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Abstract: Let µ and ν be two compactly supported Borel probability measures on Rd and Rl,
respectively, and let q ∈ R and h, g be two Hausdorff functions. In this paper, we are concerned
with evaluation of the lower and upper Hewitt-Stromberg measure of Cartesian product sets, denoted,
respectively, by Hq,g

µ and Pq,h
ν , by means of the measure of their components. This is done by the

construction of new multifractal measures in a similar manner to Hewitt-Stomberg measures but using
the class of all (semi-) half-open binary cubes of covering sets in the definition rather than the class
of all balls. Our derived product formula excludes the 0–∞ case, and our approach is uniquely
applied within an Euclidean space, distinguishing it from those previously utilized in metric spaces.
Furthermore, by examining the measures of symmetric generalized Cantor sets, we establish that the
exclusion of the 0–∞ condition is essential and cannot be omitted.
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1. Introduction and main results

Let X and Y be two separable metric spaces and letM(X) be the family of compactly supported
Borel probability measures on X. We say that µ ∈ M(X) satisfies the doubling condition if

lim sup
r↘0

(
sup

x∈supp(µ)

µ
(
B(x, ar)

)
µ
(
B(x, r)

) )
< ∞

for some a > 1 (or, equivalently, any a > 1), where B(x, r) is closed ball with a center x and a radius r.
We useM0(X) to denote the family of compactly supported Borel probability measures onX that fulfill
the doubling condition [1]. To study the multifractal analysis of measures introduced by Mandelbrot
in [2, 3], we must turn back to the study of sets related to the local behavior of such measures, called
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level sets, defined, for β ∈ R, as :

Eµ(β) =
{

x ∈ supp(µ); lim
r→0

log µ(B(x, r))
log r

= β

}
,

where supp(µ) is the topologic support of µ, and B(x, r) stands for the closed ball with a center x and
a radius r > 0. Thus, this study is essentially linked to its punctual nature and falls under set theory.
However, some geometric sets are essentially known by means of the measures that are supported by
them, i.e.,

ν(A) = sup{ν(B), B ⊂ A},

for a given measure ν and a given set A. Hence, when we consider a set A, we focus on the properties
of the measure ν rather than the geometric structure of A. The set A is thus partitioned into α-level
sets Eµ(β). This allows the inclusion of µ into the computation of the fractal measures and dimensions.
Olsen, in [1], introduced the multifractal generalizations of the fractal dimensions. This is achieved
by constructing the generalization of Hausdorff and the packing measures, denoted Hq,t

µ and Pq,t
µ in

Rd, where d ≥ 1, respectively. Later, in [4], the authors introduced a new multifractal formalism that
deviates from the classical approach. To achieve this, they constructed two distinct measures known as
the lower and upper Hewitt-Stromberg (H-S) measures, denoted, respectively, by Hq,t

µ and Pq,t
µ . These

measures serve as fundamental tools in the analysis of multifractal structures. Given the importance
of these measures in this study, it is crucial to examine their properties, including their behavior on
product sets and their density characteristics both of which play a critical role in understanding the
broader implications of this new formalism. In particular, in [5], the author proved the existence of a
constant c > 0 such that, for any measurable sets A ⊆ Rd and B ⊆ Rl, the following inequality holds:

H
q,s+t
µ×ν (A × B) ≤ c1 H

q,s
µ (A) Hq,t

ν (B) ≤ c2 P
q,s+t
µ×ν (A × B) ≤ c3 P

q,s
µ (A) Pq,t

ν (B), (1.1)

provided that we have the measures µ ∈ M0(Rd) and ν ∈ M0(Rl) and with the convention that

0 ×∞ = 0.

The constant ci (i = 1, 2, 3) depends only on certain structural parameters, such as the dimensions d
and l, but is independent of the specific choice of E and F. Moreover, in the specific case q = 0, the
associated dimensional inequalities for the products of these measures have been derived in [6–8]. For
additional related discussions, the readers may consult [9, 10]. Furthermore, the inequalities above are
explicitly stated in this case in [8, 11–13]. In particular, if

d = l = 1 and µ = ν

are basically the Lebesgue measure on R, one has, for

q + s = q + t = log 2/ log 3

and E = F as the middle third Cantor [14, 15]

Hq,s
µ (A) Pq,t

µ (B) = 1 × 4t < P
q,s+t
µ×ν (A × B) = 4s+t = Pq,s

µ (A) Pq,t
ν (B).
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Remark 1. The equation of (1.1) has important physical interpretations depending on the context.
Note, for q = 0, that

H1 = L1,

is the one-dimensional Lebesgue measure. In particular, if A, B ⊆ R, then the product set A × B forms
a subset of R2, and then (1.1) gives an approximation of the Hausdorff measure of A×B using the area
of the region covered by the Cartesian product. These prove, in particular, that

H2(A × B) , H1(A)H1(B).

A Hausdorff function
h : R+ → R+

is a function that is increasing, continuous, and satisfies

h(0) = 0.

These functions are often used in the context of geometric measure theory, particularly in defining
Hausdorff measures. Let F denote the set of all such dimension functions, i.e., the set of all Hausdorff
functions. Additionally, a Hausdorff function h is considered to fulfill the doubling condition if a
positive constant γ exists such that the following inequality holds:

h(2r) ≤ γh(r), for all r > 0.

This condition essentially ensures that h does not grow too quickly and is often used to ensure specific
regularity properties of the corresponding measures. The subset of F consisting of all Hausdorff
functions that satisfy the doubling condition is denoted by F0. Recently, in [16], the authors introduced
the generalized pseudo-packing measure Rq,h

µ and they proved that

H
q,hg
µ×ν (A × B) ≤ Hq,h

µ (A) Rq,g
ν (B) ≤ Rq,hg

µ×ν (A × B), (1.2)

for all A ⊆ X and B ⊆ Y, provided that we do not have 0–∞ case; that is, the product on the medium
side does not take the form 0×∞ or∞× 0. Note that we do not any restriction on the measures µ, ν, h,
and g; that is, they do not satisfy necessary the doubling condition. In addition, one has (see again [16])

P
q,hg
µ×ν (A × B) ≤ Qq,h

µ (A) Pq,g
ν (B), (1.3)

except in the 0–∞ case, where Qq,h
µ is the weighted generalized packing measure. In particular, one can

obtain (1.1) under appropriate geometric conditions on X and Y (amenable to packing) [8, 16].
Traditional packing and Hausdorff measures are defined using packings and coverings made up of

collections of balls with diameters less than a given positive value δ. An alternative approach to
constructing fractal measures utilizes packings and coverings by using families of balls with a fixed
diameter δ. These measures, known as H-S measures, were first introduced in [17, Exercise (10.51)].
They were later explicitly described in Pesin’s monograph [18] and are also referenced, albeit in an
implicit manner, in foundational works such as Mattila’s [19]. The importance of H-S measures goes
beyond their theoretical definition; they offer a flexible framework for analyzing fractals and their
complex characteristics. Numerous studies, including [20–23] for H-S measures and [24–26] for
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Standard measures, have demonstrated their utility in exploring the local properties of fractals and the
behavior of fractal products. These works underscore the adaptability of H-S measures across various
contexts, thus enriching the field of fractal geometry and its applications. Furthermore, Edgar’s
comprehensive exposition of these measures [27, pp. 32–36] provides a clear and accessible
introduction, thoroughly detailing their construction, properties, and potential applications.

In Section 3, we are interested in studying the counterpart of the formula (1.1) related to the lower
and upper H-S measures in Euclidean space. This result was shown for q = 0 in [28] in Euclidean
space. We will prove the following theorem.

Theorem 1. Let A ⊆ Rd, B ⊆ Rl, µ ∈ M0(Rd), ν ∈ M0(Rl), h, g ∈ F0 and q ∈ R. Positive constants
c1–c4 exist such that

Hq,h
µ (A)Hq,g

ν (B) ≤ c1Hq,hg
µ×ν (A × B) ≤ c2 Hq,h

µ (A)Pq,g
ν (B) ≤ c3 Pq,hg

µ×ν (A × B) ≤ c4Pq,h
µ (A)Pq,g

ν (B), (1.4)

except in the 0–∞ case.

To prove the first inequality, we introduce a new multifractal measure that parallels the lower H-S
measure and is notably simpler to analyze. This is achieved by utilizing a class of half-open dyadic
cubes as covering sets in the definition, instead of using closed balls. The use of half-open dyadic
cubes provides a new framework for the analysis, simplifying the structure of the measure. For the
second inequality, we extend the technique by replacing the traditional dyadic cubes with half-open
semi-dyadic cubes. This adjustment leads to the definition of two distinct measures that correspond to
the upper and lower H-S measures. This choice arises from the fact that semi-dyadic cubes vn(x) are
less sensitive to the position of x compared with the corresponding dyadic cubes un(x). Semi-dyadic
cubes have been utilized in works such as [5, 13, 29]. It is important to note that this construction is
specific to Euclidean space, making our proof distinct from those in [30].

Remark 2. It is important to emphasize that our analysis was not conducted for an arbitrary subset
Γ ⊂ R2, but specifically for cases where Γ takes the form of a Cartesian product

Γ = A × B.

Addressing such a problem is far from straightforward, as it necessitates the application of integral
versions of product set. For a deeper exploration of these techniques and their implications, we refer
the reader to [5, 31, 32].

When
h(r) = rt,

the measures Hq,h
µ and Pq,h

µ are simply denoted as Hq,t
µ and Pq,t

µ , respectively. In this case, these measures
assign, in the standard manner, a multifractal dimension to each subset A of Rd, defined as follows:

bq
µ(A) = inf

{
t ∈ R, Hq,t

µ (A) = ∞
}

and Bq
µ(A) = inf

{
t ∈ R, Pq,t

µ (A) = ∞
}
.

If q = 0, bµ(A) and Bµ(A) do not depend on µ and are simply denoted b and B, respectively. Theorem
A implies, when all the hypothesis are satisfied, that

bq
µ1

(A) + bq
µ2

(B) ≤ bq
µ1×µ2

(A × B) ≤ bq
µ1

(A) + Bq
µ2

(B) ≤ Bq
µ1×µ2

(A × B). (1.5)
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Moreover, all these inequalities may be strict. Indeed, one can construct two sets A and B such that

bq
µ1

(A) + bq
µ2

(B) < bq
µ1×µ2

(A × B),

(see [33] for q = 0). However, in Example 2, we give a sufficient condition to get the first equality in
Eq (1.5):

bq
µ1

(A) + bq
µ2

(B) = bq
µ1×µ2

(A × B).

One can define also the multifractal separator functions

bµ(q) = bq
µ(supp(µ))

and
Bµ(q) = Bq

µ(supp(µ)).

Where bµ is known to be a decreasing function, while Bµ is both a decreasing and convex function [4].
In addition, it holds that

bµ ≤ Bµ.

As a consequence, since
supp(µ1 × µ2) = supp(µ1) × supp(µ2),

we get the following result:

bµ1(q) + bµ2(q) ≤ bµ1×µ2(q) ≤ bµ1(q) + Bµ2(q) ≤ Bµ1×µ2(q), (1.6)

by taking
E = supp(µ1)

and
F = supp(µ2)

in Theorem 1. Similar results were also proven for the s-dimensional Hausdorff measure H s and the
s-dimensional packing measure Ps [6, 13, 34, 35]. In addition, a variety of related results and further
developments on this problem can be found in the works of [36, 37].

Now, given µ, θ ∈ P(Rd), q ∈ R, h, g ∈ F0, and x ∈ supp(µ), we define the upper and lower
(q, s)-densities of θ at x with respect to µ as

d
q,h
µ (x, θ) = lim sup

r→0

θ
(
B(x, r)

)
µ
(
B(x, r)

)qh(2r)
and dq,h

µ
(x, θ) = lim inf

r→0

θ
(
B(x, r)

)
µ
(
B(x, r)

)qh(2r)
. (1.7)

If
dq,h
µ

(x, θ) = d
q,h
µ (x, θ),

we use dq,h
µ (x, θ) to denote the common value. In [30], the authors used some density inequalities as

“local versions” of the product inequalities. In particular, they proved that the inequality

Pq,hg
µ×ν (A × B) ≤ cPq,h

µ (A)Pq,g
ν (B)
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may be deduced from the following density inequality:

c dq,hg
µ×ν

(
(x, y), θ1 × θ2

)
≥ dq,h

µ
(x, θ1)dq,g

ν
(y, θ2),

where θ1 is the restriction of Pq,h
µ to E and θ2 is the restriction of Pq,g

ν to B.
The set A satisfies the condition

bq
µ(A) = Bq

µ(A)

for measures µ under consideration, which will be called regular set. Regularity is defined with respect
to various measures, such as the packing measure [29, 38], the Hausdorff measure [39–42], and the
H-S measure [43–45]. Notably, Tricot et al. [38, 46] demonstrated that a subset A of Rd has integer
Hausdorff and packing dimensions if it is strongly regular, meaning that

H t(A) = Pt(A)

for t ≥ 0. Furthermore, as a consequence of (1.5), it follows that if either E or F is regular, then

bq
µ1

(A) + bq
µ2

(B) = bq
µ1×µ2

(A × B) = Bq
µ1×µ2

(A × B). (1.8)

In Theorem 1, we assume that the products do not take the form 0 × ∞ or ∞ × 0. In Section 4, by
estimating the measure of d-dimensional symmetric generalized Cantor sets, we demonstrate that this
assumption is essential and can not be omitted. Specifically, let 0 < α, β < 1, to establish the second
inequality in (1.4), we then need to prove that

H
q,α+β
µ×ν,0 (H) ≤ c H

q,α
µ,0(A) P

q,β
ν (B),

for all
H ⊆ A × B

and some positive constant c, where H
q,α
µ,0 and P

q,β
ν are the pre-lower and pre-upper H-S measures,

respectively (see Section 3.2 and Eq (3.2)). We establish the following result.

Theorem 2. One-dimensional generalized Cantor sets K1, K1
2 , K2

2 , and K3
2 such that

H
q,α
µ,0(K1) = 0, P

q,β
µ (K j

2) = ∞,

and H
q,α+β
µ×ν,0 (K1 ×K2) and P

q,α+β
µ×ν (K1 ×K2) are infinite, positive finite, and zero according as j = 1, 2, 3,

respectively.

2. Construction of fractal measures and preliminary results

2.1. Construction of fractal measures

In this paper, we use formulas containing too many different variables, which is unpleasant, and
omitting these extra parameters will create no confusion. To this end, for µ ∈ P(Rd), ν ∈ P(Rl), and
h, g ∈ F , we define the gauge functions ξ and ζ as

ξ(x, r) = µ(B(x, r)qh(2r) and ζ(x, r) = ν(B(x, r)qg(2r), (2.1)
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where q ∈ R, r > 0, with the conventions
0q = ∞

for q ≤ 0 and
0q = 0

for q > 0. The reader should note that we have simply used ξ (respectively, ζ) to denote the gauge
function depending on µ (respectively, ν), q, and h (respectively, g). If

h(r) = rs and g(r) = rt

for s, t ∈ R, then ξ and ζ will be denoted as ξs and ζt respectively. In this section, we construct the
different fractal measures used in this paper. Let δ > 0,

A ⊆ supp(µ),

and {B(xi, ri)}i is a δ-packing of the A, that is, a countable family of disjoint closed balls such that
xi ∈ A and

0 < 2ri < δ

for all i. Write
P
ξ
δ(A) = sup

∑
ξ(xi, ri) and P

ξ
0(A) = inf

δ>0
P
ξ
δ(A),

where the supremum is taken over all δ-packings of the set E. The generalized packing measure Pξ of
A with respect to ξ is defined by

Pξ(A) = inf
A⊆

⋃
i Ai

∑
P
ξ
0(Ai)

and
Pξ(∅) = 0.

In a similar way, we define

H
ξ
δ (A) = inf

∑
ξ(xi, ri) and H

ξ
0 (A) = sup

δ>0
H
ξ
δ (A),

where the infimum is taken over all δ-coverings
{
B(xi, ri)

}
i
of E; that is, xi ∈ E, 0 < 2ri < δ, and

A ⊆
⋃

i

B(xi, ri).

We define the generalized Hausdorff measure as

H ξ(A) = sup
E⊆A
H
ξ
0 (E)

and
H ξ(∅) = 0.

We refer to [1, 5] for more details (see also [46, 47] for q = 0). Moreover, an integer κ ∈ N exists such
that

H ξ ≤ κPξ.

AIMS Mathematics Volume 10, Issue 3, 5971–6001.
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Similarly, we define

P
ξ
(A) = lim sup

r→0
Mq
µ,r(A)h(2r),

where

Mq
µ,r(A) = sup

∑
i

µ(B(xi, r))q
∣∣∣∣ {B(xi, r)

}
i

is a centered packing of A

 .
It is clear that P

ξ
is increasing and

P
ξ
(∅) = 0.

However it is not σ-additive. For this, we define the Pξ-measure defined as

Pξ(A) = inf

∑
i

P
ξ
(Ai)

∣∣∣∣ A ⊆
⋃

i

Ai and the A′is are bounded

 .
In a similar way, we define

H
ξ

r(A) = Nq
µ,r(A)h(2r) and H

ξ

0(A) = lim inf
r→0

H
ξ

r(A),

where

Nq
µ,r(A) = inf

∑
i

µ(B(xi, r))q
∣∣∣∣ {B(xi, r)

}
i

is a centered covering of A

 .
Clearly, H

ξ

0 is not countably subadditive and not increasing; one needs some modification to obtain an
outer measure. More precisely, let

H
ξ
(A) = inf

∑
i

H
ξ

0(Ai)
∣∣∣∣ A ⊆

⋃
i

Ai and the A′is are bounded


and

Hξ(A) = sup
E⊆A

H
ξ
(E).

It is well known (see, for instance, [48]) that Hξ and Pξ are metric outer measures, which implies that
they are measures on the Borel algebra. Moreover, for some integer κ ∈ N, the following inequality
holds:

H ξ(A) ≤ Hξ(A) ≤ κPξ(A) ≤ κPξ(A).

2.2. Construction of the generalized Cantor set

In the following, we recall the construction of the one-dimensional generalized Cantor set K . Let
L be a positive number, let {nk}k≥1 be a sequence of integers, and let {λk}k≥1 be a sequence of positive
numbers such that

nk > 1, n1λ1 < L and λk+1 nk+1 < λk (2.2)
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for all k ≥ 1. The construction of the generalized Cantor set
{
L, {nk}k≥1, {λk}k≥1

}
is as follows. In the

first step, from a given closed interval with the length L, remove (n1 − 1) open intervals and then leaves
n1 closed intervals with the length λ1, denoted by I1, . . . , In1 . Let

J1 =

n1⋃
j1=1

I j1 .

In the second step, from each remaining closed interval with the length λ1, remove (n2 − 1) open
intervals and leaves n2 closed intervals with the length λ2. These are denoted as I j1, j2 , and we can write

J2 =

n1⋃
j1=1

n2⋃
j2=1

I j1, j2 .

We continue this process and, in the k-th step, obtain n1n2 · · · nk closed intervals with the length λk,
denoted I j1, j2,..., jk and denote their union as Jk. Then let

K =

∞⋂
k=0

Jk.

Let
µ = ν

be the uniform measure on K , that is
µ(Qk) = λk

and define

S k =
µ(Qk+1)
µ(Qk)

=
λk+1

λk
. (2.3)

This construction can be generalized in Rd and Kd, denoting the generalized Cantor set. Let Fk be the
product set of d copies Jk. Thus, Fk is the union of (n1n2 . . . nk)d closed cubes with the side λk, each of
which may be denoted as Q(k), and

Kd =

∞⋂
k=0

Fk.

The next lemma will be used in Section 4 to estimate the measure of Kd.

Lemma 1. Let Kd be the d-dimensional symmetric generalized Cantor set (d ≥ 1). A set function Ψ,
defined on every non-empty closed subset in Rd and r0, exists such that, for every open cube I with the
side r ≤ r0, we have

Ψ(I) ≤ 23dh(r)λq
k , (2.4)

where k is the unique integer such that
λk+1 ≤ r < λk.

Proof. We start the proof by constructing the set function Ψ. Assume that

lim inf
k→∞

(n1n2 . . . nk)dh(λk)λ
q
k > 0.

AIMS Mathematics Volume 10, Issue 3, 5971–6001.
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Let
0 < b < lim inf

k→∞
(n1n2 . . . nk)dh(λk)λ

q
k ,

then there is a k0 such that
λk0 < t0

and
h(λk) > b/(n1n2 . . . nk)dλ

q
k

for all k > k0. We define the sequence (λ′k) such that

h(λ′k) =
b

(n1n2 . . . nk)dλ
q
k

. (2.5)

Clearly, we have λk > λ
′
k (since h is increasing) and

h(λ′k+1) =
b

(n1n2 . . . nk+1)dλ
q
k+1

=(2.3) b
(n1n2 . . . nk+1)dS q

kλ
q
k

=
h(λ′k)

nd
k+1S q

k

.

Let A be any open set and define

Nq
µ,k(A) = inf

{∑
i

µ(Qi)q, Qi ∈ Fk, and meeting A
}
.

Then, we have

Nq
µ,k+1(A) = inf

{∑
i

µ(Qi)q, Qi ∈ Fk+1, and meeting A
}

≤ inf
{∑

i

µ(Qi)qµ(Q
k)q

µ(Qk)q Qi ∈ Fk+1, and meeting A
}

≤ kd
k+1S q

k inf
{∑

i

µ(Qi)q, Qi ∈ Fk, and meeting A
}

= kd
k+1S q

k Nq
µ,k(A).

It follows that the sequence
{
Nq
µ,k(A)h(λ′k)

}
is decreasing, and we may define the function

Ψ(A) = lim
k→0

Nq
µ,k(A)h(λ′k).

Now, we will prove (2.4). Let I be an open cube, k exists such that

1 ≤ j ≤ nk+1 and λk+1 ≤ r < λk.

Moreover, take a positive sequence (δk)k≥1 such that

nkλk + (nk − 1)δk = λk−1. (2.6)

Then the following exists:
1 ≤ j ≤ nk+1,

AIMS Mathematics Volume 10, Issue 3, 5971–6001.
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such that
jλk+1 + ( j − 1)δk+1 ≤ r < ( j + 1)λk+1 + jδk+1. (2.7)

Observe that

Nq
µ,k+1(I) = inf

{∑
i

µ(Qi)q, Qi ∈ Fk+1, and meeting A
}

≤ 2d( j + 1)dµ(Qk+1)q ≤ 22d jdµ(Qk+1)q.

It follows that
Ψ(I) ≤ 22d jdµ(Qk+1)qh(λ′k+1),

• If j = 1, then
Ψ(I) ≤ 22dµ(Qk+1)qh(λk+1) ≤ 22dµ(Qk+1)qh(r);

• If 1 < j < nk+1, then

jdµ(Qk+1)qh(λ′k+1) =(2.5) jdµ(Qk+1)q b
(n1n2 . . . nk+1)

= ( j/n1n2 . . . nk+1)db

= ( j/nk+1)dh(λ′k)µ(Q
k)q.

Since

λ′k
j

kr+1
≤ λ′k,

and
t 7→ h(t)/td

is decreasing, we get
( j/nk+1)dh(λ′k) ≤ h( jλ′k/nk+1),

and then
jdµ(Qk+1)qh(λ′k+1) ≤ µ(Qk)qh( jλ′k/nk+1).

Now, observe that

jλ′k/nk+1 ≤ jλk/nk+1 ≤
(2.6) j

nk+1
nk+1(λk+1 + δk+1)

≤ 2
(
jλk+1 + ( j − 1)δk+1

)
≤(2.7) 2r.

As a consequence, we obtain

Ψ(I) ≤ 22d jdµ(Qk+1)qh(λ′k+1) ≤ 22dµ(Qk)qh(2r) ≤ 23dµ(Qk)qh(r).

This completes the proof. □
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3. Product formula: proof of Theorem 1

We set, for n ∈ N,

Un =
{ d∏

i=1

[ li

2n ,
li + 1

2n

[
, l1, . . . , ld ∈ Z

}
and

Vn =
{ d∏

i=1

[ 1
2 li

2n ,
1
2 li + 1

2n

[
, l1, . . . , ld ∈ Z

}
.

The family Un denotes the set of half-open dyadic cubes of order n. For x ∈ Rd, let un(x) denote the
unique cube u ∈ Un that contains x. Similarly, the familyVn consists of half-open dyadic semi-cubes
of order n. For x ∈ Rd, let vn(x) represent the unique semi-cube v ∈ Vn that contains x and has its
complement at a distance of 2−n−2 from un+2(x). Define

K = {(k1, . . . , kd) | ki = 0 or
1
2
}.

For each
k = (k1, . . . , kd) ∈ K ,

let

Vk,n =
{ d∏

i=1

[ki + li

2n ,
ki + li + 1

2n

[
, l1, . . . , ld ∈ Z

}
.

Note that for
v , v′ ∈ Vk,n,

we have
v ∩ v′ = ∅.

Additionally, the collection
(
Vk,n

)
k∈K forms a partition of the familyVn. Moreover, if

v, v′ ∈ Vk :=
⋃
n≥0

Vk,n,

then either
v ∩ v′ = ∅

or one is contained within the other. Finally, for A ⊂ Rd, define

Vn(A) = {vn(x) : x ∈ A} and Vk,n(A) = Vn(A) ∩Vk,n.

In what follows, we construct measures on Rd analogous to the generalized lower and upper H-S
measures. However, instead of using the collection of all closed balls in the definition, we employ the
class of all half-open dyadic semi-cubes. For A ⊆ Rd, we define

H
∗ξ

(A) = lim inf
n→+∞

N∗qµ,n(A) h(2−n) and P
∗ξ

(A) = lim sup
n→+∞

M∗qµ,n(A) h(2−n),
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where the numbers N∗n(A) and M∗n(A) are defined as

N∗qµ,n(A) = inf

∑
i

µ(vi)q
∣∣∣∣ (vi

)
i∈I

is a family of coverings of A such that vi ∈ Vn(A)


and

M∗qµ,n(A) = sup

∑
i

µ(vi)q vi ∈ Vn(A), i ∈ I, and vi ∩ v j = ∅ for i , j

 .
The functions H

∗ξ
and P

∗ξ
are increasing and satisfy

H
∗ξ

(∅) = P
∗ξ

(∅) = 0.

However these functions are not σ-additive. For this, we consider

H∗ξ(A) = inf

∑
i

H
∗ξ

(Ai)
∣∣∣∣ A ⊆

⋃
i

Ai Ai is bounded

 ,
P∗ξ(A) = inf

∑
i

P
∗ξ

(Ai)
∣∣∣∣ A ⊆

⋃
i

Ai Ai is bounded

 .
Lemma 2. For every set A ⊂ Rd, a constant c > 0 exists such that

c−1Pξ(A) ≤ P∗ξ(A) ≤ cPξ(A) and c−1Hξ(A) ≤ H∗ξ(A) ≤ cHξ(A). (3.1)

Proof. This arises from the fact that

B(x, 2−n−2) ⊆ vn(x) ⊆ B(x,
√

d2−n).

This completes the proof. □

Similarly, we may define H∗∗ξ and P∗∗ξ, by using the class of all half-open dyadic cubes in the
definition instead of the class of all half-open dyadic semi-cubes. However, it is important to note the
resulting pre-measure, denoted P

∗∗ξ
, is not equivalent to the pre-measure P

ξ
. For more discussion,

consult [29, Example 3.5], where the interplay between the two pre-measures is explored. This
highlights how seemingly minor changes in the class of sets used can lead to significant differences in
the resulting pre-measures and their properties.

3.1. Proof of the first inequality

In this section, for the sake of simplicity and clarity, we focus on results that pertain specifically
to subsets of the plane. However, it is worth noting that these results can be extended to higher-
dimensional spaces without significant complications. Let Π ⊂ R2 represent a subset of the plane.
For a given x-coordinate, we use Πx to denote the set of all points in Π whose abscissa (x-coordinate)
equals x. Given an arbitrary subset A of the x-axis, we will only prove that, if x ∈ A, we have

Hζ(Πx) > a
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or some constant a, and then
H
ξζ

(Π) ≥ ΠaHξ(A).

Let n be a non-negative integer and let {Ii × I j}i, j be a collection of half-open dyadic cubes of order
n covering Π. Set

An =
{
x ∈ E, N∗∗qν,n (Πx)g(2−n) > b−1

1 a
}
.

Note that

N∗∗qµ×ν,n(Π)h(2−n)g(2−n) ≥ N∗∗qµ,n (An) inf
{
N∗∗qν,n (Πx), x ∈ An

}
h(2−n)g(2−n)

≥ b−1
1 aN∗∗qµ,n (An)h(2−n).

This holds for any covering of Π by the binary squares {Ii × I j}i, j with 2−n sides . Hence,

b−1
1 aH

∗ξ

n (An) ≤ H
∗ξζ

n (Π) ≤ H
∗ξζ

(Π).

Since An increases to A as n→ +∞, then for any p ≤ n, we have

b−1
1 aH

∗ξ

n (Ap) ≤ b−1
1 aH

∗ξ

n (Ak) ≤ H
∗ξζ

(Π).

Thus, we obtain
b−1

1 aH∗ξn (Ap) ≤ b−1
1 aH

∗ξ

n (Ep) ≤ H
∗q,hg
µ×ν (Π) ≤ α1H

q,hg
µ×ν (Π)

for p ≥ 1. Thereby, the continuity of the measure H∗ implies that

b−1
1 aH∗ξ(A) ≤ α1H

q,hg
µ×ν (Π).

Thus, using Lemma 2, we get

b−2
1 aHξ(A) ≤ b−1

1 aH∗q,hµ (A) ≤ α1H
ξζ

(Π).

Finally, by taking
Π = b−2

1 α
−1
1 ,

we get the result.

3.2. Proof of the second inequality

Let A ⊆ Rd and B ⊆ Rl. We prove that a constant c > 0 exists such that

Hξζ(A × B) ≤ cHξ(A)Pζ(B).

Let
H ⊆ A × B,

r > 0, and let {B(xi, r)}i be a centered r-covering of A. We denote n as the integer such that
√

l2−n < r ≤
√

l2−n+1.
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For v ∈ Vn(B) with
(B(xi, r) × v) ∩ H) , ∅

and each i, choose a point
yi,v ∈ B(xi, r)

and a point y′i,v ∈ v such that
(yi,v, y′i,v) ∈ (B(xi, r) × v) ∩ H).

Note that

H ⊆
⋃

i

( ⋃
v∈Vn(B)

(B(xi,r)×v)∩H,∅

B(xi, r) × v
)

⊆
⋃

i

( ⋃
v∈Vn(B)

(B(xi,r)×v)∩H,∅

B(yi,v, 2r) × B(y′i,v, 2r)
)

⊆
⋃

i

( ⋃
v∈Vn(B)

(B(xi,r)×v)∩H,∅

B((yi,v, y′i,v), 2r)
)
.

As a consequence, we have the family
(
B((yi,v, y′i,v), 2r)

)
i∈N,v∈Vn(B),B(xi,r)×v)∩H,∅, which forms a

centered (2r)-covering of H. Furthermore, we get

B(y′i,v, ηr) ⊆ B(y′i,v, 2
−n−2)

for
ηr = 2−3

√
lr.

It follows, for each k ∈ K , that the family(
B(y′i,v, ηr

)
, i ∈ N, v ∈ Vk,n(B),B(xi, r) × v) ∩ H , ∅

is a centered ηr-packing of B. It follows that

H
ξζ

2r(H) ≤
∑

i

( ∑
v∈Vn(B)

(B(xi,r)×v)∩H,∅

µ(B(yi,v, 2r))qν(y′i,v, 2r)qh(4r)g(4r)
)

≤ mhmgmq
ν

∑
i

µ(B(yi,v, 2r))qh(2r)
(∑

k∈K

∑
v∈Vk,n(B)

(B(xi,r)×v)∩H,∅

ν(y′i,v, ηr)qg(2ηr)
)

≤ mhmgmq
ν

∑
i

µ(B(yi,v, 2r))qh(2r)
(∑

k∈K

P
ζ

ηr
(B)

)
≤ 2lmhmgmq

νP
ζ

ηr
(B)

∑
i

µ(B(yi,v, 2r))qh(2r).

Thus, by considering the infimum over all possible centered r-coverings of the set A, we get

H
ξζ

2r(H) ≤ 2lmhmgmq
νH
ξ

r(A)P
ζ

ηr
(B).
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Therefore,
H
ξζ

0 (H) ≤ c lim inf
r→0

H
ξ

r(A) lim sup
r→0

P
ζ

ηr
(B) = cH

ξ

0(A)P
ζ
(B), (3.2)

where
c = 2lmhmgmq

ν.

Now, assume that
A ⊆

⋃
i

Ai

and
B ⊆

⋃
j

B j.

Then
H ⊆ A × B ⊆

⋃
i, j

Ai × B j.

It follows that

H
ξζ

(H) ≤
∑

i, j

H
q,hg
µ×ν,0(Ai × B j)

≤ c
∑

i, j

H
q,h
µ,0(Ai)P

q,g
ν (B j).

≤ c
(∑

i

H
ξ

0(Ai)
)(∑

j

P
ζ
(B j)

)
.

Since the cover (Ai) of A and the cover (B j) of B were arbitrarily chosen, we obtain

H
ξζ

(H) ≤ cH
ξ
(A)Pζ(B) ≤ cHξ(A)Pζ(B).

This holds for all for all
H ⊆ A × B

which implies that
Hξζ(A × B) ≤ cHξ(A)Pζ(B).

3.3. Proof of the third inequality

Let
A ⊆ Rd and B ⊆ Rl.

We aim to show that a constant c > 0 exists such that the following inequality holds:

Pξζ(A × B) ≥ cHξ(A)Pζ(B).

For simplicity, we limit our discussion to subsets of the plane, although the result can be extended to
higher dimensions without without significant complications. Let Q be any packing of B consisting of
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semi-dyadic intervals, and let C be any covering of A composed of semi-dyadic intervals. We define
the following

C1 =
{
ui ∈ C, ui is dyadic and ui ∩ u j = ∅ for i , j

}
,

C2 =
{
ui ∈ C, ui is not dyadic and ui ∩ u j = ∅ for i , j

}
,

C3 =
{
ui ∈ C, ui is dyadic

}⋂
C\C1,

C4 =
{
ui ∈ C, ui is not dyadic

}⋂
C\C2.

Clearly, we have each of Ci is a packing of E and Ci × Q is a packing of A × B. Therefore,

4M∗q,hg
µ×ν,n(A × B)h(2−n)g(2−n) ≥

∑
u∈Q

ν(u)qh(2−n)g(2−n)
( ∑

v∈C1

µ(v)q +
∑
v∈C2

µ(v)q +
∑
v∈C3

µ(v)q +
∑
v∈C4

µ(v)q
)
.

This holds for any packing Q of B and
C =

⋃
i

Ci,

so we have

4M∗q,hg
µ×ν,n(A × B)h(2−n)g(2−n) ≥ M∗q,gν,n (B)g(2−n)

∑
v∈C

µ(v)qh(2−n) ≥ M∗q,gν,n (B)g(2−n)N∗q,hµ,n (A)h(2−n).

Thus,

P
∗ξζ

(A × B) ≥
1
4

P
∗ζ

(B)H
∗ξ

(A) ≥
1
4

P∗ζ(B)H∗ξ(A).

Finally, we get the desired result using (3.1).

3.4. Proof of the fourth inequality

Let A ⊆ Rd and B ⊆ Rl. We will prove that a constant c > 0 exists such that

P∗ξζ(A × B) ≤ cP∗ξ(A)P∗ζ(B).

Here again, we limit our study to subsets of the plane, since the extension to higher dimensions does
not involve significant complications. Let B represent any packing of the set A × B containing semi-
dyadic squares, where each square is formed as the Cartesian product of two semi-dyadic intervals. We
define the sets as follows:

C =
{
un(x) : ∃vn(y) such that wn(x, y) = un(x) × vn(y) ∈ B, x ∈ A, y ∈ B

}
and

Q =
{
vn(x) : ∃un(y) such that wn(x, y) = un(x) × vn(y) ∈ B, x ∈ A, y ∈ B

}
.

Next, we examine the subclasses

C1 =
{
un(x) ∈ C, un(x) is dyadic

}
,

Q1 =
{
vn(x) ∈ Q, vn(x) is dyadic

}
,
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C2 =
{
un(x) ∈ C, un(x) is not dyadic

}
,

Q2 =
{
vn(x) ∈ Q, vn(x) is not dyadic

}
.

It is not difficult to note that each of C1,C2 is a packing of A and, similarly, each of Q1, Q2 is a packing
of B. Moreover, each square of the packing B is in the collection Ci × Q j, i, j ∈ {1, 2}. Therefore,∑

(u,v)∈B

µ(u)qν(v)qh(2−n)g(2−n) ≤
[ ∑

u∈C1

µ(u)qh(2−n) +
∑
u∈C2

µ(u)qh(2−n)
]

·
[ ∑

v∈Q1

ν(u)qg(2−n) +
∑
v∈Q2

ν(u)qg(2−n)
]

≤4M∗q,hµ,n (A)h(2−n)M∗q,gν,n (B)g(2−n).

This holds, for any packing of A × B, so we have

M∗q,hg
µ×ν,n(A × B)h(2−n)g(2−n) ≤ 4M∗q,hµ,n (A)h(2−n)M∗q,gν,n (B)g(2−n)

and then
P
∗ξζ

(A × B) ≤ 4P
∗ξ

n (A) P
∗ζ

n (B).

Let
A ⊆

⋃
i

Ai

for
B ⊆

⋃
j

B j,

we have:

P∗ξζ(A × B) ≤
∑

i, j

P
∗ξζ

(Ai × B j) ≤ 4
∑

i, j

P
∗ξ

(Ai) P
∗ζ

(B j).

≤ 4
(∑

i

P
∗ξ

(Ai)
) (∑

j

P
∗ζ

(B j)
)
.

Since (Ai) represents an arbitrary covering of E and (B j) represents an arbitrary covering of B, we can
deduce that

P∗ξζ(A × B) ≤ 4P∗ξ(A)P∗ζ(B).

Finally, by applying (3.1), we obtain the desired conclusion.

3.5. Applications of Theorem 1

Let µ, θ ∈ M(Rd), q, s, t ∈ R, and x ∈ supp(µ), and recall the upper and lower (q, h)-densities of θ
at x with respect to µ as defined in (1.7). In this section, we assume that

Pξs(A) < ∞

and
Pζt(B) < ∞.
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When studying fractal measures, a common question that naturally arises is whether we can guarantee
the existence of subsets that possess finite or positive Hausdorff measures. This question becomes
crucial in understanding the intricate structure of fractals, as it involves determining whether certain
subsets exhibit measurable properties in terms of the Hausdorff measure, either finite or positive.
Assume that

inf
0<r≤δ

q ln µ(B(x, r) + s ln(2r)
ln δ

≤ −α and inf
0<r≤δ

q ln ν(B(x, r) + t ln(2r)
ln δ

≤ −α (3.3)

for some positive real number α. The assumption (3.3) implies, for every δ > 0 that is small enough,
that

µ(B(x, r))qν(B(x, r))q(2r)t+s ≥ δ−2α.

It follows that for
G = {x} × {y}, δ > 0,

we then have
H

q,s+t
µ×ν,2δ(G) ≥ (2δ)−2α.

Letting δ tend to zero, we get

Hξsζt({G}) ≥ H ξsζt({G}) = H
ξsζt

({G}) = +∞.

Note that the assumption (3.3) is satisfied; for instance, if we take

µ = ν

to be the Lebesgue measure with
q + t < 0.

In this case, we see that the Hausdorff measure constructed above is the standard Hausdorff measure
Hφ with

φ(r) = (2r)q+t.

Thus, for any closed nonempty set
G ⊆ A × B,

every subset of G, including the empty set, is a subset of infinite measures. Thus, we may construct
the measures Hξsζt for which the subset of finite measure properties can fail to hold for every closed set
of infinite measures. One can assume also that for every δ > 0, the following exists:

0 < r ≤ δ/2,

such that
µ(B(x, r))q(2r)t ≤ δ.

Using Theorem 1, we formulate a sufficient condition to obtain

0 ≤ Hξsζt(G) ≤ Pξsζt(G) < ∞.

First, we will state the following result, which is a direct consequence of Theorem 1.
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Corollary 1. Let A ⊂ Rd and B ⊂ Rl, µ, θ ∈ P(Rd), and ν, θ′ ∈ P(Rl) such that µ and ν satisfy the
doubling condition. Let

G′ ⊂ G ⊆ A × B,

such that
H

q,s+t
µ×ν (G) = ∞.

(1) Assume that if inf(x,y)∈G′ dq,hs
µ

(x, θ) < ∞ and inf(x,y)∈G′ dq,ht
ν

(x, θ′) > 0, then Pξsζt(G′) < ∞.

(2) Assume that if sup(x,y)∈G′ d
q,hs

µ (x, θ) < ∞ and sup(x,y)∈G′ d
q,ht

ν (x, θ′) > 0, then Hξsζt(G′) > 0.

Proof. Using [30, Lemma 3], we have
Hξs(A) ≥ γθ(A)

if
sup
x∈A

d
q,hs

µ (x, θ) < ∞

and
Pξs(A) ≤ γ̃θ(A),

whenever
inf
x∈A

dq,hs
µ

(x, θ) > 0,

where γ, γ̃ are positive constants. for all θ ∈ P(Rd). Thus, the result follows from Theorem 1.
□

Example 1. Recall the construction of the Moran set given in Section 2.2.

Lemma 3. [49] Let A ⊂ I be a Moran set that satisfies the strong separation condition, and let θ be a
finite Borel measure with

supp(θ) ⊂ A.

Then there are some positive constants ci (1 ≤ i ≤ 4) depending on δ and t, such that the following
inequalities hold for any φ(i) ∈ A:

c1
lim
n→∞

θ(In(i))
µ(In(i))q|In(i)|t

≤ lim
r→0

θ
(
B(φ(i), r)

)
µ
(
B(φ(i), r)

)q(2r)t
≤ c2

lim
n→∞

θ
(
In(i)

)
µ
(
In(i)

)q
|In(i)|t

,

c3 lim
n→∞

θ
(
In(i)

)
µ
(
In(i)

)q
|In(i)|t

≤ lim
r→0

θ
(
B(φ(i), r)

)
µ
(
B(φ(i), r)

)q(2r)t
≤ c4 lim

n→∞

θ(In(i))
µ(In(i))q|In(i)|t

.

Now consider the special case I = [0, 1], nk = 2, and ck j =
1
3 for all k ≥ 1 and 1 ≤ j ≤ nk. In this

case, the Moran set A = B is the classical ternary Cantor set. Let

α =
log 2
log 3

and θ and θ′ be probability measures on I defined by

θ
(
In(i)

)
=

|In(i)|α, if i ∈ D,

0, otherwise,
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θ′
(
In(i)

)
=

|In(i)|β, if i ∈ D,

0, otherwise,

where
α = q + s and β = q + t.

It is clear that
supp(θ) ⊂ E and supp(θ)′ ⊂ E.

Moreover, we have

lim
n→∞

θ(In(i))
µ(In(i))q|In(i)|s

= 1 and lim
n→∞

θ′(In(i))
µ(In(i))q|In(i)|t

= 1.

It follows, using Lemma 3, that

0 < dq,hs
µ

(x, θ) ≤ d
q,hs

µ (x, θ) < ∞

and
0 < dq,ht

ν
(x, θ) ≤ d

q,ht

ν (x, θ) < ∞.

Corollary 1 implies that
0 < Hq,s+t

µ×ν (A × A) ≤ Pq,s+t
µ×ν (A × A) < ∞.

Example 2. Let µ, ν ∈ M(R), q ∈ R, and let A and B be two sets of points in the x-axis and y-axis,
respectively. In this example, we give a sufficient condition to obtain

bq
µ×ν(A × B) = bq

µ(A) + bq
ν(B).

From Theorem 1, we have
bq
µ×ν(A × B) ≥ bq

µ(A) + bq
ν(B),

so we only have to prove the inverse inequality. For this, for t, s ∈ R, we define the lower ζt-dimensional
density of A at the point y as

Dζt(y) = lim inf
r→0

inf
x∈B

Hq,t
ν

(
A ∩ B(y, r)

)
ν
(
B(x, r)

)q(2r)t
.

Fix r > 0 and define the set Iy(r) as the centered interval on y with the length r. For n ≥ 1, consider
the set

Bn =

{
y ∈ B, Hζt

(
B ∩ Iy(r)

)
> sup

x∈B
ν(Ix(r))qrt/n, ∀r ≤ n−1

}
.

Assume that Dζt(y) > 0 for all y ∈ F, which implies clearly that Bn ↗ B. In addition, if we prove that

Hq,s+t
µ×ν (A × Bn) < +∞ (3.4)

for some n ∈ N, then we deduce that

bµ×ν(A × B) = s + t.
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This gives the result if we choose
t = bq

ν(B) and s = bq
µ(A).

Now, we will prove (3.4). Let
Ã ⊆ A and B̃n ⊆ Bn.

Let n be an integer and 0 < r ≤ 1/n; we then define

I(r) =
{
Iy(r), y ∈ B̃n

}
.

We can extract f a finite subset J(r) rom I(r) such that B̃n ⊂ J(r) and no three intervals of J(r) have
points in it.

Lemma 4. For 0 < r ≤ 1/n, we have

J(r) ≤ 2nr−t( sup
x∈B
ν(Ix(r))

)−qHζt(B). (3.5)

Proof. Divide the set J(r) into J1(r) and J2(r) such that in each of them the intervals do not overlap.
Using the definition of the set Fn, we get(

sup
x∈F
ν(Ix(r))

)−qr−tnHζt(B) ≥
∑

I∈J1(r)

(
sup
x∈B
ν(Ix(r))

)−qr−tnHζt(B ∩ I) > #J1(r).

Similarly, we obtain
#J2(r) ≤

(
sup
x∈F
ν(Ix(r))

)−qr−tnHζt(B)

as required.
In the other hand, for ϵ > 0, a sequence of sets {Ai} exists such that

Ã ⊆
⋃

i

Ai

and that ∑
i

H
ξs

0 (Ai) ≤ Hξs(A) + ϵ.

Thus, we have a sequence {Bi, j} of intervals of length r covering Ã such that the family {Bi, j} j, for each
i, is a covering of Ai and ∑

i

Nq
µ,r/2(Ai)rs ≤ Hξs(A) + 2ϵ. (3.6)

Let [a, b] represent any interval within the set {Bi, j}. Enclose all points in this set that fall between
the lines x = a and x = b with squares whose sides are parallel to these lines. The projections of these
squares onto the y-axis correspond to intervals in J(r). In a similar manner, construct sets of squares
for each interval in {Bi, j}, and denote the set of squares associated with the interval [a, b] as C(a, b).
Since the number of squares in C(a, b) does not exceed the number of intervals in J(r), and each square
intersecting Ã × B̃n can be inscribed within a centered ball of diameter r′ = 3r, it follows that:

Nq
µ×ν,r′/2(Ã × B̃n) ≤ #J(r) sup

x∈F
ν(Ix(r))q

∑
i, j

µ(Bi, j)q.
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Thus, using (3.5) and (3.6), we get

H
q,s+t
µ×ν,r′/2(Ã × B̃n) ≤ 2nr−tHξt(B)(3r)s+t

∑
i, j

µ(Bi, j)q

≤ 2 × 3s+tnHζt(B)
∑

i

Nq
µ,r/2(Ai)rs

≤ 2 × 3s+tnHζt(B)(Hξs(A) + 2ϵ).

Since ϵ is arbitrarily, we get

Hs+t
0 (Ã × B̃n) ≤ 2 × 3s+tnHζt(B)Hξs(A).

Finally, we have
H

s+t
(A × Bn) ≤ 2 × 3s+tnHζt(B)Hξs(A),

from which the Eq (3.4) follows. □

The result given in this example can be summarized in the next theorem.

Theorem 3. Let E and F be sets of points in x-axis and y-axis, respectively. Set

s = bq
µ(A) and t = bq

ν(B)

and assume that Hξs(A),Hζt(B) ∈ (0,∞), and, for all y ∈ F, Dζt(y) > 0. In this case,

bq
µ×ν(A × B) = bq

µ(A) + bq
ν(B).

4. Estimation of the measure of symmetric generalized Cantor sets

We define the set G of all continuous and increasing functions h on [0, t0) for some t0 > 0 satisfying
h(0) = 0, and the function

t 7−→ h(t)/td

is decreasing. We assume in this section that h ∈ G and that it t satisfies the doubling condition

h(2t) ≤ 2dh(t), for 0 < t < t0/2.

4.1. Estimation of the generalized Hausdorff measure

A cube I(x, r) in Rd is a subset of the form

I(x, r) =
n∏

i=1

[xi − r, xi + r] .

For a cube I, we use l(I) to denote its side length. In this section, using cubes with sides of a length
less than δ rather than closed balls, we define a generalized Hausdorff measure H̃q,h

µ equivalent to
the generalized Hausdorff measure Hq,h

µ . We prove that this measure is appropriate for estimating the
measure of the generalized Cantor set. Let µ ∈ PD(Rd), h ∈ F0, and q ∈ R. Define

H̃
q,h
µ,0 (A) = lim

δ→0
H̃

q,h
µ,δ (A),
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where
H̃

q,h
µ,δ (A) = inf

∑
i

µ(B(xi, ri))qh(|Ii|)

with the infimum being taken over all coverings of A by cubes with sides of a length ≤ δ. Then a
constant C exists such that

C−1 H̃
q,h
µ,0 (A) ≤ Hq,h

µ,0 (A) ≤ C H̃q,h
µ,0 (A).

We will compute the estimation of the generalized Hausdorff measure of the Kd. More precisely, we
have the following result.

Theorem 4. LetKd be the d-dimensional symmetric generalized Cantor set (d ≥ 1) constructed by the
system

{
L, {nk}k≥1, {λk}k≥1

}
. We then have

2−3d lim inf
k→∞

(n1n2 . . . nk)dλ
q
kh(λk) ≤ Hq,h

µ,0(Kd) ≤ Pq,h
µ,0(Kd) ≤ M lim sup

k→∞
(n1n2 . . . nk)dλ

q
kh(λk).

Proof. We focus on proving only the left-hand inequality; the validity of the right-hand inequality can
be established using similar argument. Let Ψ be the set function in Lemma 1. Let ε be a positive
number with ε ≤ r0 and {Ii} be a ε-covering of Kd by open cubes with the sides ri ≤ ε. We have∑

i

µ(Ii)qh(ri) ≥ 2−3d
∑

i

Ψ(Ii)

≥ 2−3dΨ(
⋃

i

Ii) ≥ 2−3db.

Since b is an arbitrary number such that

b < lim inf
k→∞

(n1n2 . . . nk)dλ
q
kh(λk),

then we get the desired result. □

4.2. Example: study of the case where 0–∞

In this example, we take d = 1 and we consider the one-dimensional generalized Cantor set K1

(resp. K2) constructed by the system
{
L, {nk}k≥1, {λk}k≥1

}
(resp.

{
L, {nk}k≥1, {Λk}k≥1

}
) In the following,

we consider l = 1, d = 1, nk = 2, and

λk = kξ12−k/α Λk = k−ξ22−k/β h(t) = tα g(t) = tβ

Theorem 5. The constants M and M′ exist such that

M lim inf
k→∞

2kλ
q+α
k 2kΛ

q+β
k ≤ H

q,hg
µ×ν,0(K1 × K2) ≤ P

q,hg
µ×ν (K1 × K2) ≤ M′ lim sup

k→∞
2kλ

q+α
k 2kΛ

q+β
k .

Proof. We focus on proving only the left-hand inequality; the validity of the right-hand inequality can
be deduced using the same idea. Assume that

A := lim inf
k→∞

2kλ
q+α
k 2kΛ

q+β
k > 0;
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otherwise, the result remains trivial. Let
0 < B < A

and choose a positive integer k1 satisfying the following inequality:

B < 2kλ
q+α
k 2kΛ

q+β
k

for all k ≥ k1. Now we define the sequence (Λ̃k)k≥k1 as

B = 2kλ
q+α
k 2kΛ̃

q+β
k .

It follows that
Λ̃k < Λk and 22λ

q+α
k+1 Λ̃

q+β
k+1 = λ

q+α
k Λ̃

q+β
k (4.1)

for all k ≥ k1.
Let

K ⊂ K1 × K2

and use Ik
1 (resp. Ik

2) to denote any of the closed intervals of the generation r of K1 (resp. K2). Then

Nq
µ×ν,k+1(K) = inf

{∑
i

µ × ν(Ir+1
1 × Ik+1

2 )q, Ik+1
1 × Ik+1

2 meeting K
}

≤ inf
{∑

i

µ(Ir+1
1 )qν(Ik+1

2 )q, Ik+1
1 × Ik+1

2 meeting K
}
.

Note that
λk+1 = λk(

k + 1
k

)ξ12−1/α and Λr+1 = Λk(
k

k + 1
)ξ22−1/β,

and then

Nq
µ×ν,k+1(K) ≤ inf

{∑
i

µ(Ik+1
1 )qν(Ik+1

2 )q, Ik+1
1 × Ik+1

2 meeting K
}

≤ kk+12−q/α2−q/β(
k + 1

k
)qξ1−qξ2 inf

{∑
i

µ(Ik
1)qν(Ik

2)q, Ik
1 × Ik

2 meeting K
}

= 222−q/α2−q/β(
k + 1

k
)qξ1−qξ2 Nq

µ×ν,k(K),

Nq
µ×ν,k+1(K)λαk+1Λ̃

β
k+1 ≤ 222−q/α2−q/β(

k + 1
k

)qξ1−qξ2λαk+1Λ̃
β
k+1Nq

µ×ν,k(K)

≤
222−q/α2−q/β

λ
q
k+1Λ̃

q
r+1

(
k + 1

k
)qξ1−qξ2λ

q+α
k+1 Λ̃

q+β
k+1Nq

µ×ν,k(K)

≤(4.1) 2−q/α2−q/β

λ
q
k+1Λ̃

q
k+1

(
k + 1

k
)qξ1−qξ2λ

q+α
k Λ̃

q+β
k Nq

µ×ν,k(K)

≤(4.1)
[2−1/α2−1/βλkΛ̃k

λk+1Λ̃k+1
(
k + 1

k
)ξ1−ξ2

]q
λαk Λ̃

β
k Nq
µ×ν,k(K).

It follows that the sequence
{
Nq
µ×ν,k(K)λαk Λ̃

β
r
}

is decreasing, and we may define the function

Φ(A) = lim
k→0

Nq
µ×ν,k(A)λαk Λ̃

β
k .
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Case β ≤ α. We can choose k2 > k1 such that

Λk < λk+1 for all k ≥ k2.

Let
so = Λk2

and consider any two-dimensional open cube I with the side s ≤ s0. Let p and k be the unique positive
integers such that

λp+1 < s ≤ λp and Λk+1 < s ≤ Λk.

Since
λp+1 < Λk < λk+1

for k ≥ k2, we deduce that k < p. Moreover, the open cube I meets at most 22 rectangles of the form
I p
1 × Ik

2 and so meets at most 24 rectangles of the form I p+1
1 × Ik+1

2 . Therefore, since p > k, it follows that

Nq
µ×ν,p+1(I) ≤ inf

{∑
i

µ(I p+1
1 )qν(I p+1

2 )q, I p+1
1 × I p+1

2 meeting I
}

≤ 242p−rλ
q
p+1Λ

q
p+1.

Since 2kΛ
β
k decrease as r increases, note that

2p−kΛ
β
p+1 < Λ

β
k+1.

Then,

Φ(I) ≤ Nq
µ×ν,p+1(I)λαp+1Λ̃

β
p+1 ≤ 24+p−kλ

q
p+1Λ

q
p+1λ

α
p+1Λ̃

β
p+1

≤ 24+p−kµ(Qp+1)qν(Q(p+1))qλα(p+1) Λ
β
p+1

≤ 24µ(Q(p+1))qν(Q(p+1))qsα+β.

□

Example 3. As a consequence, we construct an estimate of the generalized packing measures of
product sets of one-dimensional generalized Cantor sets. Let 0 < α and β < 1. In this example, we
consider the one-dimensional generalized Cantor set K1 (resp. K2) constructed by the system{
l, {kr}r≥1, {λr}r≥1

} (
resp.

{
l, {kr}r≥1, {Πr}r≥1

})
. Set l = 1 and nk = 2 and consider in the following:

λk =
(
k22−k

) 1
α+q
, Λk =

(
k− j2−k

) 1
β+q
, h(t) = tα, and g(t) = tβ.

(1) We have

lim
k→∞

2kλ
q+α
k 2kΛ

q+β
k = lim

k→∞
2kλ

q+α
k 2kΛ

q+β
k

= lim
k→∞

(k22−k)(k− j2−k)2k

= lim
k→∞

k2− j.

Therefore, H
q,hg
µ×ν,0(K1×K2) (resp. P

q,hg
µ×ν (K1×K2)) is infinite, positive finite, and zero for j = 1, 2, 3,

respectively.
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(2) We have

lim
k→∞

2kλ
q+α
k = lim

k→∞
2k(k22−k) = ∞.

Therefore,

H
q,h
µ,0(K1) = P

q,h
µ (K1) = ∞.

(3) We have

lim
k→∞

2kΛ
q+α
k = lim

k→∞
2k(k− j2−k) = 0.

Therefore,
H

q,g
ν,0 (K2) = P

q,g
ν (K2) = 0.

5. Conclusions and perspectives

Let A ⊆ Rd and B ⊆ Rl. In this work, we present a novel approach that is distinct from that in [30],
as it is specifically tailored for Euclidean spaces, to establish the following inequality:

Hq,h
µ (A)Hq,g

ν (B) ≤ c1Hq,hg
µ×ν (A × B) ≤ c2 Hq,h

µ (A)Pq,g
ν (B) ≤ c3 Pq,hg

µ×ν (A × B) ≤ c4Pq,h
µ (A)Pq,g

ν (B).

This result holds under the assumption that µ, ν, h, g satisfy the doubling condition and that none of
the products is of the form 0 × ∞ or ∞ × 0. Furthermore, by analyzing the measures of symmetric
generalized Cantor sets, we demonstrate that the exclusion of the 0–∞ condition is indispensable and
thus cannot be omitted. Let (X, ρ) and (X′, ρ′) be two separable metric spaces. The result presented
in this paper holds true for both X and X′, though the approach used in our proof does not extend to
metric spaces.

(1) Let B(X) denote the family of closed balls in X, and let Φ(X) represent the class of pre-measures.
A pre-measure is any increasing function

ξ : B(X)→ [0,+∞]

satisfying
ξ(∅) = 0.

It is natural to consider a general construction of Hq,ξ
µ , defined using a measure µ and a pre-

measure ξ. Specifically, our result applies when

ξ(B(x, r)) = h(2r)

and allows for the choice
ξ(B) = h(|B|)

for all B ∈ B(X). Let
ξ ∈ Φ(X) and ξ′ ∈ Φ(X′).
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We define ξ0, the Cartesian product measure generated from the functions ξ and ξ′, on B(X×X′)
as

ξ0(B × B′) = ξ(B)ξ′(B′), for all B ∈ B(X), B′ ∈ B(X′).

We strongly believe that the resulting measure is particularly well-suited for studying Cartesian
product sets. Under a suitable doubling condition, we obtain the following result:

Hq,ξ0
µ×ν(A × B) = Hq,ξ

µ (A)Hq,ξ′
ν (B), (5.1)

for all A ⊂ X and B ⊂ X′. This construction was first introduced by Kelly in [50]; see also [51].
(2) To establish the equality presented in Eq (5.1), we draw inspiration from the work of Kelly [50].

Specifically, we propose constructing a weighted lower H-W measure, denoted Wq,h
µ , for any

given Hausdorff measure h. This approach involves assigning non-negative weights to the
covering sets, adhering to what is commonly referred to as the third method for constructing an
outer measure. On the basis of this framework, we conjecture that the equality in (5.1) holds if
the constructed weighted measure satisfies

Wq,ξ
µ = Hq,ξ

µ .

Similarly, one can construct a weighted upper H-W measure, denoted Qq,h
µ , by following the same

approach used for the weighted lower H-W measure but replacing covering with packing [8]. We
conjecture that the equality

Pq,ξ0
µ×ν(A × B) = Pq,ξ

µ (A)Pq,ξ′
ν (B),

for all A ⊂ X and B ⊂ X′, holds if the constructed weighted measure satisfies

Qq,ξ
µ = Pq,ξ

µ .

(3) A similar result to (1.2) and (1.3) can be achieved by examining fractal pseudo-packings and
weighted measures of the H-S type. The purpose of employing these generalizations is to
eliminate the need for assuming the doubling condition.

(4) Our results in this paper can be readily extended to the setting of generalized lower and upper H-S
measures, denoted Hq,h

µ1×µ2
and Pq,h

µ1×µ2
. These fractal measures play a crucial role in the multifractal

analysis of a measure relative to another measure [52].

Use of Generative-AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate
Studies and Scientific Research, King Faisal University, Saudi Arabia [KFU251033].

AIMS Mathematics Volume 10, Issue 3, 5971–6001.



5999

Conflict of interest

The author declares no conflict of interest.

References

1. L. Olsen, A multifractal formalism, Adv. Math., 116 (1995), 82–196.
https://doi.org/10.1006/aima.1995.1066

2. B. Mandelbrot, Les objects fractales: forme, hasard et dimension, Flammarion, 1975.

3. B. Mandelbrot, The fractal geometry of nature, Amer. J. Phys., 51 (1983), 286–287.
https://doi.org/10.1119/1.13295

4. N. Attia, B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal., 31
(2021), 825–862. https://doi.org/10.1007/s12220-019-00302-3

5. L. Olsen, Multifractal dimensions of product measures, Math. Proc. Camb. Philos. Soc., 120
(1996), 709–734. https://doi.org/10.1017/S0305004100001675

6. J. M. Marstrand, The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc., 50
(1954), 198–202. https://doi.org/10.1017/S0305004100029236

7. C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Philos. Soc., 91 (1982),
57–74. https://doi.org/10.1017/S0305004100059119

8. J. D. Howroyd, On Hausdorff and packing dimension of product spaces, Math. Proc. Camb. Philos.
Soc., 119 (1996), 715–727. https://doi.org/10.1017/S0305004100074545

9. X. Jiang, Q. Liu, Z. Wen, An intermediate value property of fractal dimensions of Cartesian
product, Fractals, 25 (2017), 1750052. https://doi.org/10.1142/S0218348X17500529

10. C. Wei, S. Wen, Z. Wen, Remark on dimension of cartesian product sets, Fractals, 24 (2016),
1650031. https://doi.org/10.1142/S0218348X16500316

11. H. Haase, Dimension of measures, Ada Univ. Carolinae Math. Phys., 31 (1990), 29–34.

12. H. Haase, On the dimension of product measures, Mathematika, 37 (1990), 316–323.
https://doi.org/10.1112/S0025579300013024

13. X. Hu, S. J. Taylor, Fractal properties of products and projections of measures in Rd, Math. Proc.
Camb. Philos. Soc., 115 (1994), 527–544. https://doi.org/10.1017/S0305004100072285

14. D. J. Feng, S. Hua, Z. Y. Wen, The pointwise densities of the Cantor measure, J. Math. Anal. Appl.,
250 (2000), 692–705. https://doi.org/10.1006/jmaa.2000.7137

15. B. Jia, Z. Zhou, Z. Zhu, J. Luo, The packing measure of the Cartesian product of
the middle third Cantor set with itself, J. Math. Anal. Appl., 288 (2003), 424–441.
https://doi.org/10.1016/j.jmaa.2003.09.001

16. R. Guedri, N. Attia, A note on the generalized Hausdorff and packing measures of product sets in
metric space, Math. Inequal. Appl., 25 (2022), 335–358. https://doi.org/10.7153/mia-2022-25-20

17. E. Hewitt, K. Stromberg, Real and abstract analysis: a modern treatment of the theory of functions
of a real variable, Springer-Verlag, 1965. https://doi.org/10.1007/978-3-642-88044-5

AIMS Mathematics Volume 10, Issue 3, 5971–6001.

http://dx.doi.org/https://doi.org/10.1006/aima.1995.1066
http://dx.doi.org/https://doi.org/10.1119/1.13295
http://dx.doi.org/https://doi.org/10.1007/s12220-019-00302-3
http://dx.doi.org/https://doi.org/10.1017/S0305004100001675
http://dx.doi.org/https://doi.org/10.1017/S0305004100029236
http://dx.doi.org/https://doi.org/10.1017/S0305004100059119
http://dx.doi.org/https://doi.org/10.1017/S0305004100074545
http://dx.doi.org/https://doi.org/10.1142/S0218348X17500529
http://dx.doi.org/https://doi.org/10.1142/S0218348X16500316
http://dx.doi.org/https://doi.org/10.1112/S0025579300013024
http://dx.doi.org/https://doi.org/10.1017/S0305004100072285
http://dx.doi.org/https://doi.org/10.1006/jmaa.2000.7137
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2003.09.001
http://dx.doi.org/https://doi.org/10.7153/mia-2022-25-20
http://dx.doi.org/https://doi.org/10.1007/978-3-642-88044-5


6000

18. Y. Pesin, Dimension theory in dynamical systems, contemporary views and applications, University
of Chicago Press, 1997.

19. P. Mattila, Geometry of sets and measures in Euclidian spaces: fractals and rectifiability,
Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511623813

20. O. Guizani, M. Amal, N. Attia, Some relations between Hewitt-Stromberg premeasure and Hewitt-
Stromberg measure, Filomat, 37 (2023), 13–20. https://doi.org/10.2298/FIL2301013A

21. O. Guizani, N. Attia, A note on scaling properties of Hewitt Stromberg measure, Filomat, 36
(2022), 3551–3559. https://doi.org/10.2298/FIL2210551A

22. L. Olsen, On the average Hewitt-Stromberg measures of typical compact spaces, Math. Z., 293
(2019), 1201–1225. https://doi.org/10.1007/s00209-019-02239-3

23. H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr., 124 (1985),
45–55. https://doi.org/10.1002/mana.19851240104

24. H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr., 134 (1987),
295–307. https://doi.org/10.1002/mana.19871340121

25. S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, A. Stylianou, On the Hausdorff and
packing measures of typical compact metric spaces, Aequationes Math., 92 (2018), 709–735.
https://doi.org/10.1007/s00010-018-0548-5

26. O. Zindulka, Packing measures and dimensions on Cartesian products, ArXiv, 2012.
https://doi.org/10.48550/arXiv.1208.5522

27. G. A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, 1998.
https://doi.org/10.1007/978-1-4757-2958-0

28. N. Attia, H. Jebali, M. H. Khalifa, A note on fractal measures of cartesian product sets, Bull.
Malays. Math. Sci. Soc., 44 (2021), 4383–4404. https://doi.org/10.1007/s40840-021-01172-1

29. S. J. Taylor, C. Tricot, Packing measure and its evaluation for a brownian path, Trans. Amer. Math.
Soc., 288 (1985), 679–699. https://doi.org/10.1090/S0002-9947-1985-0776398-8

30. N. Attia, R. Guedri, O. Guizani, Note on the multifractal measures of cartesian product sets,
Commun. Korean Math. Soc., 37 (2022), 1073–1097. https://doi.org/10.4134/CKMS.c210350

31. K. J. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, 1990.

32. J. Mullins, N. Mullins, Derivation bases, interval functions, and fractal measures, The Ohio State
University, 1996.

33. O. Guizani, M. Amal, N. Attia, On the Hewitt-Stromberg measure of product sets, Ann. Mat. Pura
Appl., 200 (2020), 867–879. https://doi.org/10.1007/s10231-022-01248-0

34. P. A. P. Mohan, A. S. Besicovitch, The measure of product and cylinder sets, J. London Math. Soc.,
20 (1945), 110–120. https://doi.org/10.1112/jlms/s1-20.2.110

35. C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Philos. Soc., 91 (1982),
57–74. https://doi.org/10.1017/S0305004100059119

36. M. Ohtsuka, Capacite des ensembles produits, Nagoya Math. J., 12 (1957), 95–130.
https://doi.org/10.1017/S0027763000021966

AIMS Mathematics Volume 10, Issue 3, 5971–6001.

http://dx.doi.org/https://doi.org/10.1017/CBO9780511623813
http://dx.doi.org/https://doi.org/10.2298/FIL2301013A
http://dx.doi.org/https://doi.org/10.2298/FIL2210551A
http://dx.doi.org/https://doi.org/10.1007/s00209-019-02239-3
http://dx.doi.org/https://doi.org/10.1002/mana.19851240104
http://dx.doi.org/https://doi.org/10.1002/mana.19871340121
http://dx.doi.org/https://doi.org/10.1007/s00010-018-0548-5
http://dx.doi.org/https://doi.org/10.48550/arXiv.1208.5522
http://dx.doi.org/https://doi.org/10.1007/978-1-4757-2958-0
http://dx.doi.org/https://doi.org/10.1007/s40840-021-01172-1
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1985-0776398-8
http://dx.doi.org/https://doi.org/10.4134/CKMS.c210350
http://dx.doi.org/https://doi.org/10.1007/s10231-022-01248-0
http://dx.doi.org/https://doi.org/10.1112/jlms/s1-20.2.110
http://dx.doi.org/https://doi.org/10.1017/S0305004100059119
http://dx.doi.org/https://doi.org/10.1017/S0027763000021966


6001

37. Y. M. Xiao, Packing dimension, Hausdorff dimension and Cartesian product sets, Math. Proc.
Camb. Philos. Soc., 120 (1996), 535–546. https://doi.org/10.1017/S030500410007506X

38. S. J. Taylor, C. Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Camb.
Philos. Soc., 99 (1986), 285–296. https://doi.org/10.1017/S0305004100064203

39. C. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric
spaces, Illinois J. Math., 39 (1995), 676–694. https://doi.org/10.1215/ijm/1255986272

40. G. A. Edgar, Centered densities and fractal measures, New York J. Math., 13 (2007), 33–87.

41. P. Mattila, R. D. Mauldin, Measure and dimension functions: measurablility and densities,
Math. Proc. Camb. Philos. Soc., 121 (1997), 81–100. https://doi.org/10.1090/S0002-9947-1944-
0009975-6

42. A. P. Morse, J. F. Randolph, The ϕ-rectifiable subsets of the plane, Amer. Math. Soc. Trans., 55
(1944), 236–305. https://doi.org/10.2307/1990191

43. H. H. Lee, I. S. Beak, The relations of Hausdorff, ∗-Hausdorff, and packing measures, Real Anal.
Exch., 16 (1990/1991), 497–507. https://doi.org/10.2307/44153728

44. H. H. Lee, I. S. Baek, On d-measure and d-dimension, Real Anal. Exch., 17 (1992), 590–596.
https://doi.org/10.2307/44153752

45. H. H. Lee, I. S. Baek, The comparison of d-meuasure with packing and Hausdorff measures,
Kyungpook Math. J., 32 (1992), 523–531.

46. X. S. Raymond, C. Tricot, Packing regularity of sets in n-space, Math. Proc. Camb. Philos. Soc.,
103 (1988), 133–145. https://doi.org/10.1017/S0305004100064690

47. H. Joyce, D. Preiss, On the existence of subsets of positive finite packing measure, Mathematika,
42 (1995), 14–24. https://doi.org/10.1112/S002557930001130X

48. N. Attia, B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean
Math. Soc., 34 (2019), 213–230. https://doi.org/10.4134/CKMS.c180030

49. M. Dai, The equivalence of measures on Moran set in general metric space, Chaos Solitons Fract.,
29 (2006), 55–64. https://doi.org/10.1016/j.chaos.2005.10.016

50. J. D. Kelly, A method for constructing measures appropriate for the study of Cartesian products,
Proc. London Math. Soc., s3-26 (1973), 521–546. https://doi.org/10.1112/plms/s3-26.3.521

51. N. Attia, H. Jebali, R. Guedri, On a class of Hausdorff measure of cartesian
product sets in metric spaces, Topol. Methods Nonlinear Anal., 62 (2023), 601–623.
https://doi.org/10.12775/TMNA.2023.016

52. N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459–471.
https://doi.org/10.4134/CKMS.c170143

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 5971–6001.

http://dx.doi.org/https://doi.org/10.1017/S030500410007506X
http://dx.doi.org/https://doi.org/10.1017/S0305004100064203
http://dx.doi.org/https://doi.org/10.1215/ijm/1255986272
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1944-0009975-6
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1944-0009975-6
http://dx.doi.org/https://doi.org/10.2307/1990191
http://dx.doi.org/https://doi.org/10.2307/44153728
http://dx.doi.org/https://doi.org/10.2307/44153752
http://dx.doi.org/https://doi.org/10.1017/S0305004100064690
http://dx.doi.org/https://doi.org/10.1112/S002557930001130X
http://dx.doi.org/https://doi.org/10.4134/CKMS.c180030
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.10.016
http://dx.doi.org/https://doi.org/10.1112/plms/s3-26.3.521
http://dx.doi.org/https://doi.org/10.12775/TMNA.2023.016
http://dx.doi.org/https://doi.org/10.4134/CKMS.c170143
http://creativecommons.org/licenses/by/4.0

	Introduction and main results
	Construction of fractal measures and preliminary results
	Construction of fractal measures
	Construction of the generalized Cantor set

	Product formula: proof of Theorem 1
	Proof of the first inequality 
	Proof of the second inequality
	Proof of the third inequality
	Proof of the fourth inequality 
	Applications of Theorem 1

	Estimation of the measure of symmetric generalized Cantor sets
	Estimation of the generalized Hausdorff measure
	Example: study of the case where 0–

	Conclusions and perspectives

