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a fixed number of vertices, in which the intersection of every two graphs in that family contains a
subgraph that is isomorphic to a specified graph H. Such families are referred to as H-intersecting
graph families. The bound is derived using the combinatorial version of Shearer’s lemma, and it forms
a nontrivial extension of the bound derived by Chung, Graham, Frankl, and Shearer (1986), where H is
specialized to a triangle. The derived bound is expressed in terms of the chromatic number of H, while
a relaxed version, formulated using the Lovász ϑ-function of the complement of H, offers reduced
computational complexity. Additionally, a probabilistic version of Shearer’s lemma, combined with
properties of Shannon entropy, are employed to establish bounds related to the enumeration of graph
homomorphisms, providing further insights into the interplay between combinatorial structures and
information-theoretic principles.
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1. Introduction

An H-intersecting family of graphs is a collection of finite, undirected, and simple graphs (i.e.,
graphs with no self-loops or parallel edges) on a fixed number of vertices, in which the intersection
of every two graphs in the family contains a subgraph isomorphic to H. For instance, if H is an edge
or a triangle, then every pair of graphs in the family shares at least one edge or triangle, respectively.
These intersecting families of graphs play a central role in extremal graph theory, where determining
their maximum possible size remains a longstanding challenge. Different choices of H lead to distinct
combinatorial problems and structural constraints.
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A pivotal conjecture, proposed in 1976 by Simonovits and Sós, concerned the maximum size of
triangle-intersecting graph families—those in which the intersection of any two graphs contains a
triangle. They conjectured that the largest size of such a family is obtained by the family of all graphs
on n vertices that contain a fixed triangle, leading to the conjectured largest size of 2(n

2)−3. Furthermore,
a trivial upper bound on the size of a triangle-intersecting graph family on n vertices is 4 times larger
than this conjectured value. This holds since a graph and its complement cannot both belong to an edge-
intersecting family, let alone a triangle-intersecting family. The foundational work in [1–3] explores
intersection theorems for graph families whose shared subgraphs are cycles or paths.

The first major progress on the conjecture by Simonovits and Sós was made in 1986 by Chung,
Graham, Frankl, and Shearer [4], who utilized Shearer’s inequality to establish a non-trivial upper
bound on the largest possible cardinality of a family of triangle-intersecting graphs with a fixed number
of vertices. This bound was “midway” between the trivial and conjectured bounds (or, more formally,
it was equal to twice the conjectured bound, which is also the geometric mean of the conjectured and
trivial bounds).

The conjecture by Simonovits and Sós was ultimately resolved in 2012 by Ellis, Filmus, and
Friedgut [5], who proved that the largest triangle-intersecting family comprises all graphs containing
a fixed triangle. Building on the Fourier analytic methods of Boolean functions, used to prove this
conjecture in [5] (see also Section 4 of [6]), a recent work by Berger and Zhao [7] extended the
investigation to K4-intersecting graph families, addressing analogous questions for graph families
where every pair of graphs intersects in a complete subgraph of size four. Additionally, Keller and
Lifshitz [8] constructed, for every graph H and for every p ∈ (1

2 , 1), an H-intersecting family of graphs
G on n vertices such that a random graph G ∼ G(n, p) belongs to G with probability tending to 1
exponentially fast in n2. Here, G(n, p) denotes the (binomial) Erdǒs-Rényi random graph, in which
every edge of Kn (the complete graph on n vertices) is included independently with probability p. These
contributions highlight the interplay between combinatorial, probabilistic, and algebraic methods in the
analysis of intersecting graph families.

The interplay between Shannon entropy and extremal combinatorics has significantly enhanced
the understanding of the structural and quantitative properties of combinatorial objects through
information-theoretic methods. Entropy serves as a versatile and powerful tool to derive concise, often
elegant proofs of classical results in extremal combinatorics (see, e.g., Chapter 37 of [9], Chapter 22
of [10], and [11–15]). Notable examples include Radhakrishnan’s entropy-based proof of Bregman’s
theorem on matrix permanents [14] and the application of Shearer’s lemma to upper-bound the size of
the largest triangle-intersecting graph families with a fixed number of vertices [4]. Beyond this specific
context, Shearer’s inequalities have found extensive applications across diverse areas, including finite
geometry, graph theory, the analysis of Boolean functions, and large deviations (see [4, 15–22]). A
recent talk by the author addresses Shearer’s inequalities and their applications in combinatorics [23].

The first part of this paper relies on the combinatorial version of Shearer’s inequalities in [4] to
derive a new upper bound on the cardinality of families of H-intersecting graphs with a fixed number
of vertices. The bound represents a nontrivial extension of the bound in [4], where H is specialized to
a triangle. The derived bound is expressed in terms of the chromatic number of H, while a relaxed
version, formulated using the Lovász ϑ-function of the complement of H, reduces computational
complexity. The relaxed bound is further explored in the case where H is a regular graph, particularly
when it is strongly regular.
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Graph homomorphisms serve as a versatile framework to understand graph mappings, which
facilitate studies of structural properties, colorings, and symmetries. The applications of graph
homomorphisms span various fields, including statistical physics, where they model spin systems [24],
and computational complexity, where they underpin constraint satisfaction problems [25]. Recent
research has yielded profound insights into counting graph homomorphisms, a problem with deep
theoretical and practical relevance (see [11, 26–31]). The second part of this paper relies on Shearer’s
inequalities and properties of Shannon entropy to derive bounds on the number of homomorphisms.

The paper is structured as follows: Section 2 presents essential preliminary material, including
three versions of Shearer’s inequalities. In Section 3, the combinatorial version of Shearer’s lemma
is employed for upper bounding the size of H-intersecting families of graphs. Section 4 focuses on
entropy-based proofs, also incorporating a probabilistic version of Shearer’s lemma, to derive bounds
on the number of graph homomorphisms.

2. Preliminaries

2.1. Shearer’s inequalities

The following subsection introduces three versions of Shearer’s inequalities that are useful in the
analysis presented in this paper. The first version serves as a foundation for proving the other two,
which are directly applied in this work. Familiarity with Shannon entropy and its basic properties is
assumed, following standard notation (see, e.g., Chapter 3 of [32]).

Proposition 1 (Shearer’s Lemma). Let

• n,m, k ∈ N,
• X1, . . . , Xn be discrete random variables,
• [n] , {1, . . . , n},
• S1, . . . ,Sm ⊆ [n] be subsets such that each i ∈ [n] belongs to at least k ≥ 1 of these subsets,
• Xn , (X1, . . . , Xn), and XS j , (Xi)i∈S j for all j ∈ [m].

Then,

k H(Xn) ≤
m∑

j=1

H(XS j). (2.1)

Proof. By assumption, d(i) ≥ k for all i ∈ [n], where

d(i) ,
∣∣∣{ j ∈ [m] : i ∈ S j

}∣∣∣. (2.2)

Let S = {i1, . . . , i`}, 1 ≤ i1 < . . . < i` ≤ n, which implies that |S| = `, S ⊆ [n]. Further, let
XS , (Xi1 , . . . , Xi`). By the chain rule and the fact that conditioning reduces entropy,

H(XS) = H(Xi1) + H(Xi2 |Xi1) + . . . + H(Xi` |Xi1 , . . . , Xi`−1)

≥
∑
i∈S

H(Xi|X1, . . . , Xi−1)

=

n∑
i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}
, (2.3)
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where 1{i ∈ S} on the right-hand side of (2.3) denotes the indicator function of the event {i ∈ S},
meaning that it is equal to 1 if i ∈ S and it is zero otherwise. Consequently, we get

m∑
j=1

H(XS j) ≥
m∑

j=1

n∑
i=1

{
1{i ∈ S j} H(Xi|X1, . . . , Xi−1)

}
=

n∑
i=1

{ m∑
j=1

1{i ∈ S j} H(Xi|X1, . . . , Xi−1)
}

=

n∑
i=1

{
d(i) H(Xi|X1, . . . , Xi−1)

}
≥ k

n∑
i=1

H(Xi|X1, . . . , Xi−1) (2.4)

= k H(Xn), (2.5)

where inequality (2.4) holds due to the nonnegativity of the conditional entropies of discrete random
variables, and since (by assumption) d(i) ≥ k for all i ∈ [n], and equality (2.5) holds by the chain rule
of Shannon entropy. �

Remark 1. If every element i ∈ [n] belongs to exactly k of the subsets S j ( j ∈ [m]), then Shearer’s
lemma also applies to continuous random variables X1, . . . , Xn, with entropy replaced by the differential
entropy.

Example 1 (Subadditivity of Shannon Entropy). Let n = m with n ∈ N, and Si = {i} (singletons) for
all i ∈ [n], so every element i ∈ [n] belongs to a single set among S1, . . . ,Sn (i.e., k = 1). By Shearer’s
lemma, it follows that

H(Xn) ≤
n∑

j=1

H(X j), (2.6)

which expresses the subadditivity property of Shannon entropy for discrete random variables. This
also holds for continuous random variables, where the entropy is replaced by differential entropy since
every element i ∈ [n] is contained in exactly one subset (see Remark 1). Consequently, Shearer’s
lemma establishes the subadditivity property of Shannon entropy for both discrete and continuous
random variables.

Example 2 (Han’s Inequality, [33]). For every ` ∈ [n], let S` = [n] \ {`}. By Shearer’s lemma
(Proposition 1) applied to these n subsets of [n], since every element i ∈ [n] is contained in exactly
k = n − 1 of these subsets,

(n − 1) H(Xn) ≤
n∑
`=1

H(X1, . . . , X`−1, X`+1, . . . , Xn) ≤ n H(Xn). (2.7)

An equivalent form of (2.7) is given by

0 ≤
n∑
`=1

{
H(Xn) − H(X1, . . . , X`−1, X`+1, . . . , Xn)

}
≤ H(Xn). (2.8)
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The equivalent forms in (2.7) and (2.8) are known as Han’s inequality. Note that, by Remark 1, the
left-hand side inequality of (2.7) and, equivalently, the right-hand side inequality of (2.8) remain valid
for continuous random variables as well.

In the combinatorial version of Shearer’s lemma [4], next given, the concept of entropy is hidden.

Proposition 2 (Combinatorial Version of Shearer’s Lemma). Consider the following setting:

• Let F be a finite multiset of subsets of [n] (allowing repetitions of some subsets), where each
element i ∈ [n] is included in at least k ≥ 1 sets of F .
• Let M be a set of subsets of [n].
• For every set S ∈ F , let the trace of M on S, denoted by traceS(M ), be the set of all possible

intersections of elements of M with S, i.e.,

traceS(M ) ,
{
A∩ S : A ∈M

}
, ∀S ∈ F . (2.9)

Then,

|M | ≤
∏
S∈F

∣∣∣traceS(M )
∣∣∣ 1

k . (2.10)

Proof.

• Let X ⊆ [n] be a set that is selected uniformly at random from M .
• Represent X by the binary random vector Xn = (X1, . . . , Xn), where Xi = 1{i ∈ X} for all i ∈ [n],

so Xi = 1 if i ∈ X and Xi = 0 otherwise.
• For S ∈ F , let XS = (Xi)i∈S. By the maximal entropy theorem, which states that the entropy of

a discrete random variable (or vector) is upper-bounded by the logarithm of the cardinality of its
support, with equality if and only if the variable is uniformly distributed over its support, we get

H(XS) ≤ log
∣∣∣traceS(M )

∣∣∣. (2.11)

• By the assumption that every element i ∈ [n] is included in at least k ≥ 1 sets of F , it follows
from combining Shearer’s lemma (Proposition 1) and (2.11) that

k H(Xn) ≤
∑
S∈F

H(XS)

≤
∑
S∈F

log
∣∣∣traceS(M )

∣∣∣. (2.12)

• The equality H(Xn) = log |M | holds since Xn is in one-to-one correspondence with X, which is
uniformly selected at random from M . Combining this with (2.12) gives

log |M | ≤
1
k

∑
S∈F

log
∣∣∣traceS(M )

∣∣∣, (2.13)

and exponentiating both sides of (2.13) gives (2.10).

�
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The following is the probabilistic entropy-based formulation of Shearer’s lemma, which is also
applied in this paper.

Proposition 3 (Probabilistic Version of Shearer’s Lemma). Let Xn be a discrete n-dimensional random
vector, and let S ⊆ [n] be a random subset of [n], independent of Xn, with an arbitrary probability mass
function PS. If there exists θ > 0 such that

Pr[i ∈ S] ≥ θ, ∀ i ∈ [n], (2.14)

then,

ES
[
H(XS)

]
≥ θH(Xn). (2.15)

Proof. The expectation of the entropy H(XS) with respect to the random subset S ⊆ [n], where (by
assumption) S is independent of Xn, gives

ES
[
H(XS)

]
=

∑
S⊆[n]

PS(S) H(XS)

≥
∑
S⊆[n]

{
PS(S)

n∑
i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}}
(2.16)

=

n∑
i=1

{ ∑
S⊆[n]

{
PS(S) 1{i ∈ S}

}
H(Xi|X1, . . . , Xi−1)

}
(2.17)

=

n∑
i=1

Pr[i ∈ S] H(Xi|X1, . . . , Xi−1)

≥ θ

n∑
i=1

H(Xi|X1, . . . , Xi−1) (2.18)

= θH(Xn), (2.19)

where (2.16) holds by (2.3) that is valid for every set S ⊆ [n]; (2.17) holds by swapping the order
of summation, and (2.18) holds by the assumption that the random variables {Xi} are discrete (so, the
conditional entropies are nonnegative) and by the condition in (2.14). Finally, (2.19) holds by the chain
rule of Shannon entropy. �

Remark 2. Similarly to Remark 1, if Pr[i ∈ S] = θ for all i ∈ [n], then inequality (2.18) holds with
equality. Consequently, if the condition in (2.14) is satisfied with equality for all i ∈ [n], then (2.15)
extends to continuous random variables, with entropies replaced by differential entropies.

2.2. Intersecting families of graphs

We start by considering triangle-intersecting families of graphs, which was the problem in extremal
combinatorics addressed in [4].

Definition 1 (Triangle-Intersecting Families of Graphs). Let G be a family of graphs on the vertex set
[n], with the property that for every G1,G2 ∈ G, the intersection G1 ∩G2 contains a triangle (i.e., there
are three vertices i, j, k ∈ [n] such that each of {i, j}, {i, k}, { j, k} is in the edge sets of both G1 and G2).
The family G is referred to as a triangle-intersecting family of graphs on n vertices.

AIMS Mathematics Volume 10, Issue 3, 6355–6378.
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Question 1. (Simonovits and Sós, [2]) How large can G (a family of triangle-intersecting graphs) be?

The family G can be as large as 2(n
2)−3. To that end, consider the family G of all graphs on n vertices

that include a particular triangle. On the other hand, |G| cannot exceed 2(n
2)−1. The latter upper bound

holds since, in general, a family of distinct subsets of a set of size m, where any two of these subsets
have a nonempty intersection, can have a cardinality of at most 2m−1 (A andAc cannot be members of
this family). The edge sets of the graphs in G satisfy this property, with m =

(
n
2

)
.

Proposition 4 (Ellis, Filmus, and Friedgut, [5]). The size of a family G of triangle-intersecting graphs
on n vertices satisfies |G| ≤ 2(n

2)−3, and this upper bound is attained by the family of all graphs with a
common vertex set of n vertices, and with a fixed common triangle.

This result was proved by using discrete Fourier analysis to obtain the sharp bound in Proposition 4,
as conjectured by Simonovits and Sós [2].

The first significant progress toward proving the Simonovits–Sós conjecture came from an
information-theoretic approach [4]. Using the combinatorial Shearer lemma (Proposition 2), a simple
and elegant upper bound on the size of G was derived in [4]. That bound is equal to 2(n

2)−2, falling short
of the Simonovits–Sós conjecture by a factor of 2.

Proposition 5 (Chung, Graham, Frankl, and Shearer, [4]). Let G be a family of K3-intersecting graphs
on a common vertex set [n]. Then, |G| ≤ 2(n

2)−2.

We next consider more general intersecting families of graphs.

Definition 2 (H-Intersecting Families of Graphs). Let G be a family of graphs on a common vertex set.
Then, it is said that G is H-intersecting if for every two graphs G1,G2 ∈ G, the graph G1 ∩G2 contains
a subgraph isomorphic to H.

In the following, Kt, for t ∈ N, denotes the complete graph on t vertices. This graph consists of t
vertices, with every pair of vertices being adjacent. For example, K2 represents an edge, while K3

corresponds to a triangle.

Example 3. Let H = Kt, with t ≥ 2. Then, t = 2 means that G is edge-intersecting (or simply
intersecting), and t = 3 means that G is triangle-intersecting.

Question 2. [Problem in Extremal Combinatorics] Given H and n, what is the maximum size of an
H-intersecting family of graphs on n labeled vertices?

Conjecture 1. (Ellis, Filmus, and Friedgut, [5]) Every Kt-intersecting family of graphs on a common
vertex set [n] has a size of at most 2(n

2)−( t
2), with equality for the family of all graphs containing a fixed

clique on t vertices.

• For t = 2, it is trivial (since K2 is an edge).
• For t = 3, it was proved by Ellis, Filmus, and Friedgut [5].
• For t = 4, it was recently proved by Berger and Zhao [7].
• For t ≥ 5, this problem is left open.
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2.3. Counting graph homomorphisms

In the sequel, let V(H) and E(H) denote the vertex and edge sets of a graph H, respectively. Further,
let T and G be finite, simple, and undirected graphs, and denote the edge connecting a pair of adjacent
vertices u, v ∈ V(H) by an edge e = {u, v} ∈ E(H).

Definition 3 (Homomorphism). A homomorphism from T to G, denoted by T → G, is a mapping of
the vertices of T to those of G, σ : V(T)→ V(G), such that every edge in T is mapped to an edge in G:

{u, v} ∈ E(T) =⇒ {σ(u), σ(v)} ∈ E(G). (2.20)

On the other hand, non-edges in T may be mapped to the same vertex, a non-edge, or an edge in G.

Example 4. There is a homomorphism from every bipartite graph G to K2. Indeed, let V(G) = X∪Y,
where X and Y are the two disjoint partite sets. A mapping that maps every vertex in X to ‘0’, and
every vertex in Y to ‘1’ is a homomorphism G → K2 because every edge in G is mapped to the edge
{0, 1} in K2. Note that every non-edge in X or in Y is mapped to the same vertex in K2, and every
non-edge between two vertices in X and Y is mapped to {0, 1}.

The following connects graph homomorphisms to graph invariants. Let ω(G) and χ(G) denote the
clique number and chromatic number, respectively, of a finite, simple, and undirected graph G. That
is, ω(G) is the maximum number of vertices in G such that every two of them are adjacent (i.e., these
vertices form a complete subgraph of G), and χ(G) is the smallest number of colors required to color
the vertices of G such that no two adjacent vertices share the same color. Then,

• ω(G) is the largest integer k for which a homomorphism Kk → G exists. This holds because the
image of a complete graph under a homomorphism is a complete graph of the same size. This
is valid because a homomorphism preserves adjacency, and for a complete graph Kk, all pairs of
vertices are adjacent. To preserve this property, the image of Kk under the homomorphism must
also be a complete graph of size k.
• A graph G is k-colorable if and only if it has a homomorphism to the complete graph Kk; this

is because k-coloring assigns one of k colors to each vertex such that adjacent vertices receive
different colors, which is equivalent to mapping the vertices of G to the k vertices of Kk in a way
that adjacency is preserved. Consequently, it follows by definition that χ(G) is the smallest integer
k for which there exists a homomorphism G→ Kk.

Let Hom(T,G) denote the set of all the homomorphisms T→ G, and let

hom(T,G) ,
∣∣∣Hom(T,G)

∣∣∣ (2.21)

denote the number of these homomorphisms.
The independence number of a graph G, denoted by α(G), is the maximum number of vertices in

G such that no two of them are adjacent. It can be formulated as an integer linear program, whose
relaxation gives rise to the following graph invariant.

Definition 4 (Fractional Independence Number). The fractional independence number of a graph G,
denoted as αf(G), is a fractional relaxation of the independence number α(G). It is defined as the
optimal value of the following linear program:
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• Optimization variables: xv for every vertex v ∈ V(G).
• Objective: Maximize

∑
v∈V(G)

xv.

• Constraints: xv ≥ 0 for all v ∈ V(G), and
∑
v∈C

xv ≤ 1 for every clique C ⊆ V(G).

This relaxation allows fractional values for xv, in contrast to the integer programming formulation for
α(G), where xv must be binary (either 0 or 1) for all v ∈ V(G). Consequently, αf(G) ≥ α(G).

The following result was obtained by Alon [34] and by Friedgut and Khan [28], where the latter
provides an entropy-based proof that relies on Shearer’s lemma with an extension of the result on the
number of homomorphisms for hypergraphs.

Proposition 6 (Number of Graph Homomorphisms). Let T and G be finite, simple, and undirected
graphs, having no isolated vertices. Then,

hom(T,G) ≤
(
2|E(G)|

)αf (T)
. (2.22)

Furthermore, the upper bound in (2.22) is essentially tight for a fixed graph T in the sense that there
exists a graph G such that

hom(T,G) ≥
(
|E(G)|
|E(T)|

)αf (T)

, (2.23)

so, a comparison between the upper and lower bounds on the number of graph homomorphisms
in (2.22) and (2.23) indicates that hom(T,G) scales like |E(G)|αf (T).

3. Intersecting families of graphs

This section derives an upper bound on the maximum cardinality of a family of H-intersecting
graphs on a fixed number of vertices, where the intersection of every two graphs in that family
contains a subgraph that is isomorphic to a specified graph H. Specifically, the next result generalizes
Proposition 5 by extending the proof technique of [4] to apply to all families of H-intersecting graphs.

Proposition 7. Let H be a nonempty graph, and letG be a family of H-intersecting graphs on a common
vertex set [n]. Then,

|G| ≤ 2(n
2)−(χ(H)−1). (3.1)

Proof.

• Identify every graph G ∈ G with its edge set E(G), and let M =
{
E(G) : G ∈ G

}
(recall that all

these graphs have the common vertex set [n]).
• LetU = E(Kn). For every G ∈ G, we have E(G) ⊆ U, and |U| =

(
n
2

)
.

• Let t , χ(H) be the chromatic number of H (or any graph isomorphic to H).
• For every unordered equipartition or almost-equipartition of [n] into t − 1 disjoint subsets, i.e.,

t−1⋃
j=1
A j = [n], satisfying

∣∣∣|Ai|−|A j|
∣∣∣ ≤ 1 andAi∩A j = ∅ for all 1 ≤ i < j ≤ t−1, defineU({A j}

t−1
j=1)

as the subset of U consisting of all edges that are entirely contained within some subset A j for
j ∈ [t − 1]. In other words, each edge lies entirely within one of the subsets {A j}

t−1
j=1, although

different edges may belong to different subsets.
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• We apply Proposition 2 with

F = {U({A j}
t−1
j=1)}, (3.2)

where F is obtained by referring in the right-hand side of (3.2) to all possible choices of {A j}
t−1
j=1,

as described in the previous item.
• Let m = | U({A j}

t−1
j=1) |. Then, m is independent of {A j}

t−1
j=1 as described above, since

m =



(t − 1)
(

n/(t−1)
2

)
if (t − 1)|n,

(t − 2)
(
bn/(t−1)c

2

)
+

(
dn/(t−1)e

2

)
if (t − 1)|(n − 1),

...(
bn/(t−1)c

2

)
+ (t − 2)

(
dn/(t−1)e

2

)
if (t − 1)|

(
n − (t − 2)

)
.

(3.3)

• By (3.3) with t = χ(H), it follows that

m ≤
1

χ(H) − 1

(
n
2

)
. (3.4)

Proof. The graph H is nonempty, so t = χ(H) ≥ 2. If (t − 1)|n, then,

(t − 1)
(
n/(t − 1)

2

)
=

n(n − (t − 1))
2(t − 1)

≤
1

t − 1

(
n
2

)
. (3.5)

Otherwise, (t−1)|(n− j) for some integer j ∈ [t−2], so n = j + r(t−1) with r ∈ N. Consequently,
since j ∈ {1, . . . , t − 2}, (3.3) gives

m = (t − 1 − j)
(
r
2

)
+ j

(
r + 1

2

)
=

r
2

[
(t − 1 − j)(r − 1) + j(r + 1)

]
=

n − j
2(t − 1)

[
(t − 1 − j)

(n − j
t − 1

− 1
)

+ j
(n − j

t − 1
+ 1

)]
=

n − j
2(t − 1)2

[
(t − 1 − j)(n − j − t + 1) + j(n − j + t − 1)

]
=

(n − j)
[
n(t − 1) + j(t − 1) − (t − 1)2]

2(t − 1)2

=
(n − j)

(
n + j − (t − 1)

)
2(t − 1)

≤
(n − j)(n − 1)

2(t − 1)

<
1

t − 1

(
n
2

)
. (3.6)

Combining (3.5) and (3.6) for the cases where (t − 1)|n or (t − 1) 6 | n, respectively, gives (3.4). �
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• By a symmetry consideration, which follows from the construction of F in (3.2) as a set of
subsets ofU (due to the fourth item of this proof), each of the

(
n
2

)
elements inU (i.e., each edge

of the complete graph Kn) belongs to a fixed number k of elements in F .
• By a double-counting argument on the edges of the complete graph Kn (the set U), since each

element of F is a subset of U of size m (see (3.3)) and each edge in U belongs to exactly k
elements in F , the following equality holds:

m |F | =
(
n
2

)
k. (3.7)

• Let S ∈ F . Observe that traceS(M ), as defined in (2.9), forms an intersecting family of subsets
of S. Indeed,

1. Assign to each vertex in [n] the index j of the subset A j (1 ≤ j ≤ χ(H) − 1) in the partition
of [n] corresponding to S. Let these assignments be associated with χ(H) − 1 color classes
of the vertices.

2. For any G,G′ ∈ G, the graph G ∩ G′ contains a subgraph isomorphic to H (by assumption).

3. By definition, t = χ(H) is the smallest number of colors required to properly color the vertices
of H, ensuring that no two adjacent vertices in H share the same color. Hence, in any coloring
of the vertices of any graph isomorphic to H with t − 1 colors, there must exist at least one
edge whose two endpoints are assigned the same color. This implies that such an edge must
belong to some subsetA j for j ∈ [χ(H) − 1], and therefore, it is contained in S.

4. Let G,G′ ∈ G. Hence, at least one of the edges in E(G) ∩ E(G′), which contains the edges
of a graph isomorphic to H, belongs to S. By the definition of M (see the first item), this
means by (2.9) that traceS(M ) is an intersecting family of subsets of S since(

E(G) ∩ S
)
∩

(
E(G′) ∩ S

)
=

(
E(G) ∩

(
E(G′)

)
∩ S , ∅.

Consequently, |S| = m and traceS(M ) forms an intersecting family of subsets of S, which yields

|traceS(M )| ≤ 2m−1. (3.8)

This holds since the total number of subsets of S is 2m, and since traceS(M ) forms an intersecting
family of these subsets, it cannot contain any subset along with its complement with respect to S.
Consequently, the cardinality of an intersecting family of subsets of S is at most 1

2 · 2
m = 2m−1.

• By Proposition 2 (and the one-to-one correspondence between G and M ),

|G| = |M |

≤
(
2m−1

) |F |

k (3.9)

= 2(n
2)(1− 1

m ) (3.10)

≤ 2(n
2)−(χ(H)−1), (3.11)

where (3.9) relies on (2.10) and (3.8), equality (3.10) relies on (3.7), and (3.11) holds due to (3.4).

�
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The family G of H-intersecting graphs on n vertices can be as large as 2(n
2)−|E(H)|. To that end,

consider the family G of all graphs on n vertices that include H as a subgraph.
Combining this lower bound on |G| with its upper bound in Proposition 7 gives that the largest

family G of H-intersecting graphs on n vertices satisfies

2(n
2)−|E(H)| ≤ |G| ≤ 2(n

2)−(χ(H)−1). (3.12)

Specialization of Proposition 7 to complete subgraphs gives the following.

Corollary 1. Let G be a family of Kt-intersecting graphs, with t ≥ 2, on a common vertex set [n].
Then,

|G| ≤ 2(n
2)−(t−1). (3.13)

Proof. χ(Kt) = t for all t ∈ N, and if t ≥ 2, then the complete graph Kt is nonempty. �

Remark 3. For t ≥ 3, the bound in Corollary 1 falls short of the conjectured result in [5], which states
that every Kt-intersecting family of graphs on a common vertex set [n] has a size of at most 2(n

2)− t(t−1)
2 ,

with equality achieved by the family of all graphs containing a fixed clique on t vertices. Nevertheless,
it generalizes Proposition 5, which addresses the special case H = K3 (triangle-intersecting graphs),
and it uniformly improves the trivial bound of 2(n

2)−1 for Kt-intersecting graph families on n vertices
with t ≥ 3.

Remark 4. If H is a bipartite graph, then χ(H) = 2. In that case, our result for an H-intersecting family
of graphs on n vertices is specialized to the trivial bound

|G| ≤ 2(n
2)−1. (3.14)

This bound is tight for the largest family of K2-intersecting graphs on n vertices, consisting of all
graphs that contain a fixed edge as a subgraph (since in this case, the upper and lower bounds in (3.12)
coincide).

The computational complexity of the chromatic number of a graph is in general NP-hard [35]. This
poses a problem in calculating the upper bound in Proposition 7 on the cardinality of H-intersecting
families of graphs on a fixed number of vertices. This bound can be however loosened, expressing it
in terms of the Lovász ϑ-function of the complement graph H (see Corollary 3 of [36]).

Corollary 2. Let H be a graph, and let G be a family of H-intersecting graphs on a common vertex set
[n]. Then,

|G| ≤ 2(n
2)−(dϑ(H)e−1). (3.15)

Proof. The Lovász ϑ-function of the complement graph H satisfies the inequality

ω(H) ≤ ϑ(H) ≤ χ(H), (3.16)

so it is bounded between the clique and chromatic numbers of H, which are both NP-hard to
compute [35]. Since the chromatic number χ(H) is an integer, we have

χ(H) ≥ dϑ(H)e. (3.17)

Combining (3.1) and (3.17) yields (3.15). �
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The Lovász ϑ-function of the complement graph H, as presented in Corollary 2, can be efficiently
computed with a precision of r decimal digits, having a computational complexity that is polynomial
in p , |V(H)| and r. It is obtained by solving the following semidefinite programming (SDP)
problem [37]:

maximize Tr(B Jp)
subject toB ∈ Sp

+, Tr(B) = 1,
Ai, j = 0 ⇒ Bi, j = 0, i, j ∈ [p], i , j,

(3.18)

where the following notation is used:

• A = A(H) is the p × p adjacency matrix of H;
• Jp is the all-ones p × p matrix;
• Sp

+ is the set of all p × p positive semidefinite matrices.

The reader is referred to an account of interesting properties of the Lovász ϑ-function in [38],
Chapter 11 of [39], and more recently in Section 2.5 of [40].

The following result generalizes Corollary 1 by relying on properties of the Lovász ϑ-function. For
the third item of the next result, strongly regular graphs are first presented.

Definition 5 (Strongly Regular Graphs). A regular graph G that is neither complete nor empty is
called a strongly regular graph with parameters (n, d, λ, µ), where λ and µ are nonnegative integers, if
the following conditions hold:

(1) G is a d-regular graph on n vertices.

(2) Every two adjacent vertices in G have exactly λ common neighbors.

(3) Every two distinct and nonadjacent vertices in G have exactly µ common neighbors.

The family of strongly regular graphs with these four specified parameters is denoted by srg(n, d, λ, µ).
It is important to note that a family of the form srg(n, d, λ, µ) may contain multiple nonisomorphic
strongly regular graphs [41]. We refer to a strongly regular graph as srg(n, d, λ, µ) if it belongs to this
family.

Proposition 8. Let G be an H-intersecting family of graphs on n vertices, where H is a nonempty,
simple, and undirected graph on p vertices. The following holds:

(1)

log2 |G| ≤

(
n
2

)
−

⌈
max

T

λmax(T)
|λmin(T)|

⌉
, (3.19)

where the maximization on the right-hand side of (3.19) is taken over all nonzero, symmetric p× p
matrices T = (Ti, j) with Ti, j = 0 for all i, j ∈ [p] such that {i, j} < E(H) or i = j (e.g., the adjacency
matrix of H), and λmax(T) and λmin(T) denote the largest and smallest (real) eigenvalues of T,
respectively.
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(2) Specifically, if H is a d-regular graph on p vertices, where d ∈ [p − 1], then

log2 |G| ≤

(
n
2

)
−

⌈
d

|λmin(H)|

⌉
, (3.20)

where λmin(H) is the smallest eigenvalue of the adjacency matrix of the graph H.

(3) If H is a connected strongly regular graph in the family srg(p, d, λ, µ), then

log2 |G| ≤

(
n
2

)
−

⌈
2d√

(λ − µ)2 + 4(d − µ) − λ + µ

⌉
. (3.21)

Proof. By Corollary 2,

log2 |G| ≤

(
n
2

)
−

(
dϑ(H)e − 1

)
. (3.22)

Item 1 then holds by the property that for every finite, simple, and undirected graph G on n vertices,

ϑ(G) = 1 + max
T

λmax(T)∣∣∣λmin(T)
∣∣∣ , (3.23)

where the maximization on the right-hand side of (3.23) is taken over all symmetric nonzero n × n
matrices T = (Ti, j) with Ti, j = 0 for all i, j ∈ [n] such that {i, j} ∈ E(G) or i = j. Equality (3.23) is then
applied to the graph H, so the maximization on the right-hand side of (3.19) is taken over all symmetric
nonzero p × p matrices T = (Ti, j) with Ti, j = 0 for all i, j ∈ [p] such that {i, j} < E(H) or i = j. This
includes in particular the adjacency matrix of the graph H, i.e., T = A(H).

We next prove Item 2, which refers to nonempty d-regular graphs on p vertices. Relaxing the bound
in (3.19) by selecting T = A(H) gives λmax(T) = d, and λmin(T) = λmin(H), which then gives the relaxed
bound in (3.20).

Item 3 follows from Item 2 by relying on the closed-form expression of the smallest eigenvalue
of the adjacency matrix of a connected strongly d-regular graph H on p vertices, where each pair of
adjacent vertices has exactly λ common neighbors and each pair of nonadjacent vertices has exactly
µ common neighbors. Recall that a strongly regular graph is connected if and only if µ > 0. In that
case, the largest eigenvalue of the adjacency matrix is λ1(H) = d with multiplicity 1, and the other two
distinct eigenvalues of its adjacency matrix are given by (see, e.g., Chapter 21 of [42])

r1,2 = 1
2

(
λ − µ ±

√
(λ − µ)2 + 4(d − µ)

)
, (3.24)

with the respective multiplicities

m1,2 = 1
2

(
t − 1 ∓

2d + (t − 1)(λ − µ)√
(λ − µ)2 + 4(d − µ)

)
. (3.25)

Specifically, by (3.24), the absolute value of the smallest eigenvalue of H is given by∣∣∣λmin(H)
∣∣∣ = 1

2

( √
(λ − µ)2 + 4(d − µ) + µ − λ

)
. (3.26)

Finally, substituting (3.26) into (3.20) gives (3.21). �
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Remark 5. The derivation of (3.21) relies on (3.20), where the latter is based on the lower bound on
ϑ(H), obtained by relaxing the bound in (3.19) and selecting T = A(H) (see the proof of Item 2 in
Proposition 8). Fortunately, the Lovász ϑ-function of strongly regular graphs (and their complements,
which are also strongly regular) is known exactly, so there is no need for the lower bound on ϑ(H)
in this case. It is therefore of interest to examine whether the bound in (3.21) can be improved by
using (3.15) in combination with the exact value of ϑ(H) for a strongly regular graph H in the family
srg(p, d, λ, µ). In that case, by Proposition 1 of [43], we have

ϑ(H) = 1 −
d

λmin(H)
, (3.27)

which also gives

ϑ(H) = 1 +
2d√

(λ − µ)2 + 4(d − µ) − λ + µ
, (3.28)

where (3.28) holds by the expression of the smallest eigenvalue of the adjacency matrix of H, as given
by r2 in (3.24). Finally, combining inequality (3.15) with equality (3.28) gives exactly the same bound
as in (3.21). Thus, there is no improvement, and the bound remains identical in both approaches. As a
side note, interested readers are referred to a recent application of (3.28), which provides an alternative
proof of the friendship theorem in graph theory [44].

It is natural to ask the following question:

Question 3. Is there a graph H, apart of K2, for which the bound provided in Proposition 7 is tight for
a largest H-intersecting family of graphs?

We provide a partial reply to Question 3 by comparing the leftmost and rightmost terms in (3.12),
which is equivalent to comparing |E(H)| and χ(H) − 1. According to the inequality

χ(H) ≤ ∆(H) + 1, (3.29)

where ∆(H) is the maximum degree of the vertices in the graph H, it follows that unless H is an
edge, there exists a gap between the size of the graph (|E(H)|) and the chromatic number minus one
(χ(H) − 1). Furthermore, according to Brooks’ theorem, for connected, undirected graphs H that are
neither complete nor odd cycles, the chromatic number satisfies

χ(H) ≤ ∆(H), (3.30)

which provides a tighter bound in comparison to (3.29), further increasing the gap between |E(H)| and
χ(H) − 1 unless H is an edge. It is also noted that the chromatic number satisfies

χ(H) ≤ 1
2

(
1 +

√
1 + 8|E(H)|

)
, (3.31)

with equality if and only if H is a complete graph. This bound follows from the observation that a graph
with chromatic number k must contain at least as many edges as the complete graph on k vertices.
The chromatic number χ(H) cannot therefore exceed the largest integer k satisfying

(
k
2

)
≤ |E(H)|.

Consequently, if |E(H)| , m ≥ 2, then the minimum possible gap between χ(H)−1 and |E(H)| satisfies

|E(H)| −
(
χ(H) − 1

)
≥

⌈
m − 1

2

(√
8m + 1 − 1

)⌉
≥ 1, (3.32)

which tends to infinity as m→ ∞.
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4. Number of graph homomorphisms

This section, composed of two independent parts, applies properties of Shannon entropy to derive
bounds related to the enumeration of graph homomorphisms. It offers additional insight into the
interplay between combinatorial structures and information-theoretic principles.

4.1. An application of the probabilistic version of Shearer’s lemma

The following known result relates the number of cliques of any two distinct orders in a graph.

Proposition 9. Let G be a finite, simple, and undirected graph on n vertices, and let m` be the number
of cliques of order ` ∈ N in G. Then, for all s, t ∈ N with 2 ≤ s < t ≤ n,

(t! mt)s ≤ (s! ms)t. (4.1)

We next suggest a generalization of Proposition 9.

Proposition 10. Let G be a finite, simple, and undirected graph on n vertices, let s, t ∈ Nwith s < t < n,
let T be an induced subgraph of G on t vertices, and let m(H,G) denote the number of copies of a
subgraph H in the graph G. Then, (

t! m(T,G)
)s
≤ max

S

(
s! m(S,G)

)t
, (4.2)

where the maximization in (4.2) is taken over all induced subgraphs S of T with s vertices.
Let aut(H) denote the size of the automorphism group of a graph H, defined as the number

of vertex permutations that preserve the graph’s structure, i.e., its adjacency and non-adjacency
relations. Furthermore, let inj(H,G) denote the number of injective homomorphisms from H to G
(i.e., homomorphisms where distinct vertices of H map to distinct vertices of G). Then, equivalently
to (4.2), in terms of injective homomorphism counts,( t!

aut(T)
· inj(T,G)

)s

≤ max
S

( s!
aut(S)

· inj(S,G)
)t

, (4.3)

where the maximization in (4.3) is the same as in (4.2).

Proof.

• Let V(G) = [n], and let T be an induced subgraph of G with |V(T)| = t < n.
• Select a copy of T in G uniformly at random, and then choose a uniform random ordering of

the vertices in that copy. This process produces a random vector (X1, . . . , Xt), representing the
selected order of the vertices.
• Let m(T,G) denote the number of copies of T in G. Then,

H(X1, . . . , Xt) = log
(
t! m(T,G)

)
, (4.4)

as the vertices of each copy of T in G can be ordered in t! equally probable ways.
• Let S be chosen uniformly at random from all subsets of [t] of fixed size s, where 1 ≤ s < t. Then,

Pr[i ∈ S] =
s
t
, ∀ i ∈ [t]. (4.5)
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• By Proposition 3 and equalities (4.4) and (4.5), it follows that

ES
[
H(XS)

]
≥

s
t
· log

(
t! m(T,G)

)
. (4.6)

• The random subvector XS corresponds to a copy, in G, of an induced subgraph S ⊆ T with s
vertices. All s! permutations of the subvector XS correspond to the same copy of S in G, and
there are m(S,G) such copies of S in G.
• The entropy of the random subvector XS therefore satisfies

H(XS) ≤ log
(
s! m(S,G)

)
, (4.7)

where m(S,G) denotes the number of copies of a graph S in G, and s! accounts for the s!
permutations of the vector XS that correspond to the same copy of S in G.
• By (4.7), it follows that

ES
[
H(XS)

]
≤ max

S
log

(
s! m(S,G)

)
, (4.8)

where the maximization on the right-hand side of (4.8) is taken over all induced subgraphs S of
T on s vertices.
• Combining (4.6) and (4.8) yields

s
t
· log

(
t! m(T,G)

)
≤ max

S
log

(
s! m(S,G)

)
, (4.9)

and exponentiating both sides of (4.9) gives (4.2).
• The following equality holds:

inj(H,G) = aut(H) m(H,G), (4.10)

since each copy of H in G corresponds to exactly aut(H) distinct injective homomorphisms from
H to G, as its vertices can be labeled in aut(H) different ways. Combining (4.2) and (4.10) yields
inequality (4.3). Furthermore, by (4.10), inequalities (4.2) and (4.3) are equivalent.

�

Remark 6 (Specialization of Proposition 10). Proposition 10 can be specialized to Proposition 9 by
setting T = Kt (a clique of order t), for which every induced subgraph of T on s vertices is a clique S
of order s (S = Ks). In that case, aut(T) = t! and aut(S) = s!. Consequently, the maximization on the
right-hand side of (4.3) is performed over the single graph Ks, which gives

inj(Kt,G)s ≤ inj(Ks,G)t, 1 ≤ s < t < n. (4.11)

By (4.10), we have

inj(Kt,G) = t! mt, (4.12)
inj(Ks,G) = s! ms, (4.13)

where mt and ms denote, respectively, the number of cliques of orders t and s in G. Combining (4.11),
(4.12), and (4.13) then gives

(t! mt)s ≤ (s! ms)t, 1 ≤ s < t < n. (4.14)

This reproduces Proposition 9, which establishes a relationship between the numbers of cliques of two
different orders in a finite, simple, undirected graph G.
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4.2. An entropy-based proof for bounding the number of graph homomorphisms

Perfect graphs are characterized by the property that not only their chromatic and clique numbers
coincide, but also the same coincidence applies to every induced subgraph. The complement of a
perfect graph is perfect as well. Perfect graphs include many important families of graphs such
as bipartite graphs, line graphs of bipartite graphs, chordal graphs, comparability graphs, and the
complements of all these graphs [45].

A complete bipartite graph, denoted by Ks,t for s, t ∈ N, consists of two partite sets of sizes s and t,
where every vertex in one partite set is adjacent to all the vertices in the other partite set. It is in
particular a perfect graph.

In the following, we rely on Proposition 6 to derive an upper bound on the number of
homomorphisms from a perfect graph to a graph. We then rely on properties of Shannon entropy
to derive a lower bound on the number of homomorphisms from any complete bipartite graph to any
bipartite graph, and examine its tightness by comparing it to the specialized upper bound that is based
on Proposition 6.

Proposition 11. Let T and G be simple, finite, and undirected graphs having no isolated vertices, and
suppose that T is also a perfect graph. Then, the number of homomorphisms from T to G satisfies

hom(T,G) ≤
(
2|E(G)|

)ϑ(T)
. (4.15)

Furthermore, let G be a simple bipartite graph having no isolated vertices. Let its partite vertex sets be
of sizes n1 and n2, and let its number of edges be equal to αn1n2 with α ∈ (0, 1]. Then, the number of
homomorphisms from the complete bipartite graph Ks,t to G, where s, t ∈ N, satisfies

αst min{n1, n2}
−|s−t|(n1n2

)max{s,t}
≤ hom(Ks,t,G) ≤

(
2αn1n2

)max{s,t}
. (4.16)

Proof. For a perfect graph T, we have α(T) = ϑ(T) = αf(T) = χ(T), which by (2.22) gives (4.15).
We next prove the rightmost inequality in (4.16). Every bipartite graph is a perfect graph, so it

follows that α(Ks,t) = ϑ(Ks,t) = αf(Ks,t) = χ(Ks,t). The independence number of the complete bipartite
graph Ks,t is the size of the largest among its two partite vertex sets, so α(Ks,t) = max{s, t}. Similarly, the
complement graph Ks,t = Ks ∪Kt is the disjoint union of the complete graphs Ks and Kt, so its chromatic
number is given by χ(Ks,t) = max{s, t}. Consequently, ϑ(Ks,t) = max{s, t}, whose substitution into the
right-hand side of (4.15), along with |E(G)| = αn1n2 where α ∈ (0, 1] (by assumption), gives the
rightmost inequality in (4.16).

We finally prove the leftmost inequality in (4.16). LetU andV denote the partite vertex sets of the
simple bipartite graph G, where |U| = n1 and |V| = n2. Let (U,V) be a random vector taking values in
U ×V, and distributed uniformly at random on the edges of G. Then, its entropy is given by

H(U,V) = log
∣∣∣E(G)

∣∣∣
= log(αn1n2). (4.17)

The random vector (U,V) can be sampled by first sampling U = u from the marginal probability mass
function (PMF) of U, denoted by PU , and then sampling V from the conditional PMF PV |U(·|u). We
next construct a random vector (U1, . . . ,Us,V1, . . . ,Vt) as follows:
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• Let V1, . . . ,Vt be conditionally independent and identically distributed (i.i.d.) given U, having the
conditional PMF

PV1,...,Vt |U(v1, . . . , vt|u) =

t∏
j=1

PV |U(v j|u), ∀ u ∈ U, (v1, . . . , vt) ∈ V t. (4.18)

• Let U1, . . . ,Us be conditionally i.i.d. given (V1, . . . ,Vt), having the conditional PMF

PU1,...,Us |V1,...,Vt(u1, . . . , us|v1, . . . , vt)

=

s∏
i=1

PUi |V1,...,Vt(ui|v1, . . . , vt), ∀ (u1, . . . , us) ∈ U s, (v1, . . . , vt) ∈ V t, (4.19)

where the conditional PMFs on the right-hand side of (4.19) are given by

PUi |V1,...,Vt(u|v1, . . . , vt)

=

PU(u)
t∏

j=1
PV |U(v j|u)

∑
u′∈U

{
PU(u′)

t∏
j=1

PV |U(v j|u′)
} , ∀ u ∈ U, (v1, . . . , vt) ∈ V t, i ∈ [s]. (4.20)

By the construction of the random vector (U1, . . . ,Us,V1, . . . ,Vt) in (4.18)–(4.20), the following holds:

1. The random variables U1, . . . ,Us are identically distributed, and Ui ∼ U (i.e., PUi = PU) for all
i ∈ [s]. Indeed, it first follows from (4.18) that

PV1,...,Vt(v1, . . . , vt) =
∑
u∈U

{
PU(u)

t∏
j=1

PV |U(v j|u)
}
∀ (v1, . . . , vt) ∈ V t. (4.21)

Hence, for all i ∈ [s] and u ∈ U,

PUi(u) =
∑

(v1,...,vt)∈V t

{
PUi |V1,...,Vt(u|v1, . . . , vt) PV1,...,Vt(v1, . . . , vt)

}
(4.22)

=
∑

(v1,...,vt)∈V t

{
PU(u)

t∏
j=1

PV |U(v j|u)
}

(4.23)

= PU(u)
t∏

j=1

{∑
v j∈V

PV |U(v j|u)
}

(4.24)

= PU(u), (4.25)

where (4.22) holds by Bayes’ rule; (4.23) holds by combining (4.20) and (4.21); (4.24) holds by
expressing the outer t-dimensional summation overV t as the product of t inner one-dimensional
summations over V, due to the product form on the right-hand side of (4.23), and finally (4.25)
holds since the conditional probability masses in each inner summation on the right-hand side
of (4.24) add to 1.
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2. For all i ∈ [s] and j ∈ [t], we have (Ui,V j) ∼ (U,V), and further (Ui,V1, . . . ,Vt) ∼ (U,V1, . . . ,Vt).
Indeed, combining (4.18), (4.20), and (4.21) yields (by another application of Bayes’ rule)

PUi,V1,...,Vt(u, v1, . . . , vt) = PU(u)
t∏

j=1

PV |U(v j|u)

= PU,V1,...,Vt(u, v1, . . . , vt), ∀ u ∈ U, (v1, . . . , vt) ∈ V t, i ∈ [s]. (4.26)

Then, a marginalization of (4.26) by summing over all (v1, . . . , v j−1, v j+1, . . . , vt) ∈ V t−1 gives

PUi,V j(u, v) = PU,V(u, v), ∀ i ∈ [s], j ∈ [t], u ∈ U, v ∈ V. (4.27)

The joint entropy of the random subvector (U1,V1, . . . ,Vt) then satisfies

H(U1,V1, . . . ,Vt) = H(U1) +

t∑
j=1

H(V j|U1) (4.28)

= H(U) + t H(V |U) (4.29)
= t H(U,V) − (t − 1) H(U) (4.30)
= t log(αn1n2) − (t − 1) H(U) (4.31)
≥ t log(αn1n2) − (t − 1) log n1 (4.32)
= log(αtn1nt

2), (4.33)

where (4.28) holds by the chain rule of Shannon entropy, since (by construction) V1, . . . ,Vt are
conditionally independent given U (see (4.18)) and also since (U1,V1, . . . ,Vt) ∼ (U,V1, . . . ,Vt)
(see (4.26) with i = 1); (4.29) relies on (4.27); (4.30) holds by a second application of the chain
rule; (4.31) holds by (4.17), and finally (4.32) follows from the uniform bound, which states that
if X is a discrete random variable supported on a finite set S, then H(X) ≤ log |S|. In this case,
H(U) ≤ log |U| = log n1. Consequently, the joint entropy of the random vector (U1, . . . ,Us,V1, . . . ,Vt)
satisfies

H(U1, . . . ,Us,V1, . . . ,Vt) = H(V1, . . . ,Vt) +

s∑
i=1

H(Ui|V1, . . . ,Vt) (4.34)

= H(V1, . . . ,Vt) + s H(U1|V1, . . . ,Vt) (4.35)

= s
[
H(V1, . . . ,Vt) + H(U1|V1, . . . ,Vt)

]
− (s − 1) H(V1, . . . ,Vt)

= s H(U1,V1, . . . ,Vt) − (s − 1) H(V1, . . . ,Vt) (4.36)
≥ s log(αtn1nt

2) − (s − 1) H(V1, . . . ,Vt) (4.37)
≥ s log(αtn1nt

2) − (s − 1) log(nt
2) (4.38)

= log(αstns
1nt

2), (4.39)

where (4.34) holds by the chain rule and since (by construction) the random variables U1, . . . ,Us are
conditionally independent given V1, . . . ,Vt (see (4.19)); (4.35) holds since, by construction, all the Ui’s
(i ∈ [s]) are identically conditionally distributed given (V1, . . . ,Vt) (see (4.20)); (4.36) holds by another
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use of the chain rule; (4.37) holds by (4.33), and finally (4.38) holds by the uniform bound which
implies in this case that H(V1, . . . ,Vt) ≤ log(|V| t) = log(nt

2).
The vector (U1, . . . ,Us,V1, . . . ,Vt) is in one-to-one correspondence with a homomorphism from Ks,t

to G. To that end, label the vertices of the complete bipartite graph Ks,t by the elements of [s+ t], where
the vertices of the partite set of size s are labeled by the elements of [s], and the vertices of the second
partite set (of size t) are labeled by the elements of {s + 1, . . . , s + t}. Then, for all i ∈ [s] and j ∈ [t],
map each edge {i, i + j} ∈ E(Ks,t) to {Ui,V j} ∈ E(G). This gives a homomorphism Ks,t → G since
{Ui,V j} ∈ E(G) holds by construction, see (4.20), where PUV is uniformly distributed over the edges
of the graph G, PU is the marginal PMF of U, and PV |U is the conditional PMF of V given U. By the
uniform bound, it then follows that

H(U1, . . . ,Us,V1, . . . ,Vt) ≤ log hom(Ks,t,G). (4.40)

Combining (4.39) and (4.40) yields

hom(Ks,t,G) ≥ αstns
1nt

2. (4.41)

The right-hand side of (4.41) is not necessarily symmetric in n1 and n2 (or in s, t ∈ N). Consequently,
swapping either n1 and n2 (or s and t) gives

hom(Ks,t,G) ≥ max
{
αstns

1nt
2, α

stnt
1ns

2

}
= αst min{n1, n2}

min{s,t} max{n1, n2}
max{s,t}

= αst min{n1, n2}
min{s,t}−max{s,t} (n1n2)max{s,t}

= αst min{n1, n2}
−|s−t| (n1n2)max{s,t}, (4.42)

which proves the leftmost inequality in (4.16). �

Setting s = t in Proposition 11 gives the following.

Corollary 3. Let G be a bipartite graph without isolated vertices, let its partite vertex sets be of sizes
n1 and n2, and let its number of edges be equal to αn1n2 with α ∈ (0, 1]. Then,

αs2
(n1n2)s ≤ hom(Ks,s,G) ≤ (2α)s(n1n2)s. (4.43)

Consequently, for a fixed α ∈ (0, 1), it follows from (4.43) that the number of homomorphisms from
the complete bipartite graph Ks,s to G scales like (n1n2)s.
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