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1. Introduction

Surfaces of finite I-type is one of the main topics that attracted the interest of many differential
geometers from the moment that B. Y. Chen introduced the notion of surfaces of finite I-type with
respect to the first fundamental form I about four decades ago. Many results concerning this subject
have been collected in [1].

Surfaces of revolution of finite Chen type have applications in various fields of science and
engineering, such as domes and cooling towers, and are widely used in architecture and structural
engineering. Finite Chen-type surfaces help in optimizing these structures for minimal energy
configurations, ensuring stability and efficiency. Also, understanding Chen-type surfaces helps in
designing aerodynamic shapes with minimal drag and structural stress distribution [2].

Let x : M2 → E3 be a parametric representation of a surface in the 3-dimensional Euclidean space
E3. Denote by ∆I the second Laplace operator according to the first fundamental form I of M2 and by
H the mean curvature field of M2. Then, it is well known that [3]

∆I x = −2H.
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Moreover, in [4], T.Takahashi showed that the position vector x of M2 for which ∆I x = λx, is
either the minimals with eigenvalue λ = 0 or M2 lies in an ordinary sphere S 2 with a fixed nonzero
eigenvalue.

O. Garay, in his article [5], has made a generalization of T. Takahashi’s condition. Actually, so
far, he studied surfaces in E3 satisfying ∆Iri = µiri, i = 1, 2, 3, where (r1, r2, r3) are the coordinate
functions of r. Another general problem was also studied in [6], for which the surfaces in E3 satisfy
∆Ir = Kr + L(§), where K ∈ M(3× 3) and L ∈ M(3× 1). It was proved that minimal surfaces, spheres,
and circular cylinders are the only surfaces in E3 satisfying (§). Surfaces satisfying (§) are said to be
of coordinate finite type.

In the framework of the theory of surfaces of finite I-type in E3, a general Gauss map was studied
within this context in [7]. So, one can ask which surfaces in E3 are of finite I-type Gauss map. On the
other hand, it is also interesting to study surfaces of finite I-type in E3 whose Gauss map n satisfies a
condition of the form ∆I n = An, where A ∈ R3×3. Surfaces in E3 whose Gauss map is of coordinate
finite type corresponding to the first fundamental form were investigated by many researchers. More
precisely, the class of tubular surfaces was studied in [8], while in [9], authors studied the quadric
surfaces in terms of their finite type Gauss map. In [10–12], Baikoussis and Verstraelen introduced
the classes of spiral, translation, and helicoidal surfaces in the Euclidean 3-space. In [13], the authors
proved that planes, circular cylinders, and spheres are the only surfaces of revolution whose Gauss
map is of finite-coordinate type. In [14] the family of anchor rings was investigated in the Euclidean 3-
space. Finally, in [15], researchers conducted a comprehensive study of all types of surfaces that have
been studied and are still under investigation but have not yet concluded.

In 2003, S. Stamatakis and H. Al-Zoubi in [16] followed the ideas of B. Y. Chen. They introduced
the notion of surfaces of finite type regarding the second or third fundamental forms, and since then
much work has been done in this context.

Ruled surfaces [17], tubes [18], quadrics [19], and a special case of surfaces of revolution [20] are
the classes of surfaces studied in terms of finite type classification with respect to the third fundamental
form. Tubes [21] and ruled surfaces [22] are the only classes of surfaces investigated in terms of finite
type classification with respect to the second fundamental form.

Another generalization can be made by studying surfaces in E3 whose position vector x satisfies the
following condition:

∆J x = Ax, J = II, III, (1.1)

where A ∈ R3×3.

Regarding the third fundamental form in 3-dimensional Euclidean space, it was proved that spheres
and catenoids are the only surfaces of revolution satisfying condition (1.1) [23]. Next, in [24], the
authors found that helicoids are the only ruled surfaces that satisfy (1.1), and spheres are the only
quadric surfaces that satisfy (1.1). Finally, in [25], it was shown that Scherk’s surface is the only
translation surface that satisfies (1.1).
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2. Main theorem

Let M2 be a smooth surface in E3 parametrized by x = x(u1, u2) on a region U := (a, b) × R whose
Gaussian curvature never vanishes. The standard unit normal vector field n on M2 is defined by

n =
xu1 × xu2

‖xu1 × xu2‖
, (2.1)

where xu1 := ∂x(u1,u2)
∂u1 and “ × ” denotes the Euclidean vector product. We denote by

I = gi jduidu j, II = bi jduidu j, (2.2)

the first and second fundamental forms of M2, respectively, where we put

g11 =< xu1 , xu1 >, g12 =< xu1 , xu2 >, g22 =< xu2 , xu2 >,

b11 =< xu1u1 , n >, b12 =< xu1u2 , n >, b22 =< xu2u2 , n >,

and <, > is the Euclidean inner product. For two sufficiently differentiable functions p(u1, u2) and
q(u1, u2) on M2, the first differential parameter of Beltrami with respect to the second fundamental
form II is defined by [26]

∇II(p, q) = bi j p/iq/ j, (2.3)

where p/i := ∂p
∂ui and bi j are the components of the inverse tensor of bi j. The second Beltrami operator,

according to the fundamental form II of M2, is defined by

∆II p = −bi j∇II
i p j = −

1
√
|b|

∂

∂ui (
√
|b|bi j ∂p

∂u j ), (2.4)

where p is a sufficiently differentiable function, ∇II
i is the covariant derivative in the ui direction and

b = det(bi j) [19].
In the present paper, we mainly focus on surfaces of finite II-type by studying surfaces of revolution

in E3 which are connected, complete, and of that, their position vector x satisfies the following relation:

∆II x = Ax, (2.5)

Our main result is

Theorem 2.1. Spheres and catenoids are the only surfaces of revolution in E3 whose position vector x
satisfies condition (2.5).

3. Proof of the main theorem

Let C be a smooth curve lying on the xz-plane parametrized by

r(u) = (p(u), 0, q(u)), u ∈ (a, b),

where p, q are smooth functions and p is a positive function. When C revolves around the z-axis, the
resulting point set S is called the surface of revolution generated by the curve C. In this case, the
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z-axis is called the axis of revolution of S , and C is called the profile curve of S . On the other hand, a
subgroup of the rotation group that fixes the vector (0, 0, 1) is generated by

cos v − sin v 0
sin v cos v 0

0 0 1

 .
Thus the position vector of S is given by

x(u, v) =
(
p(u) cos v, p(u) sin v, q(u)

)
, u ∈ (a, b), v ∈ [0, 2π). (3.1)

(For the parametric representation of surfaces of revolution, see [13, 27, 28]).
Here, we shall assume that C has the arc-length parametrization, i.e.,

(p′)2 + (q′)2 = 1, (3.2)

where ′ := d
du . On the other hand, p′q′ , 0, because if p = const. or q = const. then S is a circular

cylinder or part of a plane. Hence the Gaussian curvature of S vanishes; a case that has been excluded.
Using the natural frame {xu, xv} of S defined by

xu = (p′(u) cos v, p′(u) sin v, q′(u)) ,

and
xv = (−p(u) sin v, p(u) cos v, 0) ,

the components gi j of the first fundamental form in (local) coordinates are the following

g11 = 1, g12 = 0, g22 = p2.

Denoting by R1,R2 the principal radii of curvature of S and κ the curvature of the curve C, we have

R1 = κ, R2 =
q′
p
.

The mean and the Gaussian curvature of S are, respectively,

2H = R1 + R2 = κ +
q′
p
, K = R1R2 =

κq′
p

= −
p′′
p
.

The components bi j of the second fundamental form in (local) coordinates are the following:

b11 = κ, b12 = 0, b22 = pq′.

The Beltrami operator ∆II in terms of local coordinates (u, v) of S can be expressed as follows:

∆II = −
1
κ

∂2

∂u2 −
1

pq′
∂2

∂v2 +
1
2

(
κ′

κ2 −
p′q′ + κpp′

κpq′

)
∂

∂u
. (3.3)
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On account of (3.2), we can put

p′ = cosϕ, q′ = sinϕ, (3.4)

where ϕ = ϕ(u). Then κ = ϕ′ and the relation (3.3) become

∆II = −
1
ϕ′

∂2

∂u2 −
1

p sinϕ
∂2

∂v2 +
1
2

(
ϕ′′

(ϕ′)2 −
cosϕ sinϕ + pϕ′ cosϕ

pϕ′ sinϕ

)
∂

∂u
, (3.5)

while the mean and the Gaussian curvature of S become

2H = ϕ′ +
sinϕ

p
, (3.6)

K =
ϕ′ sinϕ

p
. (3.7)

Let (x1, x2, x3) be the coordinate functions of x of (3.1). Then

∆II x = (∆II x1,∆
II x2,∆

II x3). (3.8)

From (3.5) and (3.8)

∆II x1 = ∆II(p cos v) =

(
sinϕ +

1
sinϕ

+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
cos v, (3.9)

∆II x2 = ∆II(p sin v) =

(
sinϕ +

1
sinϕ

+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
sin v, (3.10)

∆II x3 = ∆III(q) = −
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

. (3.11)

We denote by ai j, i, j = 1, 2, 3, the entries of the matrix A. By using (3.9), (3.10), and (3.11),
condition (2.5) is found to be equivalent to the following system:(

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
cos v = a11 p cos v + a12 p sin v + a13q, (3.12)

(
sinϕ +

1
sinϕ

+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
sin v = a21 p cos v + a22 p sin v + a23q, (3.13)

−
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

= a31 p cos v + a32 p sin v + a33q. (3.14)

From (3.14) it can be easily verified that a31 = a32 = 0. On differentiating (3.12) and (3.13) twice
with respect to v we have(

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
cos v = a11 p cos v + a12 p sin v, (3.15)

(
sinϕ +

1
sinϕ

+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
sin v = a21 p cos v + a22 p sin v. (3.16)
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Thus, a13q = a23q = 0, so that a13, and a23 vanish. Equations (3.12)–(3.14) are equivalent to(
sinϕ +

1
sinϕ

+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
cos v = a11 p cos v + a12 p sin v, (3.17)

(
sinϕ +

1
sinϕ

+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ

)
sin v = a21 p cos v + a22 p sin v, (3.18)

−
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

= a33q. (3.19)

But since sin v and cos v are linearly independent functions of v, we finally obtain a12 = a21 =

0, a11 = a22. Putting a11 = a22 = λ, and a33 = µ, we see that the system of Eqs (3.17), (3.18) and (3.19)
reduces to the following two equations:

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ
= λp, (3.20)

−
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

= µq. (3.21)

Hence the matrix A for which relation (2.5) is satisfied becomes

A =


λ 0 0
0 λ 0
0 0 µ

 .
We distinguish the following cases:

Case I. λ = µ = 0. Equations (3.20) and (3.21) become

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ
= 0, (3.22)

−
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

= 0. (3.23)

From (3.6), relation (3.22) becomes

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

cos2 ϕ

2 sinϕ
−

cos2 ϕ

2pϕ′
= 0, (3.24)

Multiplying (3.23) by − cosϕ, (3.24) by sinϕ, and adding the result of these two equations, it follows
that cos2 ϕ + sin2 ϕ + 1 = 0, a contradiction.

Case II. λ = µ , 0. Equations (3.20) and (3.21) become

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ
= λp, (3.25)

−
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

= λq. (3.26)
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From (3.6), relation (3.25) becomes

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

cos2 ϕ

2 sinϕ
−

cos2 ϕ

2pϕ′
= λp. (3.27)

Similarly, multiplying (3.26) by − cosϕ, (3.27) by sinϕ, and adding the result of these two equations,
it follows that

λp sinϕ − λq cosϕ = 2. (3.28)

On differentiating the last equation with respect to u, we find

λp′ sinϕ + λpϕ′ cosϕ − λq′ cosϕ + λqϕ′ sinϕ = 0,

which can be written
λ(p′ sinϕ − q′ cosϕ) + λϕ′(p cosϕ + q sinϕ) = 0. (3.29)

Since p′ = cosϕ and q′ = sinϕ. Thus, (3.29) reduces to

λϕ′(pp′ + qq′) = 0. (3.30)

λϕ′ cannot be 0; otherwise, from (3.7), the Gaussian curvature vanishes. Hence, pp′+ qq′ = 0, i.e.,
(p2 + q2)′ = 0. Therefore, p2 + q2 = const. Thus, C is part of a circle, and S is obviously part of a
sphere.

Case III. λ , 0, µ = 0. Following the same procedure as in CaseI and CaseII, we can obtain

2 − λp sinϕ = 0. (3.31)

Differentiating (3.31) with respect to u, we have

(sinϕ + pϕ′) cosϕ = 0. (3.32)

Taking into account relation (3.6), Eq (3.32) becomes

2Hp cosϕ = 0, (3.33)

which implies mean curvature H vanishes identically. Therefore, the surface is minimal; that is, it is a
catenoid. Furthermore, a catenoid satisfies the condition (2.5).

Case IV. λ = 0, µ , 0. In this case, (3.20) and (3.21) are given, respectively, by

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

H cos2 ϕ

ϕ′ sinϕ
= 0, (3.34)

−
3
2

cosϕ +
ϕ′′ sinϕ

2ϕ′2
−

sinϕ cosϕ
2pϕ′

= µq. (3.35)

On account of (3.6), relation (3.34) becomes

sinϕ +
1

sinϕ
+
ϕ′′ cosϕ

2ϕ′2
−

cos2 ϕ

2 sinϕ
−

cos2 ϕ

2pϕ′
= 0. (3.36)
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Multiplying (3.35) by − cosϕ, (3.36) by sinϕ, and adding the result of these two equations, we find

2 + µq cosϕ = 0. (3.37)

Differentiating this equation we have

qϕ′ − cosϕ = 0, (3.38)

from which
ϕ′ =

cosϕ
q

. (3.39)

Another derivative of (3.38), gives

2ϕ′ sinϕ + qϕ′′ = 0. (3.40)

From (3.39) and (3.40), we have

ϕ′′ = −
2 sinϕ cosϕ

q2 . (3.41)

Equation (3.34) can be written

1 + sin2 ϕ +
ϕ′′ cosϕ sinϕ

2ϕ′2
−

1
2

cos2 ϕ −
cos2 ϕ sinϕ

2pϕ′
= 0. (3.42)

Consequently, from (3.37), (3.39), and (3.41), Eq (3.42) becomes

2 − cos2 ϕ +
2 sinϕ
µp

= 0, (3.43)

from which
µp =

2 sinϕ
cos2 ϕ − 2

. (3.44)

Differentiating (3.44), we obtain

µ =
2ϕ′

cos2 ϕ − 2
+

4ϕ′ sin2 ϕ

(cos2 ϕ − 2)2 . (3.45)

Using (3.39) and (3.37) after some computation, we obtain sinϕ = 0, that is, q = const., which
implies that the Gauss curvature vanishes. A case that was excluded. Thus, there are no surfaces of
revolution that satisfy this case.

Case V. λ , 0, µ , 0. If we multiply (3.25) by sinϕ, and (3.26) by − cosϕ then adding the resulting
equations, we easily obtain

λp sinϕ − µq cosϕ = 2. (3.46)

Let
Ω := λp sinϕ + µq cosϕ. (3.47)

By using (3.46), the derivative of Ω is the following:

Ω′ = λ cos2 ϕ + µ sin2 ϕ − 2ϕ′. (3.48)
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Differentiating the Eq (3.46) and using (3.47), we find

Ωϕ′ = (µ − λ) cosϕ sinϕ. (3.49)

It is easily verified Ω , 0; hence, (3.49) can be written

ϕ′ =
(µ − λ) cosϕ sinϕ

Ω
. (3.50)

Differentiating the last equation and using (3.48) and (3.49), we obtain

ϕ′′ =

(
(λ − 2µ) sin2 ϕ + (µ − 2λ) cos2 ϕ

)
ϕ′ + 2ϕ′2

Ω
. (3.51)

In view of (3.50), and (3.51) relation (3.21) takes the following form:

Ω cosϕ
p

+
2(λ − µ) cosϕ sinϕ

Ω
− 2µ(λ − µ)q cosϕ − (λ − 2µ) = 0. (3.52)

Multiplying the last equation by Ωp cosϕ, we have

2(λ − µ)p cos2 ϕ sinϕ − 2µ(λ − µ)pqΩ cos2 ϕ − (λ − 2µ)Ωp cosϕ + Ω2 cos2 ϕ = 0. (3.53)

From (3.46) and (3.47), it can be is easily verified that

Ω cosϕ = λp − 2 sinϕ. (3.54)

Therefore, on using (3.46) and (3.54), relation (3.53) becomes

a1 p3 + a2 p2 + a3 p + a4 = 0, (3.55)

where
a1 = λ2(µ − λ) sinϕ, a2 = λ[(2λ − µ) − 2(µ − λ) sin2 ϕ],

a3 = [(µ − λ) sin2 ϕ − (µ − 4λ)] sinϕ, a4 = 2 sin2 ϕ.

Taking the derivative of (3.55), and then by using (3.47), (3.50) and (3.54), we obtain

b1 p3 + b2 p2 + b3 p + b4 = 0, (3.56)

where
b1 = λ2(µ − λ) sinϕ[(2λ + µ) − (µ − λ) sin2 ϕ],

b2 = 2λ[λ(2λ − µ) − (µ − λ)(3λ + 2µ) sin2 ϕ + 2(µ − λ)2 sin4 ϕ],

b3 = [(8λµ − 8λ2 − µ2) + 2(µ − λ)(2µ + λ) sin2 ϕ − 3(µ − λ)2 sin4 ϕ] sinϕ,

b4 = 6(µ − 2λ) sin2 ϕ − 6(µ − λ) sin4 ϕ.

Combining (3.55) and (3.56), we conclude that

c1 p2 + c2 p + c3 = 0, (3.57)

where
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c1 = a1b2 − a2b1 = λ[2(µ − λ)2 sin4 ϕ − 3µ(µ − λ) sin2 ϕ − µ(2λ − µ)], (3.58)

c2 = a1b3 − a3b1 = 2[−(µ − λ)2 sin4 ϕ

+(µ + 2λ)(µ − λ) sin2 ϕ + λ(3µ − 8λ)] sinϕ, (3.59)

c3 = a1b4 − a4b1 = [−4(µ − λ) sin4 ϕ + 4(µ − 4λ) sin2 ϕ]. (3.60)

Taking the derivative of (3.57) and then by using (3.47), (3.50), and (3.54), we obtain

d1 p2 + d2 p + d3 = 0, (3.61)

where

d1 = −4λ(µ − λ)3 sin6 ϕ +

2∑
i=0

D1i(λ, µ) sin2i ϕ,

d2 = 5(µ − λ)3 sin7 ϕ +

2∑
i=0

D2i(λ, µ) sin2i+1 ϕ,

d3 = 10(µ − λ)2 sin6 ϕ +

2∑
i=0

D3i(λ, µ) sin2i ϕ,

and D ji(λ, µ), ( j = 1, 2, 3) are polynomials in λ and µ. Combining (3.57) and (3.61), we find that

e1 p + e2 = 0, (3.62)

where

e1 = c1d2 − c2d1 = 2(µ − λ)5 sin10 ϕ +

4∑
i=0

E1i(λ, µ) sin2i ϕ, (3.63)

e2 = c1d3 − c3d1 = 20(µ − λ)4 sin9 ϕ +

3∑
i=0

E2i(λ, µ) sin2i+1 ϕ, (3.64)

and E ji(λ, µ), ( j = 1, 2) are some polynomials in λ and µ. Following the same procedure by taking the
derivative of (3.62) and taking into account (3.47), (3.50), and (3.54), we find

h1 p + h2 = 0, (3.65)

where

h1 = −20(µ − λ)6 sin12 ϕ +

5∑
i=0

H1i(λ, µ) sin2i ϕ, (3.66)

h2 = −184(µ − λ)5 sin11 ϕ +

4∑
i=0

H2i(λ, µ) sin2i+1 ϕ, (3.67)

and H ji(λ, µ), ( j = 1, 2) are polynomials in λ and µ. Combining (3.62) and (3.65), we finally find

32(µ − λ)10 sin20 ϕ +

9∑
i=0

Pi(λ, µ) sin2i ϕ = 0. (3.68)

where Pi(λ, µ), (i = 0, 1, ..., 9) are the known polynomials in λ and µ. Since this polynomial is equal
to zero for every ϕ, all its coefficients must be zero. Therefore, we conclude that µ − λ = 0, which is a
contradiction. Consequently, there are no surfaces of revolution in this case. This completes our proof.
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4. Conclusions

This research article was divided into three sections, where, after the introduction, the needed
definitions and relations regarding this interesting field of study were given. Then a formula for the
Laplace operator corresponding to the second fundamental form was defined for the position vector of
a surface. Finally, we classify the surfaces of revolutions of coordinate finite Chen type regarding the
second fundamental form. An interesting study can be drawn, if this type of study can be applied to
other classes of surfaces that have not been investigated yet, such as spiral surfaces, or tubular surfaces.
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