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Abstract: In this paper, we proposed a novel and flexible lifetime model, the generalized Kavya—
Manoharan Weibull distribution, which can be interpreted as a proportional reversed hazard model.
The most remarkable feature of the proposed model is its ability to effectively capture a wide range
of hazard rate patterns using only three parameters. These include decreasing, J-shaped, reverse J-
shaped, and increasing patterns, as well as key nonmonotonic shapes such as the bathtub, modified
bathtub, and upside-down bathtub shapes. Additionally, its density can exhibit right-skewness, left-
skewness, symmetry, and reversed-J shapes. We explored several distributional properties of the
proposed model and estimated its parameters using eight methods. The effectiveness of these
estimators was validated through extensive simulation studies. Furthermore, we assessed the
versatility of the proposed distribution using three real-world datasets, demonstrating its exceptional
capacity to fit the data accurately. Our results indicated that the proposed distribution outperforms
several existing generalizations of the Weibull distribution in terms of fit quality.
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1. Introduction

The Weibull distribution is extensively utilized for analyzing lifetime data and is particularly
effective for modeling monotonic hazard rates (HRs). Its density functions are typically right or
left-skewed, making it ideal for reliability and survival analysis. However, it falls short when dealing
with non-monotonic HRs, such as those exhibiting bathtub-shaped or upside-down bathtub-shaped
patterns. While the Weibull distribution is highly effective in modeling monotonic HRs, it lacks the
flexibility necessary to capture more complex failure rate behaviors, which are commonly observed
in real-world data across domains, such as medicine, engineering, and industrial reliability. Although
numerous extensions of the Weibull distribution have been proposed to address this limitation, many
of these alternatives require more than four parameters to accurately represent intricate HR patterns.
Additionally, existing models often struggle to effectively capture non-monotonic HR behaviors,
including J-shaped or modified bathtub curves.

Some recent extensions of the Weibull distribution, introduced to expand its modeling capabilities
across a wider range of lifetime data, include the beta Weibull [1], Kumaraswamy—\Weibull [2], truncated
Weibull [3], transmuted Weibull [4], exponentiated generalized Weibull [5], new extended Weibull [6],
modified beta Weibull [7], Kumaraswamy complementary Weibull geometric [8], Weibull-Weibull [9],
alpha power Weibull [10], odd log-logistic exponentiated Weibull [11], Lindley Weibull [12],
exponentiated Weibull [13], alpha logarithmic transformed Weibull [14], alpha power exponentiated
Weibull [15], odd Lomax-Weibull [16], Maxwell-Weibull [17], exponentiated additive Weibull [18],
new generalized modified Weibull [19] new flexible Weibull [20], odd Burr exponentiated Weibull [21],
odd log-logistic Lindley—Weibull [22], alpha power Kumaraswamy-Weibull [23], new exponentiated
inverse Weibull [24], entropy-transformed Weibull [25], extended Weibull [26], and odd beta prime
Weibull [27] distributions. These enhanced distributions offer increased flexibility, enabling more
effective modeling of diverse datasets for practical applications.

We aim to bridge this gap by introducing a new variant of the Weibull distribution, known as the
generalized Kavya—Manoharan Weibull (GKMW) distribution, which is specifically designed to
model a broader range of non-monotonic HRs with just three parameters. The GKMW distribution
provides an improved and more flexible approach for modeling diverse lifetime data, making it a
valuable tool for researchers and practitioners in survival analysis, and reliability theory. The
GKMW distribution is derived from the generalized Kavya—Manoharan (GKM-G) family introduced
by Mahran et al. [28]. One key characteristic of the GKMW distribution is its interpretation as a
proportional reversed hazard (PRH) model. The PRH models play a crucial role in survival analysis
and reliability theory, particularly when analyzing left-censored lifetime data and studying parallel
systems [29]. Further details on PRH models can be found in references [30-32].

The GKMW distribution boasts several key advantages:

e Itaccurately captures J-shaped, decreasing, bathtub, increasing, upside-down bathtubs, modified
bathtub, and reversed-J HR shapes. With its three parameters, the GKMW effectively models
failure rates for both standard and modified bathtubs, a significant improvement over many
distributions that require more than four parameters for precise representation.

e The GKMW distribution is particularly well-suited for non-monotonic modeling, making it
applicable in diverse fields such as medicine, engineering, survival analysis, and industrial
reliability.

e  Our analysis demonstrates the GKMW model’s superiority over seven competing lifetime

AIMS Mathematics Volume 10, Issue 3, 5880-5927.



5882

distributions through real data from three distinct fields, underscoring its practical applicability.

Our final motivation of this paper is to evaluate the performance of various frequentist
estimators for the GKMW distribution across sample sizes and parameter values. Additionally, we
aim to provide guidelines for selecting the most effective estimation method for the GKMW
distribution, which we believe will be of interest to applied statisticians.

The remainder of this article is organized as follows: In Section 2, we introduce the GKMW
distribution. The properties of the GKMW distribution are derived in Section 3. In Section 4, we
detail eight estimation methods for estimating the GKMW parameters are discussed. Numerical
simulations are presented in Section 5. In Section 6, we illustrate the practical application of the
GKMW distribution using three real data examples. Finally, concluding remarks and some
perspectives for future research are given in Section 7.

2. The GKMW distribution

In this section, we introduce the GKMW distribution, using the Weibull model as the baseline
within the GKM-G family proposed by Mahran et al. [28]. The GKM-G family can be regarded as a
PRH family because it is derived from the exponentiated-H (exp-H) family [33], which is one of the
most commonly used generalization techniques. The cumulative distribution function (CDF) and
probability density function (PDF) of the GKM-G family are defined as follows:

F(x;8,9) =& [1—e 6@ xeqt, §>0 (1)
and
f(x;6,9) =8%8 g(x;9) e 69 [1 — e‘G(x”’)]a_l, x € RT,

where & =e/(e — 1), § isashape parameter and 9 refers to the baseline parameters vector.
The HR function (HRF) of the GKM-G family reduces to

§ g(x; 9) el~6?) [e _ e1—c(x;0)]5‘1
(e — 1)8 — [e — e1-G(x?)]0 ’

h(x;6,9) = x € RF.

The PDF and CDF of the Weibull distribution are g(x;8,2) = A xB~te=*** and

G(lx; 8,1) =1-— e‘lxﬁ,l,ﬂ > 0. By substituting the CDF of the Weibull model in Eq (1), we derive
the CDF of the GKMW distribution as follows:

_aeB\18
F(x;oo):f‘S [1—9_(1_"’)l )] ) x>0, 51,8 >0,

where w = (6,,2)T.
The PDF of the GKMW model takes the form

5-1
Flx; @) = £55 B A xP1 - (1-e ) -axF [1 B e_(l_e—axﬁ)] s @)

where 1> 0 is the scale parameter and § and B are positive shape parameters. The scale
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parameter (A1) affects the spread of the GKMW distribution but does not directly influence its
skewness or tail behavior. In contrast, the two shape parameters (6 and f) refine the shape of the
GKMW distribution, particularly in terms of tail behavior, kurtosis and skewness. Thus, these two
parameters significantly influence the asymmetry and overall shape of the distribution. Figures 1-3
illustrate the roles of the three parameters. The plots and numerical values, obtained for A = 1 with
varying & and g, confirm the influence of all three parameters.

Therefore, a random variable with PDF (2) is denoted by X~GKMW(§, 8, 1).

The HRF and reversed HRF (RHRF) of the GKMW model are defined by

6-1

§pAxP1 g™ ~xf (e — ee_lxﬁ)
h(x; w) = , x>0

(e—1)5 — (e - ee_lxﬁ)a

and

-1

—AxB —AxP
Hx;w) =68 A xB1 e_(l_e W)= [1 - e_(l_e g )] ) x> 0.

The quantile function (QF) of the GKMW model reduces to

1 MV
I(u) =218 <—ln {1 + log [1 — (5-%)8”) , 0<u<l,

where £ =e/(e — 1).

Figures 1 and 2 display the PDF and HRF curves of the GKMW distribution for A =1 and
various values of § and S. Figure 2 illustrates the HRF, which can exhibit decreasing, J-shape,
increasing, reversed-J shape, bathtub, modified bathtub, and unimodal forms. A key advantage of the
GKMW distribution over the W distribution is its ability to model data with bathtub, modified
bathtub, or unimodal failure rates, which the W cannot.

Furthermore, the QF can be employed to explore the relationships among the parameters. For
the GKMW distribution, this function is useful for calculating Galton’s skewness and Moors’
kurtosis. Figure 3 presents Galton’s skewness and Moors’ kurtosis for the GKMW distribution at
A =1 with varying § and £ values. Overall, it is evident that parameters f and A have a
significant impact on the skewness and kurtosis of the distribution.
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Figure 1. Plots of the GKMW density for A = 1 and different parametric values of § and g.
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Figure 2. Plots of the GKMW HRF for A = 1 and different parametric values of § and S.
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Moors's kurtosis

5\50\1“*

GO FAL
o sty s, ey
OISR HRErE%
e
T ettt
0y 0y e g 04y ey iy
L0000y Uy 0 O,
LKL f’igfiy, Yo 00y
AL
Gy
a"[@g ifi;

5
3. Properties

Figure 3. Galton’s skewness and Moors’ kurtosis for the GKMW distribution.
In this section, we explore several properties of the GKMW distribution.
3.1. Linear representation

follows:

Here, we present a mixture form for the GKMW density based on the linear representation of
the GKM-G density introduced by Mahran et al. [28]. The GKM-G density can be expressed as

where d; = X%,

) =) di o),
k=0

@)
_1\Jj+k ;k
&8 % ( f ) and hy(x) = k g(x)G(x)*"1 is the exp-G density with power
parameter k. Equation (3) can be expressed using the W distribution as follows:

[ee)

) =) v i),
where v, = Y di 1)

=0
k=0"(14+1)

(4)
k(k l 1) and gy, (x) = B (L + DAxP~1 e~ +DAXF genotes the W
density with scale parameter (I + 1)A and shape parameter . Then, the GKMW PDF can be
expressed as a single linear combination of Weibull densities.
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3.2. Moments

Let Y be a random variable having the W distribution with PDF g(y;B,4) =
BAyP~te=F >0 8,1 > 0, then, the rth ordinary moments of Y is

A
Uy =F<1+—)/’l .
Y B

Therefore, we can derive the rth moment of GKMW distribution from Eq (4) as follows:

[ee)

W=T (1 + %) ; o [(L+ DATP. (5)

The mean of X, denoted by uy, follows from Eq (5) by setting » = 1.

Table 1 demonstrates that the summation in Eq (5) converges to the numerical integral (NI) of
uy for various values of A and y as the truncated terms in this summation, say M, increase
significantly. Table 2 shows that the skewness (y,) and kurtosis (y,) of the GKMW distribution
range from —0.0874 to 11.1133 and from 2.5560 to 242.1702, respectively. Additionally, the GKMW
distribution can exhibit left-skewed, right-skewed, or symmetric properties, and can be classified as
leptokurtic (v, > 3) or platykurtic (v, < 3). This versatility makes the GKMW distribution
well-suited for modeling skewed data effectively.

The sth incomplete moment of the GKMW model is given by

t 0

0. (t) = stf(x)dx = Z v [(L+1)A] By (1 + %, L+ 1A tﬁ), ©6)

—o00 =0
where y(a,w) denote the lower incomplete gamma function (IGF), which is defined by y(a, w) =
fo‘" w% le®dw. The first incomplete moment, say ¢, (t), is derived for s = 1 and can be utilized to

construct Bonferroni and Lorenz curves, which are defined, for a given probability m, as follows:

B(m) = ¢4(q)/(mr py) and L(mw) = ¢@4(q)/py, where u; given by (5) with r =1 and g = Q(n)
isthe QF of X at m.
The conditional moments of the GKMW model can be written as

E(XMX > t) =%zvl (z+1)ar(1+g,(z+1)uﬂ )
=0

where T'(a,&) denotes the upper IGF defined by TI'(a,$) =f;°€“‘1e‘fd€ and S(t) is the

survival function (SF) of the GKMW distribution.
The moment-generating function (MGF) of the W distribution has the form

ot j
M(b) =z,—/1 Br<1+—). 7
i ! B
Jj=0
By combining Eqgs (4) and (7), the MGF of the GKMW model is expressed as follows

AIMS Mathematics Volume 10, Issue 3, 5880-5927.
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1,j=0

t)

My(®) = ) vy [+ 2]

_i
BT (1 + L).

B

Table 1. Generated values of uy based on the summation formula and the NI for various
parametric values at truncated M terms.

1) B M Summation NI
0.5 2 0.5 10 9.56790
20 9.56325 9.56325
50 9.56325
1.5 10 1.65060
20 1.65025 1.65025
50 1.65025
4 0.5 10 33.26973
20 16.24027 16.24025
50 16.24025
1.5 10 3.46152
20 2.15191 2.15191
50 2.15191
0.9 2 0.5 10 2.95306
20 2.95162 2.95162
50 2.95162
1.5 10 1.11548
20 1.11524 1.11524
50 1.11524
4 0.5 10 10.26843
20 5.01243 5.01242
50 5.01242
1.5 10 2.33929
20 1.45426 1.45426
50 1.45426
15 2 0.5 10 1.06310
20 1.06258 1.06258
50 1.06258
1.5 10 0.79353
20 0.79336 0.79336
50 0.79336
4 0.5 10 3.69664
20 1.80447 1.80447
50 1.80447
15 10 1.66412
20 1.03453 1.03453
50 1.03453

AIMS Mathematics
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Table 2. Moments of the GKMW distribution for A = 1 with varying values of § and g.

6 B Hx a; 21 [P

0.5 0.5 0.7139 6.7945 11.1133 242.1702
15 0.4887 0.2526 1.7860 7.1495
2.8 0.5958 0.1257 0.6322 3.0474
3.5 0.6409 0.0996 0.3478 2.6707
5 0.7117 0.0670 -0.0309 2.5560

0.75 0.5 1.0338 9.8213 9.2802 169.9559
15 0.6313 0.2893 1.5059 5.9591
2.8 0.7128 0.1182 0.4924 2.9654
3.5 0.7478 0.0874 0.2419 2.7303
5 0.8014 0.0530 -0.0874 2.7295

15 0.5 1.8882 17.8440 6.9544 97.0234
15 0.9131 0.3298 1.1791 4.8586
2.8 0.9067 0.0981 0.3788 2.9892
3.5 0.9156 0.0655 0.1865 2.8588
5 0.9321 0.0345 -0.0571 2.8753

2 0.5 2.3908 22.5235 6.2248 78.4523
15 1.0396 0.3379 1.0866 4.6063
2.8 0.9823 0.0893 0.3625 3.0139
3.5 0.9784 0.0577 0.1912 2.8969
5 0.9785 0.0290 -0.0225 2.8929

5 0.5 4.7553 44,1219 45572 43.7214
15 1.4588 0.3369 0.9032 4.2015
2.8 1.2009 0.0652 0.3653 3.1052
3.5 1.1536 0.0386 0.2431 2.9961
5 1.1018 0.0174 0.0954 2.9332

3.3. Mean residual life and mean inactivity time

[ee] _l 1

9,(t) = Z v, [(L+ 1)A] P y(1 +, (4 2 tﬁ).
=0

The MRL represents the expected additional lifespan for a unit, which is operational at age t

The function ¢,(t) of X can be used to derive the mean residual life (MRL) and mean
inactivity time (MIT). This function follows from Eq (6) as

(8)

and is defined by my(t) = E(X — x|X > x), for t > 0. The MRL of X is

AIMS Mathematics

MRLy(t) =

[1 - (0]

©)

By substituting Eq (8) into Eq (9), we obtain the MRL of the GKMW distribution as follows

Volume 10, Issue 3, 5880-5927.
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MRLy(t) = S(t){ 2171 L+ DA ﬁy<1+[—g (l+1)Atﬁ)}

=0

The MIT represents the waiting time that has elapsed since the failure of an item, given that this
failure occurred within the interval (0,t). The MIT is defined by MITyx(t) = E(t — X|X <'t), for
t > 0. The MIT of X reduces to

@1(t)
F(t)

Using Egs (8) and (10), we derive the MIT of the GKMW distribution as follows

MIT,(t) = t — (10)

o

FLZ [(1+ 1DA] ﬁy<1+ﬁ (l+1)/1tf>’)

1=0

MITy(t) =t —

3.4. Order statistics

Order statistics are essential in quality control testing and reliability assessments, as they help

predict the failure of future items by analyzing early failures. According to Mahran et al. [28], the
PDF of ith order statistic of the GKM-G class, say X(; (for i =1,..n), can be expressed as
follows

fin(x) = z by hyyq1(x).
k=0

Here, hpy1(x) = (k+ 1) g(x) G(x)¥ is the exp-G density with power parameter k + 1 and
n—-i o ,
= az Z (1 +m)* (1) PaU+D (" - 1) ( a(j+i)—1 )
e O(k+1)!B(i,n—i+1) J m
j=0m=

Then, the PDF of X(;, for the GKMW distribution reduces to

co

fx (%) = Z ¢, B (r + 1A xP-1le=r+DAxF "

r=0

W Equation (11) indicates that the PDF of the GKMW order statistics is

a mixture of W densities, with a scale parameter of (r+ 1)A and a shape parameter f.

Consequently, some of their mathematical properties can be derived from those of the W distribution.
For instance, the gth moment of X(;) is given by

where ¢, = Yo

o)

E(X() =T (1 + %) Z ¢, [(r+ 1)/1]%,.

r=0

AIMS Mathematics Volume 10, Issue 3, 5880-5927.
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3.5. Probability weighted moments

Greenwood et al. [34] introduced probability weighted moments (PWMs) as a particular type of
moment. PWMs are used to estimate the parameters and quantiles of distributions that can be
represented in inverse form. These estimators exhibit moderate bias and low variance, making them
comparable to maximum likelihood (ML) estimators.

The (j,)thPWM of X, say p;;, is defined by

pji =E{X FOO'} = fooxj f(x) F(x)"dx,

where jand i be non-negative integers. According to Mahran et al. [28], the PWM of the GKM-G
class can be expressed as

where

@D DT a1+ =1
ds_6z=o (s + 1)! £ )( l )

Using Eq (5), the PWM of GKMW maodel can be defined as
Zd 1“<1+ ) (s+1)/1]

3.6. Réyi and 6—entropies

Entropy measures the randomness of systems and is widely used in fields such as molecular
tumor imaging, physics, and sparse kernel density estimation. The Rényi entropy of the GKM-G
family [28] is

lp=1—45108 [Z nkf g(0)° G0k dx], (12)
k=0 -
where
§&NP (0 k . —
nk_z(E) CES)) (_1)k+,<9(yj 1))_

Inserting the PDF and CDF of W distribution in Eq (12) and using binomial series, we obtain

AIMS Mathematics Volume 10, Issue 3, 5880-5927.
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90° GG = (BPOED N (1) (K] emttrornd,
i=0

Therefore, the Rényi entropy of the GKMW distribution follows as

__1 N i(k )
lo =3 log| ) m = () (B0ral, (13
k,i=0
where
A= f " 0B-1) - 4IP3y _ %[(i +6) Meu—m—q(%)_
0

By substituting the quantity A from Eq (13), the Rényi entropy of the GKMW distribution
simplifies to

)

1-6 Z Me (=1 (’l‘) 28 B9-1(i + 6)A1C-A-1p <M>

Iy = - | [
6 — 0og B
k,i=0

where 8 >0 and 6 # 1.
The Shannon entropy can be seen as a special case of the Réyi entropy when 6 approaches 1.

4. Estimation methods

In this section, we present eight methods for estimating the parameters of the GKMW
distribution. These methods include maximum likelihood (ML), least squares (LS), weighted least
squares (WLS), Cramé&-von Mises (CVM), maximum product of spacings (MPS),
Anderson-Darling (AD), right-tail Anderson—Darling (RTAD), and percentile (PC) estimators.

Let x4, ... ,x, bearandom sample from the GKMW distribution with parameters &, 8, and A.
Denote the ordered statistics as x1., < X3., < *** < X

The log-likelihood function of the GKMW model can be expressed as follows

n n
?=ndlogé+ nlogd +nlogf +nlogd+ (B — 1)210g(xi) —Z(l—e‘“‘zﬁ)

=1 i=1
n n
_ Afo 45— 1)Zlog k),
i=1 i=1

i

—<1—e_lxﬁ>
where k; =1—e .

The MLEs for §, 8, and A can be obtained by maximizing the previous equation with respect
to these parameters or by solving the provided nonlinear equations:

AIMS Mathematics Volume 10, Issue 3, 5880-5927.



5893

afn

35 6+nlog§+Zlog(k) =0,

p B /
aﬁ ﬁ+Zlog(X) AZx log(x;) — Azx log(x;) e™* xf

ﬁ —),x.
: l i 1 - ki t
+/1(5—1)§xl Og(x)(k e )
-1 i

and

Q.)|Q.)
SIS
>a|=

n n noB —2xP
B x; (1 —Fk;))e **i
E xf E xlﬁ e M +(5-1) E : k-l) =0
i=1 !

i=1 i=1

The LS and WLS methods are employed to estimate the parameters of the beta distribution [35]. The
LS estimators (LSEs) and WLS estimators (WLSEs) for the GKMW parameters can be obtained by
minimizing the following:

i 2
n+1

)

V(s,B,1) = ivi [55 ke —
i=1

where v; = 1 for the LS method, v; = (n + 1)2(n + 2)/[i(n — i + 1)] for the WLS approach, and

—<1—e_/1xl€n>
ki:n =1-—e .

Additionally, the LSEs and WLSEs can be derived by solving the nonlinear equations (for s =
1,2,3):

Zvl[eé‘k ——| 0l 8.8, =0,
where
ByCeinl 6,8,2) = o5 F (inl 8,8,0) = K €0 [log(€) + logCei,)] (14)
a4 B 5-1
By Ceinl 88,1 = 57 F i 8,6,2) = 618 xfe” Al (1 = ki) kSt 10g (i) (15)
and
af B —Ax-B 6—-1
A3(xl n| 6, :8 A) =35 F (xl n| 6, ﬁ 2-) = 58 Xin€ “n(l - ki:n)ki:n . (16)

The CVM estlmators (CVMEs) [36,37] can be derived from the difference between the
estimated CDF and the empirical CDF. The CVMEs for the GKMW parameters are found by
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minimizing the following function:

n
1 2i — 17°
— 51,8 _
=
Further, the CVMEs follow by solving the nonlinear equations,

n

2i—1
Z [561{?11 - ]As(xi:n’ 8, ,B: A) =0,
i=1

2n

where A¢(x;.,| 6,8,4) = 0 are defined in (14)-(16) for s = 1, 2,3.

The MPS method is used for parameter estimation in continuous univariate models as an
alternative to the ML method [38,39]. The uniform spacings of a random sample of size n from the
GKMW distribution can be characterized by:

D; =F (xXiml 6,8,2) — F (xi_1:n| 6,8, 4),

where D; denotes the uniform spacings, where F (xg.,| 6,8,4) =0, F (Xp41.0/ 6,8,2) =1 and
1D;(8,8,1) = 1. The MPS estimators (MPSEs) of the GKMW parameters can be obtained by
maximizing
n+1

1
G(5,B,1) = n—Hz log D;(5, B, ).

Additionally, the MPSEs of the GKMW parameters can also be obtained by solving:

n+1

1 1
T 5 Bl 880~ AGxicaal 8,4,] =0, s=123
=1

The AD estimators (ADEs) are another form of minimum distance estimator. The ADEs for the
GKMW parameters are obtained by minimizing:

AG B = —n—= > (2 ~1) 08 F(tisd 6,8,2) +108F (trsa-is) 6,6,2)]
i=1

The ADEs can also be determined by solving the corresponding nonlinear equations:

OB 88D A Gtsa—inl 6,8, 2)
;(Zl -V lF(xl-m| 58,7  SCinaroind &ml

The RTAD estimators (RTADEs) for the GKMW parameters §, 8, and A are obtained by
minimizing the following function with respect to these parameters:

n n
n 1 _
R((S,,B,A) = E - zz F(xi:n| 5,‘8,/1) _EZ(Zl - 1) 1OgF(-xn+1—i:n| 5,3,).)
i=1 i=1

The unknown parameters of the GKMW distribution can be estimated using the PC method [40],
which involves matching the sample PC points with the corresponding population PCs. An unbiased
estimator of F (x;.,| &6,B,4) is given by u; = i/(n + 1). The PC estimators (PCEs) for the GKMW
parameters are subsequently derived by minimizing the specified function:
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n

P, B, 1) = z <xim - _71 log{l + log [1 — (w E“Uﬂ}) :

i=1

=N

5. Simulation analysis

In this section, a Monte Carlo simulation analysis was conducted to assess the performance of
various estimators for the unknown parameters of the GKMW distribution. The assessment centered
on their average absolute biases (BIAS), average mean square errors (MSE), and average mean
relative errors (MRE) of the estimates, defined as follows:

BIAS =~ S,[i—nl, MSE=>3¥L,@-m?and MRE=_3L,7-nl/n
We generated 5,000 samples from the GKMW distribution for different sample sizes n =
{20,50,100,300,500}, selecting § = (0.5,1.5), B = (0.25,2), and A = (1.5,3.5). The GKMW
parameters (8, 5, A) were estimated for each combination of parameters and sample size using
eight estimators, including WLSEs, LSEs, MLEs, MPSEs, CRVMEs, ADEs, RTADEs, and PCEs.

Subsequently, the MSE, BIAS, and MRE of the parameters were calculated. All computations in this
section were carried out using R software Version 4.2.2.
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Tables 3-10 present the results of all simulated outcomes. Additionally, these tables display the ranking of each estimator in every row, with
curly braces indicating the ranks and ). Ranks representing the cumulative sum of ranks for each column within a specific sample size. The
findings in Tables 3-10 indicate that all estimation methods exhibit the property of consistency, as BIAS, MSE, and MRE decrease with
increasing sample size across all parameter combinations.

The partial and total rankings of the estimators under consideration are presented in Table 11. The estimation method with the lowest
overall score is regarded as the best approach. Based on Table 11, the eight estimation methods can be ranked from best to worst as follows:
MPS, ML, AD, WLS, RAD, OLS, PC, and CRVM. It is important to note that, based on the results of the detailed simulation study, the MPS
method, which achieved the lowest overall rank of 45.5, is considered the most effective estimation method. This lower rank indicates that the
MPS method consistently produces better results, as measured by MSE, BIAS, and MRE, across sample sizes and different parameter values
studied. Hence, the MPS approach, overall score of 45.5, outperforms all other approaches. Consequently, our results confirm the superiority of
MPS method for estimating the GKMW parameters.

Table 3. Results for eight estimators with parameters § = 0.5, = 0.25, and 4 = 1.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
§ 0.44805{4} 0.46606{5} 0.40387{3} 0.47616{6} 0.39067{2}  2.44726{8} 0.37975{1} 0.48266{7}
BIAS § 0.14364{5} 0.15331{7} 0.13623{4} 0.14834{6} 0.13404{3}  0.65763{8} 0.13143{1} 0.13160{2}
y) 0.66572{4} 0.66928{8} 0.66508{3} 0.66627{6} 0.66622{5}  0.64430{1} 0.64661{2} 0.66871{7}
§ 0.20075{4} 0.21722{5} 0.16311{3} 0.22673{6} 0.15262{2}  5.98910{8} 0.14421{1} 0.23296{7}
20 MSE I 0.02063{5} 0.02350{7} 0.01856{4} 0.02200{6} 0.01797{3}  0.43248{8} 0.01727{1} 0.01732{2}
y) 0.44319{4} 0.44793{8} 0.44233{3} 0.44392{6} 0.44384{5}  0.41513{1} 0.41811{2} 0.44717{7}
§ 0.59740{4} 0.62142{5} 0.53849{3} 0.63489{6} 0.52089{2}  0.88991{8} 0.50633{1} 0.64355{7}
MRE § 0.28728{5} 0.30662{7} 0.27246{4} 0.29667{6} 0.26808{3}  0.32881{8} 0.26286{1} 0.26320{2}
p) 0.99362{4} 0.99892{8} 0.99265{3} 0.99444{6} 0.99435{5}  0.96165{1} 0.96509{2} 0.99807{7}
Z RANKS 39.0{4} 60.0{8} 30.0{2.5} 54.0{7} 30.0{2.5} 51.0{6} 12.0{1} 48.0{5}

Continued on next page
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n  Est  Est Par MLEs LSEs WLSES CRVMESs MPSEs PCEs ADEs RADES
8 0.25007{3} 0.29937{5} 0.24733{2} 0.31057{6} 0.22757{1}  2.37250{8}  0.25066{4} 0.31836{7}
BIAS § 0.08437{3} 0.09749{7} 0.08281{2} 0.09732{6} 0.07884{1}  0.49530{8}  0.08464{4} 0.08707{5}
p) 0.51229{1} 0.59472{6} 0.52254{3} 0.57940{5} 0.51959{2}  0.63231{8}  0.53069{4} 0.60133{7}
8 0.06254{3} 0.08962{5} 0.06117{2} 0.09645{6} 0.05179{1}  5.62873{8}  0.06283{4} 0.10135{7}
50 MSE § 0.00712{3} 0.00951{7} 0.00686{2} 0.00947{6} 0.00622{1}  0.24532{8}  0.00716{4} 0.00758{5}
i 0.26244{1} 0.35369{6} 0.27305{3} 0.33571{5} 0.26998{2}  0.39982{8}  0.28164{4} 0.36160{7}
8 0.33343{3} 0.39916{5} 0.32978{2} 0.41409{6} 0.30342{1}  0.86273{8}  0.33422{4} 0.42447{7}
MRE p 0.16874{3} 0.19499{7} 0.16562{2} 0.19465{6} 0.15768{1}  0.24765{8}  0.16927{4} 0.17413{5}
i 0.76461{1} 0.88764{6} 0.77991{3} 0.86478{5} 0.77551{2}  0.94375{8}  0.79208{4} 0.89751{7}
Z RANKS  21.0{2.5} 54.0{6} 21.0{2.5} 51.0{5} 12.0{1} 72.0{8} 36.0{4} 57.0{7}
8 0.17337{3} 0.21780{6} 0.17020{2} 0.22097{7} 0.15701{1}  2.39904{8}  0.17686{4} 0.21457{5}
BIAS § 0.05580{3} 0.06830{6} 0.05577{2} 0.06885{7} 0.05374{1}  0.41721{8}  0.05725{4} 0.06044{5}
p) 0.39296{2} 0.46927{7} 0.39857{3} 0.45336{5} 0.38016{1}  0.62525{8}  0.40082{4} 0.46343{6}
8 0.03006{3} 0.04744{6} 0.02897{2} 0.04883{7} 0.02465{1}  5.75540{8}  0.03128{4} 0.04604{5}
100 MSE p 0.00311{2.5}  0.00466{6} 0.00311{2.5}  0.00474{7} 0.00289{1}  0.17406{8}  0.00328{4} 0.00365{5}
i 0.15441{2} 0.22022{7} 0.15886{3} 0.20554{5} 0.14452{1}  0.39094{8}  0.16066{4} 0.21477{6}
8 0.23116{3} 0.29040{6} 0.22693{2} 0.29462{7} 0.20035{1}  0.87238{8}  0.23582{4} 0.28610{5}
MRE § 0.11161{3} 0.13660{6} 0.11155{2} 0.13770{7} 0.10749{1}  0.20860{8}  0.11449{4} 0.12089{5}
p) 0.58650{2} 0.70041{7} 0.59488{3} 0.67666{5} 0.56741{1}  0.93322{8}  0.59824{4} 0.69169{6}
Z RANKS  23.5{3} 57.0{6.5} 21.5{2} 57.0{6.5} 9.0{1} 72.0{8} 36.0{4} 48.0{5}
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n  Est  Est Par MLEs LSEs WLSES CRVMESs MPSEs PCEs ADEs RADES
8 0.11921{2} 0.15274{6} 0.12118{3} 0.15801{7} 0.11128{1}  2.36301{8}  0.12134{4} 0.15004{5}
BIAS § 0.03944{2} 0.04894{6} 0.03986{4} 0.04966{7} 0.03780{1}  0.35089{8}  0.03953{3} 0.04230{5}
p 0.28268{2} 0.35098{6} 0.28501{3} 0.35253{7} 0.27401{1}  0.61586{8}  0.29546{4} 0.35009{5}
8 0.01421{2} 0.02333{6} 0.01469{3} 0.02497{7} 0.01238{1}  5.58381{8}  0.01472{4} 0.02251{5}
300 MSE 0.00156{2.5}  0.00239{6} 0.00159{4} 0.00247{7} 0.00143{1}  0.12312{8}  0.00156{2.5}  0.00179{5}
p) 0.07991{2} 0.12319{6} 0.08123{3} 0.12428{7} 0.07508{1}  0.37928{8}  0.08730{4} 0.12256{5}
8 0.15895{2} 0.20365{6} 0.16158{3} 0.21068{7} 0.14838{1}  0.85928{8}  0.16179{4} 0.20005{5}
MRE p 0.07887{2} 0.09787{6} 0.07972{4} 0.09932{7} 0.07560{1}  0.17545{8}  0.07905{3} 0.08460{5}
i 0.42191{2} 0.52386{6} 0.42539{3} 0.52616{7} 0.40896{1}  0.91919{8}  0.44099{4} 0.52252{5}
Z RANKS  185{2} 54.0{6} 30.0{3} 63.0{7} 9.0{1} 72.0{8} 32.5{4} 45.0{5}
8 0.08419{2} 0.10545{5} 0.08572{3} 0.10981{7} 0.07707{1}  2.51646{8}  0.08962{4} 0.10567{6}
BIAS § 0.02771{2} 0.03356{6} 0.02858{3} 0.03361{7} 0.02586{1}  0.30410{8}  0.02884{4} 0.03016{5}
p 0.20338{1} 0.25009{5} 0.20668{3} 0.25785{7} 0.20635{2}  0.60619{8}  0.21717{4} 0.25239{6}
8 0.00709{2} 0.01112{5} 0.00735{3} 0.01206{7} 0.00594{1}  6.33269{8}  0.00803{4} 0.01117{6}
500 MSE @ 0.00077{2} 0.00113{6.5}  0.00082{3} 0.00113{6.5}  0.00067{1}  0.09247{8}  0.00083{4} 0.00091{5}
p 0.04136{1} 0.06255{5} 0.04272{3} 0.06649{7} 0.04258{2}  0.36747{8}  0.04716{4} 0.06370{6}
8 0.11225{2} 0.14061{5} 0.11429{3} 0.14641{7} 0.10276{1}  0.91508{8}  0.11950{4} 0.14089{6}
MRE § 0.05542{2} 0.06711{6} 0.05716{3} 0.06723{7} 0.05173{1}  0.15205{8}  0.05768{4} 0.06033{5}
p) 0.30355{1} 0.37327{5} 0.30848{3} 0.38486{7} 0.30798{2}  0.90477{8}  0.32413{4} 0.37671{6}
Z RANKS  15.0{2} 48.5{5} 27.0{3} 62.5{7} 12.0{1} 72.0{8} 36.0{4} 51.0{6}
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Table 4. Results for eight estimators with parameters § = 0.5, = 0.25,and 1 = 3.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
) 0.32426{3} 0.36749{5} 0.32579{4} 0.37178{6} 0.32305{2} 0.48308{8} 0.31426{1} 0.38908{7}
BIAS g 0.16279{6} 0.16255{5} 0.13270{3} 0.16800{7} 0.12181{1} 0.17744{8} 0.12182{2} 0.14583{4}
1 1.02635{2} 1.49446{6} 1.25347{4} 1.89848{8} 1.11158{3} 0.98297{1} 1.27708{5} 1.62940{7}
) 0.10515{3} 0.13505{5} 0.10614{4} 0.13822{6} 0.10436{2} 0.23336{8} 0.00876{1} 0.15138{7}
20 MSE g 0.02650{6} 0.02642{5} 0.01761{3} 0.02822{7} 0.01484{1.5}  0.03148{8} 0.01484{1.5}  0.02127{4}
1 1.05340{2} 2.23340{6} 1.57119{4} 3.60423{8} 1.23560{3} 0.96623{1} 1.63094{5} 2.65496{7}
) 0.64853{3} 0.73498{5} 0.65157{4} 0.74356{6} 0.64610{2} 0.96616{8} 0.62852{1} 0.77815{7}
MRE g 0.65115{6} 0.65020{5} 0.53081{3} 0.67201{7} 0.48723{1} 0.70975{8} 0.48728{2} 0.58331{4}
1 0.29324{2} 0.42699{6} 0.35813{4} 0.54242{8} 0.31759{3} 0.28085{1} 0.36488{5} 0.46554{7}
Z RANKS 33.0{3.5} 48.0{5} 33.0{3.5} 63.0{8} 18.5{1} 51.0{6} 23.5{2} 54.0{7}
5 0.26539{6} 0.25563{5} 0.20593{3} 0.26669{7} 0.18851{1} 0.49483{8} 0.20458{2} 0.23977{4}
BIAS p 0.12742{7} 0.09473{5} 0.07337{3} 0.09606{6} 0.06554{1} 0.25000{8} 0.07268{2} 0.07792{4}
1 0.31068{1} 0.87506{6} 0.65401{3} 0.93368{7} 0.63524{2} 1.70896{8} 0.70057{4} 0.77199{5}
5 0.07043{6} 0.06534{5} 0.04241{3} 0.07112{7} 0.03554{1} 0.24486{8} 0.04185{2} 0.05749{4}
50 MSE g 0.01624{7} 0.00897{5} 0.00538{3} 0.00923{6} 0.00429{1} 0.06250{8} 0.00528{2} 0.00607{4}
1 0.09652{1} 0.76574{6} 0.42773{3} 0.87176{7} 0.40352{2} 2.92055{8} 0.49080{4} 0.59596{5}
5 0.53078{6} 0.51125{5} 0.41186{3} 0.53337{7} 0.37702{1} 0.98966{8} 0.40915{2} 0.47955{4}
MRE g 0.50967{7} 0.37893{5} 0.29349{3} 0.38424{6} 0.26214{1} 1.00000{8} 0.29071{2} 0.31167{4}
1 0.08876{1} 0.25002{6} 0.18686{3} 0.26677{7} 0.18150{2} 0.48827{8} 0.20016{4} 0.22057{5}
Z RANKS 42.0{5} 48.0{6} 27.0{3} 60.0{7} 12.0{1} 72.0{8} 24.0{2} 39.0{4}
5 0.23814{7} 0.19152{5} 0.14325{2} 0.19335{6} 0.13433{1} 0.50000{8} 0.14782{3} 0.17393{4}
BIAS § 0.12253{7} 0.06875{6} 0.04895{2} 0.06860{5} 0.04607{1} 0.25000{8} 0.05166{3} 0.05613{4}
1 0.13396{1} 0.59512{7} 0.43461{2} 0.59336{6} 0.45566{3} 2.33232{8} 0.48957{4} 0.49276{5}
5 0.05671{7} 0.03668{5} 0.02052{2} 0.03739{6} 0.01805{1} 0.25000{8} 0.02185{3} 0.03025{4}
100 MSE g 0.01501{7} 0.00473{6} 0.00240{2} 0.00471{5} 0.00212{1} 0.06250{8} 0.00267{3} 0.00315{4}

Continued on next page
AIMS Mathematics Volume 10, Issue 3, 5880-5927.



5900

n Est.  Est Par. MLEs LSEs WLSESs CRVMEs MPSEs PCEs ADEs RADES
p) 0.01795{1}  0.35416{7}  0.18889{2}  0.35207{6}  0.20762{3} 5.43973{8}  0.23968{4} 0.24281{5}
§ 0.47627{7}  0.38303{5}  0.28650{2}  0.38671{6}  0.26866{1} 1.00000{8}  0.29563{3} 0.34787{4}
MRE p 0.49013{7}  0.27502{6}  0.19579{2}  0.27439{5}  0.18427{1} 1.00000{8}  0.20663{3} 0.22454{4}
p) 0.03827{1}  0.17003{7}  0.12417{2}  0.16953{6}  0.13019{3} 0.66638{8}  0.13988{4} 0.14079{5}
Z RANKS  45.0{5} 54.0{7} 18.0{2} 51.0{6} 15.0{1} 72.0{8} 30.0{3} 39.0{4}
§ 0.16105{7}  0.11059{5}  0.08394{2}  0.11359{6}  0.07800{1} 0.49787{8}  0.08757{3} 0.10016{4}
BIAS @ 0.06283{7}  0.03817{5}  0.02859{2}  0.03946{6}  0.02634{1} 0.26436{8}  0.03008{3} 0.03194{4}
p) 0.00811{1}  0.32542{6}  0.26408{3}  0.33776{7}  0.26030{2} 3.29688{8}  0.27467{4} 0.27699{5}
§ 0.02504{7}  0.01223{5}  0.00705{2}  0.0129{6} 0.00608{1} 0.24788{8}  0.00767{3} 0.01003{4}
300 MSE g 0.00395{7}  0.00146{5}  0.00082{2}  0.00156{6}  0.00069{1} 0.06989{8}  0.0009{3} 0.00102{4}
p) 0.00963{1}  0.10590{6}  0.06974{3}  0.11408{7}  0.06775{2} 10.86939{8}  0.07544{4} 0.07673{5}
§ 0.32211{7}  0.22118{5}  0.16788{2}  0.22718{6}  0.15600{1} 0.99575{8}  0.17513{3} 0.20033{4}
MRE § 0.25131{7}  0.15269{5}  0.11437{2}  0.15786{6}  0.10537{1} 1.05746{8}  0.12030{3} 0.12777{4}
p) 0.02803{1}  0.09298{6}  0.07545{3}  0.09650{7}  0.07437{2} 0.94196{8}  0.07848{4} 0.07914{5}
Z RANKS  45.0{5} 48.0{6} 21.0{2} 57.0{7} 12.0{1} 72.0{8} 30.0{3} 39.0{4}
§ 0.13682{7}  0.08518{5}  0.06806{2}  0.08903{6}  0.06143{1} 0.49767{8}  0.06854{3} 0.07835{4}
BIAS @ 0.04912{7}  0.02897{5}  0.02309{2}  0.03037{6}  0.02041{1} 0.19514{8}  0.02314{3} 0.02444{4}
p 0.07977{1}  0.25952{6}  0.19725{2}  0.26898{7}  0.20086{3} 3.31272{8}  0.22096{5} 0.21419{4}
§ 0.01872{7}  0.00726{5}  0.00463{2}  0.00793{6}  0.00377{1} 0.24768{8}  0.00470{3} 0.00614{4}
500 MSE § 0.00241{7}  0.00084{5}  0.00053{2}  0.00092{6}  0.00042{1} 0.03808{8}  0.00054{3} 0.00060{4}
) 0.00636{1}  0.06735{6}  0.03891{2}  0.07235{7}  0.04034{3} 10.97413{8}  0.04883{5} 0.04588{4}
§ 0.27364{7}  0.17036{5}  0.13611{2}  0.17807{6}  0.12285{1} 0.99535{8}  0.13709{3} 0.15669{4}
MRE § 0.19649{7}  0.11589{5}  0.09236{2}  0.12148{6}  0.08166{1} 0.78054{8}  0.09258{3} 0.09775{4}
) 0.02279{1}  0.07415{6}  0.05636{2}  0.07685{7}  0.05739{3} 0.94649{8}  0.06313{5} 0.06120{4}
Z RANKS  45.0{5} 48.0{6} 18.0{2} 57.0{7} 15.0{1} 72.0{8} 33.0{3} 36.0{4}
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Table 5. Results for eight estimators with parameters § = 0.5, = 2,and 4 = 1.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
) 0.33176{3} 0.36562{5} 0.33913{4} 0.37397{6} 0.32582{2}  0.38712{7} 0.32087{1} 0.38878{8}
BIAS g 1.12766{4} 1.27666{6} 1.07109{3} 1.35020{8} 0.96289{2}  1.28521{7} 0.94279{1} 1.17226{5}
y) 0.86191{4} 0.88497{5} 0.76644{3} 0.99457{8} 0.70889{1}  0.90068{6} 0.74792{2} 0.95949{7}
) 0.11007{3} 0.13368{5} 0.11501{4} 0.13985{6} 0.10616{2}  0.14986{7} 0.10296{1} 0.15115{8}
20 MSE g 1.27161{4} 1.62986{6} 1.14723{3} 1.82303{8} 0.92715{2}  1.65176{7} 0.88885{1} 1.37420{5}
y) 0.74288{4} 0.78317{5} 0.58742{3} 0.98917{8} 0.50252{1}  0.81123{6} 0.55939{2} 0.92062{7}
) 0.66352{3} 0.73125{5} 0.67827{4} 0.74793{6} 0.65165{2}  0.77425{7} 0.64175{1} 0.77755{8}
MRE g 0.56383{4} 0.63833{6} 0.53555{3} 0.67510{8} 0.48144{2}  0.64260{7} 0.47140{1} 0.58613{5}
y) 0.57461{4} 0.58998{5} 0.51096{3} 0.66305{8} 0.47259{1}  0.60045{6} 0.49861{2} 0.63966{7}
Z RANKS 33.0{4} 48.0{5} 30.0{3} 66.0{8} 15.0{2} 60.0{6.5} 12.0{1} 60.0{6.5}
5 0.21959{4} 0.24961{6} 0.21918{3} 0.26981{7} 0.19148{1}  0.27897{8} 0.20495{2} 0.24813{5}
BIAS g 0.62370{3} 0.76053{7} 0.62516{4} 0.77811{8} 0.54002{1}  0.73260{6} 0.57135{2} 0.64916{5}
1 0.45268{4} 0.48195{5} 0.42714{2} 0.52178{7} 0.39191{1}  0.56415{8} 0.43028{3} 0.51147{6}
5 0.04822{4} 0.06230{6} 0.04804{3} 0.07280{7} 0.03666{1}  0.07783{8} 0.04200{2} 0.06157{5}
50 MSE g 0.38900{3} 0.57840{7} 0.39083{4} 0.60546{8} 0.29162{1}  0.53670{6} 0.32644{2} 0.42141{5}
1 0.20492{4} 0.23227{5} 0.18245{2} 0.27226{7} 0.15360{1}  0.31827{8} 0.18514{3} 0.26160{6}
5 0.43918{4} 0.49921{6} 0.43837{3} 0.53963{7} 0.38295{1}  0.55795{8} 0.40990{2} 0.49627{5}
MRE g 0.31185{3} 0.38026{7} 0.31258{4} 0.38906{8} 0.27001{1}  0.36630{6} 0.28568{2} 0.32458{5}
1 0.30179{4} 0.32130{5} 0.28476{2} 0.34786{7} 0.26128{1}  0.37610{8} 0.28685{3} 0.34098{6}
Z RANKS 33.0{4} 54.0{6} 27.0{3} 66.0{7.5} 9.0{1} 66.0{7.5} 21.0{2} 48.0{5}
5 0.14671{2} 0.18823{6} 0.15343{4} 0.19493{7} 0.13279{1}  0.21007{8} 0.15276{3} 0.17687{5}
BIAS g 0.39391{2} 0.53496{7} 0.42885{4} 0.55301{8} 0.35810{1}  0.52138{6} 0.41247{3} 0.44862{5}
1 0.29759{3} 0.32702{5} 0.27960{2} 0.34665{6} 0.26772{1}  0.39649{8} 0.30125{4} 0.35571{7}
5 0.02152{2} 0.03543{6} 0.02354{4} 0.03800{7} 0.01763{1}  0.04413{8} 0.02334{3} 0.03128{5}
100 MSE g 0.15516{2} 0.28618{7} 0.18391{4} 0.30582{8} 0.12824{1}  0.27184{6} 0.17013{3} 0.20126{5}
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n Est.  Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADES RADES
1 0.08856{3}  0.10694{5}  0.07818{2}  0.12017{6}  0.07167{1} 0.15720{8}  0.09075{4}  0.12653{7}
§ 0.29341{2}  0.37646{6}  0.30687{4}  0.38987{7}  0.26559{1}  0.42015{8}  0.30552{3}  0.35375{5}
MRE p 0.19695{2}  0.26748{7}  0.21443{4}  0.27650{8}  0.17905{1}  0.26069{6}  0.20623{3}  0.22431{5}
1 0.19839{3}  0.21801{5}  0.18640{2}  0.23110{6}  0.17848{1}  0.26433{8}  0.20083{4}  0.23714{7}
Z RANKS 21.0{2} 54.0{6} 30.0{3.5} 63.0{7} 9.0{1} 66.0{8} 30.0{3.5} 51.0{5}
§ 0.08098{2}  0.10961{6}  0.08512{3}  0.11525{7}  0.07733{1} 0.12222{8}  0.08977{4}  0.10159{5}
BIAS p 0.21831{2}  0.30112{7}  0.23615{3}  0.31930{8}  0.20764{1}  0.28937{6}  0.24578{4}  0.26022{5}
1 0.15901{2}  0.18217{5}  0.16388{3}  0.18257{6}  0.15273{1} 0.22463{8}  0.16393{4}  0.19128{7}
§ 0.00656{2}  0.01201{6}  0.00725{3}  0.01328{7}  0.00598{1}  0.01494{8}  0.00806{4}  0.01032{5}
300 MSE § 0.04766{2}  0.09067{7}  0.05576{3}  0.10195{8}  0.04312{1}  0.08374{6}  0.06041{4}  0.06771{5}
pi 0.02529{2}  0.03319{5}  0.02686{3}  0.03333{6}  0.02333{1} 0.05046{8}  0.02687{4}  0.03659{7}
§ 0.16196{2}  0.21922{6}  0.17024{3}  0.23050{7}  0.15466{1}  0.24444{8}  0.17953{4}  0.20317{5}
MRE 2 0.10916{2}  0.15056{7}  0.11807{3}  0.15965{8}  0.10382{1}  0.14469{6}  0.12289{4}  0.13011{5}
pi 0.10601{2}  0.12145{5}  0.10925{3}  0.12171{6}  0.10182{1}  0.14975{8}  0.10929{4}  0.12752{7}
Z RANKS 18.0{2} 54.0{6} 27.0{3} 63.0{7} 9.0{1} 66.0{8} 36.0{4} 51.0{5}
§ 0.06133{2}  0.08655{6}  0.06579{3}  0.08942{7}  0.05873{1} 0.09305{8}  0.06982{4}  0.07986{5}
BIAS § 0.16505{2}  0.23942{7}  0.17980{3}  0.24405{8}  0.15115{1}  0.21914{6}  0.18812{4}  0.20420{5}
pi 0.12258{3}  0.14193{5}  0.12071{2}  0.14351{6}  0.11629{1}  0.17353{8}  0.12581{4}  0.14648{7}
§ 0.00376{2}  0.00749{6}  0.00433{3}  0.00800{7}  0.00345{1}  0.00866{8}  0.00488{4}  0.00638{5}
500 MSE § 0.02724{2}  0.05732{7}  0.03233{3}  0.05956{8}  0.02285{1}  0.04802{6}  0.03539{4}  0.04170{5}
i 0.01503{3}  0.02014{5}  0.01457{2}  0.02059{6}  0.01352{1}  0.03011{8}  0.01583{4}  0.02146{7}
§ 0.12266{2}  0.17311{6}  0.13157{3}  0.17883{7}  0.11745{1}  0.18610{8}  0.13965{4}  0.15972{5}
MRE § 0.08253{2}  0.11971{7}  0.08990{3}  0.12203{8}  0.07557{1} 0.10957{6}  0.09406{4}  0.10210{5}
i 0.08172{3}  0.09462{5}  0.08047{2}  0.09567{6}  0.07753{1} 0.11568{8}  0.08387{4}  0.09765{7}
Z RANKS 21.0{2} 54.0{6} 24.0{3} 63.0{7} 9.0{1} 66.0{8} 36.0{4} 51.0{5}
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Table 6. Results for eight estimators with parameters § = 0.5, = 2,and A = 3.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
) 0.33110{3} 0.36615{5} 0.33585{4} 0.37061{6} 0.31868{1}  0.39913{8} 0.32453{2} 0.38922{7}
BIAS g 1.11460{4} 1.27786{6} 1.06641{3} 1.32616{8} 0.95015{2}  1.28377{7} 0.94504{1} 1.17382{5}
y) 1.55737{5} 1.59665{6} 1.34503{3} 1.91607{8} 1.19054{1}  1.53949{4} 1.23604{2} 1.70187{7}
) 0.10963{3} 0.13407{5} 0.11279{4} 0.13735{6} 0.10155{1}  0.15930{8} 0.10532{2} 0.15149{7}
20 MSE g 1.24233{4} 1.63291{6} 1.13723{3} 1.75870{8} 0.90278{2}  1.64808{7} 0.89310{1} 1.37786{5}
y) 2.42540{5} 2.54930{6} 1.80910{3} 3.67132{8} 1.41739{1}  2.37004{4} 1.52779{2} 2.89636{7}
) 0.66220{3} 0.73230{5} 0.67170{4} 0.74122{6} 0.63735{1}  0.79825{8} 0.64906{2} 0.77844{7}
MRE g 0.55730{4} 0.63893{6} 0.53320{3} 0.66308{8} 0.47507{2}  0.64189{7} 0.47252{1} 0.58691{5}
y) 0.44496{5} 0.45619{6} 0.38429{3} 0.54745{8} 0.34016{1}  0.43986{4} 0.35315{2} 0.48625{7}
Z RANKS 36.0{4} 51.0{5} 30.0{3} 66.0{8} 12.0{1} 57.0{6.5} 15.0{2} 57.0{6.5}
5 0.21390{3} 0.26182{6} 0.22139{4} 0.27439{7} 0.19140{1}  0.28679{8} 0.20785{2} 0.24663{5}
BIAS g 0.61150{3} 0.78181{7} 0.64730{4} 0.78486{8} 0.53103{1} 0.76841{6} 0.59128{2} 0.64931{5}
1 0.78611{4} 0.86510{7} 0.76550{3} 0.92676{8} 0.68749{1}  0.80892{5} 0.73796{2} 0.81282{6}
5 0.04575{3} 0.06855{6} 0.04901{4} 0.07529{7} 0.03664{1}  0.08225{8} 0.04320{2} 0.06082{5}
50 MSE g 0.37393{3} 0.61123{7} 0.41900{4} 0.61600{8} 0.28200{1}  0.59046{6} 0.34961{2} 0.42160{5}
1 0.61798{4} 0.74840{7} 0.58599{3} 0.85888{8} 0.47264{1}  0.65435{5} 0.54459{2} 0.66068{6}
5 0.42780{3} 0.52365{6} 0.44278{4} 0.54878{7} 0.38281{1}  0.57358{8} 0.41571{2} 0.49325{5}
MRE g 0.30575{3} 0.39091{7} 0.32365{4} 0.39243{8} 0.26552{1}  0.38421{6} 0.29564{2} 0.32465{5}
1 0.22460{4} 0.24717{7} 0.21871{3} 0.26479{8} 0.19643{1}  0.23112{5} 0.21085{2} 0.23223{6}
Z RANKS 30.0{3} 60.0{7} 33.0{4} 69.0{8} 9.0{1} 57.0{6} 18.0{2} 48.0{5}
5 0.14038{2} 0.19164{6} 0.15667{4} 0.19596{7} 0.13391{1}  0.20535{8} 0.15291{3} 0.17192{5}
BIAS g 0.38434{2} 0.54048{7} 0.42196{4} 0.56208{8} 0.36139{1}  0.51354{6} 0.42009{3} 0.45263{5}
1 0.47694{2} 0.58765{7} 0.51182{4} 0.60332{8} 0.45658{1}  0.51860{5} 0.49143{3} 0.53797{6}
5 0.01971{2} 0.03672{6} 0.02455{4} 0.03840{7} 0.01793{1}  0.04217{8} 0.02338{3} 0.02956{5}
100 MSE g 0.14772{2} 0.29211{7} 0.17805{4} 0.31594{8} 0.13060{1}  0.26372{6} 0.17648{3} 0.20488{5}
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n Est.  Est Par MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADES
i 0.22747{2}  0.34533{7}  0.26196{4}  0.36399{8}  0.20847{1} 0.26895{5}  0.24150{3}  0.28941{6}
§ 0.28075{2}  0.38327{6}  0.31335{4}  0.39192{7}  0.26781{1} 0.41070{8}  0.30583{3}  0.34385{5}
MRE p 0.19217{2}  0.27024{7}  0.21098{4}  0.28104{8}  0.18069{1}  0.25677{6}  0.21004{3}  0.22632{5}
1 0.13627{2}  0.16790{7}  0.14623{4}  0.17238{8}  0.13045{1}  0.14817{5}  0.14041{3}  0.15371{6}

Z RANKS 18.0{2} 60.0{7} 36.0{4} 69.0{8} 9.0{1} 57.0{6} 27.0{3} 48.0{5}
§ 0.07851{1}  0.11388{6}  0.08746{3}  0.11416{7}  0.08299{2}  0.12225{8}  0.09006{4}  0.10489{5}
BIAS p 0.20925{1}  0.31575{7}  0.23592{3}  0.31907{8}  0.22303{2}  0.28419{6}  0.24085{4}  0.26648{5}
1 0.26941{2}  0.33461{8}  0.27809{4}  0.33184{7}  0.24439{1} 027271{3}  0.28243{5}  0.29963{6}
§ 0.00616{1}  0.01297{6}  0.00765{3}  0.01303{7}  0.00689{2}  0.01495{8}  0.00811{4}  0.01100{5}
300 MSE § 0.04379{1}  0.09970{7}  0.05566{3}  0.10180{8}  0.04974{2}  0.08077{6}  0.05801{4}  0.07101{5}
pi 0.07258{2}  0.11196{8}  0.07733{4}  0.11012{7}  0.05973{1} 0.07437{3}  0.07977{5}  0.08978{6}
§ 0.15702{1}  0.22776{6}  0.17492{3}  0.22833{7}  0.16597{2}  0.24450{8}  0.18013{4}  0.20979{5}
MRE p 0.10463{1}  0.15787{7}  0.11796{3}  0.15953{8}  0.11152{2}  0.14210{6}  0.12042{4}  0.13324{5}
pi 0.07697{2}  0.09560{8}  0.07945{4}  0.09481{7}  0.06983{1}  0.07792{3}  0.08069{5}  0.08561{6}

Z RANKS 12.0{1} 63.0{7} 30.0{3} 66.0{8} 15.0{2} 51.0{6} 39.0{4} 48.0{5}
§ 0.06024{1}  0.08637{7}  0.06664{3}  0.08502{6}  0.06628{2}  0.09635{8}  0.06819{4}  0.07999{5}
BIAS p 0.16078{1}  0.24082{7}  0.18266{3}  0.24124{8}  0.17382{2}  0.22598{6}  0.18545{4}  0.20491{5}
pi 0.20606{2}  0.26665{8}  0.22231{5}  0.26483{7}  0.18095{1}  0.21196{3}  0.22040{4}  0.22496{6}
§ 0.00363{1}  0.00746{7}  0.00444{3}  0.00723{6}  0.00439{2}  0.00928{8}  0.00465{4}  0.00640{5}
500 MSE § 0.02585{1}  0.05800{7}  0.03337{3}  0.05820{8}  0.03021{2}  0.05107{6}  0.03439{4}  0.04199{5}
i 0.04246{2}  0.07110{8}  0.04942{5}  0.07014{7}  0.03274{1}  0.04493{3}  0.04858{4}  0.05061{6}
§ 0.12048{1}  0.17273{7}  0.13328{3}  0.17003{6}  0.13257{2}  0.19270{8}  0.13637{4}  0.15997{5}
MRE § 0.08039{1}  0.12041{7}  0.09133{3}  0.12062{8}  0.08691{2}  0.11299{6}  0.09272{4}  0.10245{5}
i 0.05887{2}  0.07619{8}  0.06352{5}  0.07567{7}  0.05170{1}  0.06056{3}  0.06297{4}  0.06427{6}

Z RANKS 12.0{1} 66.0{8} 33.0{3} 63.0{7} 15.0{2} 51.0{6} 36.0{4} 48.0{5}
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Table 7. Results for eight estimators with parameters § = 1.5, = 0.25,and 1 = 1.5.

n Est. Est. Par. MLEs LSEs WLSES CRVMEs MPSEs PCEs ADEs RADEs
) 1.22185{4} 1.30796{5} 1.18799{3} 1.33931{6} 1.11412{1}y  1.45636{8} 1.13362{2} 1.36998{7}
BIAS § 0.12675{1} 0.17951{6} 0.15149{4} 0.18035{7} 0.12973{3}  0.19587{8} 0.12793{2} 0.16035{5}
p) 0.94495{3} 1.13870{5} 0.96082{4} 1.15670{6} 0.88794{1}  1.49717{8} 0.89346{2} 1.21562{7}
) 1.49293{4} 1.71077{5} 1.41132{3} 1.79374{6} 1.24126{1}  2.12099{8} 1.28510{2} 1.87684{7}
20 MSE § 0.01607{1} 0.03223{6} 0.02295{4} 0.03253{7} 0.01683{3}  0.03837{8} 0.01637{2} 0.02571{5}
p) 0.89294{3} 1.29664{5} 0.92317{4} 1.33795{6} 0.78844{1}y  2.24151{8} 0.79826{2} 1.47773{7}
) 0.81457{4} 0.87198{5} 0.79199{3} 0.89287{6} 0.74275{1}y  0.97091{8} 0.75575{2} 0.91332{7}
MRE § 0.50700{1} 0.71806{6} 0.60596{4} 0.72140{7} 0.51892{3}  0.78348{8} 0.51172{2} 0.64141{5}
p) 0.62997{3} 0.75913{5} 0.64055{4} 0.77113{6} 0.59196{1}  0.99811{8} 0.59564{2} 0.81041{7}
Z RANKS 24.0{3} 48.0{5} 33.0{4} 57.0{6.5} 15.0{1} 72.0{8} 18.0{2} 57.0{6.5}
5 0.79315{2} 0.99146{5} 0.84310{4} 1.01743{7} 0.72849{1}  1.46287{8} 0.80972{3} 0.99359{6}
BIAS g 0.07620{2} 0.11078{6} 0.08734{4} 0.11296{7} 0.06930{1}  0.18453{8} 0.07794{3} 0.09839{5}
1 0.54797{2} 0.71063{6} 0.57525{4} 0.70987{5} 0.50083{1}  1.49746{8} 0.55093{3} 0.72034{7}
5 0.62908{2} 0.98300{5} 0.71082{4} 1.03516{7} 0.53070{1}  2.13998{8} 0.65565{3} 0.98721{6}
50 MSE g 0.00581{2} 0.01227{6} 0.00763{4} 0.01276{7} 0.00480{1}  0.03405{8} 0.00607{3} 0.00968{5}
1 0.30027{2} 0.50499{6} 0.33091{4} 0.50392{5} 0.25083{1}  2.24238{8} 0.30352{3} 0.51889{7}
5 0.52876{2} 0.66097{5} 0.56207{4} 0.67829{7} 0.48566{1}  0.97524{8} 0.53982{3} 0.66239{6}
MRE g 0.30480{2} 0.44310{6} 0.34938{4} 0.45185{7} 0.27722{1}  0.73812{8} 0.31176{3} 0.39356{5}
1 0.36531{2} 0.47375{6} 0.38350{4} 0.47325{5} 0.33389{1}  0.99831{8} 0.36729{3} 0.48022{7}
Z RANKS 18.0{2} 51.0{5} 36.0{4} 57.0{7} 9.0{1} 72.0{8} 27.0{3} 54.0{6}
5 0.55352{2} 0.79898{7} 0.61847{4} 0.79686{6} 0.53296{1}  1.46195{8} 0.60399{3} 0.77763{5}
BIAS g 0.05036{2} 0.07948{7} 0.05744{4} 0.07839{6} 0.04670{1}  0.18270{8} 0.05485{3} 0.06844{5}
1 0.35861{2} 0.51616{6} 0.39537{4} 0.52199{7} 0.33928{1}  1.49165{8} 0.38740{3} 0.51469{5}
5 0.30638{2} 0.63837{7} 0.38250{4} 0.63499{6} 0.28404{1}  2.13729{8} 0.36481{3} 0.60470{5}
100 MSE g 0.00254{2} 0.00632{7} 0.00330{4} 0.00615{6} 0.00218{1}  0.03338{8} 0.00301{3} 0.00468{5}
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n Est.  Est. Par MLEs LSEs WLSESs CRVMEs MPSEs PCEs ADEs RADES
1 0.12860{2}  0.26642{6} 0.15632{4}  0.27248{7} 0.11511{1}  2.22502{8}  0.15008{3}  0.26490{5}
§ 0.36901{2}  0.53266{7} 0.41231{4}  0.53124{6} 0.35530{1}  0.97463{8}  0.40266{3}  0.51842{5}
MRE 2 0.20143{2}  0.31790{7} 0.22975{4}  0.31356{6} 0.18681{1}  0.73078{8}  0.21941{3}  0.27376{5}
1 0.23907{2}  0.34411{6} 0.26358{4}  0.34800{7} 0.22619{1}  0.99443{8}  0.25827{3}  0.34313{5}
2 RANKS 18.0{2} 60.0{7} 36.0{4} 57.0{6} 9.0{1} 72.0{8} 27.0{3} 45.0{5}
§ 0.29712{1}  0.48781{7} 0.35956{3}  0.48497{6} 0.30236{2}  1.41996{8}  0.36469{4}  0.47766{5}
BIAS f 0.02561{2}  0.04395{7} 0.03174{4}  0.04365{6} 0.02442{1}  0.16410{8}  0.03163{3}  0.03873{5}
1 0.18604{1}  0.29854{6} 0.22010{3}  0.28985{5} 0.18861{2}  1.38022{8}  0.22173{4}  0.29943{7}
§ 0.08828{1}  0.23796{7} 0.12929{3}  0.23520{6} 0.09142{2}  2.01629{8}  0.13300{4}  0.22816{5}
300 MSE § 0.00066{2}  0.00193{7} 0.00101{4}  0.00191{6} 0.00060{1}  0.02693{8}  0.00100{3}  0.00150{5}
p) 0.03461{1}  0.08912{6} 0.04845{3}  0.08401{5} 0.03557{2}  1.90500{8}  0.04917{4}  0.08966{7}
§ 0.19808{1}  0.32521{7} 0.23971{3}  0.32331{6} 0.20157{2}  0.94664{8}  0.24313{4}  0.31844{5}
MRE 2 0.10244{2}  0.17578{7} 0.12698{4}  0.17461{6} 0.09767{1}  0.65638{8}  0.12653{3}  0.15491{5}
i 0.12403{1}  0.19902{6} 0.14674{3}  0.19323{5} 0.12574{2}  0.92015{8}  0.14782{4}  0.19962{7}
2 RANKS 12.0{1} 60.0{7} 30.0{3} 51.0{5.5} 15.0{2} 72.0{8} 33.0{4} 51.0{5.5}
§ 0.25086{2}  0.38648{6} 0.28600{3}  0.38981{7} 0.07680{1}  1.39954{8}  0.29130{4}  0.36782{5}
BIAS 0.02112{2}  0.03402{7} 0.02419{3}  0.03401{6} 0.01531{1}  0.15183{8}  0.02464{4}  0.02929{5}
p) 0.15715{2}  0.22582{6} 0.17344{3}  0.22961{7} 0.10142{1}  1.32012{8}  0.17784{4}  0.22455{5}
§ 0.06293{2}  0.14937{6} 0.08180{3}  0.15195{7} 0.00590{1}  1.95872{8}  0.08486{4}  0.13529{5}
500 MSE § 0.00045{2}  0.00116{6.5}  0.00059{3}  0.00116{6.5}  0.00023{1}  0.02305{8}  0.00061{4}  0.00086{5}
A 0.02470{2}  0.05100{6} 0.03008{3}  0.05272{7} 0.01029{1}  1.74272{8}  0.03163{4}  0.05042{5}
§ 0.16724{2}  0.25766{6} 0.19067{3}  0.25987{7} 0.05120{1}  0.93303{8}  0.19420{4}  0.24521{5}
MRE 2 0.08448{2}  0.13606{7} 0.09677{3}  0.13603{6} 0.06123{1}  0.60731{8}  0.09858{4}  0.11714{5}
A 0.10477{2}  0.15055{6} 0.11562{3}  0.15307{7} 0.06761{1}  0.88008{8}  0.11856{4}  0.14970{5}
Z RANKS 18.0{2} 56.5{6} 27.0{3} 60.5{7} 9.0{1} 72.0{8} 36.0{4} 45.0{5}
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Table 8. Results for eight estimators with parameters § = 1.5, = 0.25,and 1 = 3.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
) 1.22894{4} 1.28950{5} 1.18086{3} 1.33073{7} 1.07161{1}  1.46572{8} 1.13889{2} 1.32101{6}
BIAS § 0.12828{2} 0.17671{7} 0.15224{4} 0.17548{6} 0.12637{1}  0.25000{8} 0.13350{3} 0.15810{5}
p) 1.39638{4} 1.74017{7} 1.43119{5} 1.95764{8} 1.18946{1}  1.36218{3} 1.33183{2} 1.70681{6}
) 1.51029{4} 1.66282{5} 1.39442{3} 1.77085{7} 1.14834{1}  2.14833{8} 1.29707{2} 1.74507{6}
20 MSE § 0.01645{2} 0.03123{7} 0.02318{4} 0.03079{6} 0.01597{1}  0.06250{8} 0.01782{3} 0.02500{5}
p) 1.94988{4} 3.02819{7} 2.04831{5} 3.83234{8} 1.41481{1}  1.85553{3} 1.77378{2} 2.91320{6}
) 0.81929{4} 0.85967{5} 0.78724{3} 0.88716{7} 0.71440{1}  0.97715{8} 0.75926{2} 0.88067{6}
MRE § 0.51311{2} 0.70683{7} 0.60895{4} 0.70191{6} 0.50547{1}  1.00000{8} 0.53399{3} 0.63242{5}
p) 0.39897{4} 0.49719{7} 0.40891{5} 0.55932{8} 0.33985{1}  0.38919{3} 0.38052{2} 0.48766{6}
Z RANKS 30.0{3} 57.0{6.5} 36.0{4} 63.0{8} 9.0{1} 57.0{6.5} 21.0{2} 51.0{5}
) 0.77632{2} 1.00262{6} 0.83470{4} 0.99986{5} 0.74758{1}  1.49055{8} 0.80751{3} 1.00385{7}
BIAS § 0.07277{2} 0.11010{6} 0.08714{4} 0.11377{7} 0.06972{1}  0.25000{8} 0.07820{3} 0.09997{5}
1 0.64433{2} 0.84802{5} 0.70844{4} 0.93484{7} 0.61040{1}  3.02012{8} 0.67029{3} 0.85822{6}
) 0.60268{2} 1.00524{6} 0.69673{4} 0.99972{5} 0.55887{1}  2.22174{8} 0.65208{3} 1.00772{7}
50 MSE § 0.00530{2} 0.01212{6} 0.00759{4} 0.01294{7} 0.00486{1}  0.06250{8} 0.00612{3} 0.00999{5}
1 0.41517{2} 0.71914{5} 0.50188{4} 0.87393{7} 0.37259{1}  9.12110{8} 0.44929{3} 0.73654{6}
) 0.51755{2} 0.66841{6} 0.55647{4} 0.66657{5} 0.49838{1}  0.99370{8} 0.53834{3} 0.66924{7}
MRE § 0.29110{2} 0.44040{6} 0.34855{4} 0.45506{7} 0.27886{1}  1.00000{8} 0.31281{3} 0.39987{5}
yl 0.18410{2} 0.24229{5} 0.20241{4} 0.26710{7} 0.17440{1}  0.86289{8} 0.19151{3} 0.24521{6}
Z RANKS 18.0{2} 51.0{5} 36.0{4} 57.0{7} 9.0{1} 72.0{8} 27.0{3} 54.0{6}
5 0.52877{2} 0.75982{5} 0.61324{4} 0.79300{7} 0.50211{1}  1.49311{8} 0.59239{3} 0.76087{6}
BIAS § 0.04745{2} 0.07544{6} 0.05512{4} 0.07800{7} 0.04411{1}  0.24115{8} 0.05318{3} 0.06564{5}
yl 0.41302{2} 0.54237{5} 0.44237{4} 0.55690{7} 0.40469{1}  3.40952{8} 0.43465{3} 0.54540{6}
5 0.27959{2} 0.57732{5} 0.37606{4} 0.62885{7} 0.25211{1}  2.22937{8} 0.35092{3} 0.57892{6}
100 MSE g 0.00225{2} 0.00569{6} 0.00304{4} 0.00608{7} 0.00195{1}  0.05816{8} 0.00283{3} 0.00431{5}
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n Est.  Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADES
p) 0.17058{2}  0.29416{5} 0.19569{4}  0.31014{7} 0.16378{1}  11.62479{8}  0.18892{3}  0.29747{6}
8 0.35251{2}  0.50654{5} 0.40883{4}  0.52867{7} 0.33474{1}  0.99540{8}  0.39493{3}  0.50724{6}
MRE § 0.18979{2}  0.30177{6} 0.22048{4}  0.31201{7} 0.17643{1}  0.96461{8}  0.21274{3}  0.26254{5}
p) 0.11800{2}  0.15496{5} 0.12639{4}  0.15912{7} 0.11563{1}  0.97415{8}  0.12419{3}  0.15583{6}
Z RANKS 18.0{2} 48.0{5} 36.0{4} 63.0{7} 9.0{1} 72.0{8} 27.0{3} 51.0{6}
8 0.30450{2}  0.47883{6} 0.34599{3}  0.49318{7} 0.26500{1}  1.49412{8}  0.36119{4}  0.47006{5}
BIAS § 0.02610{2}  0.04267{6} 0.03044{3}  0.04300{7} 0.02472{1}  0.19207{8}  0.03073{4}  0.03788{5}
p) 0.22180{2}  0.28352{5} 0.23322{3}  0.29399{6} 0.21278{1}  3.31702{8}  0.24050{4}  0.29989{7}
8 0.00277{2}  0.22927{6} 0.11971{3}  0.24323{7} 0.07027{1}  2.23239{8}  0.13046{4}  0.22096{5}
300 MSE § 0.00068{2}  0.00182{6} 0.00093{3}  0.00185{7} 0.00061{1}  0.03689{8}  0.00094{4}  0.00143{5}
p) 0.04919{2}  0.08038{5} 0.05439{3}  0.08643{6} 0.04528{1}  11.00263{8}  0.05784{4}  0.08994{7}
8 0.20306{2}  0.31922{6} 0.23066{3}  0.32879{7} 0.17673{1}  0.99608{8}  0.24079{4}  0.31337{5}
MRE § 0.10439{2}  0.17067{6} 0.12174{3}  0.17200{7} 0.09888{1}  0.76827{8}  0.12292{4}  0.15151{5}
p) 0.06337{2}  0.08101{5} 0.06663{3}  0.08400{6} 0.06080{1}  0.94772{8}  0.06872{4}  0.08568{7}
Z RANKS 18.0{2} 51.0{5.5} 27.0{3} 60.0{7} 9.0{1} 72.0{8} 36.0{4} 51.0{5.5}
8 0.23897{2}  0.38214{7} 0.25570{3}  0.37845{6} 0.16014{1}  148632{8}  0.28414{4}  0.37467{5}
BIAS § 0.01978{2}  0.03282{7} 0.02240{3}  0.03281{6} 0.01819{1}  0.18313{8}  0.02426{4}  0.03009{5}
p) 0.16576{2}  0.21315{6} 0.17902{3}  0.20973{5} 0.16236{1}  3.09819{8}  0.18473{4}  0.23445{7}
8 0.05711{2}  0.14603{7} 0.06538{3}  0.14322{6} 0.02861{1}  2.20913{8}  0.08074{4}  0.14037{5}
500 MSE § 0.00039{2}  0.00108{6.5}  0.00050{3}  0.00108{6.5}  0.00033{1}  0.03354{8}  0.00059{4}  0.00091{5}
A 0.02748{2}  0.04543{6} 0.03205{3}  0.04399{5} 0.02636{1}  9.59881{8}  0.03413{4}  0.05496{7}
8 0.15931{2}  0.25476{7} 0.17047{3}  0.25230{6} 0.11276{1}  0.99088{8}  0.18943{4}  0.24978{5}
MRE § 0.07914{2}  0.13129{7} 0.08961{3}  0.13125{6} 0.07275{1}  0.73250{8}  0.09705{4}  0.12037{5}
A 0.04736{2}  0.06090{6} 0.05115{3}  0.05992{5} 0.04639{1}  0.88520{8}  0.05278{4}  0.06698{7}
Z RANKS 18.0{2} 59.5{7} 27.0{3} 51.5{6} 9.0{1} 72.0{8} 36.0{4} 51.0{5}
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Table 9. Results for eight estimators with parameters § = 1.5, = 2,and A = 1.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
) 1.21790{4} 1.30887{6} 1.21865{5} 1.34306{7} 1.11438{1}y  1.21283{3} 1.17647{2} 1.35914{8}
BIAS g 1.05826{2} 1.39100{7} 1.23608{5} 1.44930{8} 1.03052{1}  1.18538{4} 1.06741{3} 1.27677{6}
y) 0.93963{2} 1.12156{6} 0.98145{4} 1.15279{7} 0.87281{1}  1.02784{5} 0.94055{3} 1.17198{8}
) 1.48329{4} 1.71313{6} 1.48511{5} 1.80380{7} 1.24185{1}  1.47095{3} 1.38408{2} 1.84725{8}
20 MSE g 1.11992{2} 1.93489{7} 1.52788{5} 2.10047{8} 1.06198{1}  1.40512{4} 1.13937{3} 1.63014{6}
y) 0.88290{2} 1.25789{6} 0.96325{4} 1.32892{7} 0.76181{1}  1.05646{5} 0.88463{3} 1.37353{8}
) 0.81194{4} 0.87258{6} 0.81243{5} 0.89537{7} 0.74292{1}  0.80855{3} 0.78431{2} 0.90609{8}
MRE g 0.52913{2} 0.69550{7} 0.61804{5} 0.72465{8} 0.51526{1}  0.59269{4} 0.53371{3} 0.63839{6}
y) 0.62642{2} 0.74771{6} 0.65430{4} 0.76853{7} 0.58188{1}  0.68523{5} 0.62703{3} 0.78132{8}
Z RANKS 24.0{2.5} 57.0{6} 42.0{5} 66.0{7.5} 9.0{1} 36.0{4} 24.0{2.5} 66.0{7.5}
5 0.79539{3} 1.00353{6} 0.85786{4} 1.01445{7} 0.75478{1}  0.91041{5} 0.79011{2} 1.01556{8}
BIAS g 0.59966{2} 0.90678{7} 0.70921{4} 0.91942{8} 0.56750{1}  0.72809{5} 0.62593{3} 0.77242{6}
1 0.53020{2} 0.72106{6} 0.59163{4} 0.72648{7} 0.52005{1}  0.64409{5} 0.54187{3} 0.75003{8}
5 0.63265{3} 1.00707{6} 0.73592{4} 1.02910{7} 0.56970{1}  0.82884{5} 0.62427{2} 1.03136{8}
50 MSE g 0.35960{2} 0.82226{7} 0.50298{4} 0.84533{8} 0.32206{1}  0.53012{5} 0.39178{3} 0.59663{6}
1 0.28111{2} 0.51992{6} 0.35002{4} 0.52777{7} 0.27045{1}  0.41485{5} 0.29363{3} 0.56255{8}
5 0.53026{3} 0.66902{6} 0.57190{4} 0.67630{7} 0.50319{1} 0.60694{5} 0.52674{2} 0.67704{8}
MRE g 0.29983{2} 0.45339{7} 0.35461{4} 0.45971{8} 0.28375{1}  0.36405{5} 0.31296{3} 0.38621{6}
1 0.35347{2} 0.48070{6} 0.39442{4} 0.48432{7} 0.34670{1}  0.42939{5} 0.36125{3} 0.50002{8}
Z RANKS 21.0{2} 57.0{6} 36.0{4} 66.0{7.5} 9.0{1} 45.0{5} 24.0{3} 66.0{7.5}
5 0.56242{2} 0.77628{6} 0.61241{4} 0.80807{8} 0.54109{1} 0.68672{5} 0.59950{3} 0.77986{7}
BIAS g 0.39983{2} 0.61330{7} 0.43840{4} 0.63189{8} 0.38098{1}  0.49069{5} 0.43820{3} 0.56198{6}
1 0.36312{2} 0.49911{6} 0.38759{4} 0.52894{8} 0.35611{1}  0.45134{5} 0.38358{3} 0.52830{7}
5 0.31631{2} 0.60261{6} 0.37505{4} 0.65298{8} 0.29278{1}  0.47158{5} 0.35940{3} 0.60819{7}
100 MSE g 0.15986{2} 0.37613{7} 0.19220{4} 0.39929{8} 0.14515{1}  0.24078{5} 0.19202{3} 0.31582{6}
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n Est.  Est. Par. MLEs LSEs WLSESs CRVMEs MPSEs PCEs ADEs RADES
1 0.13185{2}  0.24911{6}  0.15023{4}  0.27978{8}  0.12682{1} 0.20370{5}  0.14714{3}  0.27910{7}
§ 0.37494{2}  051752{6}  0.40827{4}  0.53871{8}  0.36073{1} 0.45781{5}  0.39966{3}  0.51991{7}
MRE § 0.19991{2}  0.30665{7}  0.21920{4}  0.31595{8}  0.19049{1}  0.24535{5}  0.21910{3}  0.28099{6}
1 0.24208{2}  0.33274{6}  0.25839{4}  0.35263{8}  0.23741{1} 0.30089{5}  0.25572{3}  0.35220{7}
Z RANKS 18.0{2} 57.0{6} 36.0{4} 72.0{8} 9.0{1} 45.0{5} 27.0{3} 60.0{7}
§ 0.32323{2}  0.49569{8}  0.36255{4}  0.48956{7}  0.30782{1}  0.41508{5}  0.35994{3}  0.48713{6}
BIAS p 0.22461{2}  0.35416{7}  0.25156{3}  0.35426{8}  0.19092{1}  0.27075{5}  0.25279{4}  0.31981{6}
1 0.20246{2}  0.30157{7}  0.21812{3}  0.29793{6}  0.17845{1}  0.25460{5}  0.22575{4}  0.30237{8}
§ 0.10448{2}  0.24571{8}  0.13144{4}  0.23967{7}  0.09475{1}  0.17229{5}  0.12955{3}  0.23729{6}
300 MSE § 0.05045{2}  0.12543{7}  0.06328{3}  0.12550{8}  0.03645{1}  0.07331{5}  0.06390{4}  0.10228{6}
pi 0.04009{2}  0.09095{7}  0.04757{3}  0.08876{6}  0.03184{1}  0.06482{5}  0.05096{4}  0.09143{8}
§ 0.21549{2}  0.33046{8}  0.24170{4}  0.32637{7}  0.20521{1} 027672{5}  0.23996{3}  0.32475{6}
MRE p 0.11231{2}  0.17708{7}  0.12578{3}  0.17713{8}  0.09546{1}  0.13538{5}  0.12640{4}  0.15991{6}
pi 0.13497{2}  0.20105{7}  0.14541{3}  0.19862{6}  0.11897{1}  0.16974{5}  0.15050{4}  0.20158{8}
Z RANKS 18.0{2} 66.0{8} 30.0{3} 63.0{7} 9.0{1} 45.0{5} 33.0{4} 60.0{6}
§ 0.24699{2}  0.39408{8}  0.27937{3}  0.38856{7}  0.06292{1}  0.32464{5}  0.29210{4}  0.36675{6}
BIAS p 0.16520{2}  0.27112{8}  0.18661{3}  0.26750{7}  0.10938{1}  0.20723{5}  0.20130{4}  0.23228{6}
pi 0.15305{2}  0.23378{8}  0.16744{3}  0.22923{7}  0.10184{1} 0.20077{5}  0.17960{4}  0.22513{6}
§ 0.06100{2}  0.15530{8}  0.07805{3}  0.15098{7}  0.00396{1}  0.10539{5}  0.08532{4}  0.13450{6}
500 MSE § 0.02729{2}  0.07350{8}  0.03482{3}  0.07155{7}  0.01196{1}  0.04295{5}  0.04052{4}  0.05395{6}
i 0.02343{2}  0.05465{8}  0.02804{3}  0.05255{7}  0.01037{1} 0.04031{5}  0.03226{4}  0.05068{6}
§ 0.16466{2}  0.26272{8}  0.18625{3}  0.25904{7}  0.04195{1}  0.21643{5}  0.19473{4}  0.24450{6}
MRE § 0.08260{2}  0.13556{8}  0.09331{3}  0.13375{7}  0.05469{1} 0.10362{5}  0.10065{4}  0.11614{6}
i 0.10203{2}  0.15585{8}  0.11163{3}  0.15282{7}  0.06789{1}  0.13385{5}  0.11973{4}  0.15008{6}
Z RANKS 18.0{2} 72.0{8} 27.0{3} 63.0{7} 9.0{1} 45.0{5} 36.0{4} 54.0{6}
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Table 10. Results for eight estimators with parameters § = 1.5, = 2,and 1 = 3.5.

n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
) 1.23462{5} 1.31283{7} 1.20528{3} 1.31253{6} 1.10360{1}  1.22863{4} 1.14760{2} 1.36649{8}
BIAS g 1.05009{3} 1.40142{7} 1.24705{5} 1.42459{8} 1.02087{1}  1.20712{4} 1.04620{2} 1.28075{6}
y) 1.50774{5} 1.68716{6} 1.45155{4} 2.02470{8} 1.20515{1}  1.41364{3} 1.31014{2} 1.72834{7}
) 1.52429{5} 1.72353{7} 1.45270{3} 1.72274{6} 1.21793{1}  1.50952{4} 1.31698{2} 1.86730{8}
20 MSE g 1.10269{3} 1.96399{7} 1.55514{5} 2.02944{8} 1.04218{1}  1.45713{4} 1.09454{2} 1.64033{6}
y) 2.27328{5} 2.84649{6} 2.10700{4} 4.09940{8} 1.45239{1}  1.99839{3} 1.71647{2} 2.98715{7}
) 0.82308{5} 0.87522{7} 0.80352{3} 0.87502{6} 0.73573{1}  0.81908{4} 0.76507{2} 0.91099{8}
MRE g 0.52504{3} 0.70071{7} 0.62353{5} 0.71229{8} 0.51044{1}  0.60356{4} 0.52310{2} 0.64038{6}
y) 0.43078{5} 0.48204{6} 0.41473{4} 0.57848{8} 0.34433{1}  0.40390{3} 0.37433{2} 0.49381{7}
Z RANKS 39.0{5} 60.0{6} 36.0{4} 66.0{8} 9.0{1} 33.0{3} 18.0{2} 63.0{7}
5 0.80023{2} 0.99949{7} 0.86165{4} 1.00938{8} 0.75322{1}  0.92477{5} 0.80210{3} 0.97979{6}
BIAS g 0.60978{2} 0.90738{8} 0.71608{4} 0.89419{7} 0.56524{1}  0.73706{5} 0.62063{3} 0.75250{6}
1 0.68845{3} 0.85525{7} 0.71642{4} 0.92531{8} 0.62309{1}  0.72238{5} 0.66644{2} 0.85091{6}
5 0.64037{2} 0.99899{7} 0.74245{4} 1.01885{8} 0.56734{1}  0.85521{5} 0.64336{3} 0.95999{6}
50 MSE g 0.37183{2} 0.82334{8} 0.51277{4} 0.79957{7} 0.31950{1}  0.54325{5} 0.38519{3} 0.56626{6}
1 0.47397{3} 0.73146{7} 0.51326{4} 0.85620{8} 0.38824{1}  0.52183{5} 0.44414{2} 0.72404{6}
5 0.53349{2} 0.66633{7} 0.57444{4} 0.67292{8} 0.50215{1}  0.61652{5} 0.53473{3} 0.65319{6}
MRE g 0.30489{2} 0.45369{8} 0.35804{4} 0.44709{7} 0.28262{1}  0.36853{5} 0.31032{3} 0.37625{6}
1 0.19670{3} 0.24436{7} 0.20469{4} 0.26437{8} 0.17803{1}  0.20639{5} 0.19041{2} 0.24312{6}
Z RANKS 21.0{2} 66.0{7} 36.0{4} 69.0{8} 9.0{1} 45.0{5} 24.0{3} 54.0{6}
5 0.55451{2} 0.78491{8} 0.64174{4} 0.77990{6} 0.53134{1}  0.70296{5} 0.62483{3} 0.78258{7}
BIAS g 0.39869{2} 0.61053{7} 0.46633{4} 0.61217{8} 0.37452{1}  0.50410{5} 0.46542{3} 0.55297{6}
1 0.42451{2} 0.53326{6} 0.45485{3} 0.57349{8} 0.40630{1}  0.49665{5} 0.45643{4} 0.56196{7}
5 0.30748{2} 0.61608{8} 0.41183{4} 0.60824{6} 0.28232{1}  0.49416{5} 0.39041{3} 0.61243{7}
100 MSE g 0.15895{2} 0.37274{7} 0.21747{4} 0.37475{8} 0.14027{1}  0.25412{5} 0.21662{3} 0.30578{6}
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n Est.  Est. Par. MLEs LSEs WLSESs CRVMEs MPSEs PCEs ADEs RADES
pi 0.18021{2}  0.28437{6}  0.20689{3}  0.32889{8}  0.16508{1}  0.24667{5}  0.20833{4}  0.31580{7}
§ 0.36967{2}  0.52327{8}  0.42783{4}  051993{6}  0.35423{1}  0.46864{5}  0.41655{3}  0.52172{7}
MRE p 0.19934{2}  0.30526{7}  0.23317{4}  0.30608{8}  0.18726{1}  0.25205{5}  0.23271{3}  0.27649{6}
i 0.12129{2}  0.15236{6}  0.12996{3}  0.16385{8}  0.11609{1}  0.14190{5}  0.13041{4}  0.16056{7}
Z RANKS 18.0{2} 63.0{7} 33.0{4} 66.0{8} 9.0{1} 45.0{5} 30.0{3} 60.0{6}
§ 0.31588{2}  0.49339{7}  0.36347{3}  0.49549{8}  0.30500{1}  0.41165{5}  0.38186{4}  0.48256{6}
BIAS p 0.21678{2}  0.35354{8}  0.25102{3}  0.35267{7}  0.19375{1}  0.26734{5}  0.26120{4}  0.31289{6}
pi 0.21739{1}  0.29760{7}  0.23903{3}  0.29268{6}  0.22287{2}  0.26049{5}  0.24469{4}  0.31120{8}
§ 0.09978{2}  0.24344{7}  0.13211{3}  0.24551{8}  0.09302{1}  0.16946{5}  0.14581{4}  0.23287{6}
300 MSE § 0.04700{2}  0.12499{8}  0.06301{3}  0.12438{7}  0.03754{1}  0.07147{5}  0.06823{4}  0.09790{6}
i 0.04726{1}  0.08857{7}  0.05713{3}  0.08566{6}  0.04967{2}  0.06786{5}  0.05987{4}  0.09684{8}
§ 0.21059{2}  0.32893{7}  0.24231{3}  0.33033{8}  0.20333{1}  0.27443{5}  0.25457{4}  0.32171{6}
MRE p 0.10839{2}  0.17677{8}  0.12551{3}  0.17633{7}  0.09688{1}  0.13367{5}  0.13060{4}  0.15645{6}
pi 0.06211{1}  0.08503{7}  0.06829{3}  0.08362{6}  0.06368{2}  0.07443{5}  0.06991{4}  0.08891{8}
Z RANKS 15.0{2} 66.0{8} 27.0{3} 63.0{7} 12.0{1} 45.0{5} 36.0{4} 60.0{6}
§ 0.24507{2}  0.38259{7}  0.28932{3}  0.38364{8}  0.11464{1}  0.32482{5}  0.29036{4}  0.37746{6}
BIAS p 0.16657{2}  0.26821{7}  0.19443{3}  0.26895{8}  0.12803{1}  0.21010{5}  0.19701{4}  0.24031{6}
pi 0.16887{1}  0.21270{6}  0.18628{4}  0.22333{7}  0.17062{2}  0.20334{5}  0.18523{3}  0.22863{8}
§ 0.06050{2}  0.14637{7}  0.08371{3}  0.14718{8}  0.01314{1} 0.10551{5}  0.08431{4}  0.14247{6}
500 MSE § 0.02775{2}  0.07194{7}  0.03780{3}  0.07233{8}  0.01639{1}  0.04414{5}  0.03881{4}  0.05775{6}
i 0.02852{1}  0.04524{6}  0.03470{4}  0.04988{7}  0.02911{2}  0.04135{5}  0.03431{3}  0.05227{8}
§ 0.16398{2}  0.25506{7}  0.19288{3}  0.25576{8}  0.07643{1}  0.21655{5}  0.19357{4}  0.25164{6}
MRE § 0.08329{2}  0.13411{7}  009722{3}  0.13448{8}  0.06401{1}  0.10505{5}  0.09851{4}  0.12015{6}
i 0.04825{1}  0.06077{6}  0.05322{4}  0.06381{7}  0.04875{2}  0.05810{5}  0.05292{3}  0.06532{8}
Z RANKS 15.0{2} 60.0{6.5} 30.0{3} 69.0{8} 12.0{1} 45.0{5} 33.0{4} 60.0{6.5}
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Table 11. Partial and overall rankings of all estimation methods for various combinations of 7.
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n n MLE OLSE WLSE CRVME MPS PCE ADE RADE
20 5 6 4 8 1 3 2 7
50 2 7 4 8 1 5 3 6
(6 =15p=2,1=3.5) 100 2 7 4 8 1 5 3 6
300 2 8 3 7 1 5 4 6
500 2 6.5 3 8 1 5 4 6.5
2 Ranks 106.5 252 131 286 455 270 124 225
Overall Rank 2 6 4 8 1 7 3 5

6. Real-life data modeling

In this section, we analyze three real datasets to demonstrate the flexibility of the proposed
GKMW model. The first dataset comprises 63 observations of gauge lengths of 10 mm from Kundu
and Ragab [41]. The second dataset is uncensored and comes from Murty et al. [42], representing the
failure times (in weeks) of 50 components that were put into use at a certain time. The third dataset
details the distances from the transect line for 68 stakes detected while walking along a length of
1000 m and searching 20 m on each side of the line [43]. The three datasets are provided in
Appendix A. We compare the fits of the GKMW distribution with several other competitive models,
as presented in Table 12.

Table 12. The list of competitive distributions.

Distribution Abbreviation Author

Modified beta Weibull MBW Khan [7]

Beta Weibull BW Lee and Famoye [1]

Odd log-logistic exponentiated Weibull OLLEW Afify et al. [11]

Exponentiated generalized Weibull EGW Cordeiro et al. [5]

Lindley Weibull Liw Cordeiro et al. [12]
Exponentiated Weibull EW Mudholkar and Srivastava [13]
Transmuted Weibull T™W Aryal and Tsokos [4]

For model comparison, we employ four widely recognized statistics: Akaike information
criterion (AIC), consistent AIC (CAIC), Bayesian information criterion (BIC), and Hannan—-Quinn
information criterion (HQIC), as well as Cram&-von Mises (W *) statistics, Anderson—Darling (4%),
minus log-likelihood (-r), and the Kolmogorov—Smirnov (KS) distance along with its associated
p — value. Smaller values for these statistics indicate a better fit. Visual comparisons of the TTT,
HRF, PDF, CDF, SF, and probability-probability (PP) plots for the GKMW model are also provided
for the three datasets.

Tables 13-15 present the estimated parameters obtained through ML estimation, along with
their corresponding standard errors (SE) (in parentheses). The goodness-of-fit measures for the fitted
models are provided in Tables 16-18. The findings from these tables demonstrate the superiority of
the GKMW model compared to other distributions for the three analyzed datasets.

AIMS Mathematics Volume 10, Issue 3, 5880-5927.
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Table 13. ML estimates and SE from the gauge lengths dataset for the fitted distributions.

Distribution ML estimates and SE
GKMW 5=45.2721 f=1.5646 1=0.6627
(108.9500) (0.9374) (1.1158)
MBW §=0.1328 f=0.5224 4= 236.8925 h=13.9570 ¢=0.4084
(0.2897) (0.3417) (1389.4352) (7.5948) (2.4858)
BW 5=1.5535 f=0.9162 a=102.4980 b=2.0925
(5.6168) (2.0369) (517.5903) (8.0543)
OLLEW 5=69.5586 [=3.4425 7=0.0641 6= 19.5547
(306.6782) (6.6654) (0.0384) (27.8608)
EGW 5=3.7852 d=5.6583 b=37.1571 ¢=1.4540
(181.1960) (393.8165) (79.3795) (0.7599)
Liw §=0.1238 f=5.0487 6= 90.5958
(0.5147) (0.4560) (1882.5304)
EW §=0.8180 f=1.4532 6=137.2311
(1.1200) (0.7583) (79.4533)
T™wW 5=3.6164 f=5.4807 1=0.7453
(0.1515) (0.5021) (0.2633)

Table 14. ML estimates and SE from the failure times dataset for the fitted distributions.

Distribution ML estimates and SE
GKMW 5=0.4582 f=1.3987 1=0.0184
(0.1995) (0.4033) (0.0272)
MBW 5=4.3285 £=0.3702 d=1.6702 b=22.2114 ¢=0.0342
(54.3129) (0.6122) (1.1828) (265.3049) (0.1894)
BW 5=0.0252 £=1.663 @=0.5592 b= 3.5694
(0.0813) (0.4550) (0.3169) (12.7630)
OLLEW §=172.9308 f=3.2596 7=0.0769 f=2.2419
(0.3032) (0.2568) (0.0084) (0.2703)
EGW 5=2.0863 d=0.1545 b=0.5983 ¢=1.1009
(37.6697) (3.0671) (0.3183) (0.3915)
Liw 5=0.2790 f=0.7193 6=0.9699
(0.7219) (0.1332) (1.4562)
EW 5=0.0687 f=1.1011 6=0.5982
(0.0978) (0.3874) (0.3150)
W 5=6.9739 f=0.8004 1=0.0010
(5.0869) (0.1739) (0.9657)
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Table 15. The ML estimates and SE from the distance dataset for the fitted distributions.

Distribution ML estimates and SE
GKMW 5=0.4596 f=2.1497 1=0.0055
(0.0924) (0.2449) (0.0038)
MBW 5=122.8768 f=1.3294 a=0.7716 b=26.1991 ¢=0.1360
(52.4569) (2.0900) (1.3573) (169.7519) (0.9503)
BW 5=0.0948 $=1.7636 d=0.5664 b=1.3142
(0.2660) (0.7832) (0.3403) (5.5844)
OLLEW 5=20.1065 f=5.3078 #=0.0921 6=1.6927
(0.3340) (0.2855) (0.0099) (0.1816)
EGW 5=2.3954 a=10.1067 h=0.5795 ¢=1.7274
(16.6021) (1.2706) (0.3050) (0.6189)
Liw 5=0.2309 £=1.1040 6=1.0343
(0.4284) (0.2085) (1.7142)
EW 5=0.0237 f=1.7264 6=0.5797
(0.0359) (0.5159) (0.2574)
W 5=6.2398 f=1.2250 1=0.0010
(2.4596) (0.2312) (0.7996)

Table 16. Findings from the gauge lengths dataset for the fitted distributions.

Distribution ~ AIC CAIC BIC HQIC w* A —L KS p — value
GKMW 118.5520 118.9588 124.9814 121.0807 0.0601 0.3216 56.2760 0.0795 0.821305
MBW 122.6182 123.6708 133.3338 126.8327 0.0615 0.3272 56.3091 0.0800 0.815108
BW 120.6346  121.3242 129.2071 124.0062 0.0612 0.3268 56.3173 0.0796  0.820005
OLLEW 123.9248 124.6144 1324973 127.2964 0.0866 0.5041 57.9624 0.0916 0.665628
EGW 120.6216 121.3112 129.1941 123.9932 0.0619 0.3287 56.3108 0.0813  0.799515
Liw 129.9178 130.3246 136.3472 132.4465 0.1285 0.8922 61.9589 0.0876 0.718911
EW 118.6216  119.0284 125.0510 121.1503 0.0619 0.3288 56.3108 0.0813  0.799320
™ 127.1226 1275294 1335520 129.6513 0.1100 0.7623 60.5613 0.0835 0.772281
Table 17. Findings from the failure times dataset for the fitted distributions.
Distribution AlC CAIC BIC HQIC w* A —L KS p —value
GKMW 306.4025 306.9242 312.1386 308.5868 0.0575 0.2948 150.2012 0.0934 0.775179
MBW 310.5294 311.8931 320.0895 314.1700 0.0582 0.2974 150.2647 0.0948 0.759432
BW 308.4788 309.3677 316.1269 311.3913 0.0587 0.2990 150.2394 0.0957 0.750141
OLLEW 309.0636 309.9525 316.7117 311.9760 0.0757 0.3810 150.5318 0.0999 0.700003
EGW 308.5187 309.4076 316.1668 311.4311 0.0599 0.3044 150.2593 0.0965 0.740273
Liw 306.7964 307.3181 312.5325 308.9807 0.0709 0.3539 150.3982 0.1018 0.677787
EW 306.5187 307.0404 312.2548 308.7030 0.0599 0.3044 150.2593 0.0965 0.740475
T™W 307.3553 307.8771 313.0914 309.5396 0.0857 0.4275 150.6777 0.1119 0.558858
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Table 18. Findings from the distance dataset for the fitted distributions.

Distribution AlIC CAIC BIC HQIC wr A L KS p —value
GKMW 377.1478 3775228 383.8063 379.7861 0.0385 0.2474 185.5739 0.0804 0.771339
MBW 381.2396 382.2073 392.3371 385.6368 0.0420 0.2673 185.6198 0.0843 0.719002
BW 379.3222 379.9571 388.2002 382.8399 0.0398 0.2547 185.6611 0.0818 0.753500
OLLEW 379.0712 379.7061 387.9492 3825890 0.0421 0.2739 185.5356 0.0807 0.767901
EGW 379.3276 379.9625 388.2057 382.8454 0.0399 0.2553 185.6638 0.0820 0.751070
Liw 377.8265 378.2015 384.4850 380.4648 0.0402 0.2658 185.9133 0.0820 0.749931
EW 377.3276 377.7026 383.9862 379.9659 0.0399 0.2553 185.6638 0.0821 0.749379
TW 378.3411 378.7161 384.9997 380.9794 0.0487 0.3192 186.1706 0.0887 0.659154

Figures 4-6 illustrate the fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the
three datasets, respectively. These figures reinforce the results shown in Tables 16-18, indicating that
the proposed distribution offers a close fit for all datasets.

The GKMW distribution effectively models a wide range of data behaviors, including skewness
and heavy tails, providing a better fit for the three datasets compared to other models. Its
parameterization enables more accurate estimation and captures underlying patterns that may be
missed by more restrictive models. Additionally, the GKMW model yields the lowest goodness-of-fit
values and the highest p-values, confirming its superior fit.
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Figure 4. Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the gauge
lengths dataset.
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Figure 6. Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the distance

dataset.

Additionally, Figures 7-9 display the histograms of the three datasets along with the fitted
densities for the GKMW distribution and other competing distributions. The GKMW distribution
consistently outperforms the other Weibull extensions across all three datasets. Moreover, the PP
plots for these datasets, shown in Figures 10-12, further illustrate that the GKMW distribution
provides a superior fit compared to the other distributions analyzed.
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Figure 7. The fitted GKMW PDF alongside the PDFs of other fitted distributions for the
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Figure 8. The fitted GKMW PDF alongside the PDFs of other fitted distributions for the
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Figure 11. The PP plots comparing the GKMW distribution with other distributions for

the failure times dataset.
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Figure 12. The PP plots comparing the GKMW distribution with other distributions for
the distance dataset.

The TTT and HRF plots of the GKMW distribution for the gauge lengths, failure time, and
transect line datasets are presented in Figures 13-15. The TTT plots reveal concave shapes for the
gauge lengths and distances datasets, indicating increasing HRFs, while it appears convex for the
failure time dataset, suggesting a decreasing HRF. The GKMW model can accommodate both
increasing and decreasing HRF, making it well-suited for modeling all datasets.
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Figure 13. TTT plot for the gauge lengths dataset and the GKMW HRF plot for the same

dataset.
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Figure 14. TTT plot for the failure times dataset and the GKMW HRF plot for the same

dataset.
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Figure 15. TTT plot for the distance dataset and the GKMW HRF plot for the same

dataset.

7. Conclusions future perspectives

In this paper, we present the extended Kavya—Manoharan Weibull (GKMW) distribution, a
novel extension of the Weibull distribution that provides a versatile and adaptable way to model
diverse types of data. The proposed model is notable for its ability to support a wide range of
distribution shapes, including symmetric, right-skewed, reversed-J, and left-skewed densities,
making it adaptable to a variety of real-world datasets. Furthermore, it can model both
non-monotonic and monotonic failure rates, increasing its applicability in a variety of statistical

settings.

The mathematical properties of the GKMW model are investigated. Additionally, its parameters
are estimated using eight alternative estimation techniques. Simulation studies show that the
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maximum product of the spacing estimation method outperforms all other estimators for reliably
calculating GKMW parameters. This finding has significant implications for increasing the precision
of statistical modeling in real-world applications.

The GKMW distribution is applied to three real-life datasets and outperforms existing Weibull
distributions, highlighting its potential for improved data processing. The GKMW model's practical
importance stems from its capacity to improve modeling flexibility and accuracy, especially in fields
such as survival analysis, where it can provide more reliable insights into failure rates and data
behavior.

In future work, we will focus on expanding the GKMW distribution’s applications beyond
survival analysis, including its use with large-scale datasets and refining computational methods for
parameter estimation. Key areas for future research include:

e Improving parameter estimation techniques, such as maximum likelihood or Bayesian methods
for censored data, to enhance the GKMW model's robustness and accuracy.

e  Exploring non-parametric or semi-parametric versions of the model for broader applicability.

e Applying Bayesian methods for both parameter estimation and model comparison, offering a
promising extension to the GKMW framework.

e Developing a discrete version of the GKMW model to facilitate its use in modeling count data
in diverse applied fields.
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Appendix A. The three datasets used to evaluate the performance of the proposed GKMW model.

Gauge lengths dataset

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.996 3.125 2.977 3.030 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027

4.225 4.395 5.020

Failure times dataset

0.013 0.065 0.111 0.111 0.163 0.309 0.426 0.535 0.684 0.747
0.997 1.284 1.304 1.647 1.829 2.336 2.838 3.269 3.977 3.981
4.520 4.789 4.849 5.202 5291 5.349 5911 6.018 6.427 6.456
6.572 7.023 7.087 7.291 7.787 8.596 9.388 10.261 10.713  11.658
13.006 13.388 13.842  17.152 17283  19.418 23471 24777 32795  48.105
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Distance dataset

2.0 0.5 10.4 3.6 0.9 1.0 3.4 2.9 8.2 6.5
5.7 3.0 4.0 0.1 11.8 14.2 24 1.6 13.3 6.5
8.3 4.9 15 18.6 0.4 0.4 0.2 11.6 3.2 7.1
10.7 3.9 6.1 6.4 3.8 15.2 3.5 3.1 7.9 18.2
10.1 4.4 1.3 13.7 6.3 3.6 9.0 1.7 4.9 9.1
3.3 8.5 6.1 0.4 9.3 0.5 1.2 1.7 4.5 3.1
3.1 6.6 4.4 5.0 3.2 1.7 18.2 4.1
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