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1. Introduction

Nonlinear partial differential equations (PDEs) arise from the mathematical modeling of complex
physical systems. Investigating these nonlinear physical models through the analysis of their wave
solutions plays a crucial role in applied sciences. The Korteweg-de Vries (KdV) equations, in
particular, serve as models for nonlinear wave propagation across a wide range of material science
applications. Initially developed to describe long-wavelength, small-amplitude shallow water waves,
the KdV equation has proven useful in numerous physical scenarios. Its soliton and periodic exact
solutions are relevant to phenomena such as collisionless hydromagnetic waves, internal stratified
waves, particle acoustic waves, and plasma dynamics. For more details, see references [1–5]. In
geophysical fluid dynamics, the KdV equation is extended to account for more complex phenomena
relevant to large-scale waves in the atmosphere and ocean. These geophysical KdV equations
incorporate the effects of Coriolis forces (due to Earth’s rotation), stratification (layering of fluids
with different densities), and variable topography (changing ocean depth), making them crucial for
understanding wave propagation in natural environments [6–9]. For example, the KdV equation is used
to model shallow water waves and internal waves in the ocean, as well as atmospheric gravity waves.
Internal waves, which occur in stratified fluids like the ocean, propagate along interfaces between
layers of different densities and are essential for mixing and energy transfer in the ocean [10, 11].
In [12], internal solitons have been observed and simulated, particularly in areas like the South
China Sea, confirming the accuracy of KdV-based models in practical environments. The rotational
KdV equation incorporates Earth’s rotational effects and has been employed to examine equatorial
waves and other large-scale wave patterns [13]. Different forms of the KdV equation, including the
variable-coefficient KdV and the KdV-Burgers equation (which accounts for dissipative processes),
are utilized to represent wave behavior over varying depths and under conditions involving damping,
see [14, 15]. The geophysical KdV equations provide a robust framework for understanding nonlinear
wave dynamics in both oceanographic and atmospheric contexts. These equations offer insight into a
wide range of phenomena, from coastal wave propagation to the behavior of atmospheric disturbances,
making them a key tool in geophysical fluid dynamics, see [16–18].

This work is devoted to investigating the stochastic geophysical KdV equation:

∂

∂ν
Z(µ, ν) + Ψ(ν) �

∂

∂µ
Z(µ, ν) + Φ(ν) � Z(µ, ν) �

∂

∂µ
Z(µ, ν) + Ξ(ν) �

∂3

∂µ3 Z(µ, ν) = 0, (1.1)

where (µ, ν) ∈ R × R+ and Ψ, Φ, and Ξ are non-zero integrable functions from R+ to the Kondrative
distribution space (T )−1 which was defined by Holden et al. in [20] as a Banach algebra with the Wick-
product “ � ”. Equation (1.1) is the perturbation of the variable coefficients geophysical KdV equation:

∂

∂ν
z(µ, ν) + ψ(ν)

∂

∂µ
z(µ, ν) + φ(ν)z(µ, ν)

∂

∂µ
z(µ, ν) + ξ(ν)

∂3

∂µ3 z(µ, ν) = 0. (1.2)

The geophysical KdV equation (1.2) represents an extension of the classical KdV equation, adjusted
to describe wave phenomena in geophysical contexts, such as the oceans and atmosphere. This
formulation takes into account the Coriolis effect, which models the deflection due to the Earth’s
rotation [19]. In Eq (1.2), the term ψ represents the Coriolis effect, which is responsible for the
deflection of objects in motion, such as air or water, caused by the Earth’s rotation. The coefficient
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φ captures the nonlinearity, while ξ characterizes the dispersion, illustrating how a complex wave
breaks down into its component wavelengths. Additionally, if Eq (1.2) is studied in a stochastic
framework, it leads to the stochastic version of the geophysical KdV equation. In this case, the
functions Ψ, Φ, and Ξ serve as the stochastic counterparts of ψ, φ, and ξ, respectively, thereby
accounting for random perturbations within the geophysical wave system. To obtain precise solutions
to this stochastic geophysical KdV equation, we confine our analysis to a WN setting, which leads
us to the W-TS geophysical KdV equation (1.1). Recent studies have integrated both numerical and
analytical approaches to further understand the dynamics of the KdV equation.

In recent years, a significant number of studies have focused on partial differential equations
(PDEs) and the exact solutions of such equations using various methodologies. In [21], the first
integral method was applied to determine exact solutions for nonlinear PDEs involving the beta-
derivative. Moreover, solutions in the form of optical, dark, complex, and singular solitons have
been found for certain nonlinear PDEs using the M-derivative approach [22, 23]. The examination
of exact and approximate solutions for nonlinear evolution equations is essential for comprehending
nonlinear physical phenomena. Several efficacious methodologies have been suggested, including the
bilinear transformation method [24], the modified Clarkson and Kruskal (CK) direct method [25], the
multiscale expansion approach [26], the binary Bell polynomials technique [27], the Riemann-Hilbert
method [28], and the approximate symmetry method [29]. The exp-function method, presented by
He and Wu [30], offers a direct approach for deriving generalized soliton, periodic, and compacton-
like solutions for several nonlinear partial differential equations. This approach expresses solutions as
rational functions of the exponential form, with both the numerator and denominator being polynomials
of exponential functions. The primary benefit of the exp-function method is its capacity to produce
a diverse array of exact solutions for nonlinear partial differential equations by varying parameters
and polynomial degrees in the solutions. A fundamental characteristic of solutions derived from this
method is their reducibility [31]. Furthermore, the exp-function method produces both generalized
soliton and periodic solutions. The procedure is streamlined through the utilization of Mathematica and
can be efficiently implemented for many nonlinear equations. Recent studies have further explored the
KdV equation using the exp-function method, providing new perspectives on soliton and periodic wave
solutions. For instance, recent work [32] has investigated these techniques in depth, which reinforces
the relevance of our approach in addressing stochastic influences in geophysical settings. Modern
studies have examined the strain wave equation in micro-structured solids, deriving various analytical
solutions through advanced mathematical methods [33].

While existing studies, such as Zhang [34], have investigated exact solutions for Wick-type
stochastic KdV equations, this paper presents several key advancements. We derive new stochastic
SPW solutions for the variable coefficient geophysical KdV equation and the W-TS geophysical
KdV equation. Through the use of WN theory and the HT, the W-TS geophysical KdV equation is
converted into its deterministic counterpart. By applying the exp-function method, we construct exact
solutions for the deterministic geophysical KdV equation, represented as an exponential-type rational
function, with polynomials of exponential functions in both the numerator and denominator. The
highest-order linear term and the highest-order nonlinear term of the deterministic geophysical KdV
equation are balanced to determine the polynomial degrees in both parts. With symbolic computation
in Mathematica, SPW solutions for the variable coefficient geophysical KdV equation are found.
Under certain conditions, we apply the inverse HT to extract stochastic SPW solutions for the W-
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TS geophysical KdV equation. Additionally, an example with numerical simulations is presented to
analyze the impact of Gaussian WN on SPW dynamics, providing deeper insight into how random
perturbations influence wave behavior.

The structure of the paper is as follows: Section 2 reviews key definitions and properties relevant
to Gaussian WN analysis and outlines the primary steps in solving nonlinear PDEs. In Section 3, we
use the exp-function method, WN theory, and the HT to derive deterministic solutions for the W-TS
geophysical KdV equation. Section 4 applies the inverse HT to obtain stochastic SPW solutions for the
W-TS geophysical KdV equation. In Section 5, we provide an example with numerical simulations,
demonstrating that stochastic solutions can be expressed as B-M functionals. Finally, Section 6
concludes with a summary of the results and findings.

2. Fundamental concepts of the white noise framework

The foundational study of WN structure begins with the inclusion chain T (Rn) ⊂ L2(Rn) ⊂ T ?(Rn).
Here, T (Rn) denotes the space of test functions, which are infinitely differentiable and rapidly
vanishing on Rn, while T ?(Rn) refers to the space of tempered distributions. By the Bochner-Minlos
theorem [20], there exists a unique WN measure ν on

(
T ?(Rn), θ(T ?(Rn))

)
.

Consider the Hermite functions ζm(x) = π−1/4((m− 1)!)−1/2e−x2/2 pm−1(
√

2x) for m ∈ N, where pm(x)
are Hermite polynomials. It is well known that the family {ζm}m∈N forms an orthonormal basis for
L2(R). Let β = (β1, . . . , βn) represent a multi-index of dimension n, where β1, . . . , βn ∈ N. The tensor
product family ζβ := ζ(β1,...,βn) = ζβ1 ⊗ · · · ⊗ ζβn , β ∈ N

n, serves as an orthonormal basis for L2(Rn). To
further proceed, we establish an ordering on Nn as follows:

r < s⇒
n∑

j=1

β(r)
j ≤

n∑
j=1

β(s)
j , where β(r) = (β(r)

j )n
j=1, β

(s) = (β(s)
j )n

j=1 ∈ N
n.

Using this ordering, define κr := ζβ(r) = ζβ(r)
1
⊗ · · · ⊗ ζβ(r)

n
, r ∈ N. Let K =

(
NN0

)
c

denote the set of
sequences β = (βi)i∈N where βi ∈ N0 and has compact support. For β ∈ K, define

Hβ(ω) =

∞∏
i=1

pβi(〈ω, κi〉), ω ∈ T ?(Rn).

Let m ∈ N, the Kondratiev space of stochastic test functions (T )m
1 is defined as:

(T )m
1 =

 f =
∑
β

dβHβ ∈

m⊕
j=1

L2(ν) : dβ ∈ Rm and ‖ f ‖21, j :=
∑
β

d2
β(β!)2(2N) jβ < ∞, ∀ j ∈ N

 ,
and the Kondratiev space of stochastic distributions (T )m

−1 is defined as:

(T )m
−1 =

F =
∑
β

eβHβ : eβ ∈ Rm and ‖F‖2−1, j :=
∑
β

e2
β(2N)−pβ < ∞ for some p ∈ N

 .
The family of seminorms ‖ f ‖1, j, j ∈ N, induces a topology on (T )m

1 , and (T )m
−1 is the dual space of

(T )m
1 with the pairing

〈F, f 〉 =
∑
β

(eβ, dβ)β!,
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where F =
∑
β eβHβ ∈ (T )m

−1, f =
∑
β dβHβ ∈ (T )m

1 , and (eβ, dβ) represents the usual scalar product
in Rm.

The Wick product of two distributions F =
∑
β uβHβ, G =

∑
γ vγHγ ∈ (T )m

−1 with uβ, vγ ∈ Rm is
defined by:

F �G =
∑
β,γ

(uβ, vγ)Hβ+γ.

Let F =
∑
β uβHβ ∈ (T )m

−1 with uβ ∈ Rm. The HT of F is defined as:

GF(w) = F̃(w) =
∑
β

uβwβ ∈ Cm (when convergent),

where w = (w1,w2, . . . ) ∈ CN and wβ =
∏∞

i=1 wβi
i , with β = (β1, β2, . . . ) ∈ K and w0

i = 1.
For F,G ∈ (T )m

−1, the HT gives:

F̃ �G(w) = F̃(w)G̃(w),

for all w where F̃(w) and G̃(w) are defined. The multiplication on the right-hand side corresponds to
the standard bilinear multiplication in Cm, defined by (w1

1, . . . ,w
1
m) · (w2

1, . . . ,w
2
m) =

∑m
i=1 w1

i w2
i , where

wk
i ∈ C. Consequently, the HT translates the Wick product into regular multiplication, and convergence

in (T )m
−1 is equivalent to pointwise convergence within a neighborhood of zero in Cm. For additional

details on Kondratiev spaces, the Wick product, and the HT, please refer to [20].
One of the most important tools for obtaining our conclusions is the following theorem.

Theorem 2.1. [20] Let z(µ, ν,w) be a solution to the following equation:

Ω̃(µ, ν,
∂

∂ν
,
∂

∂µ1
, . . . ,

∂

∂µn
, z,w) = 0, (2.1)

for (µ, ν) in some bounded open region O ⊂ Rn × R+, and for all w ∈ Nα(u), for some α < ∞, u > 0.
Further assume that z(µ, ν,w), along with all of its derivatives involved in (2.1), are uniformly bounded
for (µ, ν,w) ∈ O × Nα(u), continuous with respect to (µ, ν) ∈ O for each w ∈ Nα(u), and analytic in
w ∈ Nα(u) for all (µ, ν) ∈ O. Then there exists a stochastic distribution Z(µ, ν) ∈ (T )−1 such that
z(µ, ν,w) = Z̃(µ, ν)(w) for all (µ, ν,w) ∈ O × Nα(u), and Z(µ, ν) satisfies the equation:

Ω�(µ, ν,
∂

∂ν
,
∂

∂µ1
, . . . ,

∂

∂µn
,Z) = 0, (2.2)

in the strong sense in (T )−1.

3. Exact deterministic solutions using the exp-function method

This section utilizes the exp-function method [30] alongside WN theory to derive a family of exact
stochastic solutions for the (W-TS) geophysical KdV equation (1.1). By applying the HT to Eq (1.1),
we obtain the corresponding deterministic equation:

Z̃ν(µ, ν,w) + Ψ̃(ν,w)Z̃µ(µ, ν,w) + Φ̃(ν,w)Z̃(µ, ν,w)Z̃µ(µ, ν,w) + Ξ̃(ν,w)Z̃µµµ(µ, ν,w) = 0, (3.1)
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where w = (w1,w2, ...) ∈ (CN)c. To find traveling wave solutions for Eq (3.1), we introduce the
following transformations: 

Ψ̃(ν,w) := ψ(ν,w),
Φ̃(ν,w) := φ(ν,w),
Ξ̃(ν,w) := ξ(ν,w),
Z̃(µ, ν,w) := z(µ, ν,w) = z(χ(µ, ν,w)),

(3.2)

where

χ(µ, ν,w) = ςµ + λ

ν∫
0

ϑ(τ,w)dτ, (3.3)

with ς and λ as arbitrary constants, and ϑ as a non-zero function to be determined. This transforms
Eq (3.1) into the following NODE:

(λϑ + ςψ + ςφz)
dz
dχ

+ ς3ξ
d3z
dχ3 = 0. (3.4)

Using the exp-function method [30], the general solution of Eq (3.4) can be expressed as an expansion
in terms of exponential functions:

z(χ) =

∑h
n=−g ηn(ν,w) exp(nχ)∑ j

m=−i ρm(ν,w) exp(mχ)
, (3.5)

where g, h, i, and j are freely chosen positive integers, and ηn and ρm are functions to be determined.
Equation (3.5) may also be written in the form:

z(χ) =
ηg exp(gχ) + . . . + η−h exp(−hχ)
ρi exp(iχ) + . . . + ρ− j exp(− jχ)

. (3.6)

To determine appropriate values for g and i, we balance the highest-order linear term in Eq (3.4) with
the highest-order nonlinear term. A straightforward computation gives:

d3z
dχ3 =

ε1 exp[(7i + g)χ] + · · ·

ε2 exp[8iχ] + · · ·
, (3.7)

and

z
dz
dχ

=
ε3 exp[(i + 2g)χ] + · · ·

ε4 exp[3iχ] + · · ·
=
ε3 exp[(6i + 2g)χ] + · · ·

ε4 exp[8iχ] + · · ·
, (3.8)

where εi are coefficients assigned solely for simplicity. By equating the highest-order term of the
exponential function in Eqs (3.7) and (3.8), we obtain 7i + g = 6i + 2g, which simplifies to i = g.
Similarly, to find the values of h and j, we balance the lowest-order linear term in Eq (3.4):

d3z
dχ3 =

· · · + υ1 exp[−(7 j + h)χ]
· · · + υ2 exp[−8 jχ]

, (3.9)
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with the term

z
d3z
dχ3 =

· · · + υ3 exp[−( j + 2h)χ]
· · · + υ4 exp[−3 jχ]

=
· · · + υ3 exp[−(6 j + 2h)χ]
· · · + υ4 exp[−8 jχ]

, (3.10)

where υi are coefficients chosen only for simplicity. By equating the lowest-order term of the
exponential function in Eqs (3.9) and (3.10), we obtain −(7 j + h) = −(6 j + 2h), which gives j = h.
Case 1. Choosing i = g = 1 and h = j = 1, Eq (3.4) takes the form:

z(χ) =
η1 exp(χ) + η0 + η−1 exp(−χ)
ρ1 exp(χ) + ρ0 + ρ−1 exp(−χ)

. (3.11)

Substituting Eq (3.11) into Eq (3.4), and setting the coefficients of exp(χ) to zero, results in a system
of algebraic equations in η0, η1, η−1, ρ0, ρ1, ρ−1, and ϑ. Solving this system yields:

η1 = −
ρ0

(
6ς2ξρ0 − η0φ

)
4ρ−1φ

, η−1 = −
ρ−1

(
6ς2ξρ0 − η0φ

)
ρ0φ

,

ρ1 =
ρ2

0

4ρ−1
, ϑ =

ς
(
5ς3ξρ0 − η0φ − ρ0ψ

)
λρ0

,

(3.12)

where η0, ρ0, and ρ−1 are free functions in (ν,w) ∈ R+ × (CN)c.
By substituting the solutions from Eq (3.12) into Eq (3.11) and applying Eq (3.3), a soliton wave

solution for Eq (3.1) can be obtained:

z1(µ, ν,w) =
[ (
η0(ν,w)φ(ν,w) − 6ς2ξ(ν,w)ρ0(ν,w)

) (
ρ2

0(ν,w)A11(µ, ν,w) + 4ρ−1(ν,w)A12(µ, ν,w)
)

+ 4ρ0(ν,w)ρ−1(ν,w)η0(ν,w)φ(ν,w)
]

×
[
ρ0(ν,w)φ(ν,w)

(
ρ2

0(ν,w)A11(µ, ν,w) + 4ρ0(ν,w)ρ−1(ν,w) + 4A12(µ, ν,w)
) ]−1

, (3.13)

where

A11(µ, ν,w) = exp

ςµ + ς

ν∫
0

5ς2ξ(τ,w)ρ0(τ,w) − η0(τ,w)φ(τ,w) − ρ0(τ,w)ψ(τ,w)
ρ0(τ,w)

dτ

 , (3.14)

and

A12(µ, ν,w) = exp

−
ςµ + ς

ν∫
0

5ς2ξ(τ,w)ρ0(τ,w) − η0(τ,w)φ(τ,w) − ρ0(τ,w)ψ(τ,w)
ρ0(τ,w)

dτ


 . (3.15)

Case 2. If we consider i = g = 2 and j = h = 2, the proposed solution in Eq (3.6) becomes:

z(χ) =
η2 exp(2χ) + η1 exp(χ) + η0 + η−1 exp(−χ) + η−2 exp(−2χ)
ρ2 exp(2χ) + ρ1 exp(χ) + ρ0 + ρ−1 exp(−χ) + ρ−2 exp(−2χ)

. (3.16)

To simplify the calculations, we set ρ1 = ρ−1 = 0 and ρ2 = 0. As a result, Eq (3.16) takes the form:
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z(χ) =
η2 exp(2χ) + η1 exp(χ) + η0 + η−1 exp(−χ) + η−2 exp(−2χ)

exp(2χ) + ρ0 + ρ−2 exp(−2χ)
. (3.17)

Upon inserting Eq (3.17) into Eq (3.4), collecting the coefficients of exp(χ), and equating them to
zero, a system of algebraic equations is formed with variables η0, η1, η2, η−1, η−2, ρ0, ρ−2, and ϑ. By
solving this system with Mathematica, we find the following solutions:

η0 =
ρ0

φ
(12ς2ξ + η2φ), η1 = −

6m ς2

φ

(
ξ
√

2ρ0

)
, η−1 =

3m ς2

φ

(
ξ
√

2ρ3
0

)
,

η−2 =
1
4
η2

2ρ
2
0, ρ−2 =

1
4
ρ2

0, ϑ = −
ς

λ
(ς2ξ + η2φ + ψ),

(3.18)

where ρ0 and η2 are arbitrary functions on R+ × (CN)c and m2 = −1.
Substituting the expressions from (3.18) into Eq (3.17) and applying Eq (3.3) leads to a soliton wave

solution for Eq (3.1), presented below.

z2(µ, ν,w) =
[
φ(ν,w)(4A23(µ, ν,w) + η2

2(ν,w)ρ2
0(ν,w)A24(µ, ν,w)) + 4ρ0(ν,w)(12ς2ξ(ν,w)

+ η2(ν,w)φ(ν,w)) + 12m ς2ξ(ν,w)
√

2ρ0(ν,w)(ρ0(ν,w)A22(µ, ν,w) − A21(µ, ν,w))
]

×
[
4φ(ν,w)

(
A23(µ, ν,w) + ρ0(ν,w) +

1
4
ρ2

0(ν,w)A24(µ, ν,w)
) ]−1

, (3.19)

where

A21(µ, ν,w) = exp

ςµ − ς
ν∫

0

(
ς2ξ(τ,w) + η2(τ,w)φ(τ,w) + ψ(τ,w)

)
dτ

 , (3.20)

A22(µ, ν,w) = exp

−
ςµ − ς

ν∫
0

(
ς2ξ(τ,w) + η2(τ,w)φ(τ,w) + ψ(τ,w)

)
dτ


 , (3.21)

A23(µ, ν,w) = exp

2
ςµ − ς

ν∫
0

(
ς2ξ(τ,w) + η2(τ,w)φ(τ,w) + ψ(τ,w)

)
dτ


 , (3.22)

and

A24(µ, ν,w) = exp

−2

ςµ − ς
ν∫

0

(
ς2ξ(τ,w) + η2(τ,w)φ(τ,w) + ψ(τ,w)

)
dτ


 . (3.23)

Case 3. If we set i = g = 2 and j = h = 1, then Eq (3.6) becomes:

z(χ) =
η2 exp(2χ) + η1 exp(χ) + η0 + η−1 exp(−χ)
ρ2 exp(2χ) + ρ1 exp(χ) + ρ0 + ρ−1 exp(−χ)

. (3.24)

To simplify the calculations, we set ρ2 = 1. Using the procedures described above, we get:
η0 =

η2ρ
2
1

3
, η1 = η2ρ1, η−1 =

η2ρ
3
1

27
,

ρ0 =
ρ2

1

3
, ρ−1 =

ρ3
1

27
, ϑ =

−ξς3 − η2ςφ − ςψ

λ
,

(3.25)
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where ρ1 and η2 are arbitrary functions on R+ × (CN)c.
Substituting the expressions from (3.25) into Eq (3.24) and applying Eq (3.3) leads to a soliton wave

solution for Eq (3.1), presented below.

z3(µ, ν,w) =
[
27η2(ν,w)A23(µ, ν,w) + 27η2(ν,w)ρ1(ν,w)A21(µ, ν,w)

+ 9η2(ν,w)ρ2
1(ν,w) + η2(ν,w)ρ3

1(ν,w)A22(µ, ν,w)
]

×
[
27A32(µ, ν,w) + 27ρ1(ν,w)A21(µ, ν,w) + 9ρ2

1(ν,w) + ρ3
1(ν,w)A22(µ, ν,w)

]−1
, (3.26)

where A21, A22, and A23 are defined in Eqs (3.24), (3.25), and (3.22), respectively.
Let ς be defined as an imaginary number. Under this assumption, the previously obtained soliton

wave solutions can be converted into periodic forms. The corresponding transformations are:ς = mB; B ∈ R and m2 = −1,
e±mχ = cos(χ) ± m sin(χ).

(3.27)

Consequently, the soliton solution presented in (3.13) is modified to:

z4(µ, ν,w) =
( (
η0(ν,w)φ(ν,w) + 6B2ξ(ν,w)ρ0(ν,w)

) [ (
ρ2

0(ν,w) + 4ρ−1(ν,w)
)

cos(BS (µ, ν, τ))

+ m
(
ρ2

0(ν,w) − 4ρ−1(ν,w)
)

sin(BS (µ, ν, τ))
]

+ 4ρ0(ν,w)ρ−1(ν,w)η0(ν,w)φ(ν,w)
)

×
(
ρ0(ν,w)φ(ν,w)

[ (
ρ2

0(ν,w) + 4ρ0(ν,w)ρ−1(ν,w)
)

cos(BS (µ, ν, τ))

+ m
(
ρ2

0(ν,w) − 4
)

sin(BS (µ, ν, τ))
])−1

, (3.28)

where

S (µ, ν,w) = µ +

ν∫
0

5B2ξ(ν,w)ρ0(ν,w) − η0(ν,w)φ(ν,w) − ρ0(ν,w)ψ(ν,w)
ρ0(ν,w)

dτ. (3.29)

To achieve real periodic solutions, the imaginary component in Eq (3.28) must equal zero. To
accomplish this, we assign the values ρ0(ν,w) = ±2 and ρ−1(ν,w) = 1. Consequently, we derive the
following periodic solutions for Eq (3.1):

z41(µ, ν,w) =
η0(ν,w)φ(ν,w) + 12B2ξ(ν,w)

3φ(ν,w)

+
η0

3
sec

B

µ +
1
2

ν∫
0

(
10B2ξ(τ,w) − η0(τ,w)φ(τ,w) − 2ψ(τ,w)

)
dτ


 , (3.30)

and

z42(µ, ν,w) =
η0(ν,w)φ(ν,w) − 12B2ξ(ν,w)

φ(ν,w)

− η0 sec

B

µ − 1
2

ν∫
0

(
−10B2ξ(τ,w) − η0(τ,w)φ(τ,w) + 2ψ(τ,w)

)
dτ


 , (3.31)
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Using the same approach as for the solution in Eq (3.13), the soliton wave solutions presented
in (3.19) and (3.26) can be transformed into periodic wave solutions. Different parameter choices for
i, g, h, and j enable the derivation of a variety of SPW solutions for Eq (3.1).

It is noteworthy that the construction of these soliton solutions imposes inherent relationships
among the variable coefficients. These conditions ensure a balance between the linear and nonlinear
terms, which is crucial for the existence of soliton structures. Similar intrinsic constraints have been
reported in earlier works [35]. Although we do not impose explicit constraints beforehand, our method
naturally satisfies these requirements.

4. Stochastic soliton and periodic wave solutions

The properties of exponential and trigonometric functions imply the existence of a bounded, open
domainO ⊂ R×R+, where the solution z(µ, ν,w) to Eq (3.1) and all derivatives in Eq (3.1) are uniformly
continuous for (µ, ν,w) ∈ O × Nα(u), with α < ∞ and u > 0. This solution remains continuous at
each (µ, ν) ∈ O for any w ∈ Nα(u) and is analytic in w ∈ Nα(u) for fixed (µ, ν) ∈ O. As stated in
Theorem 2.1, there exists a stochastic distribution Z(µ, ν) ∈ (T )−1, satisfying z(µ, ν,w) = Z̃(µ, ν)(w) for
all (µ, ν,w) ∈ O × Nα(u), and Z(µ, ν) solves Eq (1.1) in (T )−1. Consequently, applying the inverse HT
to Eqs (3.13), (3.19), and (3.26) provides the exact soliton wave solutions for Eq (1.1) as follows:

Z1(µ, ν) =
[ (
η∗0(ν) � Φ(ν) − 6ς2Ξ(ν) � ρ∗0(ν)

)
�
(
(ρ∗0)�2(ν) � D11(µ, ν) + 4ρ∗−1(ν) � D12(µ, ν)

)
+ 4ρ∗0(ν) � ρ∗−1(ν) � η∗0(ν) � Φ(ν)

]
�

[
ρ∗0(ν) � Φ(ν) �

(
(ρ∗0)�2(ν) � D11(µ, ν) + 4ρ∗0(ν) � ρ∗−1(ν) + 4D12(µ, ν)

) ]�(−1)
, (4.1)

where

D11(µ, ν) = exp�

ςµ + ς

ν∫
0

5ς2Ξ(τ) � ρ∗0(τ) − η∗0(τ) � Φ(τ) − ρ∗0(τ) � Ψ(τ)
ρ∗0(τ)

dτ

 , (4.2)

D12(µ, ν) = exp�

−
ςµ + ς

ν∫
0

5ς2Ξ(τ) � ρ∗0(τ) − η∗0(τ) � Φ(τ) − ρ∗0(τ) � Ψ(τ)
ρ∗0(τ)

dτ


 , (4.3)

and

Z2(µ, ν) =
[
Φ(ν) � (4D23(µ, ν) + (η∗2)�2(ν) � (ρ∗0)�2(ν) � D24(µ, ν)) + 4ρ∗0(ν) � (12ς2Ξ(ν)

+ η∗2(ν) � Φ(ν)) + 12m ς2Ξ(ν) �
√

2ρ∗0(ν) � (ρ∗0(ν) � D22(µ, ν) − D21(µ, ν))
]

�
[
4Φ(ν) �

(
D23(µ, ν) + ρ∗0(ν) +

1
4

(ρ∗0)�2(ν) � D24(µ, ν)
) ]�(−1)

, (4.4)

where

D21(µ, ν) = exp�

ςµ − ς
ν∫

0

(
ς2Ξ(τ) + η∗2(τ) � Φ(τ) + Ψ(τ)

)
dτ

 , (4.5)
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D22(µ, ν) = exp�

−
ςµ − ς

ν∫
0

(
ς2Ξ(τ) + η∗2(τ) � Φ(τ) + Ψ(τ)

)
dτ


 , (4.6)

D23(µ, ν) = exp�

2
ςµ − ς

ν∫
0

(
ς2Ξ(τ) + η∗2(τ) � Φ(τ) + Ψ(τ)

)
dτ


 , (4.7)

and

D24(µ, ν) = exp

−2

ςµ − ς
ν∫

0

(
ς2Ξ(τ) + η∗2(τ) � Φ(τ) + Ψ(τ)

)
dτ


 , (4.8)

Z3(µ, ν) =
[
27η∗2(ν) � D23(µ, ν) + 27η∗2(ν) � ρ∗1(ν) � D21(µ, ν)

+ 9η∗2(ν) � (ρ∗1)�2(ν) + η∗2(ν) � (ρ∗1)�3(ν) � D22(µ, ν)
]

�
[
27D23(µ, ν) + 27ρ∗1(ν) � D21(µ, ν) + 9(ρ∗1)�2(ν) + (ρ∗1)�3(ν) � D22(µ, ν)

]�(−1)
, (4.9)

where D21,D22, and D23 are defined in Eqs (4.5), (4.6), and (4.7), respectively.
Also, by performing the inverse HT on Eqs (3.30) and (3.31), the exact periodic wave solutions for

Eq (1.1) are obtained as follows:

Z41(µ, ν) =
η∗0(ν) � Φ(ν) + 12B2 � Ξ(ν)

3Φ(ν)

+
η∗0
3

sec�

B

µ +
1
2

ν∫
0

(
10B2Ξ(τ) − η∗0(τ) � Φ(τ) − 2Ψ(τ)

)
dτ


 , (4.10)

and

Z42(µ, ν) =
η∗0(ν) � Φ(ν) − 12B2Ξ(ν)

Φ(ν)

− η∗0 sec�

B

µ − 1
2

ν∫
0

(
−10B2Ξ(τ) − η∗0(τ) � Φ(τ) + 2Ψ(τ)

)
dτ


 . (4.11)

Here, ρ∗0, ρ
∗
−1, ρ

∗
1, η

∗
0, and η∗2 are arbitrary stochastic distributions in (T )−1.

Moreover, the stochastic solutions derived in this work offer significant advantages in modeling
real geophysical phenomena. For example, the inclusion of random perturbations allows the model
to capture the complex variability observed in internal ocean waves and atmospheric gravity waves.
This improved framework can more accurately represent the influence of environmental fluctuations
on wave amplitude, energy distribution, and propagation dynamics, thereby enhancing its practical
applicability in geophysical studies.
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5. Illustrative example with numerical simulations

This section presents a specific example accompanied by numerical simulations to validate the
significance of our findings and illustrate their practical applications. The solutions obtained for
Eq (1.1) are significantly influenced by the configuration of the functions Φ(ν), Ψ(ν), and Ξ(ν).
Consequently, modifying the forms of these functions produces several solutions to Eq (1.1), as
demonstrated in Eqs (4.1)–(4.11). This example demonstrates this behavior.

Example 5.1. Consider the following setup: Let Ψ(ν) = δ1Φ(ν), Ξ(ν) = δ2Φ(ν), Φ(ν) = $(ν)+δ3W(ν),
ρ∗0(ν) = δ4, ρ∗

−1 = δ5, ρ∗1 = δ6, η∗0 = δ7, and η∗2 = δ8, where the constants δk (k = 1, 2, . . . , 8) are
arbitrary, $(ν) is a measurable function that is bounded on R+, and W(ν) represents Gaussian WN,
defined as the time derivative (in the strong sense within (T )−1) of B-M B(ν). The HT of W(ν) is
given by W̃(ν,w) =

∑∞
r=1 wr

∫ ν

0
κr(τ) dτ [20]. Using the form of W̃(ν,w), Eqs (4.1)–(4.11) yield the WN

functional solution for Eq (1.1) as follows:

ZB1(µ, ν) =
(δ7 − 6ς2δ2)(δ2

4 exp
(
D1(µ, ν)

)
+ 4δ5 exp

(
−D1(µ, ν)

)
+ 4δ4δ5δ7

δ3
4 exp

(
D1(µ, ν)

)
+ 4δ4δ5 + 4 exp

(
−D1(µ, ν)

) , (5.1)

where

D1(µ, ν) = ς

[
µ +

5ςδ4δ2 − δ7 − δ4δ1

δ4

[∫ ν

0
$(τ)dτ + δ3

(
B(ν) −

ν2

2

)]]
, (5.2)

ZB2(µ, ν) =
1

4
(
exp

(
2D2(µ, ν)

)
+ δ4 + 1

4δ
2
4 exp

(
−2D1(µ, ν)

))[4 exp
(
2D2(µ, ν)

)
+ δ2

8δ
2
4 exp

(
−2D2(µ, ν)

)
+ 4δ4(12ς2δ2 + δ8) + 12mς2δ2

√
2δ4

(
δ4 exp

(
−D2(µ, ν)

)
− exp

(
D2(µ, ν)

) )]
, (5.3)

where

D2(µ, ν) = ς

[
µ − (ς2δ2 + δ8 + δ1)

[∫ ν

0
$(τ)dτ + δ3

(
B(ν) −

ν2

2

)]]
, (5.4)

ZB3(µ, ν) =
9δ8

(
3 exp

(
2D2(µ, ν)

)
+ 3δ6 exp

(
D2(µ, ν)

)
+ δ2

6

)
+ δ8δ

3
6 exp

(
−D2(µ, ν)

)
27 exp

(
2D2(µ, ν)

)
+ 9δ6

(
3 exp

(
D2(µ, ν)

)
+ δ6

)
+ δ3

6 exp
(
−D2(µ, ν)

) , (5.5)

where D2 is defined in Eq (5.4),

ZB4 = 4B2δ2 +
δ7

3

{
1 + sec

(
B

(
µ +

10B2δ2 − δ7 − 2δ1

2

[∫ ν

0
$(τ)dτ + δ3

(
B(ν) −

ν2

2

)]))}
, (5.6)

and

ZB5 = 12B2δ2 + δ7

{
1 − sec

(
B

(
µ +

10B2δ2 + δ7 − 2δ1

2

[∫ ν

0
$(τ)dτ + δ3

(
B(ν) −

ν2

2

)]))}
. (5.7)
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The numerical simulation of the soliton solution in (5.1) is shown in Figures 1 and 2, when δ1 = 1,
δ2 = 2, δ3 = 0.5, δ4 = 3, δ5 = 1.5, δ7 = 1.2, ς = 0.7, and $(ν) = tanh(2ν). Figure 1 illustrates the
behavior of the soliton solution (5.1) with stochastic influence, where the B-M B(ν) is simulated as
random noise with increments dB =

√
ν(2) − ν(1) . RAND[0, 1]. Figure 2 represents the evolution of

the the soliton solution (5.1) without stochastic influence, where the B-M B(ν) = 0. From Figures 1
and 2, it can be observed that the absence of B-M results in smooth, deterministic wave behavior. The
inclusion of noise introduces stochastic fluctuations that influence the overall amplitude and structure
of the soliton solution. Additionally, the stochastic forcing term in Figure 1 causes uncertainty in
the wave amplitudes and disrupts the traveling wave patterns, leading to random variations in the
soliton’s behavior.

The numerical simulation of the periodic solution in (5.6) is shown in Figures 3 and 4, when δ1 =

0.8, δ2 = 2, δ3 = 0.4, δ7 = 2, and B = 0.001. The function $(ν) is modified to exhibit stronger periodic
behavior, defined as $(ν) = sin(2πν/max(ν)) + cos(3πν/max(ν)), contributing to the oscillations in
the periodic solution (5.6). Figure 3 illustrates the periodic solution (5.6) with stochastic influence,
where the B-M B(ν) is simulated as amplified random noise with increments dB =

√
ν(2) − ν(1)× 20 ·

RAND[0, 1]. Figure 4 shows the behavior of the periodic solution (5.6) without stochastic influence,
where B(ν) = 0. From Figures 3 and 4, we observe that the inclusion of B-M introduces significant
stochastic fluctuations in the periodic solution. These fluctuations affect the overall amplitude and
structure, leading to random variations in the system’s behavior. The periodic function $(ν) further
amplifies the oscillations, creating a more complex wave pattern. In contrast, the absence of stochastic
influence in Figure 4 results in smooth, deterministic wave behavior. The stochastic forcing term in
Figure 3 creates uncertainty in the wave amplitudes, disrupting the periodic traveling wave patterns
and leading to random distortions in the periodicity behavior.
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Figure 1. Visualization of the soliton solution in (5.1) including the effects of B-M: (a) 3D
plot, (b) contour plot, and (c) 2D plot.
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Figure 2. Visualization of the soliton solution in (5.1) excluding the effects of B-M: (a) 3D
plot, (b) contour plot, and (c) 2D plot.
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Figure 3. Visualization of the periodic solution in (5.6) with the effects of B-M: (a) 3D plot,
(b) contour plot, and (c) 2D plot.
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Figure 4. Visualization of the periodic solution in (5.6) without the effects of B-M: (a) 3D
plot, (b) contour plot, and (c) 2D plot.
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6. Conclusions

This research has derived precise SPW solutions for the stochastic geophysical KdV equation with
variable coefficients, highlighting its importance for modeling wave phenomena in the atmosphere and
oceans. By employing WN theory along with the HT, the stochastic equation was transformed into a
deterministic form, enabling the application of the exp-function method. The solutions revealed that
stochastic influences, such as B-M, introduce variability in wave forms, affecting both SPW dynamics.
Numerical simulations demonstrated how these random fluctuations disrupt the smooth progression of
waves, mirroring the complex dynamics observed in natural geophysical systems. The study offers a
solid framework for exploring the interaction between deterministic and stochastic factors in large-
scale wave propagation, providing valuable insights for future work on nonlinear wave equations
with applications in fluid dynamics, oceanography, and atmospheric science. This study provides
theoretical insights into geophysical wave dynamics that align with observed phenomena in the ocean
and atmosphere. The deterministic solutions represent internal ocean waves and atmospheric gravity
waves, both of which play crucial roles in energy transport and fluid mixing. The stochastic solutions
incorporate environmental fluctuations such as wind stress variations and oceanic turbulence, which
introduce uncertainties in wave behavior. Numerical simulations demonstrate how these perturbations
influence wave stability and structure, reinforcing the real-world applicability of our findings. Future
research could validate these results through experimental and observational studies in oceanography
and atmospheric sciences.
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