7(®% + @°) + 3.5811(+* +1°) + 0.05)£(r)[**
< by — byH(®) + bsH) + y(EDP),
where by = 15.2968, b, = 3.7, by = 3.5811,® = ®—0.1y, H(®) = ®*+®°, and y(|£(1)|?) = 0.05|£(2)[**.

Hence, it can be concluded that Assumption 2.4 is also fulfilled.
Define the function as follows:

—O+ -4, =1,
v@,in=43

ST+ -0t =2

4 Ty !

AIMS Mathematics Volume 10, Issue 3, 6379-6405.



6401

By calculating, we get

Q> +20*+ @, i=1,
Us(®,i, )P <39 _  _,
¢ 074300+ 00, =2
From (3.12), we get

LU@®,v,1,1) < —-3.69170° — 6.0466D* — 1.2050>
+0.3851v° + 0.3453v* + 0.8769°
—0.50° — 0.50* — 0.20>
+ 0.05D°)£(H)[* + 0.015D%|E(H)]* + 0.0515D2£(r)*

and LU@®,v,2,1) < —4.01380° — 8.43420* — 1.0950>
+0.3543v° + 0.3975v* + 1.048/?
- 0.30° - 0.50* - 0.30?
+0.10°%£())> + 0.03D*£(0)* + 0.153D%|(r).
Moreover,

T20° + 4.5/, i=1,
7208 + 2%, =2,
0.0V, i=1,
0.04%, i=2.

(D, v, i, 1) < {

o (@, v, i, O < {
Choosing ©#; = 0.1 and #, = 0.01, we have

LU, v,1,1) + 1|Us(®@, 1, D + Dol f(D, v, 1, O + phal o (D@, v, 1, D)
< —2.97170° — 6.04660* — 1.205® + 0.3851v° + 0.3453v* + 0.9219y?
—0.40° — 0.30% — 0.10% + 0.050°£()* + 0.015D*£(0)* + 0.0515D%|£(r))?

and
LU, v, 2,1) + 91| Uo(D, 2, > + Dol f(D, v, 2, 1) + | (D, v, 2, 1)|*
< —3.29380° — 8.4342d* — 1.095®” + 0.3543+° + 0.3975v* + 1.0681y?
—0.20° — 0.20* — 0.075D + 0.1D°|£(1)|* + 0.03D*£()* + 0.153D2|£(r) .
Thus,

LU, v,i,1) + 1 |Ua(D, i, O + Dol f(@, v, i, O + oo (D, v, i, 1)
< —1.905(®° + ®* + %) + 1.06810° + v* +17)
+0.153(D° + ®* + D) |£(D)* — 0.20° — 0.20* — 0.075D°.
Let B, = 1.905, B, = 1.0681, B3 = 0.153, U;(®) = ®° + &* + @2, and G(P) = 0.20°+0.20* +
0.075®2. It is easy to demonstrate that Assumptions 3.2 and 3.3, along with condition (3.16) when

L = 1.5, have been satisfied. Thus, by condition (3.17), we have 6 < 0.0209. Moreover, according to
Theorem 3.2, the unique global solution of (1.1) satisfies both (3.18) and (3.19). For & € [2,6], d =1,
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by Corollary 3.1, we can get (1.1) is H-stable in L% Since a; = 3,a, = 1, and @ = 6, for & = 3,
by Theorems 3.3 and 3.4, it follows that the global solution of (1.1) is asymptotically stable in L* and
almost surely asymptotically stable. We show a computer simulation of (1.1) with 6 = 0.02 in Figure 3.
It is obvious from Figure 3 that the global solution of (1.1) is stable.

Remark 4.1. Literature [24] derived NSS criteria for neutral stochastic delayed nonlinear systems,
however the impact of Markov switching was not considered. On the other hand, literature [22]
investigated the DDS of a class of multi-delay hybrid neutral SDEs, but the influence of colored noise
was not addressed. Building upon these studies, this paper incorporates both Markov switching and
colored noise to develop a more comprehensive stability analysis framework.

Remark 4.2. Hybrid NSDDEs with colored noise form a class of mathematical tools that can
efficiently model complex dynamical systems, and are especially suitable for describing systems with
stochastic, nonlinear, time delay, and Markov switching properties. In addition to power systems,
hybrid NSDDEs with colored noise have applications in other areas. For example, in robotic arm
motion control, hybrid NSDDEs can be used to optimize trajectory tracking performance and improve
control accuracy. In finance, they can be used to model the dynamic behavior of stock prices and
predict their future trends. By considering these complex factors, hybrid NSDDEs can more
accurately portray the dynamic characteristics of real systems and provide strong theoretical support
for system analysis and control.

25

ST

0 1 2 3 4 5 6 7 8 9 10
t
25
ot
15}
= 1
0.5
oF
05 I I I
0 1 2 3 4 5 6 7 8 9 10

Fig 3. Sample path of the Markov chain and state of (1.1) with 6=0.02.

5. Conclusions

The existence of global solution of highly nonlinear hybrid NSDDEs has been proved under PGC,
and the NSS-a-M of the global solution has been obtained by inequality techniques. Furthermore, the
Lyapunov function method was utilized to construct several innovative DDS criteria for highly
nonlinear hybrid NSDDEs, including H.,-stability in LY, asymptotic stability in L%, and almost surely

AIMS Mathematics Volume 10, Issue 3, 6379-6405.
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asymptotic stability. In future work, we will investigate highly nonlinear hybrid NSDDEs with
multiple time delays or Lévy noise [26], and explore the application of highly nonlinear hybrid
NSDDE:s to biological models [27, 28].
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