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1. Introduction

The theory of fractional differential equations (FDEs) generalizes classical differential equations
by introducing fractional derivatives, enabling the modeling of complex phenomena exhibiting non-
locality, memory, and power-law behavior [1,2]. FDEs have been extensively developed using various
fractional derivatives, such as Riemann-Liouville (RL), Caputo, and Griinwald-Letnikov [3]. These
equations describe anomalous diffusion, relaxation, and oscillation processes, making them suitable for
modeling real-world problems in physics, engineering, and biology. FDEs have diverse applications
across disciplines, including viscoelasticity [4], chaotic dynamics [5], image processing [6], model
financial systems [7], population dynamics [8], and electrical circuits [9]. Recent studies have explored
fractional-order controllers in robotics [10] and biomedical signal processing [11]. These applications
demonstrate the versatility and potential of FDEs in describing complex systems.

Fractional calculus and fixed point theory have emerged as powerful tools in addressing
optimization and inverse problems across various scientific and engineering disciplines. Fractional
derivatives and integrals, with their inherent nonlocal properties, are particularly well-suited
for modeling systems exhibiting memory effects and long-range dependencies, which are often
encountered in optimization problems involving complex systems. Furthermore, fixed point (FP)
methods, especially those tailored for non-smooth or set-valued mappings, provide robust frameworks
for solving inverse problems, including those arising in image processing and signal reconstruction.
The combination of fractional calculus and FP theory offers a synergistic approach, enabling the
analysis and solution of challenging optimization and inverse problems that are often intractable using
classical techniques. See [12—16] for more information.

Recent years have witnessed significant interest in boundary value problems (BVPs) of FDEs,
encompassing various boundary conditions such as the existence and uniqueness of solutions to
fractional boundary value problems [17-20], the existence and uniqueness of solutions to hybrid
fractional systems under multi-point, periodic, and anti-periodic boundary conditions [21, 22], and
the stability of mixed integral fractional delay dynamic system equations and pantograph differential
equations under impulsive effects and nonlocal conditions [23, 24]. Integral boundary conditions,
in particular, have far-reaching implications in applied fields like heat conduction, electric power
networks, elastic stability, telecommunications and electric railway systems. Multi-point BVPs,
arising from practical applications, also warrant attention. For example, the existence results
for FDEs are established in [25-29]. Alos, the existence of solutions to fractional functional
differential equations [30], semilinear fractional differential inclusions [31], Hadamard fractional
integro-differential equations [32], systems of multi-point boundary value problems [33], fractional
hybrid delay differential equations [34], and nonlinear Atangana-Baleanu-type fractional differential
equations [35-38] have been established. The theory of fractional functional BVPs remains
underdeveloped, necessitating further research in mathematical modeling, numerical methods, and
computational simulations to address the unresolved aspects.

Benchohra et al. [26] proved the existence of a solution via Leray-Schauder nonlinear alternative
and uniqueness via Banach’s FP theorem for fractional functional differential equations with infinite
delay. Chauhan et al. [20] explored existence solutions for fractional integro-differential equations with
impulses, infinite delay, and integral boundary conditions. Dabas and Gautam [39] examined existence
results for impulsive neutral fractional integrodifferential equations featuring state-dependent delays

AIMS Mathematics Volume 10, Issue 3, 6168-6194.



6170

and integral boundary conditions.

Inspired by the contributions of [20, 26, 39], first, our study focuses on establishing existence and
uniqueness results for a fractional functional integrodifferential equation (FFIDE) featuring infinite
delay. It takes the form

LDra(s) = g (. @e. i Q5. 9, @p)db, [} Y (5.8, @) d?), pe (23], s€U=0,0]
@(§) =Y (s), ¢ € (—00,0] (1.1)
(o) = ¥ bi(I[w)(4,). 0< i< <<, <o,

j=1

where L¢D? is the Liouville-Caputo (LC) fractional derivative with order p. Assume that U =
{(c,):0<¥<¢<o0},EisaBS, and ® is a phase space. Then g : UXOXE — =, Q, T : UXx0O - E
are continuous functions and ¢ € ©. Furthermore, Igi refers to the RL fractional integral of order
g; > 0, and b; represents suitable real constants for j = 1,2,...,u.

Supposing that @ : (—c0,0] — ® and ¢ € U, we denote @, € O as an element defined by

@ (§) =w(c+&), &€ (=,0].

Throughout this manuscript, we suppose that w.(.) is the historical state trajectory from time —oo
to ¢, and @, € O, where O is an abstract phase space.

The second main result here is to investigate the existence and uniqueness of solutions to the neutral
FFIDE with BVPs. It takes the form

Lep? [W(S‘) - Og @}1(2,;4 h (19, wy, foﬂ Q (ﬁ,,u, w,,) du, fog T, (ﬂ,u, w,,) du)]
=g(s. @ [y (5. 9. @y)dD, [ T2 (5.0, wg)dP) p € (2.3], 6.0 € U =10,0]
@() =Y (s), ¢ € (-0,0]
W(O') = Z bj(lgliﬂ')(/lj), 0< /11 < /12 <. < /lu <0,

j=1

(1.2)

where h,g : UXO XE — =, Q,T,Q,,and T, : U X ® — E are continuous functions.

e This paper provides a systematic exploration of fractional functional integrodifferential equations.

e Section 2 lays the groundwork by establishing the foundational definitions, notation, and
preliminary results.

e Existence and uniqueness criteria for FFIDEs are developed in Section 3, employing both
Krasnoselskii’s FP and Banach’s FP theorem.

¢ Building upon these findings, Section 4 extends the existence and uniqueness results to neutral
FFIDEs with BVPs.

e The applicability and practicality of the theoretical framework are demonstrated through
illustrative examples provided in Section 5.

2. Preliminary work

This section presents fundamental definitions, notation, and lemmas essential for the subsequent
analysis. Let Z denote a BS equipped with the norm ||.||. Furthermore, C(U, E) represents the BS of
continuous functions from the interval U to Z, endowed with a uniform convergence topology and the

norm ||.|¢.
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Definition 2.1. [2] For the function g € L'(R,)
(i) The RL fractional integral of order p > 0 is given by

15.8(¢) = — f (¢ — "' g(9)d?,

I'(p)

whenever the integral exists.
(i1) The LC fractional derivative of order p € (v — 1, v] is described as

o [ oo,

Dg(9) = = o7

where g has absolutely continuous derlvatlves up to order (v — 1).

Remark 2.2. It should be noted that, if we take v = 1 in Definition 2.1 (ii), we have 0 < p < 1 and

1 prg(g) = f (6 — 9)'g (9)dD,

dg(®)
dd °

Now, for simplicity, we denote ““DZ and I}, by ““D” and I”, respectively.

where g'(9) =

Lemma 2.3. [2] Assume that p,q > 0, and g € L'[b, c]. Then, for all ¢ € [b, c], we have

(i) 1117g(¢) = 177 g(¢) = I"Ig(5);

(ii) **D{Ig(s) = g(s).
Theorem 2.4. [40] (Krasnoselskii’s theorem) Assume that A # 0 is a closed and convex subset of a
BS E and that 3, R are two operators satisfying

(i) forw,0 € A, 3w+ Ro € A,
(ii) 3 is continuous and compact,
(iii) ‘R is a contraction.

Then, w € A exists such that w = 3w + Rw.
This paper considers a seminormed linear state space (0, ||.|lg) of functions from (—o0,0] to E
satisfying the following hypotheses of Hale and Kato [41]:
(H;) On the interval (—oo, o], if @w : (=0, 0] — Z is continuous and @y € O, then for ¢ € U, we have
the following stipulations:

(1) ws €0,

2) llo)lle < « ||w§| 0 where « is a non-negative constant and is independent of @ (.),

(3) There is a continuous function N; : [0,00) — [0, c0) and a locally bounded function N, :
[0, 00) — [0, 00) in order that

@y < Ni(s)sup (@@l : 0 <& < ¢} + Na(s) lmlle »

where N; and N, are independent of @(.).

(H;) The space O is complete.
(H3) On the interval U, @, is a B-valued continuous function, where @(.) is described in (H;).

Here, we consider N} = sup_.;; Ni(¢) and N; = sup .y Na(s).
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3. Solving the FFIDE

This section is devoted to investigating the existence and uniqueness of solution to the considered
problem (1.1) by applying Krasnoselskii’s and Banach’s FP theorems.
Assume the space

U= {w:(—0,0] > E: @wp € O and @y is continuous},
and select Pw(s) = [ Q (s, 9, @) dd, and Qw(s) = [ T (5,9, wy) d?.
Definition 3.1. We say that the function @ € U is a solution to the FFIDE (1.1) if it fulfills the problem

LCDrw(s) = g (s, @, Pw(s), Qw(s)),
@(g) = @0(5‘) G € (=00,0],

w(o) = Zb (I‘ifw)( ) O<Aqi<h<---<q <0
We initiate our analysis of the nonlinear problem (1.1) by examining its linear counterpart, thereby
obtaining a foundational solution.
Lemma 3.2. Assume that w(s) € C (U, E) satisfies the following problem:
“Dra(s) =g(s), pe(2,3], s €,
@(5) = t//(g) § € (=00,0], 3.1)
w(o) = Zb (I‘ffw)( ) O<Aqi<h<---<q <0
Then the unique solution of the fractional BVP (3.1) can be written as
¥ (s), ¢€(=,0],
I'g () + % (z b,-qu+pg (1)) 17g (a))

+z//(0)(1 + = (Z r(q+1) )) ceU,

q,+' ‘h

# 0, provided that Z

w(g) =

where B = o — Z > 1.

[(g; +2) F(q +1)

Proof. Suppose that py, p; € Z are vector constants. Based on [2], the solution of (3.1) takes the form
@(¢) =178 (¢) + po + pi§. (3.2)

Applying the condition @w(g) = ¥ (¢) , we get
po =¥ (0). (3.3)

Using the condition w (o) = Z b;(lw) ( ) we have
j=1

1 u /lqi
p1 =( e Hq,+1){2bjqu+p ( “MO)(ZF(, D 1]—1pg(0)}- (3.4)
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From (3.3) and (3.4) in (3.2), we can write

“uo b AT
o(¢) = I"g (¢) + = Zb 177g (1) - ng(a)) + ¢,(0)[1 + 123 (Z ﬁ - 1}]
Jj=1 !

j=1

After that, we need the following assertions:

(Ay) Forall¢,9 € U, ¥,y, € ® and @y, @, @, @, € B, €, {p, { exist in order that

g (.1, @1, @) — 8(S, Y2, @2, @Iz < & (Y1 — Yalle + o — @z + T — @2llz),
||P (ga ﬂa wl) - P(ga ﬂa wZ)”: < fP ”lﬁl - W2||@ 5
10 (s, ¢1) — O (s, 3 ¥l < Lol — Yallg -

(Ay) For all (¢, ¥, @, @) €e UXxOxExEand (¢,%¢y) € UX0,V; € LY(UR,) (j=1,2,3,4,5)
exists such that

g (s, ¥, @1, @o)llz < Vi(S) Wlle + Va(S) llwillz + V3() llwallz
1P (s, 3. ¥z < Vi) Wlle -
19 (5. 3. ¥llz < V5(s) W le -

(A3) We consider S = £,N{ {&1 + & (€p + Lp)} < 1, where

é:l:(l+| V1+|B|
522(14-' V2+|B|

_ _caP _ o
VI= Tpy V27 r(2+p>’
u ‘1i+l /lq,+p+l
V3 = .Zl b; r(qi+p+1)’ Z |b |F(q,+p+2)
J:

Now, the first main result in this part is as follows:

Theorem 3.3. Under Assertions (A1) and (A,), the BVP (1.1) has at least one solution on (—oo, o],
provided that

{= |B|€ N +v3) + (2 +va) (Ep + Ep)} <

Proof. The FP technique involves equating a given operator to the problem at hand and seeking a
unique FP, which corresponds to the problem’s unique solution. Therefore, we convert the BVP (1.1)
to an FP problem. Define the operator M : U — U as

(s, S € (—00,0],

S (9, @y, Pw(z?) 0w (®)) d9

(M@)(s) = ( 3 by [V e (9, @y, Pa(9), Qu(®)) dF

T(q;+p) g

00' (‘T}Z,))p g (0, @y, Pw (), Qw(1})) dﬁ) + w(O)(l + = (Z e +1]) )) se U
(3.5)
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Assume that o(.) : (=0, 0] — E is a function described as

(), g€ (=00,0],
Q(s‘)—{o’ ceU.

It is clear that oy = 0. For every w € C(U, Z) with w(0) = 0, we select

0» g€ (—OO, 0]»

w(s) = { w(s), ¢e U

If @ (.) fulfills (3.5), then we decompose @(.) as w(s) = 0o(s) + w(s), which leads to @w. = o, + w,. for
all ¢ € U, and w(.) satisfies

G

—————¢g (8,00 + Wy, P[0(D) + 0(D)], Q[o() + w()]) d
0 I'(p)

w(s)

S u 4 e ﬁ)qﬁp—l _ . N
+3 {; b; ; i%—+lﬂg (9,00 + Wy, P [0(0) + ()], O [0o(F) + w()]) dY

(=)'

- ————g (0,09 + Wy, P[0(F) + (D], O [o(F) + w(D)]) d}
0 I'(p)

G u b]/l(fl
O 1+ ;m—1 .

Put Gy = {w € C(U, E) : wy = 0} and consider ||.|;, to be the seminorm in G, given by

llwllg, = sup lw(Sllz + llwolle = sup [lw(S)llz , w € Go.
celU celU

Hence, (Go, ||'||GO) is a BS. Describe the operator ® : Gy — Gy as

(g =)

() -~ -
(Pw) (5) T TO)

g (D, 00 + Wy, P[o(@) + w(P)], Q[0 + w(P)]) d?

Y (A; — )Pl . B N
+% (Z b o %8 (9,09 + Wy, P [0(F) + ()], O [o(F) + w()]) dY

j=1
(o — 9!

- —————¢g (0,09 + Wy, P[0o(}) + ()], Q [o(}) + w(D)]) dV
0 I'(p)

(e b2

The existence of an FP for an operator M is equivalent to the operator @ having an FP. Hence, we focus
on establishing the existence of an FP for ®.

Consider the set H, = {a) € Gy : |lwllg, < s} . Hence, H; is a bounded, closed, and convex subset of
Gy. Assume that there is a positive constant € such that € < s, where

e = llgllps

(1 + I%I)(Vl +vy) + %l(v3 + )
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o Oif1+ £ iy
BI\&T@+D )

Now, we decompose © as @, + O, on H,, where

S _ ﬁ p-1 _ _ _
(®10) (5) = fo & F(p)) ¢ (8,00 + Ty, Po(®) + BB)], Qo) + BB)]) db,

and

A (/l _ ﬂ)q,+p 1 _ _ _
(©:0)(5) = Z f a8 o0 + Do Plo®) + B Q@) + DO b
J

(o — 9! _ _ _
- f Ty 8 (%, 09 + Wy, Plo@) + 0(@)], Q[o(®) + w()]) dﬂ)

u b /14
+t//(0)1+— . Tlg+ D) - 1{}.

Now, if we let w, w* € H; and ¢ € U, we get

I(@1w) () + (P2w7) (Dl

O _ _ _
T(p) ||8 (&, 09 + @y, P[o(®) + @], Q[o(®) + @@)])||; &9

B {ZI L T o e (0.00 + 3. PLot®) + )] QL)+ @) a0

IA

9! ~ ~ -
+f0 (Gr(p; |lg @, 00 + @y, Po(®) + @' @], Qo) + @ )])|- dﬂ)

u b: /lq’
+lly (0)||[ B (Z F|(cjz!~ D 1]]

“ (=)

o)
( A; — 9yt [o(®) + w* ()] || )
N7 [Z Ay, g ( +Vs<ﬂﬂ| lo(®) + & (9] @

+f (o - ﬂ)l’l( + Vo) ||P [o@®) + @* @] ) )
o T +v3<ﬁ>7|Q o) + & (@)

b;| A1
+||w(0)||[1 (Zr|(q|+1) ]]

VIl s®

IA

[Vi@) llos + @ollg + Va@) [|P [0 + @] + V3@) [|Q [e@®) + B(@)]||

IA

u b /lq
+||¢(0)||[ (Zr i ]]

(1 + I%I)(Vl +Vvy) + ﬁ(m +Vv4)

= E&.
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Hence,
10w + DIz < &, (3.6)

where V(¢) = max {Vi(5), V2(5), V3(), Va(s)} and

llos + wslle < lloslle + llwslle
< Ni(®@) sup llo()ll + No() [lo(O)|| + N1(}) sup [lw(w)ll + Na2(F) [[w(0)]]
O<u<d 0<u<y
< Nis+N;lWlg < 5™

It follows from (3.6) that ®;w + ®,w* € H,. Now, we show that @, is a contraction. For this, assume
that w, w* € H,, and ¢ € U. We then

(D) (5) - (q>zw*) Ol

A; = - 1
B [ZI I [ 0,0+ B P Lotd) + B0 QLotd) + )

IA

T(gj+p)
G

~ (000 + Ty Plo®) + T )] Qo) + T @) do + f
0 F(P)

X |l (9,00 + @5, P [0®) + B(D)], Q [0(#) + B()])
— g (8,00 + @y, Po(®) + @ (9], Qo®) + @ ®)])|| a¥)

(A, = oyt _ By
|B| [Z | J| f F(q ) (”(Qﬁ +wy) — (09 + wﬂ)”@

+[|P[o@) + B)] - Po@) + T @] + || [o@) + B - Qlo(®) + & @)]| ) d?

7 (o — P!
T(p)

+ |Ple@) + @] - Plo@®) + @' @)]||; + |2 [o(®) + D] - Q[0 + &' ]||,) 29)

(/1—)’+_1 — — -
a3 (17Tl + 1~ Tl 9+ o - 3 )

IA

b (|les + @») = (00 + @)

IA

F(q +p)
7 (o=

(180 - B3l + 1@ -l 9+ o~ 33, 8) )

IA

| | (/1 — )atr-l
e N sup |lw(®) — w* || + €pN; sup |lw(u) — w* ()| 9
B Z j g, + ) g( s PNy sup llw(u) = w(u

+loN7 sup [lw(u) — w*(,u)llﬁ) do +

uel0,9]

— 91 .
: %fg (Nf sup |lw(®) — o' D)

¥€[0,6]
+pN} sup [lw() — 0 (W9 + EoN; sup [lw) - w' (W] ﬂ) dﬂ)

uel0,9] HEl0,9]

IA

(A1 (4;)4+p!
IBINK{Z“"'F(CI +p+ +(€P+€Q)Z|b|m

AIMS Mathematics Volume 10, Issue 3, 6168—-6194.



6177

o? of +1

o T

(oa . #
Engf {1 +v3) + (v2 +vy) (Cp + o)} llw — Wl

= Lo -G, -

+ )Ilw — lg,

IA

It follows that
P20 — DI, < Cllw — wlg, -

Since ¢ < 1, then, @, is contraction. Because g, P and Q are continuous, and thus ®; is continuous.
Consider

I(D1w) ()=
* (=) _ N ~
. T g (8. 09 + @y, P [o® + @], Q[0 + B))|, &9
t) _ ’19‘ p-1 N B )
) % [V1(19) llos + wslle + Va(F) ||P lo(®) + w(ﬁ)]| =+ V3(®) ”Q [o(®) + w(ﬂ)]”E] 49

IA

IVIlz 8™ (v +v2) .

This proves that @, is uniformly bounded on H;. Finally, we prove that @, is compact. Indeed, we
claim that @, is equicontinuous. For ¢}, ¢, € U, with ¢; < ¢ and w € H;, one can write

I(Pw) (62) — (Pyw) (§1)llz
(=D = (o — D!

< llg (.00 + @, Po®) + @], Qo(®) + B))|| 49
! )
G2 _ 19 p—1 . . N
% s (9.0 + @s. P [o(®) + B@®)]. Q[o(9) + B d
Sl
S1 — 9P = — 9P _ —
< | (& =9) r(pggl L Vi llos + @olle + Vo) [P o) + 5@,
_ () = ) _
Vi) [[elo@) + | ]ao+ [ E22 [vi@) oy + @ally
7
Vo) [P lo@) + 3@, + Va@ |0 o) + B | a0
[ =B — (g — By 2 (g, - O )
V|1 1+ $Hd9 - (1 + %)d¥].
snuLs(o o o+ |~

Clearly, ||[(®,w) (52) — (P10) (52)]lz = Oas ¢ — ¢». Consequently, @, is equicontinuous. Applying the
Arzela-Ascoli theorem, we establish that @, is compact on H,. Consequently, invoking Krasnoselskii’s
FP theorem, we prove the existence of an FP w € G, satisfying ®w = w, thereby yielding a solution
to the fractional BVP (1.1). |

Now, for the uniqueness, we apply Banach’s FP theorem as follows:

Theorem 3.4. Via Assertions (A) and (As), the BVP (1.1) owns a unique solution on (—oo, o]
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Proof. Recall the set Hy = {w € Gy : llwllg, < s} and assume that w, w* € Gy. For ¢ € U, one has

[(@w) (¢) — (Pw") (¢)llz

(g _ _ N
1) ||g (%, 09 + Wy, P[0(F) + 0(D)], O [o(F) + w(D)])

— g (0,00 + @)y, Plo(®) + a*(ﬂ)] 0 [o(®) + @' @)))||. 49

IA

" T(g;+p)
— g (9,09 + @y, Po(®) + @), Qo(®) + @ (D)) a9

g _ ’19‘ p_l _ B -
(0-1_(—5 ||g (2, 09 + Wy, P [0(®) + @(D)], Q [o(?) + @(D)])
~ 8 (.00 + @, Po®) + @ ()], Q[o®) + & @))|, 49)
fle—oy

o T(p)

(/l — )P — — ~
il (1l + 0 5~ 9+ o 3

A — 9)4*P
g (ZI bi| f e 9.00 + 30 P Lot0) + 50N 0 [o(0) + F(O))

*

fg(llaﬂ—@II@%II@ Gllo? + Colld, - @,

IA

®ﬁ) do

T(gj+p) © ﬂ) w

A —~ ~x - F w '
[ %qum—wﬁnw 13,53l 0+ 3 - 3, 9)a0)
S (¢ — P!
o TI'(p)

(/1 _ﬁ)41+17 1 .
T ZI b | Syt (il = @l + ol = le, 9 + Lol = o'l 9) 49

IA

£y (N7 llw = 'llg, + tpllw = @llg, @ + Lo llw — w'llg, ©)

+ gfg (N7 llw = ”llg, + € llw = g, @ + Lo llew = @, ﬂ)dﬂ)

0 L'(p)
} llw - w'lg,

o +—Z| | (A;)1*P oPtl
Fip+1D 1Bl 4 AT +p+ D) BTG+ 1)

IA

o

1 qjt+p+l p+2
+(€p+€Q) ( ) g

TR Z| J|
Lp+2) B & " Tg;+p+ 2 T IBIT(p+2)
ENT S + & (Ep + o)} lw — w'llg,

S llw = wllG, -

IA

Hence,

1P () = @ (w)llg, < S llw = & llg, -

By (A3), S < 1, @ is a contraction. By Banach’s FP theorem, ® possesses a unique FP, which is a
unique solution to the problem (1.1) on the interval (—co, o]. O
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4. Solving the neutral FFIDE

In this section, we discuss the existence and uniqueness of solution to the considered problem (1.2)
by applying Krasnoselskii’s and Banach’s FP theorems.

Assume that the space U is defined as in the section above and choose

Piw(s) = [ Qi (5.0, @) dv,
Pyw(s) = [ (5.1, @) d,
Q1w (s) = [; Y1 (5.9, @y)dV,
Qxw@(s) =[] T2 (5., w@y) do.

Definition 4.1. We say that the function @ € U is a solution to the FFIDE (1.1) if it fulfills the problem

Lepr [w(g) =N (g}i),;’_lh(ﬂ, @y, Prw(d), Qlw(ﬁ))] =g(s, @, Pyw(s), 02w(s)), s € U,
@(S) =¥ (S), § € (=00,0],

w(a)—Zb(I‘ffw)( ) O<Ai<h<---<q,<0.

With the aid of Lemma 3.2, the solution of the neutral FFIDE (1.2) takes the form

Y (), ¢€(—00,0],

S o (89, @y, Paw(9), Qo) + [y ST (9, @y, Pra(®), Q1w (9)

+5 (z b [y %g (&, @y, Pyw(®), Q7 (1))

@)= 4 z b [ “fr(j);p) h (9, @y, Pyw(9), Qow(9) — [} T2 g (8, wy, Pyw(®), Qw(®)

T (o—9)P!

o o h @, wﬂ,lewx Q1w(9)))
+¢(0)(1+§(Z T ~ )) ceU,

z],+1

where B = 0 — Z

F(q+2) # 0.

To accomplish our main task here, we needs the following assertions:
(A4) For all S, del, Y, Y, € ® and w, Wy, ’51, %2 € X, fg, fh, fpl, [Ql, [pz, sz exist such that

g (.1, @1, @) — 8(S, Y2, @2, @Iz < & (1 — Yalle + o — @z + @) — @2llz),
(s, 1, @1, @) = his, Y2, @2, @)z < 0 (1 — allg + @) — @ollz + @) — @ollz)
1P1 (s, 0, 41) — P (s, 9, y)llz < €p, Y1 — Y2llg »
1Pz (s, 3, ¢1) — P2 (5,9, ¥n)llz < p, W1 — Y2llg »
101 (5, D, ¢1) — Q1 (5, 0, Y)llz < Lo, W1 — Yallg »
102 (s, 3, ¢1) — Q2 (6, 3 )z < Lo, lY1 — ¥allg -

(As) For all (¢, @1, @,) € UXxOXExEZ and (5,9,9) € Ux O, V, € L'\U,R,) (j = 1,2,3,4,5)
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exists in order that

(A¢) Assume that §*

g (s, ¥, @1, @)z < Vi) Wlle + Va(S) [lwillz + V3(S) ll@llz
17 (s, ¥, @1, @o)llz < Va(o) Wlle + V() llmillz + V(o) @2l ,
1P (s, Iz < V7(S) IWlle »

1P2 (s, 3, )llz < Vs(S) IWlle »

101 (5, 3 Y)llz < Vo(S) Wl »

102 (5, 9, ¥)llz < Vio($) Wlle -

= ngT {fl + é‘:z ([Pz + ng)} + thT {é:l + cfz (f[a1 + le)} < 1, where

& = (1 + |B|)V1 gy

é:2:(1+| )V2+|B|

oP _ O_p+1

V1= Ta) V2 T teap)
u qi*p /lq,+p+1
= | Y
Vi = 121 bjl tp v Z b; |r<ql+p+2>

Theorem 4.2. Under Assertions (As) and (As), the neutral BVP (1.2) has at least one solution on

(—o0, 0], provided that

*

oN
|B|

= — L ([0 +v3) + (Ep, + Lo,) (2 + Vi) + G [(v1 + v3) + (€p, + Lg,) (2 +va)]) < 1

Proof. Define the operator O : U > Oas

(Om)(s) =

AIMS Mathematics

'70 (g) g € (_OO’ O]a
fog (gr?,if g (s, @, Prw(s), Qrw(s)) ds

L[S (grz(?)’)’ h (9, @y, Py@(9), Q1@ () ds

Aj (A=)t
+3 Z by Cra—g (5@, Pr(s), 00w(s)) ds

A 45+ 4.1
+Zb LY A 9, @, Pra(), Qe (9) ds *-D

o p—1
(eI ¢ (6w Paw(s), Qo (s)) ds
o (0-_19)]771

“Jb T h (9, @y, Prw (1), Q1W(19))dg)
+¢(0)(1 +3 (Z r(qil) — )) ceU.
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Analogous to Theorem 3.3, define the operator R : Gy — G as

IN <c}1(9;')’" g (9,00 + @y, P2 [0(9) + D], Oz [0() + @()])
+ [T S (8, 09 + @y Py [009) + D], 01 [0(®) + B(D)])

I'(p)

+5 z by i D g (89,00 + @o P2 [0(9) + B9 02 [0(9) + T(9)])

(R@) () =1 + 2 b R (9,00 + By, P [0(8) + B)] . Q1 [o(8) + B()))

- o” L g (800 + @9 P2 [0(9) + BO)], Q2 [0() + (D))
[ = (9,00 + g, Py [0®) + B@)], 01 [0®) + @)

+lﬁ(0)(1+ 9(2 F(qj;) )) ceU.

Describe the set Hy-as Hy = {w € Gy : llwllg, < /s} . Let there be a positive constant £* such that &* <7,

where )
u bj /l-l
g =2|Vps [& + &) + ||l//(0)||[1 + B [Z e ; D~ 1])

where

V*(¢) = max {Vi(s), Va(s), V3(5), Va(s), V5(s), Vs(s), V1(s), Vs(s), Vo(s), Vin(s)} .

Now, we decompose R as R + R, on Hs, where

% S g (9,00 + @i, P2 [0®) + B . 02 [0() + BD)])
( lw)(g)_ n g(gﬂ)zlh(ﬁ n p —
(S (9, 00 + @i, P [009) + W] Q1 [0o(8) + BWD)])

and

§ (,fl by [ A g (8,00 + o, P2 [009) + B(D)] . 02 [0(9) + BD)))

+ z by [ A (9,00 + @o. Py [0®) + BO)] . Q1 [o) + B9)])
(Re@) () = _ [T @D (9. 0y + @y, P [0(D) + BWD)]. 02 [0(®) + BI)])

0 L(p)

~ T (8,00 + aﬁ, P [o®) + @@®)] . Q1 [o(®) + B())))
+W(0)(1+§(Z e ))’ sel

Now, for w, w* € Hyand ¢ € U, we have

I(R1) (6) + (Ro0) ()]

O m @ @
T ”g (¢, 09 + Wy, P2 [0(F) + ()], Q2 [0(F) + w(ﬁ)])“E i
9! ~ o w
f s I'( )) |h (9,00 + Wy, P1 [0o(D) + 0(@)], Q1 [o(P) + a)(ﬁ)])”E b
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ur ZI 1 Taem +p) A 8,00+ B P [o(®) + (). 02 [o(®) + &' (9) D||, a9

Aj— Ptr
+Zlb | f : T, )+ =l @.00 + . 21 o) + & @)]. 01 lo@) + T @D 49
G

()

(o= - - -
+ f; Ty I @00 + @) Pile®) + &' @)]. 1 lo®) + & @)D - dﬂ)

s |bi| 45
+||u/<0>||[ IBI[ZF(qi+1)_1

S (¢ -
I(p)
+V4<ﬂ> llos + @all + Vs(@) [|P1 [o@®) + B)]||; + Ve@ |01 [o(®) + @@)]||, | @9

g (9,00 + @j. P2 [0 + @ (D], Q2 [0®) + @ ()])|, 4O

IA

[Vi@®) llos + Bolle + Va@) || P2 [0(8) + B@)]||; + V3 || Q2 [0 + B@)]|

Aj — @)ydrr]
N7 (ZI i ( ) T [Vi®les + Bollo + Va() [|P2le@) + B

+V3() || 02 [0(®) + &(9)] || + Vi@ llog + aﬁn@ + Vs(@) [P [o®) + @)

+Ve(®) |1 [o@) + D] ] 46 + f L F() [Vl(mngwwﬂn@

+q2(®) ||P2 [0®) + D] ||; + 43 || Q2 [0@) + @) + Va@® lls + Dolle
+ V5 ||P1 [o®) + ) . + Ve@ |01 lo(®) + @@ do

[bif 47
+ly O 1+ 7 N

u b/l%
* —* g J J
< 2Vl S [E + &)+ IIIﬁ(O)Il(l + @[; il 1))

*
= & .

where V*(¢) = max {Vi(), Va(s), V(). Va(s), Vs5(s), Vs(s)} and
llos + Wollg < Nis+ N>l (0)llg <57

Hence
’ ||%1CL) + %20)*”(;0 <&

Thus, Rijw + R,w* € Hy. Now, we prove that ‘R is a contraction. Let w, w* € Hyand ¢ € U. We then

[(Raw) () - (%zw*) |-

b, =9yt _ _ _
< 5 [ZI 1), g lle@ o+ Bo.P2[e®)+ )] 02 e®) + T))
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— g (9,00 + @y, P2 [0(9) + @ )], Q2 [0(®) + @ (D))
+||n (@, 05 + @y, P [0®) + B@)], Q1 [0() + B()])
— (.00 + @y, P1 [o®) + &' @)], Q1 [o®) + &' @) | 49
7 (o — 9! _ _ _
(o F(p; [|| g (9,00 + @y, P2 [0(F) + ()], O [o() + B(D)))
— g (9,00 + @y, P2 [0(®) + & (D], 02 [0(®) + & (D))
+||n @, 05 + @y, P [0®) + B®)], Q1 [0() + B()])
— g (.00 + 5;; Py [o(®) + @' )], 01 [o(®) + @' @)))||,] 40
b =gyt -, — —
[l [ el -l - o - 3
+ 6 (||@s - wallg e |@u =@l ® + Lo |0, - @l 9)| 49
loa _ ’ﬂ p—1 _ ., _
[t (1@ =il + . 13~ Tl 2+ 0. [ -
+ b ([@s - @yl + o, @ - Dl @ + Lo, || — @3, #)] )
U'NT fg {(Vl +V3)+(V2 +V4) (fp2 +5Q2)}
|B| +0 {(Vl +v3)+ (2 +wy) (€Pl + le)
= Ollw-wllg,

IA

>k

,u

o?)

| ] lw - wllg,

It follows that

% *

Since ¢* < 1, then, R, is contraction. Since g, Py, P,, Q; and Q, are continuous, then R is continuous.
Furthermore,

[(R1w) ()|
“ (¢! _ _ _
Ty 18 @00+ @ P2 [o@) + BN 02 o) + B 49
AV
e F(p)) |1 (8, 00 + @, Py [0() + D], Q1 [0(®) + @@)])||. 4O
— 9P
< fo (c F(p>) [Vi®) lloo + @olle + V2@ [|P2 [o(®) + B@)]||2 + V3@ || 0 [o®) + @(@)]||. ] do
O _ _ N
T |Va@) lloo + @slle + Vs@) ||P1 [0() + D] + Vs || Q1 [0®) + B@)]||2 | a9

IA

2lig" Nl s™ (v + v2).

Hence, R is uniformly bounded on H,. Ultimately, we claim that R; is compact. Indeed, we prove
that R is equicontinuous. For ¢, ¢, € U, with ¢; < ¢; and w € Hs, one has

”(%10)) (s2) = (Riw) (5‘1)”E

G1 — NP = (¢ = 9! — ~ o
0 ) r(p§§1 ) [”g (P, 09 + g, P2 [0(P) + @(I)], 02 [0(F) + w(ﬂ)])ns
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+ |h (.00 + @y, P1 [0) + D] . O [o®) + BO))). | 49
2 (¢, — 9!

¢ ['(p)
4 19 00 + @i Py [0®) + B@)], 1 [o®) + DD | 40
(=N = (61 = D!

(llg .00 + @s. P2 [0() + B@] . 0 [0®) + D))

< ) [Vi(@®)s™ + Vo () V(D) s™ 9 + V() Vip(F)s™ I
0
+ V4(@3)s™ + Vs(D)V7() 5™ + Ve(F)Vo(I)s™ ] di
2 _ -1
% [Vi()s™ + Vo(H) V(359 + V3()Vip(P)s™d
+ V4](19)’s‘* + Vs()q7(9)s™ 9 + V() Vo(9)s™ 9] dd
I (e e YR = (62 =)
< 2||[V¥|us ( ; ) (1 +P)dd + . Tp)(l + HdI|.

Therefore, ||(‘R1a)) (¢2) — - — ¢». Hence, @, is equicontinuous. By the Arzela-
Ascoli theorem, we establish that R is compact on H;. Consequently, invoking Krasnoselskii’s FP
theorem, w € G exists such that Rw = w, which is a solution the neutral BVP (1.2). O

For the uniqueness, we have the following theorem:
Theorem 4.3. Via Assertions (A4) and (Ag), the neutral BVP (1.2) has a unique solution on (—oo, o].

Proof. Define the set H; = {w € Gy : lwllg, < s} and assume that w, w* € Gy. For ¢ € U, we get

[(Rw) (s) = (Rew") ()|

(s -9y _ _ ~
Sy e @00+ @ P2lo@) + B 02 o) + GO

— g, 09 + @y, P2 [0(®) + &' ()], Q2 [0(®) + & (D)])|, 4

(g = o) _ ~ ~
Sy @00+ @0, P (o) + GO 01 o) + B

—h (0 00 + a? P1 [@(ﬂ) + a*(ﬂ)] 01 [o®) + @ ()])| . d¥

|l ), Trg e oo P -

- (ﬁ s + wﬂ, Py [0(®) + @* ()], Q2 [0®) + & D)) 49

(/1 _ 19) j+p—1 _ _ _
+ Z bl ), gy @0+ Go. Pr o) + G0N €1 lo@) + G))

o (9,00 + By, Py [0(9) + @ ()], Q1 [0(®) + & (D)) 49
— 91 _ B B
% ||g (3,09 + Wy, P2 [0(F) + ()], Q> [0(F) + w(P)])

= 8 (%09 + @), P2 [o(®) + & ()], Q2 [o®) + & (@)))| a0

— 9! _ — ~
N j: % 17 (9, 05 + @y, Py [0() + @@)], 01 [0() + B@)))
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6185

— h(d,00 + 5;;, Py [o®) + @' )], Q1 [o®) + @ @)])||, d9)

) L o
f . r(p)> £ ([0 = @llg + (Er, + o) @ - @14 9)
+ 6 ([l - wﬂllg + (fpl + 0|, - @, )] a0

ﬁ)%ﬁl _ . o,
RPN e G RO

IA

o)

+€h(||w0 @yl + (Cr, +£Ql)||wﬂ o 9)| a9

% (¢, (|@o = @], + o, + o) [ - T,
o¥)]a?)

+fh (”5,9 ﬁ”@ + (fp1 + le) ||(,L)ﬂ
0_p+1

oo (4; )"’
(N} | =——— + —Z| il
Fip+1) Bl &7 " T(gj+p+ DT I'(p+1)

R ()] o’
+(lp, + )| =— + =
(Cp, Qz)[r(p+2) |B|j:zl| i r(qj+p+2) IBIT(p +2)

o?)

IA

o (/1)41 0—p+1
oD E LT D BT +1
(p+1D Bl 4 (gj+p+ ) IBIT(p + 1)
o (4))srH! e
+ (lp, + o) | =——+ —=
(r Q)[r<p+2> lBl;' ’|r<q,+p+2> [BIT(p +2)
ngik {‘fl + '52 (sz + sz)} + thik {fl + 62 (51)1 + ng)} ”w - w*”Go

= S lw -, -

+thT

}Ilw - 'llg,

IA

Hence,

|R (w) -

< 8" flw = w'llg, -

By (Ag), S* < 1. Thus, R is a contraction. By Banach’s FP theorem, ‘R has a unique FP, which is a
unique solution to the problem (1.2) on (—oco, o]. |

5. Supportive examples

This section is devoted to testing the conditions of the proposed systems and their effectiveness,
which leads to supporting and enhancing the theoretical results we obtained.

Example 5.1. Assume the following FFIDE:

LC _ -ve |wc| 1 (S s¥e™ cos(my) T ¢de™  sin(wy)
Dzw(g) (s +7)2€ 1+|@| t32 b 16(1+%9) l+cos(w,9)dﬂ+ 64 Jo 20(1+8) 1+sin(w,7)d0’ s€l[0,1],

@(§) =¥ (s), ¢ € (=,0], (5.1)
3

()= 3 b;(Iw)(4). 0< 4 < <A< 1,
j=1
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where v > 0 is a real constant and define the set H, as
H, = {a) € C((-c0,0],R) : ¢1ir_n e’ w(¢) exists in R} ,

under the norm
lwll, = sup e |w(@®).

¢e(—00,0]
Assume that @ : (—oc0, 0] — E in order that wy = ¥ € H,. Then
¢lim ?w (p) = ¢lim ew(sc+ ¢) = ¢lim e w(p) = e ¢lim e wy(p) < .

Therefore, w, € H,. Select N; = N, = k = 1. Hence, we show the condition

||, < Ni(s) sup {lm(@)] : 0 < & < 6} + Na(s) llwoll, -

Clearly, wg(¢)| =lw(§+¢).If ¢+ ¢ <0, we get
|we(@)] < sup {l@(@)] : —o0 < < 0}.
In the case of ¢ + ¢ > 0, we have
|ws(@)] < sup {l@(@)] : 0 < ? < g}
Hence, if ¢ + ¢ € [0, 1], we can write

|a)§(¢)| < sup {lw(@)| : —oo < ¥ < 0} + sup {lw(P)|: 0 < I < ¢},

which implies that
|||, < sup (l@@)| : 0 < < 6} +l[all, -

Furthermore, the pair (H,, ||w||) is a BS and H, is a phase space. Here, p = % = 3, and we choose
bi=Y b=1 b=4,
/ll:%, /12_%’ /13:%a
_ 1 _ 1 _ 6
9 =3, 2=35, {43 =73.

By simple calculation, we have

B=o- z an = z m, 5 ~0.3729 # 0,
O_p+1
V) = m~03009 Vo) = m 00859 1
vs = ~ 0.0088, v4 = z || 72z ~ 0.0008,

& = (1 + |B|)V1 + lB‘v3 ~ 1.1314,
& =(1+ &)+ v~ 03184,

|B|
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From (5.1), we have

_ 1 —-vg |w5| i
1600 PO 0 = e P 1 00(s),

where

Po(e) = f S ge™  cos(wy)
7= ), 16(1+9) 1 + cos(ay)

3 f 7 ge™  sin(wy)
Q@) = | 00591+ sin(my)

Now, for w,, o; € H,, we have

‘ g™ cos(wy) gle™  cos(gg)
16(1 + ) 1 + cos(my) 16(1 +9) 1 + cos(oy)

1
< —l|lw- .
< gl —ell. (5.2)

|P (g’ ﬁ’ wﬂ) - P(g9 19‘9Q19)|

' ¢le™s  sin(wy) B gle™  sin(oy)
20(1 + @) 1 + sin(@wy)  20(1 + ) 1 + sin(oy)

1
< —|l@- )
< 5 |l - oall,, (5.3)

10 (s, 3, @g) — Q(c, 7, 00)l

g (s, @, Pw(s), 0w (s)) - £ (5, 0, P9<g>, 00(s))|
1 |m§ - Qc|

—vs

G+ (1+|a)(1+]o) 3

1
3 IPW(S‘) Po(©)l + 2 10@(s) = Po(<)|

IA

1 1
o (Ilw ell, + g ll@ —ell, + OIIW—QIIV), (5.4)

lg (s, ¥, @, 0)l

[ |¢§| N 1 fg cile™  cos(wmy) dﬁ"'if ge™  sin(oy)
0

(g + 7)26 1+ |¢§| 32 Jy 1601 +9)1+cos(@my) 64 Jy 20(1+19) 1 +sin(op)

< |lﬁ| | |+—|Q| (5.5)
ctte™  cos(wy) 1

P(c. 9. @) = < — |l 5.6

P (5,9, @) ‘16(1+19)1+cos(w19) 33 1@ (5-6)
and Goors in(wy) |

e sin(wy
9 5.7
10 (6.0, )] = ‘zo(lw)usm(m) 5l 5.7)

It follows from (5. 2) (5.7) that £, = 64, tp = E’ tyg = E’ Vilg) = é, Va(s) = 3—12, Vi) = &
Vilg) = 32, Vs(s) = 40, and N7 = 1. Hence

= |B|€ N {(Vl + V3) + (V2 +vy) (fp + fQ)} 0.0138 < 1,
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and
S = ngik {f] +

Therefore, all the requirements of Theore

& (Lp+ L)} ~0.0182 < 1.

ms 3.3 and 3.4 are satisfied. Then, the considered

problem (5.1) has a unique solution on (—oco, o].

Example 5.2. Assume the following neutral

LCDgg [w(g)_foc W(

_ (1+e'§)e_vg |w§|
Gares)  1+]m]

@(5) =Y (s), ¢ € (—00,0],

e s ’ZD'Z
20 1+

2+20

+E A ‘Vgcos( )d19+35 A ‘Vgsm(wﬁ)dﬂ ¢ €[0,1],

FFIDE:

T ovs tan” (ws)

S e
L, e In(l+@)dd+ 5 | S Tran (o0

dﬁ)]

(5.8)

@(l) = gl b (@) (4;), 0< i< <3< 1.

Assume that H, is the phase space, which is defined in Example 5.1, where p = % =3, and
b1=%, bz=%, b3=§,
/l] = ?7 /12 ?7 /13 = ?’
91 =35, 42 =73, {3 = 3.
By simple calculation, we have
B~ 0. 5231 # 0,
U.p+l
vy = r(1_+p) ~ 04187 V2 = 15 0.3979, .
vy = ~0.0132, vy = z |b)| fizmes; ~ 0-0037,
é:l = 1 + = |B| vy + |B\V3 ~ 1.5841,
g 1+ < iBl Vo + |B\v4 ~ (0.7239.
From (5.8), one can write
(1+es)e™ |o 1 1
, @, Pa(), + —P + — ,
8 (5, @, P2(<), 02(6)) Gire) Tafod 15 2@(§) + 52 02w (S)
h(s @, P ) = o 2
ST Pi(©), Qi(9) = 577 wg D16 + —Q1W(§)
where
S e’s
Prwo(g) = f G In(l + @.)d?d,
0
7 e tan”! (@)
= dd,
2@ (s) fo 4 1+tan™! (w,)
S
Piw(s) = f e cos(%)dﬂ,
0

AIMS Mathematics
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Ow(g) = f e‘vgsin(@)dﬂ.
0 6

Now, for w,, o € H,, we have

e—vg e—VC
|P; (¢, @y) — Py (s, 0,09) = ‘ 6 In(1+ @) - 6 In(1 + o)
1
< gllw—Qllv, (5.9)
e tan”! (w,) e tan”! (@)
9, wy) — 0, = - dd
102 (¢, P, @) — Qa2 (5,3, 09)] 4 T+an (@) ¥ T+an (@)
1
< gl@-al,. (5.10)
.
1Py (5.0, @) ~ Py (. 8.00)] = [e7cos(F) = e cos(%)
1
< slo-dl. (5.11)
. wz —y . 1
016 B m) - 01 6 donl = [ sin(Th) e Csm(%)'
]
< glo-adl. (5.12)

g (5. @5, Paw(s), Q2w (s)) — g (5, 05, P20(S), 020(5))|

(1+e*)es @~ O 1 1
< . 7. e + 2 [P2@(S) = Pro(S) + 22 102w () — Pao(<)]
G4+e) (14]a)(1+]es]) 19 35
1 1 1
< g(llw—gllv+ 3l —oll, + 7llw—gllv), (5.13)

| (s, @, Pra(s), Q1(s)) = (s, 05, P10(s), Q10(5))]

e @ ! P P ! P
20 1+ 2 +%I »w(S) — zg(§)|+EIQzW(§)— 20()!
< l(Ilw—gll +1llw—gll +1llw—gll) (5.14)
< 7 v 3 - "k
lg (s, ¥, @, 0)|

(1+eS)es |¢’g| 1 fg e wy 1 f” e .09
— [ e5cos(Ehdn + — | e sin(Zl)do
Ghre) 1+fw] B costdd+ 55 | e sinCE)
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< Wl |w| —5|Q|, (5.15)
|h (s, ¥, @,0)|
e Wl 1 (Ses f e tan"! (o)
- — In(1
20 1+¢2 +2of 5 In +w§)dﬂ+25 F Trant o)™
< — 5.16
< |lﬂ| 160| | + 100 lol, (5.16)
s 1
|P2(g,ﬂ,w)|:‘ —In(l+@) < -, (5.17)
e tan! (@) 1
0, @)| = J 5.18
|0 (6,0, @) T Totan (wg) |w| (5.18)
|Pi (s, 0, @) =|e VgCOS(—)‘ =@, (5.19)
and :
10 (6. 0, @)| = |e7* sin(?) < ol (5.20)

From (5.9)—(5.20), we have €, = {p, = V;i(¢) = %, = Cg, = Vio(s) = i, tp, = lp, = Vs(s) =
Vl(g) = V3(g) = %’ VZ(g) = %’ V4(g) = %), VS(g) = Nﬁa Vﬁ(g) = ﬁaa V9(g) 60’ N* = 1. Thus We
can write

St = ngik {fl +§2 (fp2 + sz)} + th;F {fl + fz (gpl + KQI)} ~ 0.8395 < 1,

and

o Ny
¢ = B L (L [ +vs) + (Lp, + £o,) 2 +va)] + by [(vy + v3) + (€p, + Lg,) (va + v4)]) ~ 0.5059 < 1.
Hence, all the assertions of Theorems 3.4 and 4.2 are fulfilled. Therefore, the supposed problem (5.8)
has a unique solution on (—oo, o].

6. Conclusions and future work

The study of FFIDEs presents a formidable challenge due to the inherent complexities arising
from the interplay of fractional-order derivatives, functional arguments, and integral operators.
Traditional methods often fall short in addressing these equations due to the non-local nature of
fractional derivatives and the intricate dependence on past states introduced by functional arguments.
Overcoming these difficulties requires the development and application of sophisticated mathematical
tools, including specialized FP theorems tailored for fractional settings, careful treatment of infinite
delay, and the construction of appropriate function spaces that accommodate the combined effects
of these operators. Furthermore, the presence of multi-term fractional integral boundary conditions
adds another layer of complexity, demanding innovative techniques for handling the non-local and
distributed nature of the boundary constraints. Successfully navigating these hurdles necessitates a
deep understanding of fractional calculus, functional analysis, and operator theory, ultimately paving
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the way for a more comprehensive understanding of the dynamics governed by FFIDEs. This
paper investigates the existence and uniqueness of solutions for a class of hybrid fractional-order
functional and neutral functional integrodifferential equations, featuring infinite delay and multi-
term fractional integral boundary conditions. A rigorous mathematical framework is developed,
leveraging FP theorems, to analyze these complex equations. The LC definition of fractional
derivatives is employed, facilitating a comprehensive study of nonlocal dynamics. Illustrative
examples are provided to demonstrate the applicability and practical relevance of the theoretical
results. Future work includes exploring more complex equations (e.g., variable-order, generalized
functional arguments), investigating stability, controllability, and numerical methods, and applying
these equations to real-world problems. Developing new fixed point theorems tailored for fractional
functional integrodifferential equations and studying associated inverse problems are also promising
research avenues. Finally, we also look forward to extending the study period outside the proposed
period [2,3].
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