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Abstract: In this paper, we proposed a novel and flexible lifetime model, the generalized Kavya–

Manoharan Weibull distribution, which can be interpreted as a proportional reversed hazard model. 

The most remarkable feature of the proposed model is its ability to effectively capture a wide range 

of hazard rate patterns using only three parameters. These include decreasing, J-shaped, reverse J-

shaped, and increasing patterns, as well as key nonmonotonic shapes such as the bathtub, modified 

bathtub, and upside-down bathtub shapes. Additionally, its density can exhibit right-skewness, left-

skewness, symmetry, and reversed-J shapes. We explored several distributional properties of the 

proposed model and estimated its parameters using eight methods. The effectiveness of these 

estimators was validated through extensive simulation studies. Furthermore, we assessed the 

versatility of the proposed distribution using three real-world datasets, demonstrating its exceptional 

capacity to fit the data accurately. Our results indicated that the proposed distribution outperforms 

several existing generalizations of the Weibull distribution in terms of fit quality. 
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1. Introduction 

The Weibull distribution is extensively utilized for analyzing lifetime data and is particularly 

effective for modeling monotonic hazard rates (HRs). Its density functions are typically right or 

left-skewed, making it ideal for reliability and survival analysis. However, it falls short when dealing 

with non-monotonic HRs, such as those exhibiting bathtub-shaped or upside-down bathtub-shaped 

patterns. While the Weibull distribution is highly effective in modeling monotonic HRs, it lacks the 

flexibility necessary to capture more complex failure rate behaviors, which are commonly observed 

in real-world data across domains, such as medicine, engineering, and industrial reliability. Although 

numerous extensions of the Weibull distribution have been proposed to address this limitation, many 

of these alternatives require more than four parameters to accurately represent intricate HR patterns. 

Additionally, existing models often struggle to effectively capture non-monotonic HR behaviors, 

including J-shaped or modified bathtub curves. 

Some recent extensions of the Weibull distribution, introduced to expand its modeling capabilities 

across a wider range of lifetime data, include the beta Weibull [1], Kumaraswamy–Weibull [2], truncated 

Weibull [3], transmuted Weibull [4], exponentiated generalized Weibull [5], new extended Weibull [6], 

modified beta Weibull [7], Kumaraswamy complementary Weibull geometric [8], Weibull–Weibull [9], 

alpha power Weibull [10], odd log-logistic exponentiated Weibull [11], Lindley Weibull [12], 

exponentiated Weibull [13], alpha logarithmic transformed Weibull [14], alpha power exponentiated 

Weibull [15], odd Lomax–Weibull [16], Maxwell–Weibull [17], exponentiated additive Weibull [18], 

new generalized modified Weibull [19] new flexible Weibull [20], odd Burr exponentiated Weibull [21], 

odd log-logistic Lindley–Weibull [22], alpha power Kumaraswamy–Weibull [23], new exponentiated 

inverse Weibull [24], entropy-transformed Weibull [25], extended Weibull [26], and odd beta prime 

Weibull [27] distributions. These enhanced distributions offer increased flexibility, enabling more 

effective modeling of diverse datasets for practical applications. 

We aim to bridge this gap by introducing a new variant of the Weibull distribution, known as the 

generalized Kavya–Manoharan Weibull (GKMW) distribution, which is specifically designed to 

model a broader range of non-monotonic HRs with just three parameters. The GKMW distribution 

provides an improved and more flexible approach for modeling diverse lifetime data, making it a 

valuable tool for researchers and practitioners in survival analysis, and reliability theory. The 

GKMW distribution is derived from the generalized Kavya–Manoharan (GKM-G) family introduced 

by Mahran et al. [28]. One key characteristic of the GKMW distribution is its interpretation as a 

proportional reversed hazard (PRH) model. The PRH models play a crucial role in survival analysis 

and reliability theory, particularly when analyzing left-censored lifetime data and studying parallel 

systems [29]. Further details on PRH models can be found in references [30–32]. 

The GKMW distribution boasts several key advantages: 

• It accurately captures J-shaped, decreasing, bathtub, increasing, upside-down bathtubs, modified 

bathtub, and reversed-J HR shapes. With its three parameters, the GKMW effectively models 

failure rates for both standard and modified bathtubs, a significant improvement over many 

distributions that require more than four parameters for precise representation. 

• The GKMW distribution is particularly well-suited for non-monotonic modeling, making it 

applicable in diverse fields such as medicine, engineering, survival analysis, and industrial 

reliability. 

• Our analysis demonstrates the GKMW model’s superiority over seven competing lifetime 
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distributions through real data from three distinct fields, underscoring its practical applicability. 

Our final motivation of this paper is to evaluate the performance of various frequentist 

estimators for the GKMW distribution across sample sizes and parameter values. Additionally, we 

aim to provide guidelines for selecting the most effective estimation method for the GKMW 

distribution, which we believe will be of interest to applied statisticians. 

The remainder of this article is organized as follows: In Section 2, we introduce the GKMW 

distribution. The properties of the GKMW distribution are derived in Section 3. In Section 4, we 

detail eight estimation methods for estimating the GKMW parameters are discussed. Numerical 

simulations are presented in Section 5. In Section 6, we illustrate the practical application of the 

GKMW distribution using three real data examples. Finally, concluding remarks and some 

perspectives for future research are given in Section 7. 

2. The GKMW distribution 

In this section, we introduce the GKMW distribution, using the Weibull model as the baseline 

within the GKM-G family proposed by Mahran et al. [28]. The GKM-G family can be regarded as a 

PRH family because it is derived from the exponentiated-H (exp-H) family [33], which is one of the 

most commonly used generalization techniques. The cumulative distribution function (CDF) and 

probability density function (PDF) of the GKM-G family are defined as follows: 

𝐹(𝑥; 𝛿, 𝝑) = 𝜉𝛿  [1 − 𝑒−𝐺(𝑥;𝝑)]
𝛿

, 𝑥 ∈ ℜ+, 𝛿 > 0 (1) 

and 

𝑓(𝑥; 𝛿, 𝝑) = 𝜉𝛿  𝛿 𝑔(𝑥; 𝝑) 𝑒−𝐺(𝑥;𝝑) [1 − 𝑒−𝐺(𝑥;𝝑)]
𝛿−1

, 𝑥 ∈ ℜ+,  

where 𝜉 = 𝑒/(𝑒 − 1), 𝛿 is a shape parameter and 𝝑 refers to the baseline parameters vector. 

The HR function (HRF) of the GKM-G family reduces to 

ℎ(𝒙; 𝛿, 𝝑) =
 𝛿 𝑔(𝑥; 𝝑) 𝑒1−𝐺(𝑥;𝝑) [𝑒 − 𝑒1−𝐺(𝑥;𝝑)]

𝛿−1

(𝑒 − 1)𝛿 − [𝑒 − 𝑒1−𝐺(𝑥;𝝑)]𝛿
, 𝑥 ∈ ℜ+.  

The PDF and CDF of the Weibull distribution are 𝑔(𝑥; 𝛽, 𝜆) = 𝛽𝜆 𝑥𝛽−1𝑒−𝜆𝑥𝛽
 and 

𝐺(𝑥; 𝛽, 𝜆) = 1 − 𝑒−𝜆𝑥𝛽
, 𝜆, 𝛽 > 0. By substituting the CDF of the Weibull model in Eq (1), we derive 

the CDF of the GKMW distribution as follows: 

𝐹(𝑥; 𝝎) = 𝜉𝛿  [1 − 𝑒−(1−𝑒−𝜆𝑥𝛽
)]

𝛿

, 𝑥 > 0, 𝛿, 𝜆, 𝛽 > 0,  

where 𝝎 = (𝛿, 𝛽, 𝜆)𝑇. 

The PDF of the GKMW model takes the form 

𝑓(𝑥; 𝝎) = 𝜉𝛿𝛿 𝛽 𝜆 𝑥𝛽−1 𝑒−(1−𝑒−𝜆𝑥𝛽
)−𝜆𝑥𝛽

 [1 − 𝑒−(1−𝑒−𝜆𝑥𝛽
)]

𝛿−1

, 𝑥 > 0, (2) 

where 𝜆 > 0  is the scale parameter and 𝛿  and 𝛽  are positive shape parameters. The scale 
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parameter (𝜆) affects the spread of the GKMW distribution but does not directly influence its 

skewness or tail behavior. In contrast, the two shape parameters (𝛿 and 𝛽) refine the shape of the 

GKMW distribution, particularly in terms of tail behavior, kurtosis and skewness. Thus, these two 

parameters significantly influence the asymmetry and overall shape of the distribution. Figures 1–3 

illustrate the roles of the three parameters. The plots and numerical values, obtained for 𝜆 = 1 with 

varying 𝛿 and  𝛽, confirm the influence of all three parameters. 

Therefore, a random variable with PDF (2) is denoted by 𝑋~GKMW(𝛿, 𝛽, 𝜆). 

The HRF and reversed HRF (RHRF) of the GKMW model are defined by 

ℎ(𝑥; 𝝎) =
𝛿 𝛽 𝜆 𝑥 𝛽−1 𝑒𝑒−𝜆𝑥𝛽

−𝜆𝑥𝛽
  (𝑒 − 𝑒𝑒−𝜆𝑥𝛽

)
𝛿−1

(𝑒 − 1)𝛿 − (𝑒 − 𝑒𝑒−𝜆𝑥𝛽
)

𝛿
, 𝑥 > 0  

and 

𝐻(𝑥; 𝝎) = 𝛿 𝛽 𝜆  𝑥𝛽−1 𝑒−(1−𝑒−𝜆𝑥𝛽
)−𝜆𝑥𝛽

  [1 − 𝑒−(1−𝑒−𝜆𝑥𝛽
)]

−1

, 𝑥 > 0.  

The quantile function (QF) of the GKMW model reduces to 

𝜗(𝑢) = 𝜆
−

1
𝛽 (−ln {1 + log [1 − ( 𝜉−𝛿𝑢)

1
𝛿]})

1
𝛽

,      0 < 𝑢 < 1,  

where 𝜉 = 𝑒/(𝑒 − 1). 

Figures 1 and 2 display the PDF and HRF curves of the GKMW distribution for 𝜆 = 1 and 

various values of 𝛿 and 𝛽. Figure 2 illustrates the HRF, which can exhibit decreasing, J-shape, 

increasing, reversed-J shape, bathtub, modified bathtub, and unimodal forms. A key advantage of the 

GKMW distribution over the W distribution is its ability to model data with bathtub, modified 

bathtub, or unimodal failure rates, which the W cannot. 

Furthermore, the QF can be employed to explore the relationships among the parameters. For 

the GKMW distribution, this function is useful for calculating Galton’s skewness and Moors’ 

kurtosis. Figure 3 presents Galton’s skewness and Moors’ kurtosis for the GKMW distribution at 

𝜆 = 1 with varying 𝛿  and 𝛽  values. Overall, it is evident that parameters 𝛽  and 𝜆  have a 

significant impact on the skewness and kurtosis of the distribution. 
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Figure 1. Plots of the GKMW density for 𝜆 = 1 and different parametric values of 𝛿 and 𝛽. 
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Figure 2. Plots of the GKMW HRF for 𝜆 = 1 and different parametric values of 𝛿 and 𝛽. 
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Figure 3. Galton’s skewness and Moors’ kurtosis for the GKMW distribution. 

3. Properties 

In this section, we explore several properties of the GKMW distribution. 

3.1. Linear representation 

Here, we present a mixture form for the GKMW density based on the linear representation of 

the GKM-G density introduced by Mahran et al. [28]. The GKM-G density can be expressed as 

follows: 

𝑓(𝑥) = ∑ 𝑑𝑘 ℎ𝑘(𝑥),

∞

𝑘=0

 (3) 

where 𝑑𝑘 = ∑ 𝜉𝛿  
(−1)𝑗+𝑘 𝑗𝑘 

𝑘 !
(

 𝛿 
𝑗

)∞
𝑗=0  and ℎ𝑘(𝑥) = 𝑘 𝑔(𝑥)𝐺(𝑥)𝑘−1 is the exp-G density with power 

parameter 𝑘. Equation (3) can be expressed using the W distribution as follows: 

𝑓(𝑥) = ∑ 𝑣𝑙 𝑔𝑙+1(𝑥),

∞

𝑙=0

 (4)  

where 𝑣𝑙 = ∑
𝑑𝑘 (−1)𝑙

(𝑙+1)
 𝑘 (

𝑘 − 1
𝑙

)∞
𝑘=0  and 𝑔𝑙+1(𝑥) = 𝛽 (𝑙 + 1)𝜆 𝑥𝛽−1 𝑒−(𝑙+1)𝜆𝑥𝛽

denotes the W 

density with scale parameter (𝑙 + 1)𝜆 and shape parameter 𝛽. Then, the GKMW PDF can be 

expressed as a single linear combination of Weibull densities. 
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3.2. Moments 

Let 𝑌  be a random variable having the W distribution with PDF 𝑔(𝑦; 𝛽, 𝜆) =

𝛽 𝜆 𝑦𝛽−1𝑒−𝜆𝑦𝛽
, 𝑦 > 0, 𝛽, 𝜆 > 0, then, the 𝑟th ordinary moments of 𝑌 is 

𝜇𝑟,𝑌
′ = Γ (1 +

𝑟

𝛽
) 𝜆

−𝑟
𝛽 .  

Therefore, we can derive the 𝑟th moment of GKMW distribution from Eq (4) as follows: 

𝜇𝑟
′ = Γ (1 +

𝑟

𝛽
) ∑ 𝑣𝑙 [(𝑙 + 1)𝜆]

−𝑟
𝛽

∞

𝑖=0

. (5) 

The mean of 𝑋, denoted by 𝜇𝑋, follows from Eq (5) by setting 𝑟 = 1. 

Table 1 demonstrates that the summation in Eq (5) converges to the numerical integral (NI) of 

𝜇𝑋  for various values of 𝜆 and 𝛾 as the truncated terms in this summation, say M, increase 

significantly. Table 2 shows that the skewness (𝜓1) and kurtosis (𝜓2) of the GKMW distribution 

range from -0.0874 to 11.1133 and from 2.5560 to 242.1702, respectively. Additionally, the GKMW 

distribution can exhibit left-skewed, right-skewed, or symmetric properties, and can be classified as 

leptokurtic (𝜓2  > 3) or platykurtic (𝜓2 < 3). This versatility makes the GKMW distribution 

well-suited for modeling skewed data effectively. 

The 𝑠th incomplete moment of the GKMW model is given by 

𝜑𝑠(𝑡) = ∫ 𝑥𝑠

𝑡

−∞

𝑓(𝑥)𝑑𝑥 = ∑ 𝑣𝑙[(𝑙 + 1)𝜆]
−

𝑠
𝛽 𝛾 (1 +

𝑠

𝛽
, (𝑙 + 1)𝜆 𝑡𝛽)

∞

𝑙=0

, (6) 

where 𝛾(𝑎, 𝜔) denote the lower incomplete gamma function (IGF), which is defined by 𝛾(𝑎, 𝜔) =

∫ 𝜔𝑎−1𝑒𝜔𝑑𝜔
𝜔

0
. The first incomplete moment, say 𝜑1(𝑡), is derived for 𝑠 = 1 and can be utilized to 

construct Bonferroni and Lorenz curves, which are defined, for a given probability 𝜋, as follows: 

𝐵(𝜋) = 𝜑1(𝑞)/(𝜋 𝜇1
′ ) and 𝐿(𝜋) = 𝜑1(𝑞)/𝜇1

′ , where 𝜇1
′  given by (5) with 𝑟 = 1 and 𝑞 = 𝑄(𝜋) 

is the QF of 𝑋 at 𝜋. 

The conditional moments of the GKMW model can be written as 

𝐸(𝑋𝑛|𝑋 > 𝑡) =
1

𝑆(𝑡)
 ∑ 𝑣𝑙

∞

𝑙=0

 (𝑙 + 1)𝜆 Γ (1 +
𝑛

𝛽
, (𝑙 + 1)𝜆 𝑡𝛽 ),  

where Γ(𝑎, 𝜉)  denotes the upper IGF defined by Γ(𝑎, 𝜉) = ∫ 𝜉𝑎−1𝑒−𝜉𝑑𝜉
∞

𝜉
 and 𝑆(𝑡)  is the 

survival function (SF) of the GKMW distribution. 

The moment-generating function (MGF) of the W distribution has the form 

𝑀(𝑡) = ∑
 𝑡𝑗

𝑗!
 𝜆

−
𝑗
𝛽Γ (1 +

𝑗

𝛽
)

∞

𝑗=0

. (7) 

By combining Eqs (4) and (7), the MGF of the GKMW model is expressed as follows 
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𝑀𝑋(𝑡) = ∑ 𝑣𝑙

𝑡𝑗

𝑗!
 [(𝑙 + 1)𝜆]

−
𝑗
𝛽Γ (1 +

𝑗

𝛽
)

∞

𝑙,𝑗=0

.  

Table 1. Generated values of 𝜇𝑋 based on the summation formula and the NI for various 

parametric values at truncated 𝑀 terms. 

𝜆 𝛿 𝛽 𝑀 Summation NI 

0.5 2 0.5 10 9.56790  

   20 9.56325 9.56325 

   50 9.56325  

  1.5 10 1.65060  

   20 1.65025 1.65025 

   50 1.65025  

 4 0.5 10 33.26973  

   20 16.24027 16.24025 

   50 16.24025  

  1.5 10 3.46152  

   20 2.15191 2.15191 

   50 2.15191  

0.9 2 0.5 10 2.95306  

   20 2.95162 2.95162 

   50 2.95162  

  1.5 10 1.11548  

   20 1.11524 1.11524 

   50 1.11524  

 4 0.5 10 10.26843  

   20 5.01243 5.01242 

   50 5.01242  

  1.5 10 2.33929  

   20 1.45426 1.45426 

   50 1.45426  

1.5 2 0.5 10 1.06310  

   20 1.06258 1.06258 

   50 1.06258  

  1.5 10 0.79353  

   20 0.79336 0.79336 

   50 0.79336  

 4 0.5 10 3.69664  

   20 1.80447 1.80447 

   50 1.80447  

  1.5 10 1.66412  

   20 1.03453 1.03453 

   50 1.03453  
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Table 2. Moments of the GKMW distribution for 𝜆 = 1 with varying values of 𝛿 and 𝛽. 

𝛿 𝛽 𝜇𝑥 𝜎𝑥
2 𝜓1 𝜓2 

0.5 0.5 0.7139 6.7945 11.1133 242.1702 

 1.5 0.4887 0.2526 1.7860 7.1495 

 2.8 0.5958 0.1257 0.6322 3.0474 

 3.5 0.6409 0.0996 0.3478 2.6707 

 5 0.7117 0.0670 -0.0309 2.5560 

0.75 0.5 1.0338 9.8213 9.2802 169.9559 

 1.5 0.6313 0.2893 1.5059 5.9591 

 2.8 0.7128 0.1182 0.4924 2.9654 

 3.5 0.7478 0.0874 0.2419 2.7303 

 5 0.8014 0.0530 -0.0874 2.7295 

1.5 0.5 1.8882 17.8440 6.9544 97.0234 

 1.5 0.9131 0.3298 1.1791 4.8586 

 2.8 0.9067 0.0981 0.3788 2.9892 

 3.5 0.9156 0.0655 0.1865 2.8588 

 5 0.9321 0.0345 -0.0571 2.8753 

2 0.5 2.3908 22.5235 6.2248 78.4523 

 1.5 1.0396 0.3379 1.0866 4.6063 

 2.8 0.9823 0.0893 0.3625 3.0139 

 3.5 0.9784 0.0577 0.1912 2.8969 

 5 0.9785 0.0290 -0.0225 2.8929 

5 0.5 4.7553 44.1219 4.5572 43.7214 

 1.5 1.4588 0.3369 0.9032 4.2015 

 2.8 1.2009 0.0652 0.3653 3.1052 

 3.5 1.1536 0.0386 0.2431 2.9961 

 5 1.1018 0.0174 0.0954 2.9332 

3.3. Mean residual life and mean inactivity time 

The function 𝜑1(𝑡) of 𝑋 can be used to derive the mean residual life (MRL) and mean 

inactivity time (MIT). This function follows from Eq (6) as 

𝜗1(𝑡) = ∑ 𝑣𝑙[(𝑙 + 1)𝜆]
−

1
𝛽 𝛾 (1 +

1

𝛽
, (𝑙 + 1)𝜆 𝑡𝛽)

∞

𝑙=0

. (8) 

The MRL represents the expected additional lifespan for a unit, which is operational at age 𝑡 

and is defined by 𝑚𝑋(𝑡) = 𝐸(𝑋 − 𝑥|𝑋 > 𝑥), for 𝑡 > 0. The MRL of 𝑋 is 

𝑀𝑅𝐿𝑋(𝑡) =
[1 − 𝜑1(𝑡)]

𝑆(𝑡)
− 𝑡. (9) 

By substituting Eq (8) into Eq (9), we obtain the MRL of the GKMW distribution as follows 
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𝑀𝑅𝐿𝑋(𝑡) =
1

𝑆(𝑡)
 {1 − ∑ 𝑣𝑙[(𝑙 + 1)𝜆]

−
1
𝛽 𝛾 (1 +

1

𝛽
, (𝑙 + 1)𝜆 𝑡𝛽)

∞

𝑙=0

} − 𝑡.  

The MIT represents the waiting time that has elapsed since the failure of an item, given that this 

failure occurred within the interval (0, 𝑡). The MIT is defined by 𝑀𝐼𝑇𝑋(𝑡) = 𝐸(𝑡 − 𝑋|𝑋 ≤ 𝑡), for 

𝑡 > 0. The MIT of 𝑋 reduces to 

𝑀𝐼𝑇𝑋(𝑡) = 𝑡 −
𝜑1(𝑡)

𝐹(𝑡)
. (10) 

Using Eqs (8) and (10), we derive the MIT of the GKMW distribution as follows 

𝑀𝐼𝑇𝑋(𝑡) = 𝑡 −
1

𝐹(𝑡)
 ∑ 𝑣𝑙[(𝑙 + 1)𝜆]

−
1
𝛽 𝛾 (1 +

1

𝛽
, (𝑙 + 1)𝜆 𝑡𝛽)

∞

𝑙=0

.  

3.4. Order statistics 

Order statistics are essential in quality control testing and reliability assessments, as they help 

predict the failure of future items by analyzing early failures. According to Mahran et al. [28], the 

PDF of 𝑖th order statistic of the GKM-G class, say 𝑋(𝑖) (for 𝑖 = 1, … 𝑛), can be expressed as 

follows 

𝑓𝑖:𝑛(𝑥) = ∑ 𝑏𝑘 ℎ𝑘+1(𝑥).

∞

𝑘=0

   

Here, ℎ𝑘+1(𝑥) = (𝑘 + 1) 𝑔(𝑥) 𝐺(𝑥)𝑘 is the exp-G density with power parameter 𝑘 + 1 and 

𝑏𝑘 = 𝛼 ∑ ∑
 (1 + 𝑚)𝑘(−1)𝑗+𝑚+𝑘

(𝑘 + 1)! 𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝜙𝛼(𝑗+𝑖) (

𝑛 − 1
𝑗

) ( 𝛼(𝑗 + 𝑖) − 1 
𝑚

)

∞

𝑚=0

𝑛−𝑖

𝑗=0

.   

Then, the PDF of 𝑋(𝑖) for the GKMW distribution reduces to 

𝑓𝑋(𝑖)
(𝑥) = ∑ 𝑐𝑟 𝛽 (𝑟 + 1)𝜆 𝑥𝛽−1𝑒−(𝑟+1)𝜆𝑥𝛽

,

∞

𝑟=0

 (11) 

where 𝑐𝑟 = ∑
𝑏𝑘 (−1)𝑟(𝑘+1)!

(𝑟+1)!(𝑘−𝑟)!

∞
𝑘=0 . Equation (11) indicates that the PDF of the GKMW order statistics is 

a mixture of W densities, with a scale parameter of (𝑟 + 1)𝜆  and a shape parameter 𝛽 . 

Consequently, some of their mathematical properties can be derived from those of the W distribution. 

For instance, the 𝑞th moment of 𝑋(𝑖) is given by 

𝐸(𝑋(𝑖)
𝑞

) = Γ (1 +
𝑞

𝛽
) ∑ 𝑐𝑟 [(𝑟 + 1)𝜆]

−𝑞
𝛽

∞

𝑟=0

.   
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3.5. Probability weighted moments 

Greenwood et al. [34] introduced probability weighted moments (PWMs) as a particular type of 

moment. PWMs are used to estimate the parameters and quantiles of distributions that can be 

represented in inverse form. These estimators exhibit moderate bias and low variance, making them 

comparable to maximum likelihood (ML) estimators. 

The (𝑗, 𝑖)th PWM of 𝑋, say 𝜌𝑗,𝑖, is defined by 

𝜌𝑗,𝑖 = 𝐸{𝑋𝑗  𝐹(𝑋)𝑖} = ∫ 𝑥𝑗  𝑓(𝑥)
∞

−∞

 𝐹(𝑥)𝑖 𝑑𝑥,   

where 𝑗 and 𝑖 be non-negative integers. According to Mahran et al. [28], the PWM of the GKM-G 

class can be expressed as 

𝜌𝑗,𝑖 = ∑ 𝑑𝑠 𝐸(𝑇𝑠+1
𝑗

)

∞

𝑠=0

,   

where 

𝑑𝑠 = 𝛿 ∑
(1 + 𝑙)𝑠(−1)𝑙+𝑠

(𝑠 + 1)!
𝜉𝛿(1+𝑖) (

 𝛼(1 + 𝑖) − 1 
𝑙

) .

∞

𝑙=0

   

Using Eq (5), the PWM of GKMW model can be defined as 

𝜌𝑗,𝑖 = ∑ 𝑑𝑠 Γ (1 +
𝑗

𝛽
)  [(𝑠 + 1)𝜆]

−𝑗
𝛽

∞

𝑠=0

.   

3.6. Rényi and 𝜃−entropies 

Entropy measures the randomness of systems and is widely used in fields such as molecular 

tumor imaging, physics, and sparse kernel density estimation. The Rényi entropy of the GKM-G 

family [28] is 

𝐼𝜃 =
1

1 − 𝜃
 log [∑ 𝜂𝑘

∞

𝑘=0

∫ 𝑔(𝑥)𝜃 𝐺(𝑥)𝑘
∞

−∞

 𝑑𝑥], (12) 

where 

𝜂𝑘 = ∑
(𝛿𝜉𝛾)𝜃 (𝜃 + 𝑗)𝑘 

𝑘 !
 (−1)𝑘+𝑗 (

 𝜃 (𝛾 − 1) 
𝑗

) .

∞

𝑗=0

   

Inserting the PDF and CDF of W distribution in Eq (12) and using binomial series, we obtain 
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𝑔(𝑥)𝜃 𝐺(𝑥)𝑘 = (𝛽𝜆)𝜃𝑥𝜃(𝛽−1) ∑(−1)𝑖 (
𝑘
𝑖

) 𝑒−(𝑖+𝜃)𝜆𝑥𝛽

∞

𝑖=0

.   

Therefore, the Rényi entropy of the GKMW distribution follows as 

𝐼𝜃 =
1

1 − 𝜃
 log [ ∑ 𝜂𝑘

∞

𝑘,𝑖=0

(−1)𝑖 (
𝑘
𝑖

) (𝛽𝜆)𝜃𝐴],  (13) 

where 

𝐴 = ∫ 𝑥𝜃(𝛽−1)
∞

0

 𝑒−(𝑖+𝜃)𝜆𝑥𝛽
𝑑𝑥 =

1

𝛽
[(𝑖 + 𝜃)𝜆]𝜃(1−𝛽)−1Γ (

𝜃(𝛽 − 1) + 1

𝛽
).   

By substituting the quantity 𝐴 from Eq (13), the Rényi entropy of the GKMW distribution 

simplifies to 

𝐼𝜃 =
1

1 − 𝜃
 log [ ∑ 𝜂𝑘

∞

𝑘,𝑖=0

(−1)𝑖 (
𝑘
𝑖

) 𝜆𝜃𝛽𝜃−1[(𝑖 + 𝜃)𝜆]𝜃(1−𝛽)−1Γ (
𝜃(𝛽 − 1) + 1

𝛽
)],   

where 𝜃 > 0 and 𝜃 ≠ 1. 

The Shannon entropy can be seen as a special case of the Rényi entropy when 𝜃 approaches 1. 

4. Estimation methods 

In this section, we present eight methods for estimating the parameters of the GKMW 

distribution. These methods include maximum likelihood (ML), least squares (LS), weighted least 

squares (WLS), Cramér–von Mises (CVM), maximum product of spacings (MPS), 

Anderson–Darling (AD), right-tail Anderson–Darling (RTAD), and percentile (PC) estimators. 

Let 𝑥1, … , 𝑥𝑛 be a random sample from the GKMW distribution with parameters 𝛿, 𝛽, and 𝜆. 

Denote the ordered statistics as 𝑥1:𝑛 < 𝑥2:𝑛 < ⋯ < 𝑥𝑛:𝑛. 

The log-likelihood function of the GKMW model can be expressed as follows 

ℓ = 𝑛 𝛿 log 𝜉 +  𝑛 log 𝛿 + 𝑛 log 𝛽 + 𝑛 log 𝜆 + (𝛽 − 1) ∑ log(𝑥𝑖)

𝑛

𝑖=1

− ∑ (1 − 𝑒−𝜆 𝑥𝑖
𝛽

)

𝑛

𝑖=1

     

− 𝜆 ∑ 𝑥𝑖
𝛽

𝑛

𝑖=1

+ (𝛿 − 1) ∑ log (𝑘𝑖)

𝑛

𝑖=1

, 

  

where 𝑘𝑖 = 1 − 𝑒
−(1−𝑒

−𝜆 𝑥
𝑖
𝛽

)
. 

The MLEs for 𝛿, 𝛽, and 𝜆 can be obtained by maximizing the previous equation with respect 

to these parameters or by solving the provided nonlinear equations: 
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𝜕ℓ

𝜕𝛿
=

𝑛

𝛿
+ 𝑛 log 𝜉 + ∑ log(𝑘𝑖)

𝑛

𝑖=1

= 0,   

𝜕ℓ

𝜕𝛽
=

𝑛

𝛽
+ ∑ log(𝑥𝑖)

𝑛

𝑖=1

− 𝜆 ∑ 𝑥𝑖
𝛽

𝑛

𝑖=1

log(𝑥𝑖) − 𝜆 ∑ 𝑥𝑖
𝛽

𝑛

𝑖=1

log(𝑥𝑖) 𝑒−𝜆 𝑥𝑖
𝛽

+ 𝜆(𝛿 − 1) ∑
𝑥𝑖

𝛽
 log(𝑥𝑖) (1 − 𝑘𝑖)𝑒−𝜆𝑥𝑖

𝛽

𝑘𝑖

𝑛

𝑖=1

= 0 

  

and 

𝜕ℓ

𝜕𝜆
=

𝑛

𝜆
− ∑ 𝑥𝑖

𝛽

𝑛

𝑖=1

− ∑ 𝑥𝑖
𝛽

 𝑒− 𝜆𝑥𝑖
𝛽

𝑛

𝑖=1

+ (𝛿 − 1) ∑
𝑥𝑖

𝛽
 (1 − 𝑘𝑖)𝑒−𝜆𝑥𝑖

𝛽

𝑘𝑖

𝑛

𝑖=1

= 0.   

The LS and WLS methods are employed to estimate the parameters of the beta distribution [35]. The 

LS estimators (LSEs) and WLS estimators (WLSEs) for the GKMW parameters can be obtained by 

minimizing the following: 

𝑉(𝛿, 𝛽, 𝜆) = ∑ 𝜐𝑖

𝑛

𝑖=1

[𝜉𝛿  𝑘𝑖:𝑛
𝛿 −

𝑖

𝑛 + 1
]

2

,   

where 𝜐𝑖 = 1 for the LS method, 𝜐𝑖 = (𝑛 + 1)2(𝑛 + 2)/[𝑖(𝑛 − 𝑖 + 1)] for the WLS approach, and 

𝑘𝑖:𝑛 = 1 − 𝑒
−(1−𝑒

−𝜆 𝑥
𝑖:𝑛
𝛽

)
.  

Additionally, the LSEs and WLSEs can be derived by solving the nonlinear equations (for 𝑠 =

1,2,3): 

∑ 𝜐𝑖

𝑛

𝑖=1

[𝜉𝛿𝑘𝑖:𝑛
𝛿 −

𝑖

𝑛 + 1
] ∆𝑠(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) = 0,   

where 

∆1(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) =
𝜕ℓ

𝜕𝛿
 𝐹 (𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) = 𝑘𝑖:𝑛

𝛿  𝜉𝛿  [log(𝜉) + log(𝑘𝑖:𝑛)], (14) 

∆2(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) =
𝜕ℓ

𝜕𝛽
 𝐹 (𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) = 𝛿 𝜆 𝜉𝛿  𝑥𝑖:𝑛

𝛽
𝑒−𝜆𝑥𝑖:𝑛

𝛽

(1 − 𝑘𝑖:𝑛)𝑘𝑖:𝑛
𝛿−1  log(𝑥𝑖:𝑛) (15) 

and 

∆3(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) =
𝜕ℓ

𝜕𝜆
 𝐹 (𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) = 𝛿 𝜉𝛿  𝑥𝑖:𝑛

𝛽
𝑒−𝜆𝑥𝑖:𝑛

𝛽

(1 − 𝑘𝑖:𝑛)𝑘𝑖:𝑛
𝛿−1. (16) 

The CVM estimators (CVMEs) [36,37] can be derived from the difference between the 

estimated CDF and the empirical CDF. The CVMEs for the GKMW parameters are found by 



5894 

AIMS Mathematics  Volume 10, Issue 3, 5880–5927. 

minimizing the following function: 

𝐶(𝛿, 𝛽, 𝜆) =
1

12𝑛
+ ∑ [𝜉𝛿𝑘𝑖:𝑛

𝛿 −
2𝑖 − 1

2𝑛
]

2

.

𝑛

𝑖=1

   

Further, the CVMEs follow by solving the nonlinear equations, 

∑ [𝜉𝛿𝑘𝑖:𝑛
𝛿 −

2𝑖 − 1

2𝑛
]

𝑛

𝑖=1

∆𝑠(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) = 0,   

where ∆𝑠(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) = 0 are defined in (14)-(16) for 𝑠 = 1, 2,3. 

The MPS method is used for parameter estimation in continuous univariate models as an 

alternative to the ML method [38,39]. The uniform spacings of a random sample of size 𝑛 from the 

GKMW distribution can be characterized by: 

𝐷𝑖 = 𝐹 (𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) − 𝐹 (𝑥𝑖−1:𝑛⎸𝛿, 𝛽, 𝜆),   

where 𝐷𝑖  denotes the uniform spacings, where 𝐹 (𝑥0:𝑛⎸𝛿, 𝛽, 𝜆) = 0, 𝐹 (𝑥𝑛+1:𝑛⎸𝛿, 𝛽, 𝜆) = 1 and 

∑ 𝐷𝑖(𝛿, 𝛽, 𝜆)𝑛+1
𝑖=1 = 1. The MPS estimators (MPSEs) of the GKMW parameters can be obtained by 

maximizing 

𝐺(𝛿, 𝛽, 𝜆) =
1

𝑛 + 1
∑ log 𝐷𝑖(𝛿, 𝛽, 𝜆)

𝑛+1

𝑖=1

.   

Additionally, the MPSEs of the GKMW parameters can also be obtained by solving: 

1

𝑛 + 1
∑

1

𝐷𝑖(𝛿, 𝛽, 𝜆)

𝑛+1

𝑖=1

[∆𝑠(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) − ∆𝑠(𝑥𝑖−1:𝑛⎸𝛿, 𝛽, 𝜆)] = 0, 𝑠 = 1, 2,3.   

The AD estimators (ADEs) are another form of minimum distance estimator. The ADEs for the 

GKMW parameters are obtained by minimizing: 

𝐴(𝛿, 𝛽, 𝜆) = −𝑛 −
1

𝑛
∑(2𝑖 − 1)

𝑛

𝑖=1

 [log 𝐹(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) + log 𝐹̅(𝑥𝑛+1−𝑖:𝑛⎸𝛿, 𝛽, 𝜆)].   

The ADEs can also be determined by solving the corresponding nonlinear equations: 

∑(2𝑖 − 1)

𝑛

𝑖=1

[
∆𝑠(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆)

𝐹(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆)
−

∆𝑗(𝑥𝑛+1−𝑖:𝑛⎸𝛿, 𝛽, 𝜆)

𝑆(𝑥𝑛+1−𝑖:𝑛⎸𝛿, 𝛽, 𝜆)
] = 0.   

The RTAD estimators (RTADEs) for the GKMW parameters 𝛿, 𝛽, and 𝜆 are obtained by 

minimizing the following function with respect to these parameters: 

𝑅(𝛿, 𝛽, 𝜆) =
𝑛

2
− 2 ∑ 𝐹(𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆)

𝑛

𝑖=1

−
1

𝑛
∑(2𝑖 − 1)

𝑛

𝑖=1

 log 𝐹̅(𝑥𝑛+1−𝑖:𝑛⎸𝛿, 𝛽, 𝜆).   

The unknown parameters of the GKMW distribution can be estimated using the PC method [40], 

which involves matching the sample PC points with the corresponding population PCs. An unbiased 

estimator of 𝐹 (𝑥𝑖:𝑛⎸𝛿, 𝛽, 𝜆) is given by 𝑢𝑖 = 𝑖/(𝑛 + 1). The PC estimators (PCEs) for the GKMW 

parameters are subsequently derived by minimizing the specified function: 
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𝑃(𝛿, 𝛽, 𝜆) = ∑ (𝑥𝑖:𝑛 −
−1

𝜆
 log {1 + log [1 − (𝑢𝑖 𝜉−𝛿)

1
𝛿]})

2
𝛽

.

𝑛

𝑖=1

   

5. Simulation analysis 

In this section, a Monte Carlo simulation analysis was conducted to assess the performance of 

various estimators for the unknown parameters of the GKMW distribution. The assessment centered 

on their average absolute biases (BIAS), average mean square errors (MSE), and average mean 

relative errors (MRE) of the estimates, defined as follows: 

BIAS =
1

𝑛
 ∑ |𝜼̂ − 𝜼|𝑛

𝑖=1 ,    MSE =
1

𝑛
 ∑ (𝜼̂ − 𝜼)2𝑛

𝑖=1  and    MRE =
1

𝑛
 ∑ |𝜼̂ − 𝜼|/𝜼𝑛

𝑖=1 . 

We generated 5,000 samples from the GKMW distribution for different sample sizes 𝑛 =

{20, 50, 100, 300, 500}, selecting 𝛿 = (0.5, 1.5), 𝛽 = (0.25, 2), and 𝜆 = (1.5, 3.5). The GKMW 

parameters (𝛿, 𝛽, 𝜆) were estimated for each combination of parameters and sample size using 

eight estimators, including WLSEs, LSEs, MLEs, MPSEs, CRVMEs, ADEs, RTADEs, and PCEs. 

Subsequently, the MSE, BIAS, and MRE of the parameters were calculated. All computations in this 

section were carried out using R software Version 4.2.2. 
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Tables 3–10 present the results of all simulated outcomes. Additionally, these tables display the ranking of each estimator in every row, with 

curly braces indicating the ranks and ∑ 𝑅𝑎𝑛𝑘𝑠 representing the cumulative sum of ranks for each column within a specific sample size. The 

findings in Tables 3–10 indicate that all estimation methods exhibit the property of consistency, as BIAS, MSE, and MRE decrease with 

increasing sample size across all parameter combinations. 

The partial and total rankings of the estimators under consideration are presented in Table 11. The estimation method with the lowest 

overall score is regarded as the best approach. Based on Table 11, the eight estimation methods can be ranked from best to worst as follows: 

MPS, ML, AD, WLS, RAD, OLS, PC, and CRVM. It is important to note that, based on the results of the detailed simulation study, the MPS 

method, which achieved the lowest overall rank of 45.5, is considered the most effective estimation method. This lower rank indicates that the 

MPS method consistently produces better results, as measured by MSE, BIAS, and MRE, across sample sizes and different parameter values 

studied. Hence, the MPS approach, overall score of 45.5, outperforms all other approaches. Consequently, our results confirm the superiority of 

MPS method for estimating the GKMW parameters. 

Table 3. Results for eight estimators with parameters 𝛿 = 0.5, 𝛽 = 0.25, and 𝜆 = 1.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 0.44805{4} 0.46606{5} 0.40387{3} 0.47616{6} 0.39067{2} 2.44726{8} 0.37975{1} 0.48266{7} 

 BIAS 𝛽̂ 0.14364{5} 0.15331{7} 0.13623{4} 0.14834{6} 0.13404{3} 0.65763{8} 0.13143{1} 0.13160{2} 

  𝜆̂ 0.66572{4} 0.66928{8} 0.66508{3} 0.66627{6} 0.66622{5} 0.64430{1} 0.64661{2} 0.66871{7} 

  𝛿 0.20075{4} 0.21722{5} 0.16311{3} 0.22673{6} 0.15262{2} 5.98910{8} 0.14421{1} 0.23296{7} 

20 MSE 𝛽̂ 0.02063{5} 0.02350{7} 0.01856{4} 0.02200{6} 0.01797{3} 0.43248{8} 0.01727{1} 0.01732{2} 

  𝜆̂ 0.44319{4} 0.44793{8} 0.44233{3} 0.44392{6} 0.44384{5} 0.41513{1} 0.41811{2} 0.44717{7} 

  𝛿 0.59740{4} 0.62142{5} 0.53849{3} 0.63489{6} 0.52089{2} 0.88991{8} 0.50633{1} 0.64355{7} 

 MRE 𝛽̂ 0.28728{5} 0.30662{7} 0.27246{4} 0.29667{6} 0.26808{3} 0.32881{8} 0.26286{1} 0.26320{2} 

  𝜆̂ 0.99362{4} 0.99892{8} 0.99265{3} 0.99444{6} 0.99435{5} 0.96165{1} 0.96509{2} 0.99807{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 39.0{4} 60.0{8} 30.0{2.5} 54.0{7} 30.0{2.5} 51.0{6} 12.0{1} 48.0{5} 

         Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 0.25007{3} 0.29937{5} 0.24733{2} 0.31057{6} 0.22757{1} 2.37250{8} 0.25066{4} 0.31836{7} 

 BIAS 𝛽̂ 0.08437{3} 0.09749{7} 0.08281{2} 0.09732{6} 0.07884{1} 0.49530{8} 0.08464{4} 0.08707{5} 

  𝜆̂ 0.51229{1} 0.59472{6} 0.52254{3} 0.57940{5} 0.51959{2} 0.63231{8} 0.53069{4} 0.60133{7} 

  𝛿 0.06254{3} 0.08962{5} 0.06117{2} 0.09645{6} 0.05179{1} 5.62873{8} 0.06283{4} 0.10135{7} 

50 MSE 𝛽̂ 0.00712{3} 0.00951{7} 0.00686{2} 0.00947{6} 0.00622{1} 0.24532{8} 0.00716{4} 0.00758{5} 

  𝜆̂ 0.26244{1} 0.35369{6} 0.27305{3} 0.33571{5} 0.26998{2} 0.39982{8} 0.28164{4} 0.36160{7} 

  𝛿 0.33343{3} 0.39916{5} 0.32978{2} 0.41409{6} 0.30342{1} 0.86273{8} 0.33422{4} 0.42447{7} 

 MRE 𝛽̂ 0.16874{3} 0.19499{7} 0.16562{2} 0.19465{6} 0.15768{1} 0.24765{8} 0.16927{4} 0.17413{5} 

  𝜆̂ 0.76461{1} 0.88764{6} 0.77991{3} 0.86478{5} 0.77551{2} 0.94375{8} 0.79208{4} 0.89751{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 21.0{2.5} 54.0{6} 21.0{2.5} 51.0{5} 12.0{1} 72.0{8} 36.0{4} 57.0{7} 

  𝛿 0.17337{3} 0.21780{6} 0.17020{2} 0.22097{7} 0.15701{1} 2.39904{8} 0.17686{4} 0.21457{5} 

 BIAS 𝛽̂ 0.05580{3} 0.06830{6} 0.05577{2} 0.06885{7} 0.05374{1} 0.41721{8} 0.05725{4} 0.06044{5} 

  𝜆̂ 0.39296{2} 0.46927{7} 0.39857{3} 0.45336{5} 0.38016{1} 0.62525{8} 0.40082{4} 0.46343{6} 

  𝛿 0.03006{3} 0.04744{6} 0.02897{2} 0.04883{7} 0.02465{1} 5.75540{8} 0.03128{4} 0.04604{5} 

100 MSE 𝛽̂ 0.00311{2.5} 0.00466{6} 0.00311{2.5} 0.00474{7} 0.00289{1} 0.17406{8} 0.00328{4} 0.00365{5} 

  𝜆̂ 0.15441{2} 0.22022{7} 0.15886{3} 0.20554{5} 0.14452{1} 0.39094{8} 0.16066{4} 0.21477{6} 

  𝛿 0.23116{3} 0.29040{6} 0.22693{2} 0.29462{7} 0.20935{1} 0.87238{8} 0.23582{4} 0.28610{5} 

 MRE 𝛽̂ 0.11161{3} 0.13660{6} 0.11155{2} 0.13770{7} 0.10749{1} 0.20860{8} 0.11449{4} 0.12089{5} 

  𝜆̂ 0.58650{2} 0.70041{7} 0.59488{3} 0.67666{5} 0.56741{1} 0.93322{8} 0.59824{4} 0.69169{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 23.5{3} 57.0{6.5} 21.5{2} 57.0{6.5} 9.0{1} 72.0{8} 36.0{4} 48.0{5} 

        Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 0.11921{2} 0.15274{6} 0.12118{3} 0.15801{7} 0.11128{1} 2.36301{8} 0.12134{4} 0.15004{5} 

 BIAS 𝛽̂ 0.03944{2} 0.04894{6} 0.03986{4} 0.04966{7} 0.03780{1} 0.35089{8} 0.03953{3} 0.04230{5} 

  𝜆̂ 0.28268{2} 0.35098{6} 0.28501{3} 0.35253{7} 0.27401{1} 0.61586{8} 0.29546{4} 0.35009{5} 

  𝛿 0.01421{2} 0.02333{6} 0.01469{3} 0.02497{7} 0.01238{1} 5.58381{8} 0.01472{4} 0.02251{5} 

300 MSE 𝛽̂ 0.00156{2.5} 0.00239{6} 0.00159{4} 0.00247{7} 0.00143{1} 0.12312{8} 0.00156{2.5} 0.00179{5} 

  𝜆̂ 0.07991{2} 0.12319{6} 0.08123{3} 0.12428{7} 0.07508{1} 0.37928{8} 0.08730{4} 0.12256{5} 

  𝛿 0.15895{2} 0.20365{6} 0.16158{3} 0.21068{7} 0.14838{1} 0.85928{8} 0.16179{4} 0.20005{5} 

 MRE 𝛽̂ 0.07887{2} 0.09787{6} 0.07972{4} 0.09932{7} 0.07560{1} 0.17545{8} 0.07905{3} 0.08460{5} 

  𝜆̂ 0.42191{2} 0.52386{6} 0.42539{3} 0.52616{7} 0.40896{1} 0.91919{8} 0.44099{4} 0.52252{5} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.5{2} 54.0{6} 30.0{3} 63.0{7} 9.0{1} 72.0{8} 32.5{4} 45.0{5} 

  𝛿 0.08419{2} 0.10545{5} 0.08572{3} 0.10981{7} 0.07707{1} 2.51646{8} 0.08962{4} 0.10567{6} 

 BIAS 𝛽̂ 0.02771{2} 0.03356{6} 0.02858{3} 0.03361{7} 0.02586{1} 0.30410{8} 0.02884{4} 0.03016{5} 

  𝜆̂ 0.20338{1} 0.25009{5} 0.20668{3} 0.25785{7} 0.20635{2} 0.60619{8} 0.21717{4} 0.25239{6} 

  𝛿 0.00709{2} 0.01112{5} 0.00735{3} 0.01206{7} 0.00594{1} 6.33269{8} 0.00803{4} 0.01117{6} 

500 MSE 𝛽̂ 0.00077{2} 0.00113{6.5} 0.00082{3} 0.00113{6.5} 0.00067{1} 0.09247{8} 0.00083{4} 0.00091{5} 

  𝜆̂ 0.04136{1} 0.06255{5} 0.04272{3} 0.06649{7} 0.04258{2} 0.36747{8} 0.04716{4} 0.06370{6} 

  𝛿 0.11225{2} 0.14061{5} 0.11429{3} 0.14641{7} 0.10276{1} 0.91508{8} 0.11950{4} 0.14089{6} 

 MRE 𝛽̂ 0.05542{2} 0.06711{6} 0.05716{3} 0.06723{7} 0.05173{1} 0.15205{8} 0.05768{4} 0.06033{5} 

  𝜆̂ 0.30355{1} 0.37327{5} 0.30848{3} 0.38486{7} 0.30798{2} 0.90477{8} 0.32413{4} 0.37671{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 15.0{2} 48.5{5} 27.0{3} 62.5{7} 12.0{1} 72.0{8} 36.0{4} 51.0{6} 
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Table 4. Results for eight estimators with parameters 𝛿 = 0.5, 𝛽 = 0.25, and 𝜆 = 3.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 0.32426{3} 0.36749{5} 0.32579{4} 0.37178{6} 0.32305{2} 0.48308{8} 0.31426{1} 0.38908{7} 

 BIAS 𝛽̂ 0.16279{6} 0.16255{5} 0.13270{3} 0.16800{7} 0.12181{1} 0.17744{8} 0.12182{2} 0.14583{4} 

  𝜆̂ 1.02635{2} 1.49446{6} 1.25347{4} 1.89848{8} 1.11158{3} 0.98297{1} 1.27708{5} 1.62940{7} 

  𝛿 0.10515{3} 0.13505{5} 0.10614{4} 0.13822{6} 0.10436{2} 0.23336{8} 0.09876{1} 0.15138{7} 

20 MSE 𝛽̂ 0.02650{6} 0.02642{5} 0.01761{3} 0.02822{7} 0.01484{1.5} 0.03148{8} 0.01484{1.5} 0.02127{4} 

  𝜆̂ 1.05340{2} 2.23340{6} 1.57119{4} 3.60423{8} 1.23560{3} 0.96623{1} 1.63094{5} 2.65496{7} 

  𝛿 0.64853{3} 0.73498{5} 0.65157{4} 0.74356{6} 0.64610{2} 0.96616{8} 0.62852{1} 0.77815{7} 

 MRE 𝛽̂ 0.65115{6} 0.65020{5} 0.53081{3} 0.67201{7} 0.48723{1} 0.70975{8} 0.48728{2} 0.58331{4} 

  𝜆̂ 0.29324{2} 0.42699{6} 0.35813{4} 0.54242{8} 0.31759{3} 0.28085{1} 0.36488{5} 0.46554{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 33.0{3.5} 48.0{5} 33.0{3.5} 63.0{8} 18.5{1} 51.0{6} 23.5{2} 54.0{7} 

  𝛿 0.26539{6} 0.25563{5} 0.20593{3} 0.26669{7} 0.18851{1} 0.49483{8} 0.20458{2} 0.23977{4} 

 BIAS 𝛽̂ 0.12742{7} 0.09473{5} 0.07337{3} 0.09606{6} 0.06554{1} 0.25000{8} 0.07268{2} 0.07792{4} 

  𝜆̂ 0.31068{1} 0.87506{6} 0.65401{3} 0.93368{7} 0.63524{2} 1.70896{8} 0.70057{4} 0.77199{5} 

  𝛿 0.07043{6} 0.06534{5} 0.04241{3} 0.07112{7} 0.03554{1} 0.24486{8} 0.04185{2} 0.05749{4} 

50 MSE 𝛽̂ 0.01624{7} 0.00897{5} 0.00538{3} 0.00923{6} 0.00429{1} 0.06250{8} 0.00528{2} 0.00607{4} 

  𝜆̂ 0.09652{1} 0.76574{6} 0.42773{3} 0.87176{7} 0.40352{2} 2.92055{8} 0.49080{4} 0.59596{5} 

  𝛿 0.53078{6} 0.51125{5} 0.41186{3} 0.53337{7} 0.37702{1} 0.98966{8} 0.40915{2} 0.47955{4} 

 MRE 𝛽̂ 0.50967{7} 0.37893{5} 0.29349{3} 0.38424{6} 0.26214{1} 1.00000{8} 0.29071{2} 0.31167{4} 

  𝜆̂ 0.08876{1} 0.25002{6} 0.18686{3} 0.26677{7} 0.18150{2} 0.48827{8} 0.20016{4} 0.22057{5} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 42.0{5} 48.0{6} 27.0{3} 60.0{7} 12.0{1} 72.0{8} 24.0{2} 39.0{4} 

  𝛿 0.23814{7} 0.19152{5} 0.14325{2} 0.19335{6} 0.13433{1} 0.50000{8} 0.14782{3} 0.17393{4} 

 BIAS 𝛽̂ 0.12253{7} 0.06875{6} 0.04895{2} 0.06860{5} 0.04607{1} 0.25000{8} 0.05166{3} 0.05613{4} 

  𝜆̂ 0.13396{1} 0.59512{7} 0.43461{2} 0.59336{6} 0.45566{3} 2.33232{8} 0.48957{4} 0.49276{5} 

  𝛿 0.05671{7} 0.03668{5} 0.02052{2} 0.03739{6} 0.01805{1} 0.25000{8} 0.02185{3} 0.03025{4} 

100 MSE 𝛽̂ 0.01501{7} 0.00473{6} 0.00240{2} 0.00471{5} 0.00212{1} 0.06250{8} 0.00267{3} 0.00315{4} 

        Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.01795{1} 0.35416{7} 0.18889{2} 0.35207{6} 0.20762{3} 5.43973{8} 0.23968{4} 0.24281{5} 

  𝛿 0.47627{7} 0.38303{5} 0.28650{2} 0.38671{6} 0.26866{1} 1.00000{8} 0.29563{3} 0.34787{4} 

 MRE 𝛽̂ 0.49013{7} 0.27502{6} 0.19579{2} 0.27439{5} 0.18427{1} 1.00000{8} 0.20663{3} 0.22454{4} 

  𝜆̂ 0.03827{1} 0.17003{7} 0.12417{2} 0.16953{6} 0.13019{3} 0.66638{8} 0.13988{4} 0.14079{5} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 45.0{5} 54.0{7} 18.0{2} 51.0{6} 15.0{1} 72.0{8} 30.0{3} 39.0{4} 

  𝛿 0.16105{7} 0.11059{5} 0.08394{2} 0.11359{6} 0.07800{1} 0.49787{8} 0.08757{3} 0.10016{4} 

 BIAS 𝛽̂ 0.06283{7} 0.03817{5} 0.02859{2} 0.03946{6} 0.02634{1} 0.26436{8} 0.03008{3} 0.03194{4} 

  𝜆̂ 0.09811{1} 0.32542{6} 0.26408{3} 0.33776{7} 0.26030{2} 3.29688{8} 0.27467{4} 0.27699{5} 

  𝛿 0.02594{7} 0.01223{5} 0.00705{2} 0.0129{6} 0.00608{1} 0.24788{8} 0.00767{3} 0.01003{4} 

300 MSE 𝛽̂ 0.00395{7} 0.00146{5} 0.00082{2} 0.00156{6} 0.00069{1} 0.06989{8} 0.0009{3} 0.00102{4} 

  𝜆̂ 0.00963{1} 0.10590{6} 0.06974{3} 0.11408{7} 0.06775{2} 10.86939{8} 0.07544{4} 0.07673{5} 

  𝛿 0.32211{7} 0.22118{5} 0.16788{2} 0.22718{6} 0.15600{1} 0.99575{8} 0.17513{3} 0.20033{4} 

 MRE 𝛽̂ 0.25131{7} 0.15269{5} 0.11437{2} 0.15786{6} 0.10537{1} 1.05746{8} 0.12030{3} 0.12777{4} 

  𝜆̂ 0.02803{1} 0.09298{6} 0.07545{3} 0.09650{7} 0.07437{2} 0.94196{8} 0.07848{4} 0.07914{5} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 45.0{5} 48.0{6} 21.0{2} 57.0{7} 12.0{1} 72.0{8} 30.0{3} 39.0{4} 

  𝛿 0.13682{7} 0.08518{5} 0.06806{2} 0.08903{6} 0.06143{1} 0.49767{8} 0.06854{3} 0.07835{4} 

 BIAS 𝛽̂ 0.04912{7} 0.02897{5} 0.02309{2} 0.03037{6} 0.02041{1} 0.19514{8} 0.02314{3} 0.02444{4} 

  𝜆̂ 0.07977{1} 0.25952{6} 0.19725{2} 0.26898{7} 0.20086{3} 3.31272{8} 0.22096{5} 0.21419{4} 

  𝛿 0.01872{7} 0.00726{5} 0.00463{2} 0.00793{6} 0.00377{1} 0.24768{8} 0.00470{3} 0.00614{4} 

500 MSE 𝛽̂ 0.00241{7} 0.00084{5} 0.00053{2} 0.00092{6} 0.00042{1} 0.03808{8} 0.00054{3} 0.00060{4} 

  𝜆̂ 0.00636{1} 0.06735{6} 0.03891{2} 0.07235{7} 0.04034{3} 10.97413{8} 0.04883{5} 0.04588{4} 

  𝛿 0.27364{7} 0.17036{5} 0.13611{2} 0.17807{6} 0.12285{1} 0.99535{8} 0.13709{3} 0.15669{4} 

 MRE 𝛽̂ 0.19649{7} 0.11589{5} 0.09236{2} 0.12148{6} 0.08166{1} 0.78054{8} 0.09258{3} 0.09775{4} 

  𝜆̂ 0.02279{1} 0.07415{6} 0.05636{2} 0.07685{7} 0.05739{3} 0.94649{8} 0.06313{5} 0.06120{4} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 45.0{5} 48.0{6} 18.0{2} 57.0{7} 15.0{1} 72.0{8} 33.0{3} 36.0{4} 
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Table 5. Results for eight estimators with parameters 𝛿 = 0.5, 𝛽 = 2, and 𝜆 = 1.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 0.33176{3} 0.36562{5} 0.33913{4} 0.37397{6} 0.32582{2} 0.38712{7} 0.32087{1} 0.38878{8} 

 BIAS 𝛽̂ 1.12766{4} 1.27666{6} 1.07109{3} 1.35020{8} 0.96289{2} 1.28521{7} 0.94279{1} 1.17226{5} 

  𝜆̂ 0.86191{4} 0.88497{5} 0.76644{3} 0.99457{8} 0.70889{1} 0.90068{6} 0.74792{2} 0.95949{7} 

  𝛿 0.11007{3} 0.13368{5} 0.11501{4} 0.13985{6} 0.10616{2} 0.14986{7} 0.10296{1} 0.15115{8} 

20 MSE 𝛽̂ 1.27161{4} 1.62986{6} 1.14723{3} 1.82303{8} 0.92715{2} 1.65176{7} 0.88885{1} 1.37420{5} 

  𝜆̂ 0.74288{4} 0.78317{5} 0.58742{3} 0.98917{8} 0.50252{1} 0.81123{6} 0.55939{2} 0.92062{7} 

  𝛿 0.66352{3} 0.73125{5} 0.67827{4} 0.74793{6} 0.65165{2} 0.77425{7} 0.64175{1} 0.77755{8} 

 MRE 𝛽̂ 0.56383{4} 0.63833{6} 0.53555{3} 0.67510{8} 0.48144{2} 0.64260{7} 0.47140{1} 0.58613{5} 

  𝜆̂ 0.57461{4} 0.58998{5} 0.51096{3} 0.66305{8} 0.47259{1} 0.60045{6} 0.49861{2} 0.63966{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 33.0{4} 48.0{5} 30.0{3} 66.0{8} 15.0{2} 60.0{6.5} 12.0{1} 60.0{6.5} 

  𝛿 0.21959{4} 0.24961{6} 0.21918{3} 0.26981{7} 0.19148{1} 0.27897{8} 0.20495{2} 0.24813{5} 

 BIAS 𝛽̂ 0.62370{3} 0.76053{7} 0.62516{4} 0.77811{8} 0.54002{1} 0.73260{6} 0.57135{2} 0.64916{5} 

  𝜆̂ 0.45268{4} 0.48195{5} 0.42714{2} 0.52178{7} 0.39191{1} 0.56415{8} 0.43028{3} 0.51147{6} 

  𝛿 0.04822{4} 0.06230{6} 0.04804{3} 0.07280{7} 0.03666{1} 0.07783{8} 0.04200{2} 0.06157{5} 

50 MSE 𝛽̂ 0.38900{3} 0.57840{7} 0.39083{4} 0.60546{8} 0.29162{1} 0.53670{6} 0.32644{2} 0.42141{5} 

  𝜆̂ 0.20492{4} 0.23227{5} 0.18245{2} 0.27226{7} 0.15360{1} 0.31827{8} 0.18514{3} 0.26160{6} 

  𝛿 0.43918{4} 0.49921{6} 0.43837{3} 0.53963{7} 0.38295{1} 0.55795{8} 0.40990{2} 0.49627{5} 

 MRE 𝛽̂ 0.31185{3} 0.38026{7} 0.31258{4} 0.38906{8} 0.27001{1} 0.36630{6} 0.28568{2} 0.32458{5} 

  𝜆̂ 0.30179{4} 0.32130{5} 0.28476{2} 0.34786{7} 0.26128{1} 0.37610{8} 0.28685{3} 0.34098{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 33.0{4} 54.0{6} 27.0{3} 66.0{7.5} 9.0{1} 66.0{7.5} 21.0{2} 48.0{5} 

  𝛿 0.14671{2} 0.18823{6} 0.15343{4} 0.19493{7} 0.13279{1} 0.21007{8} 0.15276{3} 0.17687{5} 

 BIAS 𝛽̂ 0.39391{2} 0.53496{7} 0.42885{4} 0.55301{8} 0.35810{1} 0.52138{6} 0.41247{3} 0.44862{5} 

  𝜆̂ 0.29759{3} 0.32702{5} 0.27960{2} 0.34665{6} 0.26772{1} 0.39649{8} 0.30125{4} 0.35571{7} 

  𝛿 0.02152{2} 0.03543{6} 0.02354{4} 0.03800{7} 0.01763{1} 0.04413{8} 0.02334{3} 0.03128{5} 

100 MSE 𝛽̂ 0.15516{2} 0.28618{7} 0.18391{4} 0.30582{8} 0.12824{1} 0.27184{6} 0.17013{3} 0.20126{5} 

         Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.08856{3} 0.10694{5} 0.07818{2} 0.12017{6} 0.07167{1} 0.15720{8} 0.09075{4} 0.12653{7} 

  𝛿 0.29341{2} 0.37646{6} 0.30687{4} 0.38987{7} 0.26559{1} 0.42015{8} 0.30552{3} 0.35375{5} 

 MRE 𝛽̂ 0.19695{2} 0.26748{7} 0.21443{4} 0.27650{8} 0.17905{1} 0.26069{6} 0.20623{3} 0.22431{5} 

  𝜆̂ 0.19839{3} 0.21801{5} 0.18640{2} 0.23110{6} 0.17848{1} 0.26433{8} 0.20083{4} 0.23714{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 21.0{2} 54.0{6} 30.0{3.5} 63.0{7} 9.0{1} 66.0{8} 30.0{3.5} 51.0{5} 

  𝛿 0.08098{2} 0.10961{6} 0.08512{3} 0.11525{7} 0.07733{1} 0.12222{8} 0.08977{4} 0.10159{5} 

 BIAS 𝛽̂ 0.21831{2} 0.30112{7} 0.23615{3} 0.31930{8} 0.20764{1} 0.28937{6} 0.24578{4} 0.26022{5} 

  𝜆̂ 0.15901{2} 0.18217{5} 0.16388{3} 0.18257{6} 0.15273{1} 0.22463{8} 0.16393{4} 0.19128{7} 

  𝛿 0.00656{2} 0.01201{6} 0.00725{3} 0.01328{7} 0.00598{1} 0.01494{8} 0.00806{4} 0.01032{5} 

300 MSE 𝛽̂ 0.04766{2} 0.09067{7} 0.05576{3} 0.10195{8} 0.04312{1} 0.08374{6} 0.06041{4} 0.06771{5} 

  𝜆̂ 0.02529{2} 0.03319{5} 0.02686{3} 0.03333{6} 0.02333{1} 0.05046{8} 0.02687{4} 0.03659{7} 

  𝛿 0.16196{2} 0.21922{6} 0.17024{3} 0.23050{7} 0.15466{1} 0.24444{8} 0.17953{4} 0.20317{5} 

 MRE 𝛽̂ 0.10916{2} 0.15056{7} 0.11807{3} 0.15965{8} 0.10382{1} 0.14469{6} 0.12289{4} 0.13011{5} 

  𝜆̂ 0.10601{2} 0.12145{5} 0.10925{3} 0.12171{6} 0.10182{1} 0.14975{8} 0.10929{4} 0.12752{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 54.0{6} 27.0{3} 63.0{7} 9.0{1} 66.0{8} 36.0{4} 51.0{5} 

  𝛿 0.06133{2} 0.08655{6} 0.06579{3} 0.08942{7} 0.05873{1} 0.09305{8} 0.06982{4} 0.07986{5} 

 BIAS 𝛽̂ 0.16505{2} 0.23942{7} 0.17980{3} 0.24405{8} 0.15115{1} 0.21914{6} 0.18812{4} 0.20420{5} 

  𝜆̂ 0.12258{3} 0.14193{5} 0.12071{2} 0.14351{6} 0.11629{1} 0.17353{8} 0.12581{4} 0.14648{7} 

  𝛿 0.00376{2} 0.00749{6} 0.00433{3} 0.00800{7} 0.00345{1} 0.00866{8} 0.00488{4} 0.00638{5} 

500 MSE 𝛽̂ 0.02724{2} 0.05732{7} 0.03233{3} 0.05956{8} 0.02285{1} 0.04802{6} 0.03539{4} 0.04170{5} 

  𝜆̂ 0.01503{3} 0.02014{5} 0.01457{2} 0.02059{6} 0.01352{1} 0.03011{8} 0.01583{4} 0.02146{7} 

  𝛿 0.12266{2} 0.17311{6} 0.13157{3} 0.17883{7} 0.11745{1} 0.18610{8} 0.13965{4} 0.15972{5} 

 MRE 𝛽̂ 0.08253{2} 0.11971{7} 0.08990{3} 0.12203{8} 0.07557{1} 0.10957{6} 0.09406{4} 0.10210{5} 

  𝜆̂ 0.08172{3} 0.09462{5} 0.08047{2} 0.09567{6} 0.07753{1} 0.11568{8} 0.08387{4} 0.09765{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 21.0{2} 54.0{6} 24.0{3} 63.0{7} 9.0{1} 66.0{8} 36.0{4} 51.0{5} 
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Table 6. Results for eight estimators with parameters 𝛿 = 0.5, 𝛽 = 2, and 𝜆 = 3.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 0.33110{3} 0.36615{5} 0.33585{4} 0.37061{6} 0.31868{1} 0.39913{8} 0.32453{2} 0.38922{7} 

 BIAS 𝛽̂ 1.11460{4} 1.27786{6} 1.06641{3} 1.32616{8} 0.95015{2} 1.28377{7} 0.94504{1} 1.17382{5} 

  𝜆̂ 1.55737{5} 1.59665{6} 1.34503{3} 1.91607{8} 1.19054{1} 1.53949{4} 1.23604{2} 1.70187{7} 

  𝛿 0.10963{3} 0.13407{5} 0.11279{4} 0.13735{6} 0.10155{1} 0.15930{8} 0.10532{2} 0.15149{7} 

20 MSE 𝛽̂ 1.24233{4} 1.63291{6} 1.13723{3} 1.75870{8} 0.90278{2} 1.64808{7} 0.89310{1} 1.37786{5} 

  𝜆̂ 2.42540{5} 2.54930{6} 1.80910{3} 3.67132{8} 1.41739{1} 2.37004{4} 1.52779{2} 2.89636{7} 

  𝛿 0.66220{3} 0.73230{5} 0.67170{4} 0.74122{6} 0.63735{1} 0.79825{8} 0.64906{2} 0.77844{7} 

 MRE 𝛽̂ 0.55730{4} 0.63893{6} 0.53320{3} 0.66308{8} 0.47507{2} 0.64189{7} 0.47252{1} 0.58691{5} 

  𝜆̂ 0.44496{5} 0.45619{6} 0.38429{3} 0.54745{8} 0.34016{1} 0.43986{4} 0.35315{2} 0.48625{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 36.0{4} 51.0{5} 30.0{3} 66.0{8} 12.0{1} 57.0{6.5} 15.0{2} 57.0{6.5} 

  𝛿 0.21390{3} 0.26182{6} 0.22139{4} 0.27439{7} 0.19140{1} 0.28679{8} 0.20785{2} 0.24663{5} 

 BIAS 𝛽̂ 0.61150{3} 0.78181{7} 0.64730{4} 0.78486{8} 0.53103{1} 0.76841{6} 0.59128{2} 0.64931{5} 

  𝜆̂ 0.78611{4} 0.86510{7} 0.76550{3} 0.92676{8} 0.68749{1} 0.80892{5} 0.73796{2} 0.81282{6} 

  𝛿 0.04575{3} 0.06855{6} 0.04901{4} 0.07529{7} 0.03664{1} 0.08225{8} 0.04320{2} 0.06082{5} 

50 MSE 𝛽̂ 0.37393{3} 0.61123{7} 0.41900{4} 0.61600{8} 0.28200{1} 0.59046{6} 0.34961{2} 0.42160{5} 

  𝜆̂ 0.61798{4} 0.74840{7} 0.58599{3} 0.85888{8} 0.47264{1} 0.65435{5} 0.54459{2} 0.66068{6} 

  𝛿 0.42780{3} 0.52365{6} 0.44278{4} 0.54878{7} 0.38281{1} 0.57358{8} 0.41571{2} 0.49325{5} 

 MRE 𝛽̂ 0.30575{3} 0.39091{7} 0.32365{4} 0.39243{8} 0.26552{1} 0.38421{6} 0.29564{2} 0.32465{5} 

  𝜆̂ 0.22460{4} 0.24717{7} 0.21871{3} 0.26479{8} 0.19643{1} 0.23112{5} 0.21085{2} 0.23223{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 30.0{3} 60.0{7} 33.0{4} 69.0{8} 9.0{1} 57.0{6} 18.0{2} 48.0{5} 

  𝛿 0.14038{2} 0.19164{6} 0.15667{4} 0.19596{7} 0.13391{1} 0.20535{8} 0.15291{3} 0.17192{5} 

 BIAS 𝛽̂ 0.38434{2} 0.54048{7} 0.42196{4} 0.56208{8} 0.36139{1} 0.51354{6} 0.42009{3} 0.45263{5} 

  𝜆̂ 0.47694{2} 0.58765{7} 0.51182{4} 0.60332{8} 0.45658{1} 0.51860{5} 0.49143{3} 0.53797{6} 

  𝛿 0.01971{2} 0.03672{6} 0.02455{4} 0.03840{7} 0.01793{1} 0.04217{8} 0.02338{3} 0.02956{5} 

100 MSE 𝛽̂ 0.14772{2} 0.29211{7} 0.17805{4} 0.31594{8} 0.13060{1} 0.26372{6} 0.17648{3} 0.20488{5} 

         Continued on next page 



5904 

AIMS Mathematics      Volume 10, Issue 3, 5880–5927. 

 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.22747{2} 0.34533{7} 0.26196{4} 0.36399{8} 0.20847{1} 0.26895{5} 0.24150{3} 0.28941{6} 

  𝛿 0.28075{2} 0.38327{6} 0.31335{4} 0.39192{7} 0.26781{1} 0.41070{8} 0.30583{3} 0.34385{5} 

 MRE 𝛽̂ 0.19217{2} 0.27024{7} 0.21098{4} 0.28104{8} 0.18069{1} 0.25677{6} 0.21004{3} 0.22632{5} 

  𝜆̂ 0.13627{2} 0.16790{7} 0.14623{4} 0.17238{8} 0.13045{1} 0.14817{5} 0.14041{3} 0.15371{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 60.0{7} 36.0{4} 69.0{8} 9.0{1} 57.0{6} 27.0{3} 48.0{5} 

  𝛿 0.07851{1} 0.11388{6} 0.08746{3} 0.11416{7} 0.08299{2} 0.12225{8} 0.09006{4} 0.10489{5} 

 BIAS 𝛽̂ 0.20925{1} 0.31575{7} 0.23592{3} 0.31907{8} 0.22303{2} 0.28419{6} 0.24085{4} 0.26648{5} 

  𝜆̂ 0.26941{2} 0.33461{8} 0.27809{4} 0.33184{7} 0.24439{1} 0.27271{3} 0.28243{5} 0.29963{6} 

  𝛿 0.00616{1} 0.01297{6} 0.00765{3} 0.01303{7} 0.00689{2} 0.01495{8} 0.00811{4} 0.01100{5} 

300 MSE 𝛽̂ 0.04379{1} 0.09970{7} 0.05566{3} 0.10180{8} 0.04974{2} 0.08077{6} 0.05801{4} 0.07101{5} 

  𝜆̂ 0.07258{2} 0.11196{8} 0.07733{4} 0.11012{7} 0.05973{1} 0.07437{3} 0.07977{5} 0.08978{6} 

  𝛿 0.15702{1} 0.22776{6} 0.17492{3} 0.22833{7} 0.16597{2} 0.24450{8} 0.18013{4} 0.20979{5} 

 MRE 𝛽̂ 0.10463{1} 0.15787{7} 0.11796{3} 0.15953{8} 0.11152{2} 0.14210{6} 0.12042{4} 0.13324{5} 

  𝜆̂ 0.07697{2} 0.09560{8} 0.07945{4} 0.09481{7} 0.06983{1} 0.07792{3} 0.08069{5} 0.08561{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 12.0{1} 63.0{7} 30.0{3} 66.0{8} 15.0{2} 51.0{6} 39.0{4} 48.0{5} 

  𝛿 0.06024{1} 0.08637{7} 0.06664{3} 0.08502{6} 0.06628{2} 0.09635{8} 0.06819{4} 0.07999{5} 

 BIAS 𝛽̂ 0.16078{1} 0.24082{7} 0.18266{3} 0.24124{8} 0.17382{2} 0.22598{6} 0.18545{4} 0.20491{5} 

  𝜆̂ 0.20606{2} 0.26665{8} 0.22231{5} 0.26483{7} 0.18095{1} 0.21196{3} 0.22040{4} 0.22496{6} 

  𝛿 0.00363{1} 0.00746{7} 0.00444{3} 0.00723{6} 0.00439{2} 0.00928{8} 0.00465{4} 0.00640{5} 

500 MSE 𝛽̂ 0.02585{1} 0.05800{7} 0.03337{3} 0.05820{8} 0.03021{2} 0.05107{6} 0.03439{4} 0.04199{5} 

  𝜆̂ 0.04246{2} 0.07110{8} 0.04942{5} 0.07014{7} 0.03274{1} 0.04493{3} 0.04858{4} 0.05061{6} 

  𝛿 0.12048{1} 0.17273{7} 0.13328{3} 0.17003{6} 0.13257{2} 0.19270{8} 0.13637{4} 0.15997{5} 

 MRE 𝛽̂ 0.08039{1} 0.12041{7} 0.09133{3} 0.12062{8} 0.08691{2} 0.11299{6} 0.09272{4} 0.10245{5} 

  𝜆̂ 0.05887{2} 0.07619{8} 0.06352{5} 0.07567{7} 0.05170{1} 0.06056{3} 0.06297{4} 0.06427{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 12.0{1} 66.0{8} 33.0{3} 63.0{7} 15.0{2} 51.0{6} 36.0{4} 48.0{5} 
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Table 7. Results for eight estimators with parameters 𝛿 = 1.5, 𝛽 = 0.25, and 𝜆 = 1.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 1.22185{4} 1.30796{5} 1.18799{3} 1.33931{6} 1.11412{1} 1.45636{8} 1.13362{2} 1.36998{7} 

 BIAS 𝛽̂ 0.12675{1} 0.17951{6} 0.15149{4} 0.18035{7} 0.12973{3} 0.19587{8} 0.12793{2} 0.16035{5} 

  𝜆̂ 0.94495{3} 1.13870{5} 0.96082{4} 1.15670{6} 0.88794{1} 1.49717{8} 0.89346{2} 1.21562{7} 

  𝛿 1.49293{4} 1.71077{5} 1.41132{3} 1.79374{6} 1.24126{1} 2.12099{8} 1.28510{2} 1.87684{7} 

20 MSE 𝛽̂ 0.01607{1} 0.03223{6} 0.02295{4} 0.03253{7} 0.01683{3} 0.03837{8} 0.01637{2} 0.02571{5} 

  𝜆̂ 0.89294{3} 1.29664{5} 0.92317{4} 1.33795{6} 0.78844{1} 2.24151{8} 0.79826{2} 1.47773{7} 

  𝛿 0.81457{4} 0.87198{5} 0.79199{3} 0.89287{6} 0.74275{1} 0.97091{8} 0.75575{2} 0.91332{7} 

 MRE 𝛽̂ 0.50700{1} 0.71806{6} 0.60596{4} 0.72140{7} 0.51892{3} 0.78348{8} 0.51172{2} 0.64141{5} 

  𝜆̂ 0.62997{3} 0.75913{5} 0.64055{4} 0.77113{6} 0.59196{1} 0.99811{8} 0.59564{2} 0.81041{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 24.0{3} 48.0{5} 33.0{4} 57.0{6.5} 15.0{1} 72.0{8} 18.0{2} 57.0{6.5} 

  𝛿 0.79315{2} 0.99146{5} 0.84310{4} 1.01743{7} 0.72849{1} 1.46287{8} 0.80972{3} 0.99359{6} 

 BIAS 𝛽̂ 0.07620{2} 0.11078{6} 0.08734{4} 0.11296{7} 0.06930{1} 0.18453{8} 0.07794{3} 0.09839{5} 

  𝜆̂ 0.54797{2} 0.71063{6} 0.57525{4} 0.70987{5} 0.50083{1} 1.49746{8} 0.55093{3} 0.72034{7} 

  𝛿 0.62908{2} 0.98300{5} 0.71082{4} 1.03516{7} 0.53070{1} 2.13998{8} 0.65565{3} 0.98721{6} 

50 MSE 𝛽̂ 0.00581{2} 0.01227{6} 0.00763{4} 0.01276{7} 0.00480{1} 0.03405{8} 0.00607{3} 0.00968{5} 

  𝜆̂ 0.30027{2} 0.50499{6} 0.33091{4} 0.50392{5} 0.25083{1} 2.24238{8} 0.30352{3} 0.51889{7} 

  𝛿 0.52876{2} 0.66097{5} 0.56207{4} 0.67829{7} 0.48566{1} 0.97524{8} 0.53982{3} 0.66239{6} 

 MRE 𝛽̂ 0.30480{2} 0.44310{6} 0.34938{4} 0.45185{7} 0.27722{1} 0.73812{8} 0.31176{3} 0.39356{5} 

  𝜆̂ 0.36531{2} 0.47375{6} 0.38350{4} 0.47325{5} 0.33389{1} 0.99831{8} 0.36729{3} 0.48022{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 51.0{5} 36.0{4} 57.0{7} 9.0{1} 72.0{8} 27.0{3} 54.0{6} 

  𝛿 0.55352{2} 0.79898{7} 0.61847{4} 0.79686{6} 0.53296{1} 1.46195{8} 0.60399{3} 0.77763{5} 

 BIAS 𝛽̂ 0.05036{2} 0.07948{7} 0.05744{4} 0.07839{6} 0.04670{1} 0.18270{8} 0.05485{3} 0.06844{5} 

  𝜆̂ 0.35861{2} 0.51616{6} 0.39537{4} 0.52199{7} 0.33928{1} 1.49165{8} 0.38740{3} 0.51469{5} 

  𝛿 0.30638{2} 0.63837{7} 0.38250{4} 0.63499{6} 0.28404{1} 2.13729{8} 0.36481{3} 0.60470{5} 

100 MSE 𝛽̂ 0.00254{2} 0.00632{7} 0.00330{4} 0.00615{6} 0.00218{1} 0.03338{8} 0.00301{3} 0.00468{5} 

         Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.12860{2} 0.26642{6} 0.15632{4} 0.27248{7} 0.11511{1} 2.22502{8} 0.15008{3} 0.26490{5} 

  𝛿 0.36901{2} 0.53266{7} 0.41231{4} 0.53124{6} 0.35530{1} 0.97463{8} 0.40266{3} 0.51842{5} 

 MRE 𝛽̂ 0.20143{2} 0.31790{7} 0.22975{4} 0.31356{6} 0.18681{1} 0.73078{8} 0.21941{3} 0.27376{5} 

  𝜆̂ 0.23907{2} 0.34411{6} 0.26358{4} 0.34800{7} 0.22619{1} 0.99443{8} 0.25827{3} 0.34313{5} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 60.0{7} 36.0{4} 57.0{6} 9.0{1} 72.0{8} 27.0{3} 45.0{5} 

  𝛿 0.29712{1} 0.48781{7} 0.35956{3} 0.48497{6} 0.30236{2} 1.41996{8} 0.36469{4} 0.47766{5} 

 BIAS 𝛽̂ 0.02561{2} 0.04395{7} 0.03174{4} 0.04365{6} 0.02442{1} 0.16410{8} 0.03163{3} 0.03873{5} 

  𝜆̂ 0.18604{1} 0.29854{6} 0.22010{3} 0.28985{5} 0.18861{2} 1.38022{8} 0.22173{4} 0.29943{7} 

  𝛿 0.08828{1} 0.23796{7} 0.12929{3} 0.23520{6} 0.09142{2} 2.01629{8} 0.13300{4} 0.22816{5} 

300 MSE 𝛽̂ 0.00066{2} 0.00193{7} 0.00101{4} 0.00191{6} 0.00060{1} 0.02693{8} 0.00100{3} 0.00150{5} 

  𝜆̂ 0.03461{1} 0.08912{6} 0.04845{3} 0.08401{5} 0.03557{2} 1.90500{8} 0.04917{4} 0.08966{7} 

  𝛿 0.19808{1} 0.32521{7} 0.23971{3} 0.32331{6} 0.20157{2} 0.94664{8} 0.24313{4} 0.31844{5} 

 MRE 𝛽̂ 0.10244{2} 0.17578{7} 0.12698{4} 0.17461{6} 0.09767{1} 0.65638{8} 0.12653{3} 0.15491{5} 

  𝜆̂ 0.12403{1} 0.19902{6} 0.14674{3} 0.19323{5} 0.12574{2} 0.92015{8} 0.14782{4} 0.19962{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 12.0{1} 60.0{7} 30.0{3} 51.0{5.5} 15.0{2} 72.0{8} 33.0{4} 51.0{5.5} 

  𝛿 0.25086{2} 0.38648{6} 0.28600{3} 0.38981{7} 0.07680{1} 1.39954{8} 0.29130{4} 0.36782{5} 

 BIAS 𝛽̂ 0.02112{2} 0.03402{7} 0.02419{3} 0.03401{6} 0.01531{1} 0.15183{8} 0.02464{4} 0.02929{5} 

  𝜆̂ 0.15715{2} 0.22582{6} 0.17344{3} 0.22961{7} 0.10142{1} 1.32012{8} 0.17784{4} 0.22455{5} 

  𝛿 0.06293{2} 0.14937{6} 0.08180{3} 0.15195{7} 0.00590{1} 1.95872{8} 0.08486{4} 0.13529{5} 

500 MSE 𝛽̂ 0.00045{2} 0.00116{6.5} 0.00059{3} 0.00116{6.5} 0.00023{1} 0.02305{8} 0.00061{4} 0.00086{5} 

  𝜆̂ 0.02470{2} 0.05100{6} 0.03008{3} 0.05272{7} 0.01029{1} 1.74272{8} 0.03163{4} 0.05042{5} 

  𝛿 0.16724{2} 0.25766{6} 0.19067{3} 0.25987{7} 0.05120{1} 0.93303{8} 0.19420{4} 0.24521{5} 

 MRE 𝛽̂ 0.08448{2} 0.13606{7} 0.09677{3} 0.13603{6} 0.06123{1} 0.60731{8} 0.09858{4} 0.11714{5} 

  𝜆̂ 0.10477{2} 0.15055{6} 0.11562{3} 0.15307{7} 0.06761{1} 0.88008{8} 0.11856{4} 0.14970{5} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 56.5{6} 27.0{3} 60.5{7} 9.0{1} 72.0{8} 36.0{4} 45.0{5} 
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Table 8. Results for eight estimators with parameters 𝛿 = 1.5, 𝛽 = 0.25, and 𝜆 = 3.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 1.22894{4} 1.28950{5} 1.18086{3} 1.33073{7} 1.07161{1} 1.46572{8} 1.13889{2} 1.32101{6} 

 BIAS 𝛽̂ 0.12828{2} 0.17671{7} 0.15224{4} 0.17548{6} 0.12637{1} 0.25000{8} 0.13350{3} 0.15810{5} 

  𝜆̂ 1.39638{4} 1.74017{7} 1.43119{5} 1.95764{8} 1.18946{1} 1.36218{3} 1.33183{2} 1.70681{6} 

  𝛿 1.51029{4} 1.66282{5} 1.39442{3} 1.77085{7} 1.14834{1} 2.14833{8} 1.29707{2} 1.74507{6} 

20 MSE 𝛽̂ 0.01645{2} 0.03123{7} 0.02318{4} 0.03079{6} 0.01597{1} 0.06250{8} 0.01782{3} 0.02500{5} 

  𝜆̂ 1.94988{4} 3.02819{7} 2.04831{5} 3.83234{8} 1.41481{1} 1.85553{3} 1.77378{2} 2.91320{6} 

  𝛿 0.81929{4} 0.85967{5} 0.78724{3} 0.88716{7} 0.71440{1} 0.97715{8} 0.75926{2} 0.88067{6} 

 MRE 𝛽̂ 0.51311{2} 0.70683{7} 0.60895{4} 0.70191{6} 0.50547{1} 1.00000{8} 0.53399{3} 0.63242{5} 

  𝜆̂ 0.39897{4} 0.49719{7} 0.40891{5} 0.55932{8} 0.33985{1} 0.38919{3} 0.38052{2} 0.48766{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 30.0{3} 57.0{6.5} 36.0{4} 63.0{8} 9.0{1} 57.0{6.5} 21.0{2} 51.0{5} 

  𝛿 0.77632{2} 1.00262{6} 0.83470{4} 0.99986{5} 0.74758{1} 1.49055{8} 0.80751{3} 1.00385{7} 

 BIAS 𝛽̂ 0.07277{2} 0.11010{6} 0.08714{4} 0.11377{7} 0.06972{1} 0.25000{8} 0.07820{3} 0.09997{5} 

  𝜆̂ 0.64433{2} 0.84802{5} 0.70844{4} 0.93484{7} 0.61040{1} 3.02012{8} 0.67029{3} 0.85822{6} 

  𝛿 0.60268{2} 1.00524{6} 0.69673{4} 0.99972{5} 0.55887{1} 2.22174{8} 0.65208{3} 1.00772{7} 

50 MSE 𝛽̂ 0.00530{2} 0.01212{6} 0.00759{4} 0.01294{7} 0.00486{1} 0.06250{8} 0.00612{3} 0.00999{5} 

  𝜆̂ 0.41517{2} 0.71914{5} 0.50188{4} 0.87393{7} 0.37259{1} 9.12110{8} 0.44929{3} 0.73654{6} 

  𝛿 0.51755{2} 0.66841{6} 0.55647{4} 0.66657{5} 0.49838{1} 0.99370{8} 0.53834{3} 0.66924{7} 

 MRE 𝛽̂ 0.29110{2} 0.44040{6} 0.34855{4} 0.45506{7} 0.27886{1} 1.00000{8} 0.31281{3} 0.39987{5} 

  𝜆̂ 0.18410{2} 0.24229{5} 0.20241{4} 0.26710{7} 0.17440{1} 0.86289{8} 0.19151{3} 0.24521{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 51.0{5} 36.0{4} 57.0{7} 9.0{1} 72.0{8} 27.0{3} 54.0{6} 

  𝛿 0.52877{2} 0.75982{5} 0.61324{4} 0.79300{7} 0.50211{1} 1.49311{8} 0.59239{3} 0.76087{6} 

 BIAS 𝛽̂ 0.04745{2} 0.07544{6} 0.05512{4} 0.07800{7} 0.04411{1} 0.24115{8} 0.05318{3} 0.06564{5} 

  𝜆̂ 0.41302{2} 0.54237{5} 0.44237{4} 0.55690{7} 0.40469{1} 3.40952{8} 0.43465{3} 0.54540{6} 

  𝛿 0.27959{2} 0.57732{5} 0.37606{4} 0.62885{7} 0.25211{1} 2.22937{8} 0.35092{3} 0.57892{6} 

100 MSE 𝛽̂ 0.00225{2} 0.00569{6} 0.00304{4} 0.00608{7} 0.00195{1} 0.05816{8} 0.00283{3} 0.00431{5} 

         Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.17058{2} 0.29416{5} 0.19569{4} 0.31014{7} 0.16378{1} 11.62479{8} 0.18892{3} 0.29747{6} 

  𝛿 0.35251{2} 0.50654{5} 0.40883{4} 0.52867{7} 0.33474{1} 0.99540{8} 0.39493{3} 0.50724{6} 

 MRE 𝛽̂ 0.18979{2} 0.30177{6} 0.22048{4} 0.31201{7} 0.17643{1} 0.96461{8} 0.21274{3} 0.26254{5} 

  𝜆̂ 0.11800{2} 0.15496{5} 0.12639{4} 0.15912{7} 0.11563{1} 0.97415{8} 0.12419{3} 0.15583{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 48.0{5} 36.0{4} 63.0{7} 9.0{1} 72.0{8} 27.0{3} 51.0{6} 

  𝛿 0.30459{2} 0.47883{6} 0.34599{3} 0.49318{7} 0.26509{1} 1.49412{8} 0.36119{4} 0.47006{5} 

 BIAS 𝛽̂ 0.02610{2} 0.04267{6} 0.03044{3} 0.04300{7} 0.02472{1} 0.19207{8} 0.03073{4} 0.03788{5} 

  𝜆̂ 0.22180{2} 0.28352{5} 0.23322{3} 0.29399{6} 0.21278{1} 3.31702{8} 0.24050{4} 0.29989{7} 

  𝛿 0.09277{2} 0.22927{6} 0.11971{3} 0.24323{7} 0.07027{1} 2.23239{8} 0.13046{4} 0.22096{5} 

300 MSE 𝛽̂ 0.00068{2} 0.00182{6} 0.00093{3} 0.00185{7} 0.00061{1} 0.03689{8} 0.00094{4} 0.00143{5} 

  𝜆̂ 0.04919{2} 0.08038{5} 0.05439{3} 0.08643{6} 0.04528{1} 11.00263{8} 0.05784{4} 0.08994{7} 

  𝛿 0.20306{2} 0.31922{6} 0.23066{3} 0.32879{7} 0.17673{1} 0.99608{8} 0.24079{4} 0.31337{5} 

 MRE 𝛽̂ 0.10439{2} 0.17067{6} 0.12174{3} 0.17200{7} 0.09888{1} 0.76827{8} 0.12292{4} 0.15151{5} 

  𝜆̂ 0.06337{2} 0.08101{5} 0.06663{3} 0.08400{6} 0.06080{1} 0.94772{8} 0.06872{4} 0.08568{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 51.0{5.5} 27.0{3} 60.0{7} 9.0{1} 72.0{8} 36.0{4} 51.0{5.5} 

  𝛿 0.23897{2} 0.38214{7} 0.25570{3} 0.37845{6} 0.16914{1} 1.48632{8} 0.28414{4} 0.37467{5} 

 BIAS 𝛽̂ 0.01978{2} 0.03282{7} 0.02240{3} 0.03281{6} 0.01819{1} 0.18313{8} 0.02426{4} 0.03009{5} 

  𝜆̂ 0.16576{2} 0.21315{6} 0.17902{3} 0.20973{5} 0.16236{1} 3.09819{8} 0.18473{4} 0.23445{7} 

  𝛿 0.05711{2} 0.14603{7} 0.06538{3} 0.14322{6} 0.02861{1} 2.20913{8} 0.08074{4} 0.14037{5} 

500 MSE 𝛽̂ 0.00039{2} 0.00108{6.5} 0.00050{3} 0.00108{6.5} 0.00033{1} 0.03354{8} 0.00059{4} 0.00091{5} 

  𝜆̂ 0.02748{2} 0.04543{6} 0.03205{3} 0.04399{5} 0.02636{1} 9.59881{8} 0.03413{4} 0.05496{7} 

  𝛿 0.15931{2} 0.25476{7} 0.17047{3} 0.25230{6} 0.11276{1} 0.99088{8} 0.18943{4} 0.24978{5} 

 MRE 𝛽̂ 0.07914{2} 0.13129{7} 0.08961{3} 0.13125{6} 0.07275{1} 0.73250{8} 0.09705{4} 0.12037{5} 

  𝜆̂ 0.04736{2} 0.06090{6} 0.05115{3} 0.05992{5} 0.04639{1} 0.88520{8} 0.05278{4} 0.06698{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 59.5{7} 27.0{3} 51.5{6} 9.0{1} 72.0{8} 36.0{4} 51.0{5} 
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Table 9. Results for eight estimators with parameters 𝛿 = 1.5, 𝛽 = 2, and 𝜆 = 1.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 1.21790{4} 1.30887{6} 1.21865{5} 1.34306{7} 1.11438{1} 1.21283{3} 1.17647{2} 1.35914{8} 

 BIAS 𝛽̂ 1.05826{2} 1.39100{7} 1.23608{5} 1.44930{8} 1.03052{1} 1.18538{4} 1.06741{3} 1.27677{6} 

  𝜆̂ 0.93963{2} 1.12156{6} 0.98145{4} 1.15279{7} 0.87281{1} 1.02784{5} 0.94055{3} 1.17198{8} 

  𝛿 1.48329{4} 1.71313{6} 1.48511{5} 1.80380{7} 1.24185{1} 1.47095{3} 1.38408{2} 1.84725{8} 

20 MSE 𝛽̂ 1.11992{2} 1.93489{7} 1.52788{5} 2.10047{8} 1.06198{1} 1.40512{4} 1.13937{3} 1.63014{6} 

  𝜆̂ 0.88290{2} 1.25789{6} 0.96325{4} 1.32892{7} 0.76181{1} 1.05646{5} 0.88463{3} 1.37353{8} 

  𝛿 0.81194{4} 0.87258{6} 0.81243{5} 0.89537{7} 0.74292{1} 0.80855{3} 0.78431{2} 0.90609{8} 

 MRE 𝛽̂ 0.52913{2} 0.69550{7} 0.61804{5} 0.72465{8} 0.51526{1} 0.59269{4} 0.53371{3} 0.63839{6} 

  𝜆̂ 0.62642{2} 0.74771{6} 0.65430{4} 0.76853{7} 0.58188{1} 0.68523{5} 0.62703{3} 0.78132{8} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 24.0{2.5} 57.0{6} 42.0{5} 66.0{7.5} 9.0{1} 36.0{4} 24.0{2.5} 66.0{7.5} 

  𝛿 0.79539{3} 1.00353{6} 0.85786{4} 1.01445{7} 0.75478{1} 0.91041{5} 0.79011{2} 1.01556{8} 

 BIAS 𝛽̂ 0.59966{2} 0.90678{7} 0.70921{4} 0.91942{8} 0.56750{1} 0.72809{5} 0.62593{3} 0.77242{6} 

  𝜆̂ 0.53020{2} 0.72106{6} 0.59163{4} 0.72648{7} 0.52005{1} 0.64409{5} 0.54187{3} 0.75003{8} 

  𝛿 0.63265{3} 1.00707{6} 0.73592{4} 1.02910{7} 0.56970{1} 0.82884{5} 0.62427{2} 1.03136{8} 

50 MSE 𝛽̂ 0.35960{2} 0.82226{7} 0.50298{4} 0.84533{8} 0.32206{1} 0.53012{5} 0.39178{3} 0.59663{6} 

  𝜆̂ 0.28111{2} 0.51992{6} 0.35002{4} 0.52777{7} 0.27045{1} 0.41485{5} 0.29363{3} 0.56255{8} 

  𝛿 0.53026{3} 0.66902{6} 0.57190{4} 0.67630{7} 0.50319{1} 0.60694{5} 0.52674{2} 0.67704{8} 

 MRE 𝛽̂ 0.29983{2} 0.45339{7} 0.35461{4} 0.45971{8} 0.28375{1} 0.36405{5} 0.31296{3} 0.38621{6} 

  𝜆̂ 0.35347{2} 0.48070{6} 0.39442{4} 0.48432{7} 0.34670{1} 0.42939{5} 0.36125{3} 0.50002{8} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 21.0{2} 57.0{6} 36.0{4} 66.0{7.5} 9.0{1} 45.0{5} 24.0{3} 66.0{7.5} 

  𝛿 0.56242{2} 0.77628{6} 0.61241{4} 0.80807{8} 0.54109{1} 0.68672{5} 0.59950{3} 0.77986{7} 

 BIAS 𝛽̂ 0.39983{2} 0.61330{7} 0.43840{4} 0.63189{8} 0.38098{1} 0.49069{5} 0.43820{3} 0.56198{6} 

  𝜆̂ 0.36312{2} 0.49911{6} 0.38759{4} 0.52894{8} 0.35611{1} 0.45134{5} 0.38358{3} 0.52830{7} 

  𝛿 0.31631{2} 0.60261{6} 0.37505{4} 0.65298{8} 0.29278{1} 0.47158{5} 0.35940{3} 0.60819{7} 

100 MSE 𝛽̂ 0.15986{2} 0.37613{7} 0.19220{4} 0.39929{8} 0.14515{1} 0.24078{5} 0.19202{3} 0.31582{6} 

         Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.13185{2} 0.24911{6} 0.15023{4} 0.27978{8} 0.12682{1} 0.20370{5} 0.14714{3} 0.27910{7} 

  𝛿 0.37494{2} 0.51752{6} 0.40827{4} 0.53871{8} 0.36073{1} 0.45781{5} 0.39966{3} 0.51991{7} 

 MRE 𝛽̂ 0.19991{2} 0.30665{7} 0.21920{4} 0.31595{8} 0.19049{1} 0.24535{5} 0.21910{3} 0.28099{6} 

  𝜆̂ 0.24208{2} 0.33274{6} 0.25839{4} 0.35263{8} 0.23741{1} 0.30089{5} 0.25572{3} 0.35220{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 57.0{6} 36.0{4} 72.0{8} 9.0{1} 45.0{5} 27.0{3} 60.0{7} 

  𝛿 0.32323{2} 0.49569{8} 0.36255{4} 0.48956{7} 0.30782{1} 0.41508{5} 0.35994{3} 0.48713{6} 

 BIAS 𝛽̂ 0.22461{2} 0.35416{7} 0.25156{3} 0.35426{8} 0.19092{1} 0.27075{5} 0.25279{4} 0.31981{6} 

  𝜆̂ 0.20246{2} 0.30157{7} 0.21812{3} 0.29793{6} 0.17845{1} 0.25460{5} 0.22575{4} 0.30237{8} 

  𝛿 0.10448{2} 0.24571{8} 0.13144{4} 0.23967{7} 0.09475{1} 0.17229{5} 0.12955{3} 0.23729{6} 

300 MSE 𝛽̂ 0.05045{2} 0.12543{7} 0.06328{3} 0.12550{8} 0.03645{1} 0.07331{5} 0.06390{4} 0.10228{6} 

  𝜆̂ 0.04099{2} 0.09095{7} 0.04757{3} 0.08876{6} 0.03184{1} 0.06482{5} 0.05096{4} 0.09143{8} 

  𝛿 0.21549{2} 0.33046{8} 0.24170{4} 0.32637{7} 0.20521{1} 0.27672{5} 0.23996{3} 0.32475{6} 

 MRE 𝛽̂ 0.11231{2} 0.17708{7} 0.12578{3} 0.17713{8} 0.09546{1} 0.13538{5} 0.12640{4} 0.15991{6} 

  𝜆̂ 0.13497{2} 0.20105{7} 0.14541{3} 0.19862{6} 0.11897{1} 0.16974{5} 0.15050{4} 0.20158{8} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 66.0{8} 30.0{3} 63.0{7} 9.0{1} 45.0{5} 33.0{4} 60.0{6} 

  𝛿 0.24699{2} 0.39408{8} 0.27937{3} 0.38856{7} 0.06292{1} 0.32464{5} 0.29210{4} 0.36675{6} 

 BIAS 𝛽̂ 0.16520{2} 0.27112{8} 0.18661{3} 0.26750{7} 0.10938{1} 0.20723{5} 0.20130{4} 0.23228{6} 

  𝜆̂ 0.15305{2} 0.23378{8} 0.16744{3} 0.22923{7} 0.10184{1} 0.20077{5} 0.17960{4} 0.22513{6} 

  𝛿 0.06100{2} 0.15530{8} 0.07805{3} 0.15098{7} 0.00396{1} 0.10539{5} 0.08532{4} 0.13450{6} 

500 MSE 𝛽̂ 0.02729{2} 0.07350{8} 0.03482{3} 0.07155{7} 0.01196{1} 0.04295{5} 0.04052{4} 0.05395{6} 

  𝜆̂ 0.02343{2} 0.05465{8} 0.02804{3} 0.05255{7} 0.01037{1} 0.04031{5} 0.03226{4} 0.05068{6} 

  𝛿 0.16466{2} 0.26272{8} 0.18625{3} 0.25904{7} 0.04195{1} 0.21643{5} 0.19473{4} 0.24450{6} 

 MRE 𝛽̂ 0.08260{2} 0.13556{8} 0.09331{3} 0.13375{7} 0.05469{1} 0.10362{5} 0.10065{4} 0.11614{6} 

  𝜆̂ 0.10203{2} 0.15585{8} 0.11163{3} 0.15282{7} 0.06789{1} 0.13385{5} 0.11973{4} 0.15008{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 72.0{8} 27.0{3} 63.0{7} 9.0{1} 45.0{5} 36.0{4} 54.0{6} 
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Table 10. Results for eight estimators with parameters 𝛿 = 1.5, 𝛽 = 2, and 𝜆 = 3.5. 

𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝛿 1.23462{5} 1.31283{7} 1.20528{3} 1.31253{6} 1.10360{1} 1.22863{4} 1.14760{2} 1.36649{8} 

 BIAS 𝛽̂ 1.05009{3} 1.40142{7} 1.24705{5} 1.42459{8} 1.02087{1} 1.20712{4} 1.04620{2} 1.28075{6} 

  𝜆̂ 1.50774{5} 1.68716{6} 1.45155{4} 2.02470{8} 1.20515{1} 1.41364{3} 1.31014{2} 1.72834{7} 

  𝛿 1.52429{5} 1.72353{7} 1.45270{3} 1.72274{6} 1.21793{1} 1.50952{4} 1.31698{2} 1.86730{8} 

20 MSE 𝛽̂ 1.10269{3} 1.96399{7} 1.55514{5} 2.02944{8} 1.04218{1} 1.45713{4} 1.09454{2} 1.64033{6} 

  𝜆̂ 2.27328{5} 2.84649{6} 2.10700{4} 4.09940{8} 1.45239{1} 1.99839{3} 1.71647{2} 2.98715{7} 

  𝛿 0.82308{5} 0.87522{7} 0.80352{3} 0.87502{6} 0.73573{1} 0.81908{4} 0.76507{2} 0.91099{8} 

 MRE 𝛽̂ 0.52504{3} 0.70071{7} 0.62353{5} 0.71229{8} 0.51044{1} 0.60356{4} 0.52310{2} 0.64038{6} 

  𝜆̂ 0.43078{5} 0.48204{6} 0.41473{4} 0.57848{8} 0.34433{1} 0.40390{3} 0.37433{2} 0.49381{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 39.0{5} 60.0{6} 36.0{4} 66.0{8} 9.0{1} 33.0{3} 18.0{2} 63.0{7} 

  𝛿 0.80023{2} 0.99949{7} 0.86165{4} 1.00938{8} 0.75322{1} 0.92477{5} 0.80210{3} 0.97979{6} 

 BIAS 𝛽̂ 0.60978{2} 0.90738{8} 0.71608{4} 0.89419{7} 0.56524{1} 0.73706{5} 0.62063{3} 0.75250{6} 

  𝜆̂ 0.68845{3} 0.85525{7} 0.71642{4} 0.92531{8} 0.62309{1} 0.72238{5} 0.66644{2} 0.85091{6} 

  𝛿 0.64037{2} 0.99899{7} 0.74245{4} 1.01885{8} 0.56734{1} 0.85521{5} 0.64336{3} 0.95999{6} 

50 MSE 𝛽̂ 0.37183{2} 0.82334{8} 0.51277{4} 0.79957{7} 0.31950{1} 0.54325{5} 0.38519{3} 0.56626{6} 

  𝜆̂ 0.47397{3} 0.73146{7} 0.51326{4} 0.85620{8} 0.38824{1} 0.52183{5} 0.44414{2} 0.72404{6} 

  𝛿 0.53349{2} 0.66633{7} 0.57444{4} 0.67292{8} 0.50215{1} 0.61652{5} 0.53473{3} 0.65319{6} 

 MRE 𝛽̂ 0.30489{2} 0.45369{8} 0.35804{4} 0.44709{7} 0.28262{1} 0.36853{5} 0.31032{3} 0.37625{6} 

  𝜆̂ 0.19670{3} 0.24436{7} 0.20469{4} 0.26437{8} 0.17803{1} 0.20639{5} 0.19041{2} 0.24312{6} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 21.0{2} 66.0{7} 36.0{4} 69.0{8} 9.0{1} 45.0{5} 24.0{3} 54.0{6} 

  𝛿 0.55451{2} 0.78491{8} 0.64174{4} 0.77990{6} 0.53134{1} 0.70296{5} 0.62483{3} 0.78258{7} 

 BIAS 𝛽̂ 0.39869{2} 0.61053{7} 0.46633{4} 0.61217{8} 0.37452{1} 0.50410{5} 0.46542{3} 0.55297{6} 

  𝜆̂ 0.42451{2} 0.53326{6} 0.45485{3} 0.57349{8} 0.40630{1} 0.49665{5} 0.45643{4} 0.56196{7} 

  𝛿 0.30748{2} 0.61608{8} 0.41183{4} 0.60824{6} 0.28232{1} 0.49416{5} 0.39041{3} 0.61243{7} 

100 MSE 𝛽̂ 0.15895{2} 0.37274{7} 0.21747{4} 0.37475{8} 0.14027{1} 0.25412{5} 0.21662{3} 0.30578{6} 

         Continued on next page 
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𝑛 Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs 

  𝜆̂ 0.18021{2} 0.28437{6} 0.20689{3} 0.32889{8} 0.16508{1} 0.24667{5} 0.20833{4} 0.31580{7} 

  𝛿 0.36967{2} 0.52327{8} 0.42783{4} 0.51993{6} 0.35423{1} 0.46864{5} 0.41655{3} 0.52172{7} 

 MRE 𝛽̂ 0.19934{2} 0.30526{7} 0.23317{4} 0.30608{8} 0.18726{1} 0.25205{5} 0.23271{3} 0.27649{6} 

  𝜆̂ 0.12129{2} 0.15236{6} 0.12996{3} 0.16385{8} 0.11609{1} 0.14190{5} 0.13041{4} 0.16056{7} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 18.0{2} 63.0{7} 33.0{4} 66.0{8} 9.0{1} 45.0{5} 30.0{3} 60.0{6} 

  𝛿 0.31588{2} 0.49339{7} 0.36347{3} 0.49549{8} 0.30500{1} 0.41165{5} 0.38186{4} 0.48256{6} 

 BIAS 𝛽̂ 0.21678{2} 0.35354{8} 0.25102{3} 0.35267{7} 0.19375{1} 0.26734{5} 0.26120{4} 0.31289{6} 

  𝜆̂ 0.21739{1} 0.29760{7} 0.23903{3} 0.29268{6} 0.22287{2} 0.26049{5} 0.24469{4} 0.31120{8} 

  𝛿 0.09978{2} 0.24344{7} 0.13211{3} 0.24551{8} 0.09302{1} 0.16946{5} 0.14581{4} 0.23287{6} 

300 MSE 𝛽̂ 0.04700{2} 0.12499{8} 0.06301{3} 0.12438{7} 0.03754{1} 0.07147{5} 0.06823{4} 0.09790{6} 

  𝜆̂ 0.04726{1} 0.08857{7} 0.05713{3} 0.08566{6} 0.04967{2} 0.06786{5} 0.05987{4} 0.09684{8} 

  𝛿 0.21059{2} 0.32893{7} 0.24231{3} 0.33033{8} 0.20333{1} 0.27443{5} 0.25457{4} 0.32171{6} 

 MRE 𝛽̂ 0.10839{2} 0.17677{8} 0.12551{3} 0.17633{7} 0.09688{1} 0.13367{5} 0.13060{4} 0.15645{6} 

  𝜆̂ 0.06211{1} 0.08503{7} 0.06829{3} 0.08362{6} 0.06368{2} 0.07443{5} 0.06991{4} 0.08891{8} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 15.0{2} 66.0{8} 27.0{3} 63.0{7} 12.0{1} 45.0{5} 36.0{4} 60.0{6} 

  𝛿 0.24597{2} 0.38259{7} 0.28932{3} 0.38364{8} 0.11464{1} 0.32482{5} 0.29036{4} 0.37746{6} 

 BIAS 𝛽̂ 0.16657{2} 0.26821{7} 0.19443{3} 0.26895{8} 0.12803{1} 0.21010{5} 0.19701{4} 0.24031{6} 

  𝜆̂ 0.16887{1} 0.21270{6} 0.18628{4} 0.22333{7} 0.17062{2} 0.20334{5} 0.18523{3} 0.22863{8} 

  𝛿 0.06050{2} 0.14637{7} 0.08371{3} 0.14718{8} 0.01314{1} 0.10551{5} 0.08431{4} 0.14247{6} 

500 MSE 𝛽̂ 0.02775{2} 0.07194{7} 0.03780{3} 0.07233{8} 0.01639{1} 0.04414{5} 0.03881{4} 0.05775{6} 

  𝜆̂ 0.02852{1} 0.04524{6} 0.03470{4} 0.04988{7} 0.02911{2} 0.04135{5} 0.03431{3} 0.05227{8} 

  𝛿 0.16398{2} 0.25506{7} 0.19288{3} 0.25576{8} 0.07643{1} 0.21655{5} 0.19357{4} 0.25164{6} 

 MRE 𝛽̂ 0.08329{2} 0.13411{7} 0.09722{3} 0.13448{8} 0.06401{1} 0.10505{5} 0.09851{4} 0.12015{6} 

  𝜆̂ 0.04825{1} 0.06077{6} 0.05322{4} 0.06381{7} 0.04875{2} 0.05810{5} 0.05292{3} 0.06532{8} 

  
∑ 𝑅𝐴𝑁𝐾𝑆 15.0{2} 60.0{6.5} 30.0{3} 69.0{8} 12.0{1} 45.0{5} 33.0{4} 60.0{6.5} 
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Table 11. Partial and overall rankings of all estimation methods for various combinations of 𝜼. 

𝜼𝑇 𝑛 MLE OLSE WLSE CRVME MPS PCE ADE RADE 

(𝛿 = 0.5, 𝛽 = 0.25, 𝜆 = 1.5) 

20 4 8 2.5 7 2.5 6 1 5 

50 2.5 6 2.5 5 1 8 4 7 

100 3 6.5 2 6.5 1 8 4 5 

300 2 6 3 7 1 8 4 5 

500 2 5 3 7 1 8 4 6 

(𝛿 = 0.5, 𝛽 = 0.25, 𝜆 = 3.5) 

20 3.5 5 3.5 8 1 6 2 7 

50 5 6 3 7 1 8 2 4 

100 5 7 2 6 1 8 3 4 

300 5 6 2 7 1 8 3 4 

500 5 6 2 7 1 8 3 4 

(𝛿 = 0.5, 𝛽 = 2 , 𝜆 = 1.5) 

20 4 5 3 8 2 6.5 1 6.5 

50 4 6 3 7.5 1 7.5 2 5 

100 2 6 3.5 7 1 8 3.5 5 

300 2 6 3 7 1 8 4 5 

500 2 6 3 7 1 8 4 5 

(𝛿 = 0.5, 𝛽 = 2, 𝜆 = 3.5) 

20 4 5 3 8 1 6.5 2 6.5 

50 3 7 4 8 1 6 2 5 

100 2 7 4 8 1 6 3 5 

300 1 7 3 8 2 6 4 5 

500 1 8 3 7 2 6 4 5 

(𝛿 = 1.5, 𝛽 = 0.25, 𝜆 = 1.5) 

20 3 5 4 6.5 1 8 2 6.5 

50 2 5 4 7 1 8 3 6 

100 2 7 4 6 1 8 3 5 

300 1 7 3 5.5 2 8 4 5.5 

500 2 6 3 7 1 8 4 5 

(𝛿 = 1.5, 𝛽 = 0.25, 𝜆 = 3.5) 

20 3 6.5 4 8 1 6.5 2 5 

50 2 5 4 7 1 8 3 6 

100 2 5 4 7 1 8 3 6 

300 2 5.5 3 7 1 8 4 5.5 

500 2 7 3 6 1 8 4 5 

(𝛿 = 1.5, 𝛽 = 2, 𝜆 = 1.5) 

20 2.5 6 5 7.5 1 4 2.5 7.5 

50 2 6 4 7.5 1 5 3 7.5 

100 2 6 4 8 1 5 3 7 

300 2 8 3 7 1 5 4 6 

500 2 8 3 7 1 5 4 6 

      Continued on next page 
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𝜼𝑇 𝑛 MLE OLSE WLSE CRVME MPS PCE ADE RADE 

(𝛿 = 1.5, 𝛽 = 2, 𝜆 = 3.5) 

20 5 6 4 8 1 3 2 7 

50 2 7 4 8 1 5 3 6 

100 2 7 4 8 1 5 3 6 

300 2 8 3 7 1 5 4 6 

500 2 6.5 3 8 1 5 4 6.5 

∑ 𝑅𝑎𝑛𝑘𝑠  106.5 252 131 286 45.5 270 124 225 

Overall Rank  2 6 4 8 1 7 3 5 

6. Real-life data modeling 

In this section, we analyze three real datasets to demonstrate the flexibility of the proposed 

GKMW model. The first dataset comprises 63 observations of gauge lengths of 10 mm from Kundu 

and Raqab [41]. The second dataset is uncensored and comes from Murty et al. [42], representing the 

failure times (in weeks) of 50 components that were put into use at a certain time. The third dataset 

details the distances from the transect line for 68 stakes detected while walking along a length of 

1000 m and searching 20 m on each side of the line [43]. The three datasets are provided in 

Appendix A. We compare the fits of the GKMW distribution with several other competitive models, 

as presented in Table 12. 

Table 12. The list of competitive distributions. 

Distribution Abbreviation Author 

Modified beta Weibull MBW Khan [7] 

Beta Weibull BW Lee and Famoye [1] 

Odd log-logistic exponentiated Weibull OLLEW Afify et al. [11] 

Exponentiated generalized Weibull EGW Cordeiro et al. [5] 

Lindley Weibull LiW Cordeiro et al. [12] 

Exponentiated Weibull EW Mudholkar and Srivastava [13] 

Transmuted Weibull TW Aryal and Tsokos [4] 

For model comparison, we employ four widely recognized statistics: Akaike information 

criterion (AIC), consistent AIC (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn 

information criterion (HQIC), as well as Cramér–von Mises (𝑊∗) statistics, Anderson–Darling (𝐴∗), 

minus log-likelihood (−ℒ), and the Kolmogorov–Smirnov (𝐾𝑆) distance along with its associated 

𝑝 − 𝑣𝑎𝑙𝑢𝑒. Smaller values for these statistics indicate a better fit. Visual comparisons of the TTT, 

HRF, PDF, CDF, SF, and probability-probability (PP) plots for the GKMW model are also provided 

for the three datasets. 

Tables 13–15 present the estimated parameters obtained through ML estimation, along with 

their corresponding standard errors (SE) (in parentheses). The goodness-of-fit measures for the fitted 

models are provided in Tables 16–18. The findings from these tables demonstrate the superiority of 

the GKMW model compared to other distributions for the three analyzed datasets. 
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Table 13. ML estimates and SE from the gauge lengths dataset for the fitted distributions. 

Distribution ML estimates and SE 

GKMW 𝛿= 45.2721 𝛽̂= 1.5646 𝜆̂= 0.6627   

 (108.9500) (0.9374) (1.1158)   

MBW 𝛿= 0.1328 𝛽̂= 0.5224 𝑎̂= 236.8925 𝑏̂= 3.9570 𝑐̂= 0.4084 

 (0.2897) (0.3417) (1389.4352) (7.5948) (2.4858) 

BW 𝛿=1.5535 𝛽̂= 0.9162 𝑎̂= 102.4980 𝑏̂= 2.0925  

 (5.6168) (2.0369) (517.5903) (8.0543)  

OLLEW 𝛿= 69.5586 𝛽̂=3.4425 𝛾̂= 0.0641 𝜃̂= 19.5547  

 (306.6782) (6.6654) (0.0384) (27.8608)  

EGW 𝛿= 3.7852 𝑎̂= 5.6583 𝑏̂= 37.1571 𝑐̂= 1.4540  

 (181.1960) (393.8165) (79.3795) (0.7599)  

LiW 𝛿= 0.1238 𝛽̂= 5.0487 𝜃̂= 90.5958   

 (0.5147) (0.4560) (1882.5304)   

EW 𝛿= 0.8180 𝛽̂= 1.4532 𝜃̂= 37.2311   

 (1.1200) (0.7583) (79.4533)   

TW 𝛿= 3.6164 𝛽̂= 5.4807 𝜆̂=0.7453   

 (0.1515) (0.5021) (0.2633)   

Table 14. ML estimates and SE from the failure times dataset for the fitted distributions. 

Distribution ML estimates and SE 

GKMW 𝛿= 0.4582 𝛽̂= 1.3987 𝜆̂= 0.0184   

 (0.1995) (0.4033) (0.0272)   

MBW 𝛿=4.3285 𝛽̂=0.3702  𝑎̂= 1.6702 𝑏̂= 22.2114 𝑐̂=0.0342 

 (54.3129) (0.6122) (1.1828) (265.3049) (0.1894) 

BW 𝛿= 0.0252 𝛽̂=1.663  𝑎̂=0.5592  𝑏̂= 3.5694  

 (0.0813) (0.4550) (0.3169) (12.7630)  

OLLEW 𝛿= 72.9308 𝛽̂= 3.2596 𝛾̂= 0.0769 𝜃̂= 2.2419  

 (0.3032) (0.2568) (0.0084) (0.2703)  

EGW 𝛿= 2.0863 𝑎̂= 0.1545 𝑏̂= 0.5983 𝑐̂=1.1009   

 (37.6697) (3.0671) (0.3183) (0.3915)  

LiW 𝛿= 0.2790 𝛽̂= 0.7193 𝜃̂= 0.9699   

 (0.7219) (0.1332) (1.4562)   

EW 𝛿=0.0687  𝛽̂= 1.1011 𝜃̂= 0.5982   

 (0.0978) (0.3874) (0.3150)   

TW 𝛿= 6.9739 𝛽̂= 0.8004 𝜆̂= 0.0010   

 (5.0869) (0.1739) (0.9657)   
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Table 15. The ML estimates and SE from the distance dataset for the fitted distributions. 

Distribution ML estimates and SE 

GKMW 𝛿= 0.4596 𝛽̂= 2.1497 𝜆̂= 0.0055   

 (0.0924) (0.2449) (0.0038)   

MBW 𝛿= 22.8768 𝛽̂= 1.3294 𝑎̂= 0.7716 𝑏̂= 26.1991 𝑐̂=0.1360 

 (52.4569) (2.0900) (1.3573) (169.7519) (0.9503) 

BW 𝛿=0.0948  𝛽̂=1.7636 𝑎̂=0.5664  𝑏̂= 1.3142  

 (0.2660) (0.7832)  (0.3403) (5.5844)  

OLLEW 𝛿=20.1065 𝛽̂= 5.3078 𝛾̂= 0.0921 𝜃̂=1.6927   

 (0.3340) (0.2855) (0.0099) (0.1816)  

EGW 𝛿= 2.3954 𝑎̂= 0.1067 𝑏̂= 0.5795 𝑐̂=1.7274   

 (16.6021) (1.2706) (0.3050) (0.6189)  

LiW 𝛿= 0.2309 𝛽̂=1.1040  𝜃̂= 1.0343   

 (0.4284) (0.2085) (1.7142)   

EW 𝛿= 0.0237 𝛽̂= 1.7264 𝜃̂=0.5797    

 (0.0359) (0.5159) (0.2574)   

TW 𝛿= 6.2398 𝛽̂= 1.2250 𝜆̂=0.0010    

 (2.4596) (0.2312) (0.7996)   

Table 16. Findings from the gauge lengths dataset for the fitted distributions. 

Distribution AIC CAIC BIC HQIC  𝑊∗ 𝐴∗ −ℒ 𝐾𝑆 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

GKMW 118.5520 118.9588 124.9814 121.0807 0.0601 0.3216 56.2760 0.0795 0.821305 

MBW 122.6182 123.6708 133.3338 126.8327 0.0615 0.3272 56.3091 0.0800 0.815108 

BW 120.6346 121.3242 129.2071 124.0062 0.0612 0.3268 56.3173 0.0796 0.820005 

OLLEW 123.9248 124.6144 132.4973 127.2964 0.0866 0.5041 57.9624 0.0916 0.665628 

EGW 120.6216 121.3112 129.1941 123.9932 0.0619 0.3287 56.3108 0.0813 0.799515 

LiW 129.9178 130.3246 136.3472 132.4465 0.1285 0.8922 61.9589 0.0876 0.718911 

EW 118.6216 119.0284 125.0510 121.1503 0.0619 0.3288 56.3108 0.0813 0.799320 

TW 127.1226 127.5294 133.5520 129.6513 0.1100 0.7623 60.5613 0.0835 0.772281 

Table 17. Findings from the failure times dataset for the fitted distributions. 

Distribution AIC CAIC BIC HQIC  𝑊∗ 𝐴∗ −ℒ 𝐾𝑆 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

GKMW 306.4025 306.9242 312.1386 308.5868 0.0575 0.2948 150.2012 0.0934 0.775179 

MBW 310.5294 311.8931 320.0895 314.1700 0.0582 0.2974 150.2647 0.0948 0.759432 

BW 308.4788 309.3677 316.1269 311.3913 0.0587 0.2990 150.2394 0.0957 0.750141 

OLLEW 309.0636 309.9525 316.7117 311.9760 0.0757 0.3810 150.5318 0.0999 0.700003 

EGW 308.5187 309.4076 316.1668 311.4311 0.0599 0.3044 150.2593 0.0965 0.740273 

LiW 306.7964 307.3181 312.5325 308.9807 0.0709 0.3539 150.3982 0.1018 0.677787 

EW 306.5187 307.0404 312.2548 308.7030 0.0599 0.3044 150.2593 0.0965 0.740475 

TW 307.3553 307.8771 313.0914 309.5396 0.0857 0.4275 150.6777 0.1119 0.558858 
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Table 18. Findings from the distance dataset for the fitted distributions. 

Distribution AIC CAIC BIC HQIC  𝑊∗ 𝐴∗ −ℒ 𝐾𝑆 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

GKMW 377.1478 377.5228 383.8063 379.7861 0.0385 0.2474 185.5739 0.0804 0.771339 

MBW 381.2396 382.2073 392.3371 385.6368 0.0420 0.2673 185.6198 0.0843 0.719002 

BW 379.3222 379.9571 388.2002 382.8399 0.0398 0.2547 185.6611 0.0818 0.753500 

OLLEW 379.0712 379.7061 387.9492 382.5890 0.0421 0.2739 185.5356 0.0807 0.767901 

EGW 379.3276 379.9625 388.2057 382.8454 0.0399 0.2553 185.6638 0.0820 0.751070 

LiW 377.8265 378.2015 384.4850 380.4648 0.0402 0.2658 185.9133 0.0820 0.749931 

EW 377.3276 377.7026 383.9862 379.9659 0.0399 0.2553 185.6638 0.0821 0.749379 

TW 378.3411 378.7161 384.9997 380.9794 0.0487 0.3192 186.1706 0.0887 0.659154 

Figures 4–6 illustrate the fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the 

three datasets, respectively. These figures reinforce the results shown in Tables 16–18, indicating that 

the proposed distribution offers a close fit for all datasets. 

The GKMW distribution effectively models a wide range of data behaviors, including skewness 

and heavy tails, providing a better fit for the three datasets compared to other models. Its 

parameterization enables more accurate estimation and captures underlying patterns that may be 

missed by more restrictive models. Additionally, the GKMW model yields the lowest goodness-of-fit 

values and the highest p-values, confirming its superior fit. 

 

 

Figure 4. Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the gauge 

lengths dataset. 
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Figure 5. Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the failure 

times dataset. 

 

Figure 6. Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the distance 

dataset. 

Additionally, Figures 7–9 display the histograms of the three datasets along with the fitted 

densities for the GKMW distribution and other competing distributions. The GKMW distribution 

consistently outperforms the other Weibull extensions across all three datasets. Moreover, the PP 

plots for these datasets, shown in Figures 10–12, further illustrate that the GKMW distribution 

provides a superior fit compared to the other distributions analyzed. 
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Figure 7. The fitted GKMW PDF alongside the PDFs of other fitted distributions for the 

gauge lengths dataset. 

 

Figure 8. The fitted GKMW PDF alongside the PDFs of other fitted distributions for the 

failure times dataset. 

 

Figure 9. The fitted GKMW PDF alongside the PDFs of other fitted distributions for the 

distance dataset. 
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Figure 10. The PP plots comparing the GKMW distribution with other distributions for 

the gauge lengths dataset. 

 

Figure 11. The PP plots comparing the GKMW distribution with other distributions for 

the failure times dataset. 
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Figure 12. The PP plots comparing the GKMW distribution with other distributions for 

the distance dataset. 

The TTT and HRF plots of the GKMW distribution for the gauge lengths, failure time, and 

transect line datasets are presented in Figures 13–15. The TTT plots reveal concave shapes for the 

gauge lengths and distances datasets, indicating increasing HRFs, while it appears convex for the 

failure time dataset, suggesting a decreasing HRF. The GKMW model can accommodate both 

increasing and decreasing HRF, making it well-suited for modeling all datasets. 

 

Figure 13. TTT plot for the gauge lengths dataset and the GKMW HRF plot for the same 

dataset. 
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Figure 14. TTT plot for the failure times dataset and the GKMW HRF plot for the same 

dataset. 

 

Figure 15. TTT plot for the distance dataset and the GKMW HRF plot for the same 

dataset. 

7. Conclusions future perspectives 

In this paper, we present the extended Kavya–Manoharan Weibull (GKMW) distribution, a 

novel extension of the Weibull distribution that provides a versatile and adaptable way to model 

diverse types of data. The proposed model is notable for its ability to support a wide range of 

distribution shapes, including symmetric, right-skewed, reversed-J, and left-skewed densities, 

making it adaptable to a variety of real-world datasets. Furthermore, it can model both 

non-monotonic and monotonic failure rates, increasing its applicability in a variety of statistical 

settings. 

The mathematical properties of the GKMW model are investigated. Additionally, its parameters 

are estimated using eight alternative estimation techniques. Simulation studies show that the 
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maximum product of the spacing estimation method outperforms all other estimators for reliably 

calculating GKMW parameters. This finding has significant implications for increasing the precision 

of statistical modeling in real-world applications. 

The GKMW distribution is applied to three real-life datasets and outperforms existing Weibull 

distributions, highlighting its potential for improved data processing. The GKMW model's practical 

importance stems from its capacity to improve modeling flexibility and accuracy, especially in fields 

such as survival analysis, where it can provide more reliable insights into failure rates and data 

behavior. 

In future work, we will focus on expanding the GKMW distribution’s applications beyond 

survival analysis, including its use with large-scale datasets and refining computational methods for 

parameter estimation. Key areas for future research include: 

• Improving parameter estimation techniques, such as maximum likelihood or Bayesian methods 

for censored data, to enhance the GKMW model's robustness and accuracy. 

• Exploring non-parametric or semi-parametric versions of the model for broader applicability. 

• Applying Bayesian methods for both parameter estimation and model comparison, offering a 

promising extension to the GKMW framework. 

• Developing a discrete version of the GKMW model to facilitate its use in modeling count data 

in diverse applied fields. 
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Appendix A. The three datasets used to evaluate the performance of the proposed GKMW model. 

Gauge lengths dataset 

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 

2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 

2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937 

2.996 3.125 2.977 3.030 3.139 3.145 3.220 3.223 3.235 3.243 

3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501 

3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 

4.225 4.395 5.020        

 

Failure times dataset 

0.013 0.065 0.111 0.111 0.163 0.309 0.426 0.535 0.684 0.747 

0.997 1.284 1.304 1.647 1.829 2.336 2.838 3.269 3.977 3.981 

4.520 4.789 4.849 5.202 5.291 5.349 5.911 6.018 6.427 6.456 

6.572 7.023 7.087 7.291 7.787 8.596 9.388 10.261 10.713 11.658 

13.006 13.388 13.842 17.152 17.283 19.418 23.471 24.777 32.795 48.105 
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Distance dataset 

2.0 0.5 10.4 3.6 0.9 1.0 3.4 2.9 8.2 6.5 

5.7 3.0 4.0 0.1 11.8 14.2 2.4 1.6 13.3 6.5 

8.3 4.9 1.5 18.6 0.4 0.4 0.2 11.6 3.2 7.1 

10.7 3.9 6.1 6.4 3.8 15.2 3.5 3.1 7.9 18.2 

10.1 4.4 1.3 13.7 6.3 3.6 9.0 7.7 4.9 9.1 

3.3 8.5 6.1 0.4 9.3 0.5 1.2 1.7 4.5 3.1 

3.1 6.6 4.4 5.0 3.2 7.7 18.2 4.1   
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