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Abstract: Let u and v be two compactly supported Borel probability measures on R? and R/,
respectively, and let ¢ € R and A, g be two Hausdorff functions. In this paper, we are concerned
with evaluation of the lower and upper Hewitt-Stromberg measure of Cartesian product sets, denoted,
respectively, by HZ* and P?" by means of the measure of their components. This is done by the
construction of new multifractal measures in a similar manner to Hewitt-Stomberg measures but using
the class of all (semi-) half-open binary cubes of covering sets in the definition rather than the class
of all balls. Our derived product formula excludes the O—co case, and our approach is uniquely
applied within an Euclidean space, distinguishing it from those previously utilized in metric spaces.
Furthermore, by examining the measures of symmetric generalized Cantor sets, we establish that the
exclusion of the 0—co condition is essential and cannot be omitted.
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1. Introduction and main results

Let X and Y be two separable metric spaces and let M(X) be the family of compactly supported
Borel probability measures on X. We say that u € M(X) satisfies the doubling condition if

limsup| sup 'IM
N0 xesupp(u) ,U(B()C, r))

for some a > 1 (or, equivalently, any a > 1), where B(x, r) is closed ball with a center x and a radius r.
We use My(X) to denote the family of compactly supported Borel probability measures on X that fulfill
the doubling condition [1]. To study the multifractal analysis of measures introduced by Mandelbrot
in [2,3], we must turn back to the study of sets related to the local behavior of such measures, called
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level sets, defined, for 8 € R, as :

log u(B(x, ) _ }

E,B) = {x € supp(w); lim
r—0 logr

where supp(u) is the topologic support of u, and B(x, r) stands for the closed ball with a center x and
aradius » > 0. Thus, this study is essentially linked to its punctual nature and falls under set theory.
However, some geometric sets are essentially known by means of the measures that are supported by
them, i.e.,

v(A) = sup{v(B), B C A},

for a given measure v and a given set A. Hence, when we consider a set A, we focus on the properties
of the measure v rather than the geometric structure of A. The set A is thus partitioned into a-level
sets E,(B). This allows the inclusion of u into the computation of the fractal measures and dimensions.
Olsen, in [1], introduced the multifractal generalizations of the fractal dimensions. This is achieved
by constructing the generalization of Hausdorff and the packing measures, denoted 7—(5” and PZ” in
R?, where d > 1, respectively. Later, in [4], the authors introduced a new multifractal formalism that
deviates from the classical approach. To achieve this, they constructed two distinct measures known as
the lower and upper Hewitt-Stromberg (H-S) measures, denoted, respectively, by HZ’t and PZ". These
measures serve as fundamental tools in the analysis of multifractal structures. Given the importance
of these measures in this study, it is crucial to examine their properties, including their behavior on
product sets and their density characteristics both of which play a critical role in understanding the
broader implications of this new formalism. In particular, in [5], the author proved the existence of a
constant ¢ > 0 such that, for any measurable sets A C R? and B C R/, the following inequality holds:

HET(AXB) <ci HI(A) HI'(B) < e Pl (AX B) < ¢35 PE(A) PY(B), (1.1)
provided that we have the measures u € My(R?) and v € My(R’) and with the convention that
0Xxoco=0.

The constant ¢; (i = 1,2,3) depends only on certain structural parameters, such as the dimensions d
and /, but is independent of the specific choice of E and F. Moreover, in the specific case ¢ = 0, the
associated dimensional inequalities for the products of these measures have been derived in [6—8]. For
additional related discussions, the readers may consult [9, 10]. Furthermore, the inequalities above are
explicitly stated in this case in [8, 11-13]. In particular, if

d=I[l=1 and u=v
are basically the Lebesgue measure on R, one has, for
q+s=q+t=1og2/log3
and E = F as the middle third Cantor [14, 15]
HI(A) PL(B) = 1 x 4" < PLI(A X B) = 4 = PLY(A) PL(B).

UXy
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Remark 1. The equation of (1.1) has important physical interpretations depending on the context.
Note, for q = 0, that

H' =L
is the one-dimensional Lebesgue measure. In particular, if A, B C R, then the product set A X B forms

a subset of R?, and then (1.1) gives an approximation of the Hausdorff measure of A X B using the area
of the region covered by the Cartesian product. These prove, in particular, that

H*(A x B) £ H' (A)YH'(B).

A Hausdorff function
h:R, - R,

is a function that is increasing, continuous, and satisfies
h(0) =0.

These functions are often used in the context of geometric measure theory, particularly in defining
Hausdorff measures. Let ¥ denote the set of all such dimension functions, i.e., the set of all Hausdorff
functions. Additionally, a Hausdorft function % is considered to fulfill the doubling condition if a
positive constant y exists such that the following inequality holds:

h(2r) < yh(r), forall r > 0.

This condition essentially ensures that 4 does not grow too quickly and is often used to ensure specific
regularity properties of the corresponding measures. The subset of F consisting of all Hausdorff
functions that satisfy the doubling condition is denoted by 7. Recently, in [16], the authors introduced
the generalized pseudo-packing measure RZ’h and they proved that

H(A x B) < HI(A) R74(B) < RixS(A x B), (1.2)

XV Xy

for all A € X and B C Y, provided that we do not have 0—co case; that is, the product on the medium
side does not take the form 0 X oo or co X 0. Note that we do not any restriction on the measures y, v, h,
and g; that is, they do not satisfy necessary the doubling condition. In addition, one has (see again [16])

PLIE(A x B) < Q(A) PL4(B), (13)

except in the O—co case, where QZ’h is the weighted generalized packing measure. In particular, one can
obtain (1.1) under appropriate geometric conditions on X and Y (amenable to packing) [8, 16].
Traditional packing and Hausdorff measures are defined using packings and coverings made up of
collections of balls with diameters less than a given positive value 6. An alternative approach to
constructing fractal measures utilizes packings and coverings by using families of balls with a fixed
diameter 6. These measures, known as H-S measures, were first introduced in [17, Exercise (10.51)].
They were later explicitly described in Pesin’s monograph [18] and are also referenced, albeit in an
implicit manner, in foundational works such as Mattila’s [19]. The importance of H-S measures goes
beyond their theoretical definition; they offer a flexible framework for analyzing fractals and their
complex characteristics. Numerous studies, including [20-23] for H-S measures and [24-26] for
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Standard measures, have demonstrated their utility in exploring the local properties of fractals and the
behavior of fractal products. These works underscore the adaptability of H-S measures across various
contexts, thus enriching the field of fractal geometry and its applications. Furthermore, Edgar’s
comprehensive exposition of these measures [27, pp. 32-36] provides a clear and accessible
introduction, thoroughly detailing their construction, properties, and potential applications.

In Section 3, we are interested in studying the counterpart of the formula (1.1) related to the lower
and upper H-S measures in Euclidean space. This result was shown for ¢ = 0 in [28] in Euclidean
space. We will prove the following theorem.

Theorem 1. Let A C RY, B C R, u € My(R?), v € My(R), h,g € Fy and q € R. Positive constants
c1—c4 exist such that

HEM(AHZE(B) < ¢ HER (A x B) < ¢ HI(A)PH4(B) < c3 PUS(A X B) < c,PY"(A)PL(B),  (1.4)

Xy XV
except in the 0—co case.

To prove the first inequality, we introduce a new multifractal measure that parallels the lower H-S
measure and is notably simpler to analyze. This is achieved by utilizing a class of half-open dyadic
cubes as covering sets in the definition, instead of using closed balls. The use of half-open dyadic
cubes provides a new framework for the analysis, simplifying the structure of the measure. For the
second inequality, we extend the technique by replacing the traditional dyadic cubes with half-open
semi-dyadic cubes. This adjustment leads to the definition of two distinct measures that correspond to
the upper and lower H-S measures. This choice arises from the fact that semi-dyadic cubes v,(x) are
less sensitive to the position of x compared with the corresponding dyadic cubes u,(x). Semi-dyadic
cubes have been utilized in works such as [5, 13,29]. It is important to note that this construction is
specific to Euclidean space, making our proof distinct from those in [30].

Remark 2. It is important to emphasize that our analysis was not conducted for an arbitrary subset
' c R?, but specifically for cases where T takes the form of a Cartesian product

I'=AXB.

Addressing such a problem is far from straightforward, as it necessitates the application of integral
versions of product set. For a deeper exploration of these techniques and their implications, we refer

the reader to [5, 31, 32].
When
h(r) =71,

the measures HZ" and P%" are simply denoted as HZ' and P%’, respectively. In this case, these measures
assign, in the standard manner, a multifractal dimension to each subset A of R?, defined as follows:

bY(A) = inf {r € R, H“(A) = co} and BY(A) = inf {r € R, PZ(4) = oo).

If g = 0, b,(A) and B,(A) do not depend on u and are simply denoted b and B, respectively. Theorem
A implies, when all the hypothesis are satisfied, that

b? (A) +bZ (B) < b, ,,.(A x B) < bf (A) + B (B) < B, ,,,(A X B). (1.5)
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Moreover, all these inequalities may be strict. Indeed, one can construct two sets A and B such that
q
bZl(A) + bZz(B) < By, (A X B),

(see [33] for g = 0). However, in Example 2, we give a sufficient condition to get the first equality in
Eq (1.5):

b? (A) + bl (B) = b ., (A X B).

1 X2

One can define also the multifractal separator functions

b.(q) = b (supp(x))
and
B.(q) = Bl.(supp(n)).

Where b, is known to be a decreasing function, while B, is both a decreasing and convex function [4].
In addition, it holds that

As a consequence, since
SUppP(u1 X pz) = supp(u) X supp(us),

we get the following result:

b;u(CI) + buz(@) < b,u1></12(q) < b/ll(q) + Bﬂz(q) < B/Jlxllz(CI)’ (1.6)
by taking
E = supp(u)
and
F = supp(u2)

in Theorem 1. Similar results were also proven for the s-dimensional Hausdorft measure H* and the
s-dimensional packing measure P° [6, 13,34, 35]. In addition, a variety of related results and further
developments on this problem can be found in the works of [36,37].

Now, given u,0 € P(RY), g € R, h,g € Fo, and x € supp(u), we define the upper and lower
(g, s)-densities of 8 at x with respect to u as

0(B(x,
and d*'(x,6) = liminf (BCx, )

ok L 0(B(x, 1))
d, (x,0) = limsup 0 u(B(x, r)h2r)’

1.7
" (B (x ) h2) (7

If /
d?(x,0) = d, (x.0),

we use dZ’h(x, 0) to denote the common value. In [30], the authors used some density inequalities as
“local versions” of the product inequalities. In particular, they proved that the inequality

PL(A X B) < P4 (A)P4(B)

XV
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may be deduced from the following density inequality:

c d¥((x,y),01 X 6,) > dZ’h(x’ 01)d"(y, 02),

—uxvy

where 6, is the restriction of PZ’h to E and 6, is the restriction of P%® to B.
The set A satisfies the condition
bii(A) = Bj(A)

for measures p under consideration, which will be called regular set. Regularity is defined with respect
to various measures, such as the packing measure [29, 38], the Hausdorff measure [39—42], and the
H-S measure [43—45]. Notably, Tricot et al. [38,46] demonstrated that a subset A of R? has integer
Hausdorff and packing dimensions if it is strongly regular, meaning that

H'(A) = P'(A)
for t > 0. Furthermore, as a consequence of (1.5), it follows that if either E or F is regular, then
bZ.(A) + bZz(B) = bZ

(Ax B) =B ,,,(AXB). (1.8)

1 X2 1 X2

In Theorem 1, we assume that the products do not take the form 0 X co or co X 0. In Section 4, by
estimating the measure of d-dimensional symmetric generalized Cantor sets, we demonstrate that this
assumption is essential and can not be omitted. Specifically, let 0 < a, < 1, to establish the second
inequality in (1.4), we then need to prove that

_q’a+13 9@ _q!:B
H,u><v,0 (H) <c H/,[,O (A) Py (B),
for all
HCAXB

and some positive constant ¢, where ﬁfj and Ezﬁ are the pre-lower and pre-upper H-S measures,
respectively (see Section 3.2 and Eq (3.2)). We establish the following result.

Theorem 2. One-dimensional generalized Cantor sets K, K,, K3, and K; such that
—q,x J— ’ﬁ .
Hy oK) =0, P, (K)) = o,

and HZ:: g (K1 X K) and prets

v (K1 X IG) are infinite, positive finite, and zero according as j = 1,2,3,
respectively.

2. Construction of fractal measures and preliminary results

2.1. Construction of fractal measures

In this paper, we use formulas containing too many different variables, which is unpleasant, and
omitting these extra parameters will create no confusion. To this end, for u € P(RY),v € P(R!), and
h,g € ¥, we define the gauge functions ¢ and ¢ as

E(x,r) = u(B(x,r)'h(2r) and (x,r) = v(B(x,r)g(2r), 2.1
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where g € R, r > 0, with the conventions
07 = o0

for g <0 and
07=0

for g > 0. The reader should note that we have simply used & (respectively, {) to denote the gauge
function depending on u (respectively, v), g, and h (respectively, g). If

h(r)y=r" and g(r)=7r

for s, € R, then ¢ and ¢ will be denoted as & and ¢; respectively. In this section, we construct the
different fractal measures used in this paper. Let 6 > 0,

A C supp(u),

and {B(x;, r;)}; is a 0-packing of the A, that is, a countable family of disjoint closed balls such that
x; € A and
0<2r<é

for all i. Write
Pi(A) = sup ) &(xi,r) and  Pi(A) = inf P(A),

where the supremum is taken over all 6-packings of the set E. The generalized packing measure ¢ of

A with respect to £ is defined by
P = inf > PiA)

and

P5(0) = 0.

In a similar way, we define

H(A) =inf ) &(xi,ry) and  H(A) = sup H;(A),

6>0

where the infimum is taken over all §-coverings {B(x,», ri)}_ of E; thatis, x; € E,0 < 2r; < 6, and
AC U B()C,', rl-).

We define the generalized Hausdorff measure as

HE(A) = sup HS(E)

ECA

and
HEQ) = 0.

We refer to [1,5] for more details (see also [46,47] for ¢ = 0). Moreover, an integer « € N exists such
that
HE < kP~

AIMS Mathematics Volume 10, Issue 3, 5971-6001.
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Similarly, we define
P(4) = lim sup MY, (A)h(2r),

r—0

where

M ,(A) = sup {Z u(B(x;, r))? ' {B(xl-, r)}i is a centered packing of A} .

It is clear that = is increasing and
P'(0) = 0.

However it is not o-additive. For this, we define the Pé-measure defined as
P{(A) = inf {Z 5£(Al~) ’ AC UAi and the A’s are bounded} .

In a similar way, we define

H.(4) = ¢ (A)h(2r) and ﬁi(A):hmiOnfﬁf(A),

where

Ng,,(A) = inf {Z u(B(x;, r))? ' {B(x,-, r)}i is a centered covering of A} .

¢ . o . . . . .
Clearly, H, is not countably subadditive and not increasing; one needs some modification to obtain an
outer measure. More precisely, let

ﬁg(A) = inf {Z ﬁg(A,-) ' AC U A; and the A’s are bounded}

and
HEA) = sup HE (E).

ECA

It is well known (see, for instance, [48]) that H® and P¢ are metric outer measures, which implies that
they are measures on the Borel algebra. Moreover, for some integer « € N, the following inequality
holds:

HE(A) < HE(A) < kPF(A) < kPE(A).

2.2. Construction of the generalized Cantor set

In the following, we recall the construction of the one-dimensional generalized Cantor set K. Let
L be a positive number, let {n;};>; be a sequence of integers, and let {1;};>1 be a sequence of positive
numbers such that

n>1, nmA < L and A1 Nier1 < A (22)
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for all k > 1. The construction of the generalized Cantor set { L, {ni}es1, {/lk}kzl} is as follows. In the
first step, from a given closed interval with the length L, remove (n; — 1) open intervals and then leaves
n; closed intervals with the length A,, denoted by 1, ..., 1,,. Let

ni
n=J1.
Jji=1

In the second step, from each remaining closed interval with the length A, remove (n, — 1) open
intervals and leaves n, closed intervals with the length A,. These are denoted as /;, ;,, and we can write

=000

J1=1 ja=1

1.J2°

We continue this process and, in the k-th step, obtain n;n, - - - n; closed intervals with the length A,

denoted I, ;, . ; and denote their union as Ji. Then let

Let

be the uniform measure on K, that is

(0" = A
and define
_ #(Qk+1) Ak
S omohH A
This construction can be generalized in R? and K, denoting the generalized Cantor set. Let F; be the

product set of d copies Ji. Thus, Fy is the union of (n;n, . ..n;)¢ closed cubes with the side A, each of
which may be denoted as Q®, and

Sk

(2.3)

The next lemma will be used in Section 4 to estimate the measure of K*.

Lemma 1. Let K¢ be the d-dimensional symmetric generalized Cantor set (d > 1). A set function ¥,
defined on every non-empty closed subset in RY and ry, exists such that, for every open cube I with the
side r < ry, we have

W) < 2%h(r)A, (2.4)

where k is the unique integer such that
Adis1 S 17 < A

Proof. We start the proof by constructing the set function Y. Assume that

lim inf(nn; .. ) WA AT > 0.

AIMS Mathematics Volume 10, Issue 3, 5971-6001.
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Let
0<b< likm inf(nyny ... n) ()AL,

then there is a ky such that
/lko <1

and
h(Ax) > b/ (miny ... ) A7

for all k > ky. We define the sequence (A’;) such that
b

dqi°
(I’l]l’l2 .. .nk) /lk

h(A,) =

Clearly, we have 4; > A; (since h is increasing) and

b _ed) b _ h)
Si.

h(A,,) = =
* (nlnz...nkﬂ)d/lZH (I’llnz.. .I’lk+1)dSZ/lZ nk+1

Let A be any open set and define

N!(A) =inf{ } u(Q), Qi€ F, and meeting A},

i

Then, we have

#kH(A) 1nf Z,u(Q) Q; € Fi41, and meeting A}

u(QY
p(Qk)4
< kf,,S{inf { Z Q). Qi € Fy, and meeting A}

< inf{ Z,u(Q,-)q Q; € Fi41, and meeting A}
KL SINTL(A).

It follows that the sequence {Nq LR, )} is decreasing, and we may define the function

Y(A) = thq J(Ah(A).
Now, we will prove (2.4). Let I be an open cube, k exists such that
1 <j<mn and Adeg1 £ < Ag.

Moreover, take a positive sequence (d;)i>1 such that

m Ay + (ny — 1O = Ay

Then the following exists:
1 S .] S nk+la

(2.5)

(2.6)
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such that
Jhs1 + (= D1 <7< (J+ DAyt + jOisr. 2.7)

Observe that
NZ,kH(I) = inf{Zﬂ(Qi)q, Q; € Fy,1, and meeting A}

< 20+ QT < 22 (@ .

It follows that
(1) < 2% (@ Hh(a, ),

o If j =1, then
W) < 2% p(Q Y h(Aksr) < 2%u(Q Y h(r);

o If1 < ] < Ag+1» then

) , ) b
J QYA = @y
(mny ... mgyp)

= (j/mny ... m1)’b
= (j/me ) h(ADu(QY.

Since '
/l,’ci < A4,
kr+1
and
t - h(t)/t

is decreasing, we get
(/M) W) < B i),

and then
@Y R, ) < (@R ).

Now, observe that

J
i1 (st + Ops1)
Ni+1

< 2(jAks1 + (G — DOks1) <D 2.,

j/lllc/nkﬂ < j/lk/nk+1 3(2'6)

As a consequence, we obtain
Y1) < 2% (@Y h(Ay,,) < 22N h2r) < 2u(QYTh(r).
This completes the proof. O

AIMS Mathematics Volume 10, Issue 3, 5971-6001.
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3. Product formula: proof of Theorem 1

We set, forn € N,
d

U= ([ [ 5] i)

i=1

and
1

d 1y 17
«vn:{[l”;_f;, P hetieg)

1

The family U, denotes the set of half-open dyadic cubes of order n. For x € R, let u,(x) denote the
unique cube u € U, that contains x. Similarly, the family V, consists of half-open dyadic semi-cubes
of order n. For x € RY, let v,(x) represent the unique semi-cube v € V, that contains x and has its
complement at a distance of 272 from u,,,»(x). Define

1
K ={(ki,...,kqs) | ki =0 or E}.

For each
k=(k,....ky) €K,

let

d
Vi = {ﬂ[k’;l", b +2l;+ 1[, ha.... g€ Z).
i=1

Note that for
vV € Vi,

we have
vnv =0.

Additionally, the collection (Vi ), forms a partition of the family V,. Moreover, if

v, V' € (Vk = U(Vk’"’

n>0

then either
vnv =0

or one is contained within the other. Finally, for A ¢ R?, define

V. (A) ={v,(x): x€ A} and Vi, (A) =V, (A) NV,

In what follows, we construct measures on R¢ analogous to the generalized lower and upper H-S
measures. However, instead of using the collection of all closed balls in the definition, we employ the
class of all half-open dyadic semi-cubes. For A C R?, we define

H* ) = liminf N%(A) h2™) and P(A) = lim sup M:(A) h(2™),
n—+oo ’ ’

n—+o0o

AIMS Mathematics Volume 10, Issue 3, 5971-6001.
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where the numbers N;(A) and M;(A) are defined as
N4 (A) = inf {Z u(v;)? ‘ (Vi)'61 is a family of coverings of A such that v; e (V,,(A)}

and

MZ?H(A) = sup {Z uv)? vieV,(A),iel, and v,Nv;=0 fori# j}.

The functions ﬁ*§ and 5*{ are increasing and satisfy
H©0) =P ) = 0.

However these functions are not o-additive. For this, we consider

H(A) = inf{z A@ | acl Ja ais bounded},

P*(A) = inf{z E*G(Ai) ‘ AC UAi A; 1s bounded}.
Lemma 2. For every set A C R4, a constant ¢ > 0 exists such that
c'P(A) < P¥(A) < cP5(A) and ¢ 'H(A) < H*¥(A) < cHY(A). (3.1)
Proof. This arises from the fact that
B(x,27"2) C v,(x) C B(x, Vd2™).

This completes the proof. O

Similarly, we may define H**¢ and P**¢, by using the class of all half-open dyadic cubes in the
definition instead of the class of all half-open dyadic semi-cubes. However, it is important to note the
resulting pre-measure, denoted E**g, is not equivalent to the pre-measure E‘E. For more discussion,
consult [29, Example 3.5], where the interplay between the two pre-measures is explored. This
highlights how seemingly minor changes in the class of sets used can lead to significant differences in
the resulting pre-measures and their properties.

3.1. Proof of the first inequality

In this section, for the sake of simplicity and clarity, we focus on results that pertain specifically
to subsets of the plane. However, it is worth noting that these results can be extended to higher-
dimensional spaces without significant complications. Let IT c R? represent a subset of the plane.
For a given x-coordinate, we use II, to denote the set of all points in IT whose abscissa (x-coordinate)
equals x. Given an arbitrary subset A of the x-axis, we will only prove that, if x € A, we have

H(II,) > a

AIMS Mathematics Volume 10, Issue 3, 5971-6001.
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or some constant ¢, and then
A0 > TaHéA).

Let n be a non-negative integer and let {/; X I;}; ; be a collection of half-open dyadic cubes of order
n covering I1. Set
Ay ={x € E, Nj/I)g2™ > bi'a).

Note that

Nyod (DA™ = Nis(A,) inf {N9(IL), x € A, Jh(27)g(2™")
> by aN; M (A,)hQ2™).

This holds for any covering of II by the binary squares {I; X I;}; ; with 27" sides . Hence,
brlaH (A, < H5 (D) < H (1.
Since A,, increases to A as n — +oo, then for any p < n, we have
brlaH, (A,) < by'aH., (A < A ).

Thus, we obtain

#q,hg —q.hg

bi'aHE(A,) < by'aH, (E,) < Hi (D) < aHipe(

UXv

1)
for p > 1. Thereby, the continuity of the measure H* implies that

b;'aH*(A) < alﬁq’hg

Xy

(ID).
Thus, using Lemma 2, we get
baHé(A) < by'aH: " (A) < o, H™ (1),

Finally, by taking
1 =b%",
we get the result.

3.2. Proof of the second inequality

Let A € R? and B C R!. We prove that a constant ¢ > 0 exists such that
H¥(A x B) < cH (A)P*(B).

Let
HCAXB,

r > 0, and let {B(x;, r)}; be a centered r-covering of A. We denote n as the integer such that

V2 < r < N
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For v € V,(B) with
Bx;,r)xv)NH)+0

and each i, choose a point
Yiv € B(xj,1)

and a point y; = € v such that
Oiws Yiy) € (B(xi, r) X v) N H).
Note that

HQU( U B(xi,r)xv)

veVn(B)
(B(xi,r)xvV)NH#0

cJO U Bow20xB0;,.20)

VEVn(B)
(B(x;,r)xv)NH#0

cJO U Bww20)

veVn(B)
(B(x;,r)xXV)NH#0

As a consequence, we have the family (B((y,-,v,y;’v),2r))i€N’v€(Vn(B)’B(xi which forms a

centered (2r)-covering of H. Furthermore, we get

L)XVINHZQ?

B(y;,v’ 77r) (; B(y;,v’ 2—"—2)
for
n, =27 VIr.

It follows, for each k € K, that the family
(BOGy1r), i €N,vEViu(B),Bx,r) XxV)NH #0

is a centered n,-packing of B. It follows that

<Y () uBOw. 20)0;,. 2 h(4r)g(@n)

i VeVa(B)
(B(x;,r)xv)NH#D

< mymgm. ) By, 2) (20 ;( D 0L eny)
1 € VvEVk n(B)
(B(x,-,r);’v)nH;e@

< mymgn] )" (B, 26)h20)( P (B))

keK
< 2'mym,mP’ (B) > 1B, 20 h(2r).

Thus, by considering the infimum over all possible centered r-coverings of the set A, we get
Hs. (H) < 2'mym,miH. (AP, (B).
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Therefore,
AC(H) < clim inf HE(A) lim sup P, (B) = cHy(A)P*(B), 3.2)

r—0

where

Now, assume that

and

Then
HcAxBc| JAixB,
i

It follows that

XV,

HYH) < ) iy x B)
Lj
< e ) Hi (AP (B)).
LJ
<o Y Hy@)( D P ).
i J

Since the cover (A;) of A and the cover (B;) of B were arbitrarily chosen, we obtain
B¢ B (A)P¢ ¢ AVPL
H (H) < cH (A)P*(B) < cH(A)P*(B).

This holds for all for all
HCAXB

which implies that
H%(A x B) < cH*(A)P¢(B).

3.3. Proof of the third inequality

Let
ACRY and BCR.

We aim to show that a constant ¢ > 0 exists such that the following inequality holds:
P¥(A X B) > cH*(A)P4(B).

For simplicity, we limit our discussion to subsets of the plane, although the result can be extended to
higher dimensions without without significant complications. Let Q be any packing of B consisting of
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semi-dyadic intervals, and let C be any covering of A composed of semi-dyadic intervals. We define
the following

{ € C,u; isdyadic and u; Nu; =0 for li]}
{u € C,u; isnotdyadic and u; Nu; =0 for i# ]}
C; = {ul € C,u; is dyadic ﬂC\Cl,
Cy = {ul- € C,u; is not dyadic m C\C».
Clearly, we have each of C; is a packing of E and C; X Q is a packing of A X B. Therefore,

AMLEA X BYR2™E27™) 2 ) v h2™g7™( ) p( + D v+ ) p + Y u(vy’).

ueQ veCy veC, veCs veCy

C:Ua,

This holds for any packing Q of B and

so we have

AMEAX D22 2 M B2 ) u)h™) 2 Mg (B)g@ N4 (2™,

UXvn
veC
Thus, . .
FﬁAxmzzﬁﬁmﬁﬂmzZPme%u

Finally, we get the desired result using (3.1).

3.4. Proof of the fourth inequality
Let A € R? and B C R!. We will prove that a constant ¢ > 0 exists such that

P*(A x B) < cP¥(A)P*(B).

Here again, we limit our study to subsets of the plane, since the extension to higher dimensions does
not involve significant complications. Let 8 represent any packing of the set A X B containing semi-
dyadic squares, where each square is formed as the Cartesian product of two semi-dyadic intervals. We
define the sets as follows:

C= {un(x) : Av,(y) suchthat w,(x,y) =u,(x) Xv,(y) € B, x€A,ye€ B}

and
Q= {vn(x) : du,(y) suchthat w,(x,y) =u,(x) Xv,(y) € B, xe€A,ye B}.

Next, we examine the subclasses

Ci = {un(x) €C, u,(x) is dyadic},
Q = {v,(x) € Q. v,(x) is dyadic},
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C, = {un(x) € C, u,(x) isnot dyadic},
Q@ = {Vn(x) €Q, v,(x) isnot dyadic}.

It is not difficult to note that each of C, C; is a packing of A and, similarly, each of Q;, @, is a packing
of B. Moreover, each square of the packing 8 is in the collection C; X Q}, i, j € {1, 2}. Therefore,

D YRR <[ D phQ ™ + Y p(w)h@™)]

(u,v)eB ueCi ueC,
D vye@ ™ + > vwg@™)]
veQ, veEQ,

<AMIN AR )M (B)g (7).
This holds, for any packing of A X B, so we have

M5(A X BYh2™g(2™" < AML (AR ™M (B)g(2™)

uxv,n
and then
P (AxB)<4P,(A) P, (B).

Let

AgUm
for

Bc| JB;,

J

we have:

P/(A x B) < Zﬁ*ﬂ(Ai X Bj) <4 Z PA) P(B).

i,] L]
<4(> P@) ( > P ).
i J

Since (A;) represents an arbitrary covering of E and (B;) represents an arbitrary covering of B, we can
deduce that
P*¢(A x B) < 4P*(A)P*(B).

Finally, by applying (3.1), we obtain the desired conclusion.

3.5. Applications of Theorem 1

Let 1,8 € M(RY), g, s,t € R, and x € supp(u), and recall the upper and lower (g, h)-densities of 4
at x with respect to u as defined in (1.7). In this section, we assume that

PE(A) < o0

and

P4(B) < oo.
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When studying fractal measures, a common question that naturally arises is whether we can guarantee
the existence of subsets that possess finite or positive Hausdorff measures. This question becomes
crucial in understanding the intricate structure of fractals, as it involves determining whether certain
subsets exhibit measurable properties in terms of the Hausdorff measure, either finite or positive.
Assume that

inf gInu(B(x,r) + sIn(2r) <—o and inf qgInv(B(x,r) + tIn(2r) <_a
0<r<é Iné 0<r<6 Ino

(3.3)

for some positive real number . The assumption (3.3) implies, for every ¢ > 0 that is small enough,
that
u(B(x, N)(B(x, N)?2r)™ = 672

It follows that for
G={xtx{y}, 6>0,

we then have
—q, 5+t 2
H v 25(G) = (20).

Letting 0 tend to zero, we get

HE4((G)) = HEH(GY = H 7 (G)) = +oo.

Note that the assumption (3.3) is satisfied; for instance, if we take
u=v

to be the Lebesgue measure with
qg+1t<0.

In this case, we see that the Hausdorff measure constructed above is the standard Hausdorff measure
H? with
@(r) = 2r)"™.

Thus, for any closed nonempty set
G CAXB,

every subset of G, including the empty set, is a subset of infinite measures. Thus, we may construct
the measures H%¢ for which the subset of finite measure properties can fail to hold for every closed set
of infinite measures. One can assume also that for every ¢ > 0, the following exists:

0<r<o6/2,

such that
u(B(x, n)?2r) < 6.

Using Theorem 1, we formulate a sufficient condition to obtain
0 < H*%(G) < P¥%(G) < co.

First, we will state the following result, which is a direct consequence of Theorem 1.
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Corollary 1. Let A ¢ R and B c R), 11,0 € P(RY), and v,0' € PRY) such that u and v satisfy the
doubling condition. Let

G' cGCAXB,
such that
HE'(G) = oo

(1) Assume that if inf , y)ecr QZZJ“ (x,0) < oo and inf y e/ c_iz’h’ (x,0) > 0, then P&%(G’) < oo.
(2) Assume that if sup, .. c_lZ’hs(x, 6) < co and sup, . EZ’ht(x, 0') > 0, then H&E4(G?) > 0.

Proof. Using [30, Lemma 3], we have
H*(A) > y0(A)

if
sup EZ’hS(x, 6) < oo
XEA
and
P%(A) < 70(A),
whenever

inf d%"s(x, ) > 0,
xeA —H

where vy, 7 are positive constants. for all § € P(R?). Thus, the result follows from Theorem 1.

Example 1. Recall the construction of the Moran set given in Section 2.2.

Lemma 3. [49] Let A C I be a Moran set that satisfies the strong separation condition, and let 6 be a
finite Borel measure with
supp(d) C A.

Then there are some positive constants c¢; (1 < i < 4) depending on 6 and t, such that the following
inequalities hold for any (i) € A:

lim_ 0@ fim_ OB@O.r) oy 000)

S (L )ILOF T =Ou(Bel), ) 2 (@) LG
D) 0Be@.n) s 600)
= (LY~ OB, N)@ry o) 0)F

Now consider the special case I = [0,1], ny = 2, and ¢;j = %for allk > 1 and 1 < j < ny. In this
case, the Moran set A = B is the classical ternary Cantor set. Let

log2
a=—
log3

and 6 and 0" be probability measures on I defined by

1L, if ieD,

0, otherwise,

0(1.(i)) = {
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L@, if ieD,

0, otherwise,

o' (1,(1)) = {

where
a=q+s and B=q+t1.

It is clear that
supp(®) c E and supp(d) C E.

Moreover, we have

(/1) N (7 ()
o (DD o (DD

It follows, using Lemma 3, that

0 < d?(x.0) <d, " (x,0) < o0
and o

0 <d(x,0) <d, (x,6) < oo,

Corollary 1 implies that
0 < HES(A X A) < PET(A X A) < oo

UXV HUXV

Example 2. Let u,v € M(R), g € R, and let A and B be two sets of points in the x-axis and y-axis,
respectively. In this example, we give a sufficient condition to obtain

bl,.(A x B) = b%(A) + bi(B).

From Theorem 1, we have
b, (A X B) > bi(A) + bi(B),

so we only have to prove the inverse inequality. For this, fort, s € R, we define the lower {;-dimensional
density of A at the point y as

HI (A N B(. )
D%(y) = liminf inf .
=0 xeB y(B(x, 1)’ (2r)

Fix r > 0 and define the set 1,(r) as the centered interval on 'y with the length r. For n > 1, consider
the set

Bn = {y S B, H{’(B N Iy(r)) > sup V(Ix(r))qrt/l’l, Vr < n_l} .

X€EB
Assume that D(y) > 0 for all y € F, which implies clearly that B, ,/* B. In addition, if we prove that
Hixy (A X B,) < +00 (3.4)

for some n € N, then we deduce that

DA X B) = s +1.
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This gives the result if we choose
t =Dbl(B) and s =Dbi(A).

Now, we will prove (3.4). Let N N
ACA and B, C B,.

Let n be an integer and O < r < 1/n; we then define

I(r) = {I,(r), ye€ B}

We can extract f a finite subset J(r) rom I(r) such that En C J(r) and no three intervals of J(r) have
points in it.

Lemma 4. For 0 < r < 1/n, we have

J(r) < 2nr”"(sup v(1(r))) "H%(B). 3.5)
xeB
Proof. Divide the set J(r) into J;(r) and J,(r) such that in each of them the intervals do not overlap.
Using the definition of the set F,, we get

(sup V(L") nHE(B) = Y (sup v(L(r) FnHEB O D) > #1(r).

xeF IeJ (r) x€B

Similarly, we obtain
#J,(r) < (sup v(lx(r)))_qr_’anf(B)
xeF

as required.
In the other hand, for € > 0, a sequence of sets {A;} exists such that

ZQUA,-

and that e
D Hy(A) S HE(A) + e

Thus, we have a sequence {B; ;} of intervals of length r covering A such that the family {B; ;},, for each
I, 1s a covering of A; and
Z (AN < HE(A) + 2e. (3.6)

Let [a, b] represent any interval within the set {B; ;}. Enclose all points in this set that fall between
the lines x = a and x = b with squares whose sides are parallel to these lines. The projections of these
squares onto the y-axis correspond to intervals in J(r). In a similar manner, construct sets of squares
for each interval in {B, ;}, and denote the set of squares associated with the interval [a, b] as C(a, D).
Since the number of squares in C(a, b) does not exceed the number of intervals in J(r), and each square
intersecting A x B, can be inscribed within a centered ball of diameter r = 3r, it follows that:

N oA X B,) < #I(r) supv(L(r))? > u(By )",

xeF i
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Thus, using (3.5) and (3.6), we get
Hivorr (A X B,) < 207~ HE(B)(3r)™! Z (B )"
i.j
<2x3"nHY(B) Y N (A
<2X 3”’nH§’(B)(I-l|f-V(A) + 2¢€).
Since € is arbitrarily, we get
H3*(A x B,) < 2 x 3**'nH%(B)HE(A).

Finally, we have
H™(A x B,) < 2 x 3% nH4(B)HS (A),

from which the Eq (3.4) follows. ]

The result given in this example can be summarized in the next theorem.

Theorem 3. Let E and F be sets of points in x-axis and y-axis, respectively. Set
s =Dbl(A) and t =Dbl(B)
and assume that H%(A), H(B) € (0, o), and, for all y € F, D%(y) > 0. In this case,

b (A x B) = bi(A) + bi(B).
4. Estimation of the measure of symmetric generalized Cantor sets

We define the set G of all continuous and increasing functions % on [0, #y) for some #, > 0 satisfying
h(0) = 0, and the function
t —> h(t)/t

is decreasing. We assume in this section that 4 € G and that it t satisfies the doubling condition
h(2t) < 2%h(1), for 0 <t < ty/2.

4.1. Estimation of the generalized Hausdorf{f measure

A cube I(x, r) in R? is a subset of the form
I(x,r) = n[x,- —r xi+r].
i=1

For a cube I, we use [(]) to denote its side length. In this section, using cubes with sides of a length
less than ¢ rather than closed balls, we define a generalized Hausdorff measure Wj’h equivalent to
the generalized Hausdorff measure ﬂ,‘,”h. We prove that this measure is appropriate for estimating the
measure of the generalized Cantor set. Let u € Pp(R9), h € Fy, and g € R. Define

37 . 7 79h
7‘[5,0(14) = (151_1)13 7-{5’5 (A),
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where

HIS(A) = inf Y pBCxi, )L

with the infimum being taken over all coverings of A by cubes with sides of a length < ¢. Then a
constant C exists such that
1G9k h T q.h
C 'H;io (A) < 'H,:],o A)<C 7{5,0 (A).
We will compute the estimation of the generalized Hausdorff measure of the K. More precisely, we
have the following result.

Theorem 4. Let K¢ be the d-dimensional symmetric generalized Cantor set (d > 1) constructed by the
system {L, {niis1, {/lk}kzl}. We then have

27 lim inf(min, ... ) ALh(A) < HEGK) < PLo(K?) < Mlimsup(min, ... ng) ().

k—o0

Proof. We focus on proving only the left-hand inequality; the validity of the right-hand inequality can
be established using similar argument. Let ¥ be the set function in Lemma 1. Let & be a positive
number with & < ry and {/;} be a e-covering of K by open cubes with the sides r; < &. We have

D ) h(r) = 27 Y W1

> 27 ()1 =27,

Since b is an arbitrary number such that
b <liminf(niny ... me) ATA(AL),
then we get the desired result. O

4.2. Example: study of the case where 0—co

In this example, we take d = 1 and we consider the one-dimensional generalized Cantor set K
(resp. K3) constructed by the system {L, {(nictis1, {/lk}kzl} (resp. {L, {(nictis1, {Ak}kzl}) In the following,
we consider / = 1,d = 1,n;, =2, and

A=k A = kR2ME L pi =1 g(t) =1

Theorem 5. The constants M and M’ exist such that

—q.,h —q.,h
Mliminf 240 2 AP < HL (K X 9G) < Py

i uxv

(Ki x K>) < M’ lim sup 2K29 7" 25 AT,

k—o0

Proof. We focus on proving only the left-hand inequality; the validity of the right-hand inequality can
be deduced using the same idea. Assume that

A := liminf 2°A72°AT > 0;

k—oo
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otherwise, the result remains trivial. Let
O0<B<A

and choose a positive integer k; satisfying the following inequality:
B < 2KAI 2R AT

for all k > k;. Now we define the sequence (Ak)kzk, as
B = 2kATT kAT,

It follows that

Ap <Ay and 2200 AT = a0t A9 (4.1)
for all k > k;.
Let
K C 7{1 X (}(2

and use I’f (resp. I’z‘) to denote any of the closed intervals of the generation r of K (resp. K3). Then

Nt (K) =i { T x v s 841, 1 x 5™ meeting K}

<inf{ > pCrHvaEy, I x B meeting K},

Note that . .
+
A1 = A f27Y and A=A e lR,

k+1 k( A ) an +1 k(k+1)

and then
Nyiin ) < inf{ Zu(l'f“)qv(llz‘“)q, I x 51 meeting K}
—qlan—q/B k+1 q61—982 5 kg, kNG Tk k .
< ke 27127UP( . Y14 1nf{Zp(Il) v(I3)?, I} x 15 meeting K}
—atam—ap kT e
= 229-dqlan q/ﬁ( 2 )qé"l quNva,k(K)’
~ —atomarg KT e e~
NZXv,kH(K)/lgHAfH s 222 “ 2 q/ﬁ( )qfl qu/lkHAfHNZXv,k(K)

22p-al02-4lf k41
<

— +a X g+B
)CIé"l a6 Jata N4 quv,k( K)

/lz lj\q | k k+17 Tk+1" "
+ r+

2-4/70~4lB k41 .
<@.1 )451—452/1‘1"'“/\‘1‘*'51\/“1 (K)

X k k v,k
/lZHAZH k .
-1/an-1 A

B /1k+1[\k+1 k KR ek .

It follows that the sequence {Nzxv,k(K )/l}jf\’f } is decreasing, and we may define the function

OA) = lim N7 (ALK
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Case 8 < a. We can choose k, > k; such that
Ak < A4t forall k> kz.
Let
So ::/\kz

and consider any two-dimensional open cube  with the side s < sy. Let p and k be the unique positive
integers such that
Apr1 <5< 4, and A1 < s < Ag

Since
Apr1 < Ag < Ay

for k > k,, we deduce that k < p. Moreover, the open cube I meets at most 22 rectangles of the form

17 x I and so meets at most 2* rectangles of the form 17 g I4*!. Therefore, since p > k, it follows that

Ny oD < inf{ Zu(lf”)qv(lfﬂ)”, "' x ' meeting I}

< 24P a1 A1

p+1" " p+1°
Since 2"Af decrease as r increases, note that

2PN AP

p+1 k+1°
Then,
(D(I) < Nva,pH(I)/lgH[\iﬂ < 24+p_k/IZ+IAZ+1/lZ+1[\fz+1
< 24+p_kﬂ(Qp+1)qV(Q(p+1))q/1?p+1) A,fH—l

< 24/J(Q(P+1))qV(Q(p+1))qS06+ﬂ_
O

Example 3. As a consequence, we construct an estimate of the generalized packing measures of
product sets of one-dimensional generalized Cantor sets. Let 0 < a and B < 1. In this example, we
consider the one-dimensional generalized Cantor set K| (resp. 9K,) constructed by the system
{l, {k.} 1, {/1,},21} (resp. {l, {k. )1, {H,},Zl}). Set | = 1 and n; = 2 and consider in the following:

1 . 1
A= (279 Ag= (k727577 b =1, and g(t) = .
(1) We have

lim 262725 AT = Tim 2527 2K AT

k—o0 k—o0
= l}im(k22‘k)(k‘f2‘k)2"
= lim k*7/.
k—o0

Therefore, HZfio((Kl XIG) (resp. P

o (K1 X K3)) is infinite, positive finite, and zero for j = 1,2, 3,
respectively.
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(2) We have
lim 22 = 1im 2*(k*27%) = co.
k—o0 k—o0
Therefore,
—q,h —q,h
Hyo(KD) = P, (K)) = co.
(3) We have
lim 2°A?™ = lim 24(k™/27%) = 0.
k—o0 k—o0
Therefore,

Hy o (%K) = P (%) = 0.
5. Conclusions and perspectives

Let A C RY and B C R!. In this work, we present a novel approach that is distinct from that in [30],
as it 1s specifically tailored for Euclidean spaces, to establish the following inequality:

HEM(A)HEE(B) < o HE(A X B) < ¢3 HI"(A)P4(B) < c3 Piré(A x B) < csPY"(A)PI4(B).

Xy

This result holds under the assumption that u, v, h, g satisfy the doubling condition and that none of
the products is of the form 0 X co or co X 0. Furthermore, by analyzing the measures of symmetric
generalized Cantor sets, we demonstrate that the exclusion of the O—oco condition is indispensable and
thus cannot be omitted. Let (X, p) and (X', p’) be two separable metric spaces. The result presented
in this paper holds true for both X and X’, though the approach used in our proof does not extend to
metric spaces.

(1) Let B(X) denote the family of closed balls in X, and let ®(X) represent the class of pre-measures.
A pre-measure is any increasing function

&1 B(X) = [0, +o0]

satisfying
£0) =0.

It is natural to consider a general construction of 7—(5’5, defined using a measure ¢ and a pre-
measure &. Specifically, our result applies when

£(B(x, ) = h(2r)

and allows for the choice
&B) = h(BJ)
for all B € B(X). Let
e d(X) and & € D(X').
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We define &, the Cartesian product measure generated from the functions & and &, on B(X X X)
as

&(BxB) = &B)(B), forall Be B(X), B € BX)).

We strongly believe that the resulting measure is particularly well-suited for studying Cartesian
product sets. Under a suitable doubling condition, we obtain the following result:
HIE(A x B) = HIS(A)HZE (B), (5.1)

forall A ¢ X and B c X’. This construction was first introduced by Kelly in [50]; see also [51].
(2) To establish the equality presented in Eq (5.1), we draw inspiration from the work of Kelly [50].

Specifically, we propose constructing a weighted lower H-W measure, denoted (ij’h, for any
given Hausdorft measure 4. This approach involves assigning non-negative weights to the
covering sets, adhering to what is commonly referred to as the third method for constructing an
outer measure. On the basis of this framework, we conjecture that the equality in (5.1) holds if
the constructed weighted measure satisfies

q:& — H49<€
(W# = HH .

Similarly, one can construct a weighted upper H-W measure, denoted QZ’h, by following the same
approach used for the weighted lower H-W measure but replacing covering with packing [8]. We
conjecture that the equality

P4%(A x B) = PH4(A)PI (B),

UXV
forall A ¢ X and B c X’, holds if the constructed weighted measure satisfies
£ — pas
Qlr =Pl
(3) A similar result to (1.2) and (1.3) can be achieved by examining fractal pseudo-packings and
weighted measures of the H-S type. The purpose of employing these generalizations is to
eliminate the need for assuming the doubling condition.

(4) Our results in this paper can be readily extended to the setting of generalized lower and upper H-S

measures, denoted Hf,’lhxﬂ2 and Pf,’lhxﬂz. These fractal measures play a crucial role in the multifractal

analysis of a measure relative to another measure [52].
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