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Abstract: This paper addresses the problem of ensuring finite-time synchronization for fractional-
order heterogeneous dynamical networks via aperiodic intermittent control, where uncertain impulsive
disturbances are introduced at the instants triggered by the control actions applied to the system.
Under aperiodic time-triggered and event-triggered intermittent control, a Lyapunov function iteration
method, based on the traditional Lyapunov method, was developed to analyze the criteria for finite-time
synchronization. Several sufficient conditions were proposed to ensure finite-time synchronization.
First, within the framework of finite-time and time-triggered control, the relationship between the
control period width, impulsive disturbances, and configuration control parameters was established
to guarantee finite-time synchronization. Second, an event-triggered mechanism was introduced into
the intermittent control, where the sequence of impulsive disturbance instants was determined by a
pre-designed trigger threshold. The relationship between impulsive disturbances, the event-triggered
threshold, and the control period width was established. These two relationships can potentially
increase the flexibility of the designed control periods and control width. Moreover, the Zeno
phenomenon can be eliminated in the event-triggered mechanism. Finally, two simulations were
presented to illustrate the feasibility and effectiveness of the theoretical results.
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1. Introduction

Complex dynamical networks (CDNs), composed of numerous interconnected nodes, have been
extensively used to model various large-scale real-world systems, such as social networks, the internet,
multiagent networks, power grids, and communication networks [1–3]. It is important to note that most
existing research results on the dynamics of CDNs are concentrated on integer-order systems. In fact,
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many real-world systems are often modeled as fractional-order systems, such as heat conduction [4],
biological systems [5], viscoelastic systems [6], electromagnetic wave systems [7], and quantitative
finance [8], etc. Thus, incorporating fractional-order calculus into CDNs can better characterize and
reveal the properties of real-world complex systems.

Impulse is ubiquitous in real life and is widely used in nanoscale electronic circuits, secure
communications, population dynamics [9–11], etc. It describes the phenomenon that the state of
system changes suddenly at certain specific moments and has attracted widespread attention. Although
impulses have a positive effect on the synchronization of fractional-order dynamical networks
(FODNs) [12–15], they may interfere with data transmission and cause oscillations as a negative effect
in the dynamical process of the system, which are some common phenomena in physics [14, 15]. In
other words, impulsive effects can either strengthen or weaken network synchronization, and they can
even destroy it. Since FODNs may experience transient perturbations or sudden changes under certain
circumstances, considering the impulsive effect in FODNs can make the model more meaningful in
practical application.

Synchronization, as a representative collective behavior, is the most important dynamic behavior
of FODNs. Since many FODNs cannot achieve synchronization by themselves, appropriate control
strategies are required to achieve the goal [16–18]. Intermittent control is a discontinuous control
strategy that has garnered increasing attention since it was first proposed. In practical applications
such as aircraft control, spacecraft orbit adjustments, wind power management, and windshield wiper
control, continuous system control is often unnecessary, which makes intermittent control particularly
important [19–21]. In fact, intermittent control consists of alternating periods of “working time”
(when the controller is active) and “rest time” (when the controller is inactive). During each working
time, the controller is operational, while it remains off during the rest time. This method allows
control signals to be input into the system at fixed time intervals, thereby reducing control cost
and extending the service life of the control equipment [22–26]. Furthermore, intermittent control
can be categorized into periodic intermittent control (PIC) [19, 21, 25, 26] and aperiodic intermittent
control (APIC) [20, 22–24, 27, 28] based on whether the control instants and periods are fixed.
In [26], different from the traditional Mittag-Leffler function repeated iteration method, the authors
proposed a novel fractional-order exponent differential inequality. Additionally, by designing a set
of intermittent control strategies, sufficient conditions were established to ensure that the FODNs can
achieve finite-time synchronization (FTS). However, the control interval and rest interval are fixed
in periodic intermittent control, which may lead to conservative conditions. Therefore, in practical
engineering applications, such as vehicle control and wind power generation, strict requirements for
periodicity may be unreasonable. With regards to this, APIC is introduced to improve flexibility and
applicability. The APIC enables the versatile development of control strategies with variable control
periods and widths, demonstrating remarkable stability even in the presence of parameter uncertainties.
In [24], the problem of quasi-synchronization for fractional-order dynamical networks with aperiodic
intermittent pinning control was considered and the exponential convergence rate and error bound
of quasi-synchronization were estimated. In [27, 28], the stabilization problem of nonlinear systems
subjected to impulsive disturbance is investigated via aperiodic intermittent control.

Time-triggered control (TTC) is a traditional control strategy used in engineering and control
systems. It relies on predetermined time intervals for sampling and control updates. This method
has excellent control accuracy in the steady-state stage, but lacks flexibility and intelligent monitoring
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capabilities. It cannot adjust the sampling frequency and control signals according to the actual
operating conditions of the system, resulting in excessive resource consumption and communication
burden [29–31]. For example, in a drone operating system, continuous time-triggered sampling can
lead to excessive and unnecessary data transmission, resulting in inefficient use of power resources.
To solve these problems, event-triggered control (ETC) has emerged as an innovative discontinuous
control strategy. ETC means that the control signal is updated only at discrete moments triggered
by specific events, which offers substantial advantages in reducing communication load and saving
energy [32–35]. However, since the control signal still needs to be input into the system at the
time of event triggering, it may still lead to a certain waste of resources. To further optimize
resource utilization, event-triggered intermittent control (ETIC) combines the advantages of ETC and
intermittent control. The ETIC strategy activates the control signal only during the necessary time
period under specific conditions, reducing unnecessary control overhead. ETIC has demonstrated its
effectiveness in stabilization and synchronization problems of complex dynamical networks. In [33],
the authors improved the constraints on control width and minimum average control width in ETIC,
and proposed an ETIC based on state control width.

Within the finite-time framework, researchers have begun focusing on different forms of stability
problems. On one hand, some studies are dedicated to exploring special asymptotic stability and
synchronization, where the system’s trajectory gradually converges to an equilibrium point, as seen
in the works of [36, 37]. On the other hand, some studies have focused on finite time stability and
synchronization, which requires that the system trajectory does not exceed a predefined threshold
greater than an initial threshold in a finite-time. Up to now, there have been many distinguished
theoretical results for finite-time stability in [27,28,32]. In fact, the finite-time synchronization study of
fractional-order heterogeneous dynamic networks (FOHDNs), especially those subjected to impulsive
disturbance, faces many difficulties and challenges. First, extensive research has been conducted on
FTS in complex dynamic network models where the coupled nodes have identical intrinsic dynamics,
as referenced in [38, 39]. However, the heterogeneity in the topology of coupled nodes disrupts the
overall state of the system, making finite-time synchronization in heterogeneous neural networks more
challenging.

FTS of heterogeneous dynamical networks is a challenging problem because the heterogeneity
of the topological structures of the coupled nodes can corrupt the state of the system [16, 27, 40].
Second, under the framework of a time-triggered and event-triggered mechanism, how to establish
the potential relationship between aperiodic control periods, aperiodic control widths, and control
parameters is crucial for increasing the freedom of the designed control periods and control widths.
Finally, considering the beginning stage of each control period as an impulsive instant, and how to
restrain the influence of impulsive interference by designing aperiodic intermittent control (AIC) also
have theoretical and practical significance.

Motivated by the discussion above, the main contributions of this paper can be summarized as
follows:
• Different from the synchronization of isomorphic complex dynamic networks discussed in [16,

23,26,38], this paper discusses the synchronization of heterogeneous dynamic networks in finite time,
and this network model has a wider application in reality.
• The relationship between impulsive intensity, aperiod control widths, and control parameters is

established on the premise of ensuring the synchronization in finite time between the heterogeneous
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dynamical networks with impulsive disturbance and the target node, which is conducive to adjusting
the width of each control period and control parameters according to the impulsive intensity.
• Combining the advantages of event-triggered and intermittent control in saving resources and

reducing communication burden, an ETIC is designed to ensure the finite-time synchronization of the
system.

The rest of this paper is organized as follows. Section 2 provides an introduction to useful lemmas,
definitions, and the system model. In Section 3, the main results of this paper are obtained. Section 4
provides two numerical examples to verify the theoretical results above. Finally, some conclusions are
drawn in Section 5.

To facilitate understanding, see Table 1 for the symbols used in this article.

2. Preliminaries and model description

This section introduces the notations, essential lemmas, fundamental concepts of the Caputo
fractional derivative, and the model for FOHDNs.

2.1. Notation

See Table 1.

Table 1. List of symbols.

Symbols Representative meaning
R+ The positive real numbers
R The real numbers
Rl The l-dimensional Euclidean space
Rl×r The r × l real matrices
Z+ The set of positive integer numbers
The superscripts > and −1 The transpose and the inverse of a matrix
Ir ∈ R

r×r The r-dimensional identity matrix
diag (η1, η2, . . . , ηr) ∈ Rr×r The diagonal matrix
A1 ⊗ A2 The “kronecker” product of matrices A1 and A1

Cn([t0,+∞],R) The set consisting of all
n-order continuously differential functions

A vector x ∈ Rr ‖x‖ =
√

x>x
A matrix Ā ∈ Rr×r ‖Ā‖ =

√
λmax(Ā>Ā)

i ∈ Nn
1 i = 1, 2, . . . , n

2.2. Preliminaries

Definition 1. [4] Let H(t) ∈ Cn([t0, t],R), η > 0, and Γ(·) be the gamma function. The Riemann-
Liouville fractional-order integral is defined as

t0 Iηt H(t) =
1

Γ(η)

∫ t

t0
(t − s)η−1H(s)ds, t ≥ t0.
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Definition 2. [4] The Caputo fractional derivative of order η for a function H(t) is defined by

c
t0 Dη

t H(t) =
1

Γ(n − η)

∫ t

t0
(t − s)n−η−1H(n)(s)ds,

where t ≥ t0 and n is a positive integer such that n − 1 < η < n. Particularly, when 0 < η < 1,

c
t0 Dη

t H(t) =
1

Γ(1 − η)

∫ t

t0
(t − s)−ηH′(s)ds.

It is widely recognized that fractional-order systems with Caputo derivatives have initial conditions
similar to those of integer-order systems, making them more suitable for engineering applications.
Thus, this paper focuses on the analysis of Caputo derivatives. For simplicity, we can replace c

t0 Dη
t with

Dη.
Assumption 1. For the nonlinear function f (·) , there exist a positive constant li j such that

| fi(u) − fi(v)| ≤
n∑

j=1

li j|u j − v j|,

where u = (u1, u2, . . . , un)>, v = (v1, v2, . . . , vn)>, i ∈ Nn
1. The means that ‖ f (u)− f (v)‖ ≤ L f ‖u− v‖ with

L f = ‖L̄‖, L̄ = (li j)n×n, see [23, 24, 26] and the references therein.
Assumption 2. Suppose Assumption 1 holds, and there exist constants βi > 0, i ∈ NN

1 , such that

‖Υi(s(t))‖ = ‖(Ai − A)s(t) − (Bi − B) f (s(t))‖ ≤ βi.

Lemma 1. [30] Suppose thatV(t) ∈ C1([t0, t],R) is a continuously differentiable function, and satisfies

DηV(t) ≤ βV(t) + γ,

where β and γ are constants. Then,

V(t) ≤
(
V(0) +

γ

β

)
exp

[
β

Γ(η + 1)
(t − t0)η

]
−
γ

β
.

Lemma 2. [28] For matrix E, which is symmetric and positive, it is assumed that there exist constant
ξ > 0 such that

2UV> ≤ ξU>EU + ξ−1V>V, U,V ∈ Rn.

Lemma 3. [24] Let H(t) ∈ Cn([t0, t],R) and P ∈ Rn×n be a positive definite matrix. Then,

c
t0 Dη

t
(
H>(t)PH(t)

)
≤ 2H>(t)Pc

t0 Dη
t H(t).

Lemma 4. [24] Consider the following matrix inequality:(
A(z) B(z)
B>(z) C(z)

)
< 0

where A(z) = A>(z) and C(z) = C>(z). This inequality is equivalent to either of the following two
conditions:

(i) A(z) < 0, C(z) − B>(z)A−1(z)B(z) < 0.
(ii) C(z) < 0, A(z) − B(z)C−1(z)B>(z) < 0.
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2.3. Model description

Consider the following class of fractional-order dynamical networks (FODNs), which is composed
of N nonidentical nodes:

c
0Dη

t xi(t) = Aixi(t) + Bi f (xi(t)) + σ

N∑
j=1

ci jΓx j(t) + ui(t), t ≥ 0, (2.1)

where 0 < η < 1, xi(t) = (xi1(t), . . . , xin)> ∈ Rn is the ith node-state vector, ui(t) delegates the
control input, f (xi(t)) = ( f1 (xi(t)) , f2 (xi(t)) , . . . , fn (xi(t)))> ∈ Rn signifies a nonlinear continuous
vector-valued function, Ai and Bi are constant matrix, σ > 0 delegates the coupling strength, and
Γ = diag (γ1, γ2, . . . , γn) > 0 represents the inner coupling matrices. xi(0) = x0

i ∈ R
n is the initial

values of the ith node. C =
(
ci j

)
N×N

is the outer coupling matrices of the network topology. If the
jth node and then ith node have a connection ( j , i), the ci j > 0 and otherwise ci j = 0. Specially,
cii = −

∑N
j=1, j≥i ci j.

Let s(t) ∈ Rn be the target trajectory, whose dynamics are given as follows:

c
0Dη

t s(t) = As(t) + B f (s(t)), t ≥ 0, (2.2)

where A , Ai and B , Bi are heterogeneous constant matrices, i.e., isolated node (2.2) has different
system parameters from each coupled node in the FODN (2.1). In other words, there are parameter
mismatches between FODN (2.1) and system (2.2). In this paper, we assume that the target trajectory
s(t) is bounded. That is, for any initial conditions s(0) ∈ Rn, there exist a positive scalar M̂ and a time
instant T , such that ‖s(t)‖ ≤ M̂ for all t ≥ T .

Let ei(t) = xi(t) − s(t). The error system can be derive as

c
t0 Dη

t ei(t) = Aiei(t) + Bi f̃ (ei(t)) + Υi(s(t)) + σ

N∑
j=1

ci jΓe j(t) + ui(t), (2.3)

where ē(t) = (e1(t), . . . , eN(t))>, ei(t) = (ei1(t), . . . , ein(t))>, f̃ (ei(t)) = f (xi(t)) − f (s(t)), i ∈ NN
1 , and

Υi(s(t)) = (Ai − A)s(t) + (Bi − B) f (s(t)). The initial condition is given as ē(0) = φe, φe ∈ R
N×n.

Due to the presence of parameter mismatches between the systems, achieving stabilization in finite
time of error system (2.3) becomes challenging. Therefore, the objective of this paper is to develop
the effective control schemes that ensure finite-time stabilization of (2.3). The definition of FTS is
provided as follows.
Definition 3. We are given three positive constants T , µ1, and µ2 with 0 < µ1 < µ2. System (2.3)
is said to be finite-time stabilization with respect to (w.r.t.)(T, µ1, µ2). If ‖φe‖ ≤ µ1, this implies that
‖ē(t)‖ ≤ µ2, for all t ∈ [0,T ].
Remark 1. It is important to highlight that µ1, µ2, and T are all predetermined for the respective
problems. Finite-time stabilization delegates the scenario where the system’s initial state is confined
within a predefined bound and will eventually reach a specified bound within a finite time, which
depicts the boundedness of the system. The trajectory of finite-time stabilization is depicted in Figure 1.
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Figure 1. FST w.s.t. (T, µ1, µ2).

Design AIC as:

ui(t) =

 − Kiei(t), t ∈ [tk, tk + δk),
0, t ∈ [tk + δk, tk+1),

(2.4)

where Ki, i ∈ NN
1 represents the control gain matrix, tk is the kth instant of the impulsive instant, and

tk+1 is the next event impulsive instant. δk signifies the width of each control interval and satisfies
0 < δk ≤ tk+1 − tk, k ∈ N+.

Then, under AIC (2.4), system (2.3) can be converted into the following form:


Dηei(t) = Aiei(t) + Bi f̃ (ei(t)) + Υi(s(t)) + σ

N∑
j=1

ci jΓe j(t) − Kiei(t), t ∈ [tk, tk + δk),

Dηei(t) = Aiei(t) + Bi f̃ (ei(t)) + Υi(s(t)) + σ

N∑
j=1

ci jΓe j(t), t ∈ [tk + δk, tk+1).

(2.5)

It can be observed that the controller operates only within the control intervals, with no input
information being transmitted during the remaining intervals. This implies that system (2.5) alternates
between closed loop and open loop control. Additionally, considering that the state of system (2.5) may
suddenly change at certain instants due to input noise, measurement errors, and uncertainties, resulting
in an impulsive phenomenon, we regard this as impulsive disturbance. Therefore, the system (2.5)
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under impulsive disturbance can be described as follows:

Dηei(t) = Aiei(t) + Bi f̃ (ei(t)) + Υi(s(t)) + σ

N∑
j=1

ci jΓe j(t) − Kiei(t), t ∈ [tk, tk + δk)

ei(tk) = Jei(t−k ), t = tk,

Dηei(t) = Aiei(t) + Bi f̃ (ei(t)) + Υi(s(t)) + σ

N∑
j=1

ci jΓe j(t), t ∈ [tk + δk, tk+1),

(2.6)

where J delegates the impulsive gain matrix and the state variable ei(t) of system (2.6) is supposed to
be right continuous. The sequence {tk}

∞
k=1 satisfies 0 = t0 < t1 < · · · < tk < · · · and limk→∞ tk = ∞.

3. Main results

In this section, we explore the sufficient conditions required to ensure that systems (2.1) and (2.2)
achieve finite-time synchronization. We primarily introduce two types of aperiodical intermittent
control strategies: one is time-triggered, and the other is event-triggered.

3.1. Finite-time synchronization via time-triggered intermittent control

For convenience, we denote the following notations. For i, j ∈ NN
1 , let A = diag (A1, A2, . . . , AN),

B = diag (B1, B2, . . . , BN), C =
(
c̃i j

)
N×N

, c̃i j =

{
ci j‖Γ‖, i , j

ciiλmin(Γ), i = j
. In addition, denote K =

diag(k1, k2 . . . , kN , ), Â = A +A>, B̂ = BB>, Ĉ = C + C>.
Theorem 1. Suppose that Assumptions 1 and 2 hold and the positive constants ρ1, ρ2, %1, %2, µ1, µ2,
ξ1, ξ2 with %1

ρ1
< µ1 < µ2, %1 = %2, and α ≥ 1 satisfy

(a) π1IN + σĈ − 2K + ρ1IN ≤ 0,

(b) π1IN + σĈ − ρ2IN ≤ 0,

(c) (ρ1Θ̃
η − ρ2Θ̂

η) ≥
lnα

Γ(η + 1)
,

(d) Ω(k) ≥ µ2
1 − µ

2
2,

(3.1)

where
π1 = λmax(i),

i = (IN ⊗ In) Â + ξ1 (IN ⊗ In) B̂ +
(
ξ−1

1 L2
f + ξ2

)
(IN ⊗ In) .

In addition, L f = ‖L̄‖ with L̄ = (li j)N×N , α = λmax
(
J>J

)
, %1 = %2 = ξ−1

2 β̃, β̃ =
∑N

i=1 βi. k delegates
the number of control periods on (0,T ],T , tk. Then, systems (2.6) is finite-time stabilization
w.r.t (T, µ1, µ2), that is, system (2.1) and (2.2) can achieve finite-time synchronization under aperiodic
time-triggered intermittent control and impulsive disturbance w.r.t (T, µ1, µ2).
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Proof. Let ē(t) = ē(t, 0, φe), φe ∈ R
N×n, be the solution of (2.6). For 0 < ‖ē(0)‖ ≤ µ1, consider the

Lyapunov candidate function:

V(ē(t)) =

N∑
i=1

e>i (t)ei(t) = ē>(t)(IN ⊗ In)ē(t) = ‖ē(t)‖2. (3.2)

For t = tk, we have

V(ē(t)) =

N∑
i=1

e>i (tk)ei(tk) =

N∑
i=1

e>i (t−k )J>Jei(t−k ) = ē>(t−k )
(
J>J

)
ē(t−k ) ≤ αV(t−k ). (3.3)

For t , tk, when t ∈ [tk, tk + δk), we have

c
tk D

η
tV(ē(t)) ≤ 2

N∑
i=1

e>i (t)c
tk D

η
t ei(t)

= 2
N∑

i=1

e>i (t)

Aiei(t) + Bi f̃ (ei(t)) + Υi(s(t)) + σ

N∑
j=1

ci jΓe j(t) − Kiei(t)


= 2

N∑
i=1

e>i (t)
(
Aiei(t) + Bi f̃ (ei(t))

)
+ 2

N∑
i=1

e>i (t)Υi(s(t))

+ 2σ
N∑

i=1

N∑
j=1

ci je>i (t)Γe j(t) − 2
N∑

i=1

Kie>i (t)ei(t)

= V1(ē(t)) +V2(ē(t)) +V3(ē(t)) +V4(ē(t)).

(3.4)

According to Lemma 2 and Assumption 1, there exists ξ1 > 0 which satisfies,

V1(ē(t)) = 2
N∑

i=1

e>i (t)
(
Aiei(t) + Bi f̃ (ei(t))

)
≤

N∑
i=1

e>i (t)
(
(Ai − Ki) + (Ai − Ki)>

)
ei(t) + ξ1

N∑
i=1

e>i (t)BiB>i ei(t)

+ ξ−1
1

N∑
i=1

f̃ >(ei(t)) f̃ (ei(t))

≤

N∑
i=1

e>i (t)
(
(Ai − Ki) + (Ai − Ki)>

)
ei(t) + ξ1

N∑
i=1

e>i (t)BiB>i ei(t)

+ ξ−1
1

N∑
i=1

L2
f e
>
i (t)ei(t)

= ē>(t)
(
(IN ⊗ In)

(
(A−K) + (A−K)>

)
+ ξ1(IN ⊗ In)BB> + ξ−1

1 (IN ⊗ In)L2
f

)
ē(t).

(3.5)
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From Lemma 2 and Assumption 2, there exists ξ2 > 0 such that

V2(ē(t)) = 2
N∑

i=1

e>i (t)Υi(s(t))

≤ ξ2

N∑
i=1

e>i (t)ei(t) + ξ−1
2

N∑
i=1

Υ−1
i (s(t))Υ−1

i (s(t))

≤ ξ2ē>(t)(IN ⊗ In)ē(t) + ξ−1
2

N∑
i=1

βi.

(3.6)

Since ci j ≥ 0 (i , j) and cii = −
∑N

j=1, j,i ci j, i, j ∈ NN
1 , we have

V3(ē(t)) = 2σ
N∑

i=1

N∑
j=1

e>i (t)Γe j(t)

= 2σ
N∑

i=1

ciie>i Γei(t) + 2σ
N∑

i=1

N∑
j=1,i, j

ci je>i Γei(t)

≤ 2σ
N∑

i=1

ciiλmax(Γ)e>i ei(t) + 2σ
N∑

i=1

N∑
j=1,i, j

ci j‖Γ‖e>i ei(t)

≤ σē>(t)
(
(IN ⊗ In)(C + C>)

)
ē(t).

(3.7)

Recalling the definition of K yields

V4(ē(t)) = −2
N∑

i=1

Kie>i (t)ei(t) = −2ē>(t)K ē(t). (3.8)

Then, combining (3.5)–(3.7), there exist constants ρ1 > 0 and %1 > 0 such that

c
tk D

η
tV(ē(t)) ≤ ē>(t)

(
(IN ⊗ In)

(
A +A>

)
+ ξ1(IN ⊗ In)BB> + ξ−1

1 (IN ⊗ In)L2
f

)
ē(t)

+ ξ2ē>(t)(IN ⊗ In)ē(t) + ξ−1
2

N∑
i=1

βi + σē>(t)
(
(IN ⊗ In)(C + C>)

)
ē(t) − 2ē>(t)K ē(t)

≤ ē>(t)
(
(IN ⊗ In)

(
A +A> + ξ1BB

> + σ(C + C>) − 2K + ξ−1
1 L2

f + ξ2 + θ1

))
ē(t)

− θ1ē>(t)(IN ⊗ In)ē(t) + ξ−1
2 β̃

= ē>(t)
(
(IN ⊗ In)

(
Â + ξ1B̂ + σĈ − 2K + ξ−1

1 L2
f + ξ2 + ρ1

))
ē(t)

− ρ1ē>(t)(IN ⊗ In)ē(t) + ξ−1
2 β̃

≤ − ρ1V(ē(t)) + %1.

(3.9)

From Lemma 1 and (3.9), we have

V(ē(t)) ≤
(
V(ē(tk)) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
(t − tk)η

]
+
%1

ρ1
, t ∈ [tk, tk + δk). (3.10)
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Similarly, for t ∈ [tk + δk, tk+1), there exist constants ρ2 > 0 and %2 > 0 such that
c
tk D

η
tV(ē(t)) ≤ ē>(t)

(
(IN ⊗ In)

(
A +A> + ξ1BB

> + σ(C + C>) + ξ−1
1 L2

f + ξ2 − ρ2

))
ē(t)

+ ρ2ē>(t)(IN ⊗ In)ē(t) + ξ−1
2 β̃

= ē>(t)
(
(IN ⊗ In)

(
Â + ξ1B̂ + σĈ + ξ−1

1 L2
f + ξ2 − ρ2

))
ē(t)

+ ρ2ē>(t)(IN ⊗ In)ē(t) + ξ−1
2 β̃

= ρ2V(ē(t)) + %2.

(3.11)

In accordance with Lemma 1 and (3.11), when t ∈ [tk + δk, tk+1), one has

V(ē(t)) ≤
(
V(ē(tk)) +

%2

ρ2

)
exp

[
ρ2

Γ(η + 1)
(t − tk)η

]
−
%2

ρ2
, t ∈ [tk, tk + δk). (3.12)

From (3.10), when t ∈ [0, δ0), we have

V(ē(t)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
tη
]

+
%1

ρ1
, (3.13)

and

V(ē(δ0)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
δ
η
0

]
+
%1

ρ1
.

For t ∈ [δ0, t1), we have

V(ē(t)) ≤
(
V(ē(δ0)) +

%2

ρ2

)
exp

[
ρ2

Γ(η + 1)
(t − δ0)η

]
−
%2

ρ2

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
−ρ1δ

η
0 + ρ2(t − δ0)η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
ρ2(t − δη0)
Γ(1 + η)

]
−
%2

ρ2
,

(3.14)

and

V(ē(t−1 )) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
−ρ1δ

η
0 + ρ2(t1 − δ0)η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
ρ2(t1 − δ0)η

Γ(1 + η)

]
−
%2

ρ2
.

For t ∈ [t1, t1 + δ1) and α ≥ 1, we have

V(ē(t) ≤
(
V(ē(t1)) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
(t − t1)η

]
+
%1

ρ1

≤

(
αV(ē(t−1 )) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
(t − t1)η

]
+
%1

ρ1

≤

(
V(ē(0) −

%1

ρ1
)
)

exp
[
lnα +

−ρ1(δη0 + (t − t1)η) + ρ2(t1 − δ0)η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
lnα +

−ρ1(t − t1)η + ρ2(t1 − δ0)η

Γ(η + 1)

]
−

(
%1

ρ1
+
%2

ρ2

)
exp

[
−ρ1(t − t1)η

Γ(η + 1)

]
+
%1

ρ1
,

(3.15)
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and

V(ē(t1 + δ1)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
lnα +

−ρ1(δη0 + δ
η
1) + ρ2(t1 − δ0)η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
lnα +

−ρ1δ
η
1 + ρ2(t1 − δ0)η

Γ(η + 1)

]
−

(
%1

ρ1
+
%2

ρ2

)
exp

[
−ρ1δ

η
1

Γ(η + 1)

]
+
%1

ρ1
.

For convenience, we define the following notations: infk∈N+ (δk) =

Θ̃ and δk is the width of each control interval. supk∈N+ (tk+1 − tk − δk) = Θ̂ and tk+1 − tk −

δk is the width of each non-control interval. In addition, Tk = tk+1− tk, T̂ = maxk∈N+ Tk, T̃ = mink∈N+ Tk.

V(ē(t1 + δ1)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
lnα +

−2ρ1Θ̃
η + ρ2Θ̂

η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
lnα +

−ρ1Θ̃
η + ρ2Θ̂

η

Γ(η + 1)

]
−

(
%1

ρ1
+
%2

ρ2

)
exp

[
−ρ1Θ̃

η

Γ(η + 1)

]
+
%1

ρ1
.

For t ∈ [t1 + δ1, t2), we have

V(ē(t)) ≤
(
V(ē(t1 + δ1)) +

%2

ρ2

)
exp

[
ρ2

Γ(η + 1)
(t − t1 − δ1)η

]
−
%2

ρ2

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnα +

−2ρ1Θ̃
η + ρ2(Θ̂η + (t − t1 − δ1)η)

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
lnα +

−ρ1Θ̃
η + ρ2(Θ̂η + (t − t1 − δ1)η)

Γ(η + 1)

]
−

(
%1

ρ1
+
%2

ρ2

)
exp

[
−ρ1Θ̃

η + ρ2(t − t1 − δ1)η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
(t − t1 − δ1)η

Γ(η + 1)

]
−
%2

ρ2
,

(3.16)

and

V(ē(t−2 )) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
lnα +

−2ρ1Θ̃
η + 2ρ2Θ̂

η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
lnα +

−ρ1Θ̃
η + 2ρ2Θ̂

η

Γ(η + 1)

]
−

(
%1

ρ1
+
%2

ρ2

)
exp

[
−ρ1Θ̃

η + ρ2Θ̂
η

Γ(η + 1)

]
+

(
%1

ρ1
+
%2

ρ2

)
exp

[
ρ2Θ̂

η

Γ(η + 1)

]
−
%2

ρ2
.

(3.17)

Let

Ω(k − 1) =

(
%1

ρ1
+
%2

ρ2

) k−1∑
l=0

exp
[
l lnα +

−lρ1Θ̃
η + lρ2Θ̂

η

Γ(η + 1)

] [
exp

(
ρ2Θ̂

η

Γ(η + 1)

)
− 1

]
. (3.18)
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It follows from (3.17) and (3.18) that

V(ē(t−k )) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
(k − 1) lnα +

−kρ1Θ̃
η + kρ2Θ̂

η

Γ(η + 1)

]
+ Ω(k − 1) +

%1

ρ1
. (3.19)

For t ∈ [tk, tk + δk), we have

V(ē(t)) ≤
(
V(ē(tk)) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
(t − tk)η

]
+
%1

ρ1

≤

(
V(αē(t−k )) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
(t − tk)η

]
+
%1

ρ1

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
k lnα +

−ρ1(kΘ̃η + (t − tk)η) + kρ2Θ̂
η

Γ(η + 1)

]
+ Ω(k − 1) exp

[
lnα +

−ρ1(t − tk)η

Γ(η + 1)

]
+
%1

ρ1

and

V(ē(tk + δk)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
k lnα +

−(k + 1)ρ1Θ̃
η + kρ2Θ̂

η

Γ(η + 1)

]
+ Ω(k − 1) exp

[
lnα +

−ρ1Θ̂
η

Γ(η + 1)

]
+
%1

ρ1
.

For t ∈ [tk + δk, tk+1), one obtains

V(ē(t)) ≤
(
V(ē(tk + δk)) +

%2

ρ2

)
exp

[
ρ2

Γ(η + 1)
(t − tk − δk)η

]
−
%2

ρ2

≤

{(
V(ē(0)) −

%1

ρ1

)
exp

[
k lnα +

−(k + 1)ρ1Θ̃
η + kρ2Θ̂

η

Γ(η + 1)

]
+ Ω(k − 1) exp

[
lnα +

−ρ1Θ̂
η

Γ(η + 1)

]
+
%1

ρ1
+
%2

ρ2

}
exp

[
ρ2

Γ(η + 1)
(t − tk − δk)η

]
−
%2

ρ2
,

(3.20)

and

V(ē(t−k+1)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
k lnα +

−(k + 1)ρ1Θ̃
η + (k + 1)ρ2Θ̂

η

Γ(η + 1)

]
+ Ω(k) +

%1

ρ1
.

(3.21)

For t ∈ [tk + δk, tk+1), we have

V(ē(t)) ≤V(ē(tk+1))

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
(k + 1) lnα +

−(k + 1)ρ1Θ̃
η + (k + 1)ρ2Θ̂

η

Γ(η + 1)

]
+ Ω(k) +

%1

ρ1
.

(3.22)
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Then, fromV(ē(0)) > %1
ρ1

and conditions (c) and (d), we have

‖ē(t)‖2 ≤V(ē(t))

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
(k + 1) lnα +

−(k + 1)ρ1Θ̃
η + (k + 1)ρ2Θ̂

η

Γ(η + 1)

]
+ Ω(k) +

%1

ρ1

≤V(ē(0)) + Ω(k)
≤ µ2

2.

which means ‖ē(t)‖ ≤ µ2, and thus, ‖ē(t)‖ ≤ µ2 holds on [0,T ]. Therefore, systems (2.1) and (2.2)
has FTS, that is, systems (2.1) and (2.2) can attain FTS under time-triggered AIC and impulsive
disturbance. The proof is complete.
Remark 2. The authors analyzed the synchronization problem of fractional-order systems based on
the following fractional-order differential inequalities in [21, 24]:

DαV(t) ≤
{
β1V(t), mT ≤ t < mT + δ,m ∈ Z,
β2V(t), mT + δ ≤ t < (m + 1)T,m ∈ Z.

DαV(t) ≤
{
β1V(t) + ω1, tk ≤ t < δk, k ∈ Z,
β2V(t) + ω2, δk ≤ t < tk+1, k ∈ Z.

However, the two intermittent differential inequalities mentioned above cannot guarantee finite-time
synchronization. Theorem 1 of this paper provides a differential inequality that ensures finite-time
synchronization. In addition, literatures [21, 24] employ the function iteration method to address the
periodic intermittent control problem in fractional-order network systems. Compared to traditional
periodic intermittent control results, which use fixed control periods and control widths, Theorem 1
introduces a synchronization criterion based on non-fixed control periods and control widths. This
approach is more versatile and flexible.
Remark 3. Let T̂ = maxk∈N+ Tk and

V(Θ̃) = exp
(
k lnα +

−(k + 1)ρ1Θ̃
η + (k + 1)ρ2(1 − Θ̃)η

Γ(1 + η)

)
,

0 < Θ̃ < 1. We can conclude that V(Θ̃) is a monotonically nonincreasing continuous derivative
function of Θ̃, since V(0) = exp

(
k lnα +

(k+1)ρ2
Γ(1+η)

)
> 1 and

V(1) = exp
(
k lnα +

−(k + 1)ρ1

Γ(1 + η)

)
< 1.

Based on the intermediate value theorem, there exist 0 < Θ̃∗ < 1 such that V(Θ̃∗) = 1, where v∗ =

sup
{
0 < Θ̃∗ < 1|V(Θ̃∗) = 1

}
. Consequently, the condition (c) in (3.1) can be satisfied for any Θ̃ ∈

(Θ̃∗, 1).
Remark 4. It is important to note that if the target trajectory s(t) is bounded and the function f (·)
satisfies the Lipschitz condition, we can always find a positive scalar βi such that Assumption 2
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holds. Especially, when f (0) = 0, one can simply choose βi =
(
‖Ai − A‖ + L f ‖Bi − B‖

)
M̂ to make

Assumption 2 hold for all t ≥ T (s(0)) because ‖ f (s(t))‖ = ‖ f (s(t)) − f (0)‖ ≤ L f ‖s(t)‖ and ‖s(t)‖ ≤ M̂
for all t ≥ T (s(0)). While in the case of f (0) , 0, βi can be set to

(
‖Ai − A‖ + L f ‖Bi − B‖

)
M̂ +

‖Bi − B‖ ‖ f (0)‖ due to the fact that ‖ f (s(t))‖ = ‖ f (s(t)) − f (0) + f (0)‖ ≤ L f ‖s(t)‖ + ‖ f (0)‖.
Remark 5. It is worth noting that conditions (a) and (b) in Theorem 1 make Eqs (3.10) and (3.12)
true, where ρ1 and ρ2 are presented to depict the possible rate of change of system (2.6). Obviously,
when control input is present, system (2.6) exhibits a decreasing trend. However, in the absence of
control input, system (2.6) shows a divergent trend. In summary, stability occurs during the controlled
intervals.
3.2. Finite-time synchronization via event-triggered intermittent control

In this section, to avoid certain resource consumption and reduce the frequency of events triggered,
the aperiodic event-triggered intermittent mechanism is adopted to realize the objective of the FTS.

Let tk be the triggering instant of the state, and the tk+1 is next event triggering instant. The event-
triggered mechanism is defined as follows:

tk+1 =

 inf{t : t ∈ Ξk(tk + δk, tk + ς], if Ξk(tk + δk, tk + ς] , ∅},
tk + ς, if Ξk(tk + δk, tk + ς] = ∅,

(3.23)

where Ξk(tk + δk, t] = {t : t > tk + δk,V(ē(t)) ≥ ϑV(ē(tk + δk))}, δk > 0, ϑ > 1, k ∈ N+. ϑ delegates
threshold value and ς > 0 represent the check-period, which is constant and and usually designed to
be sufficiently large.

The general framework of the event-triggered aperiodic intermittent mechanism is shown in
Figure 2, where ZOH represents a zero-order hold. When t ∈ t ∈ [tk, tk + δk), the event-triggered
controller ui(t) = −Kiei(t) is activated. When t ∈ [tk + δk, tk+1), the event-triggered controller ui(t) = 0
is activated.

Figure 2. FST w.s.t. (T, µ1, µ2).
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Remark 6. In event-triggered mechanism (3.23), ς represents the check-period, which is applied when
Ξk(tk +δk, tk +ς] = ∅, indicating that the event condition does not occur within the check-period. When
the check-period ends, the event-triggered mechanism (3.23) ensures that the control input remains at
the end of the check-period, thus preventing the situation where the event condition cannot be triggered.
Theorem 2. Suppose Assumptions 1 and 2 are established, conditions (a) and (b) in Theorem 1 are
satisfied and there exist positive constant ρ1, ρ2, %1, %2, ξ1, ξ2, µ1, µ2 with %1

ρ1
< µ1 < µ2, ϑ > 1 and

α ≥ 1. If the following conditions are satisfied

(e) 0 < δk ≤ ς − Λ(k),

( f ) ρ1Θ̃
η ≥

lnϑα
Γ(η + 1)

.
(3.24)

Thus, the Zeno phenomenon can be avoided, and system (2.1) can achieve synchronization with
system (2.2) within finite time under the event-triggered mechanism (3.23) and in the presence of
impulsive disturbances.
Proof. For 0 ≤ ‖ē(0)‖ ≤ µ1, assume ē(t) = ē(t, 0, φ) is the solution of system (2.6). According to
Theorem 1, for t = tk, we have

V(ē(t)) =

N∑
i=1

e>i (tk)ei(tk) =

N∑
i=1

e>i (t−k )J>Jei(t−k ) = ē>(t−k )
(
J>(IN ⊗ In)J

)
ē(t−k ) ≤ αV(t−k ). (3.25)

For t , tk, one obtains
V(ē(t)) ≤

(
V(ē(tk)) −

%1

ρ1

)
exp

[
−ρ1

Γ(η + 1)
(t − tk)η

]
+
%1

ρ1
, t ∈ [tk, tk + δk),

V(ē(t)) ≤
(
V(ē(tk)) +

%2

ρ2

)
exp

[
ρ2

Γ(η + 1)
(t − tk)η

]
−
%2

ρ2
, t ∈ [tk, tk + δk).

(3.26)

Then

V(ē(tk+1)) ≤
(
V(ē(tk + δk)) +

%2

ρ2

)
exp

[
ρ2

Γ(η + 1)
(tk+1 − tk − δk)η

]
−
%2

ρ2
. (3.27)

According to (3.23), then δk < tk+1 − tk ≤ ς and the next event will not be triggered until the event
generator function crosses zero, that is

V(ē(tk+1)) ≥ ϑV(ē(tk + δk)). (3.28)

Therefore, combining (3.27) an (3.28), we get

0 <

(Γ(η + 1)
ρ2

)
ln

ϑV(ē(tk + δ)) +
%2
ρ1

V(ē(tk + δ)) +
%2
ρ1


1
η

+ δk ≤ tk+1 − tk ≤ ς. (3.29)

From e in (3.24), let Λ(k) =

[(
Γ(η+1)
ρ2

)
ln

(
ϑV(ē(tk+δ))+ %2

ρ1

V(ē(tk+δ))+ %2
ρ1

)] 1
η

with ϑ > 1, and we have

0 < Λ(k) + δk ≤ tk+1 − tk ≤ ς. (3.30)

AIMS Mathematics Volume 10, Issue 3, 6291–6317.



6307

Thus, the Zeno phenomenon can be excluded.
For t ∈ [tk + δ, tk+1), from event-triggered mechanism (3.23), one obtains

V(ē(t)) ≤ ϑV(ē(tk + δk)). (3.31)

For t ∈ [tk, tk + δ), we have

V(ē(t)) ≤
(
V(ē(tk)) −

%1

ρ1

)
exp

[
−ρ1(t − tk)η

Γ(η + 1)

]
+
%1

ρ1
.

Then, for t ∈ [0, δ0), one has

V(ē(t)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
−ρ1tη

Γ(η + 1)

]
+
%1

ρ1
,

and

V(ē(δ0)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
−ρ1δ

η
0

Γ(η + 1)

]
+
%1

ρ1
.

For t ∈ [δ0, t1), we have

V(ē(t)) ≤ ϑV(ē(δ0)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑ +

−ρ1δ
η
0

Γ(η + 1)

]
+
ϑ%1

ρ1
,

and

V(ē(t−1 )) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑ +

−ρ1δ
η
0

Γ(η + 1)

]
+
ϑ%1

ρ1
.

For t ∈ [t1, t1 + δ1), we have

V(ē(t)) ≤
(
αV(ē(t−1 )) −

%1

ρ1

)
exp

[
−ρ1(t − t1)η

Γ(η + 1)

]
+
%1

ρ1

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑα +

−ρ1(δη0 + (t − t1)η)
Γ(η + 1)

]
+ (αϑ − 1)

%1

ρ1
exp

[
−ρ1(t − t1)η

Γ(η + 1)

]
+
%1

ρ1

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑα +

−ρ1(δη0 + (t − t1)η)
Γ(η + 1)

]
+
%1

ρ1
,

and

V(ē(t1 + δ1)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑα +

−2ρ1Θ̃
η

Γ(η + 1)

]
+
%1

ρ1
.

For t ∈ [t1 + δ1, t2), we have

V(ē(t)) ≤ ϑV(ē(t1 + δ1))

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑ2α +

−2ρ1Θ̃
η

Γ(η + 1)

]
+
ϑ%1

ρ1
,
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and
V(ē(t−2 )) ≤ ϑV(ē(t1 + δ1))

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑ2α +

−2ρ1Θ̃
η

Γ(η + 1)

]
+
ϑ%1

ρ1
.

By mathematical induction, for t ∈ [tk + δk, tk+1), we have

V(ē(t)) ≤ θV(ē(tk + δk))

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑk+1αk +

−(k + 1)ρ1Θ̃
η

Γ(η + 1)

]
+
ϑ%1

ρ1

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑk+1αk +

−(k + 1)ρ1Θ̃
η

Γ(η + 1)

]
+
%1

ρ1
,

which implies

V(ē(t)) ≤
(
V(ē(0)) −

%1

ρ1

)
exp

[
ln(ϑα)k+1 +

−(k + 1)ρ1Θ̃
η

Γ(η + 1)

]
+
%1

ρ1
.

Then, in line with ( f ) in Theorem 2, we have

‖e(t)‖2 =V(ē(t))

≤

(
V(ē(0)) −

%1

ρ1

)
exp

[
lnϑk+1αk +

−(k + 1)ρ1Θ̃
η

Γ(η + 1)

]
+
%1

ρ1

≤ µ2
1 ≤ µ2

2.

which signifies ‖ē(t)‖ ≤ µ2, and thus, ‖ē(t)‖ ≤ µ2 holds on [0,T ]. As a result, systems (2.1)
and (2.2) have synchronization in finite time, that is, systems (2.1) and (2.2) can attain finite-time
synchronization under event-triggered intermittent control and impulsive disturbance. The proof is
complete.
Remark 7. In Theorems 1 and 2, the general sufficient conditions are established to ensure the finite-
time synchronization between the network (2.1) and system (2.2) can be achieved under the control
strategy (2.4). However, it is still unclear how to choose the appropriate control gain matrixK , and the
configuration parameters ρ1 and ρ2 to satisfy conditions (a) and (b) in Theorem 1. We can choose the
following inequalities to be equivalent to (a) and (b).

(i) ρ1 ≥ −(σλmax(Ĉ) + π1),

(ii) Ki >
1
2
λmax((π1 + ρ1)IN + σĈ),

(iii) ρ2 ≥ π1 + σλmax(Ĉ).

4. Numerical simulations

This section presents some simulations to illustrate the effectiveness of the proposed theoretical
results.

Consider the target trajectory s(t), which is described by the following fractional-order system:

c
0Dη

t s(t) = As(t) + B f (s(t)), (4.1)
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where s(t) = (s1(t), s2(t), s3(t))> ∈ R3. f (s(t)) = (tanh(s1(t)), tanh(s2(t)), tanh(s3(t)))>, η = 0.98, and

A =


−1 0 0
0 −1 0
0 0 −1

 , B =


2 −1.2 0

1.8 1.7 1.15
−4 0 1

 .
Figure 3 indicates the chaotic behavior of system (4.1), and one can observe that the target trajectory
s(t) is bounded by M̂ = 5. Additionally, it is obvious that lii = 1 and li j(i ≥ j), i, j ∈ N3

1, and therefore
the Lipschitz constant is L f = 1.

Figure 3. State trajectory of the target system.

Consider a directed network consisting of 5 nonidentical fractional-order dynamical networks
described by (4.1), which is depicted as following:

c
0Dη

t xi(t) = Aixi(t) + Bi f (xi(t)) + σ

5∑
j=1

ci jΓx j(t), i ∈ N5
1, (4.2)

where xi(t) = (xi1(t), xi2(t), xi3(t))>, σ = 2, Γ = diag (1, 1, 1), and the network structure is shown in
Figure 3. The outer coupling matrix C can be expressed as

C =


−1 0 0 0 1
1 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 1 1 0 −2


.

Let ei(t) = xi(t) − s(t), i ∈ N5
1. If considering the aperiodic intermittent control and impulsive

disturbances, the error system can be expressed as follows:
c
0Dη

t ei(t) = Aiei(t) + Bi f (ei(t)) + Υi(s(t)) + σ

5∑
j=1

ci jΓe j(t) + ui(t), t , tk,

ei(tk) = Jei(t−k ), t = tk,

(4.3)

where

ui(t) =

 − Kiei(t), t ∈ [tk, tk + δk), i ∈ N5
1,

0, t ∈ [tk + δk, tk+1).
(4.4)
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For brevity, the matrices Ai, Bi, i ∈ N10
1 , are given as Ai = A− 0.0002(i− 5.5)I3, Bi = B + 0.0001(i−

5.5)I3, i ∈ N10
1 . Simple calculations show that

‖Υi(s(t))‖ = ‖(Ai − A)s(t) + (Bi − B) f (s(t))‖
≤ ‖Ai − A‖‖s(t)‖ + ‖Bi − B‖‖s(t)‖
≤ 0.0015|i − 5.5|.

Figure 4. Trajectory of ei(t) between the system (1) and (2) without control.

Example 1: Synchronization via time-triggered APIC
Think about system (4.3) with t0 = 0, T = 5, σ = 2, βi = 0.0006|i − 5.5|, ξ1 = 0.25, ξ2 = 2, and

J =


1.0003 −0.1061 0.1001
−0.1061 1.0014 0.1048
0.1317 0.0168 1.1001

 .
According to (i)–(iii) of Remark 7, we get ξ−1

1 = 4, ξ−1
2 = 0.5, ρ1 ≥ −8.5472, ρ2 ≥ 14.0028, and control

gain Ki > 2.7543. By calculating J>J , one has α = 19.0981, %1 = %2 = ξ−1
2

∑N
i=1 β

2
i = 0.0123.

In this example, we use time-triggered mechanisms to divide the control intervals. For convenience,
the select periods Tk = tk+1 − tk, k ∈ Z+, are considered to have the following form [24]:

tk+1 − tk =

{
~0, if mod (k + 1, $0) , 0,
$0 (T0 − ~0) + ~0, if mod (k + 1, $0) = 0,

(4.5)

where k ∈ Z+, ~0 and T0 are positive scalars satisfying ~0 < T0, and $0 is a positive integer.
supl∈Z+ {tl+1 − tl} = T̂ = $0 (T0 − ~0) + ~0 and infl∈Z+ {tl+1− tl} = T̃ = ~0. In the numerical
simulations, we let the control periods Tl = tl+1 − tl, l ∈ Z+, satisfy (4.5) with T0 = 0.35, ~0 = 0.2, and
$0 = 2, and then we have T̂ = 0.5, and T̃ = 0.2. Then, combining with Remark 3 and condition (c) in
Theorem 1, we have Θ̃ ∈ (0.843, 1).

Select the control gains Ki = 3, i ∈ N5
1, ρ1 = 7.2675, ρ2 = 15.2354, µ1 = 0.5, µ2 = 1, and Θ̃ =

0.85, then all conditions of Theorem 1 are ture. That is, the finite-time synchronization between the
system (4.1) and FOHDN (4.2) could be implemented under the controller (4.5). The state trajectory
of system (4.3) is depicted in Figures 5. For comparison, Figures 6 and 7 are presented to represent the
state trajectories of the system when Θ̃ = 0.9 and Θ̃ = 0.95, respectively.
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Figure 5. Trajectory of ei1(t) between the system (4.1) and (4.2) under (4.4) with Θ̃ = 0.85.

Figure 6. Trajectory of ei2(t) between the system (4.1) and (4.2) under (4.4)with Θ̃ = 0.9.

Figure 7. Trajectory of ei3(t) between the systems (4.1) and (4.2) under (4.4) with Θ̃ = 0.95.
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Remark 8. When Theorem 1 is satisfied, the error system achieves finite-time synchronization. At the
same time, the corresponding control period and control width can be obtained through condition (c) in
Theorem 1. If the control width is changed to Θ̃ = 0.4474 on the basis of the same impulsive sequence
{tk}, the condition is no longer established, and the state trajectory of system (4.3) will exceed the range
of µ2 = 1, although the initial condition ‖φe‖ ≤ µ1 = 0.5 still holds, see Figure 8, i.e., system (4.3)
cannot achieve FTS w.r.t (10, 0.5, 1).

Figure 8. Trajectory of ei(t) between the systems (4.1) and (4.2) under (4.4) with Θ̃ = 0.4474.

Remark 9. The novelty of this paper lies in its consideration of finite-time synchronization in
heterogeneous dynamic networks, which has broader practical applications than the isomorphic
networks explored in previous works [16, 23, 26]. Additionally, the paper introduces a model that
accounts for impulsive interference, a factor that may disrupt synchronization, making it more
universally applicable compared to systems without impulsive effects [30, 31, 36]. Unlike previous
continuous control strategies for fractional-order dynamic networks [16, 38], this paper proposes
a discontinuous control approach, reducing control costs while offering more flexibility with an
adjustable control period, unlike the fixed control periods in [21, 24]. Finally, the adoption of event-
triggered intermittent control, with a lower update frequency compared to traditional time-triggered
methods [26–28], contributes to a more efficient and adaptable control scheme.
Example 2: Synchronization via event-triggered APIC

Let t0, T , σ, α, ξ1, ξ2, µ1, µ2, and other predefined parameters have the same value as in Example 1.
Assume ς = 5, ϑ = e, and δk = 2.1. By simply calculating condition ( f ) in Theorem 2, we have
Θ̃ = 0.8452 and then the sequence of impulsive instants tk is determined by

tk+1 =

{
inf {t : t ∈ Ξk (tk + δk, tk + ς] , Ξk (tk + δk, tk + ς] , ∅}
tk + ς, otherwise

(4.6)

where Ξk(tk + δk, t] = {t : t > tk + δk,V(ē(t)) ≥ ϑV(ē(tk + δk))}. Then the state trajectory of system (4.3)
under APIC (4.4) are exhibited in Figure 9. For comparison, Figures 10 and 11 are presented to
represent the state trajectories of the system when Θ̃ = 0.9 and Θ̃ = 0.95, respectively.
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Figure 9. Trajectory of ei(t) between the systems (4.1) and (4.2) under event-triggered APIC
with Θ̃ = 0.85.

Figure 10. Trajectory of ei(t) between the systems (4.1) and (4.2) under event-triggered
APIC with Θ̃ = 0.9.

Figure 11. Trajectory of ei(t) between the systems (4.1) and (4.2) under event-triggered
APIC with Θ̃ = 0.95.
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5. Conclusions

This paper investigates the intermittent control problem of fractional-order heterogeneous
dynamical networks subject to impulsive disturbances. First, a non-periodic time-triggered controller
is proposed, and a sufficient condition is provided to ensure that finite-time synchronization between
the fractional-order heterogeneous dynamical network and the target trajectory can be achieved.
Additionally, the relationships between control period width, impulsive disturbances, and controller
parameters are established. Furthermore, within the framework of event-triggered control, a class of
event-triggered controllers is designed, and the connections between impulsive disturbances, event-
triggering conditions, and control period width are derived. Finally, two numerical examples are
presented to verify the effectiveness of the theoretical results. It is important to note that due to
limitations in signal transmission and processing speeds between network nodes, time delays are
inevitable in complex dynamical networks [14, 20, 34]. Therefore, time delays must be considered in
the realistic modeling of fractional-order dynamical networks. Moreover, although this paper ensures
finite-time synchronization, it does not calculate the system’s settling time. In practical engineering
applications, estimating the settling time helps to predict and control the system’s dynamic behavior.
At present, to the best of our knowledge, there is a lack of effective methods to address these critical
issues, which will be the focus of our future research.
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