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Abstract: This study explores the combined effects of exothermic chemical reactions and Cattaneo–

Christov heat flux on thermosolutal convection within a nanofluid-filled square cavity containing a 

rotating Z-shaped fin. The incompressible smoothed particle hydrodynamics (ISPH) approach was 

employed, utilizing boundary particle renormalization to accurately model boundary conditions. An 

artificial neural network (ANN) model, trained on ISPH simulation data, predicted the average Nusselt 

number (Nuavg) and average Sherwood number (Shavg) with high accuracy. A dataset comprising 56 

data points was used, from which 40 data points were used for training, 8 for validation, and 8 for 

testing. The Z-shaped fin, centrally positioned, rotates at a fixed angular velocity, maintaining lower 

temperature and concentration levels, while the cavity’s vertical walls exhibit elevated thermal and 

solutal conditions. Results indicate that the Z-shaped fin’s geometry, exothermic reaction rates, and 

magnetic field strength significantly influence heat and mass transfer and fluid dynamics. For instance, 

increasing the Hartmann number (Ha) from 0 to 50 decreased nanofluid velocity by 61.99%, while 

Nuavg  and Shavg  were reduced by 16.87% and 11.81%, respectively. Additionally, increasing the 

nanoparticle volume fraction from 0 to 0.15 enhanced Nuavg by 22.43% and Shavg by 116.3%. The 

ANN model, employing the Levenberg–Marquardt algorithm, achieved a coefficient of determination 

𝑅 = 0.99994  and a mean squared error MSE = 4.21 × 10−6 , demonstrating its reliability in 

predicting thermal performance. These findings underscore the study’s relevance to applications such 

as energy systems, refrigeration, and heat exchangers. 
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1. Introduction  

Convection heat transfer in ventilated cavities has numerous applications in industrial systems for 

building ventilation, thermal control of electronic devices, and removal of contaminated particles [1,2]. 

In addition, exothermic chemical reactions play an important role in chemical fractionation, 

combustion, explosions, oil recovery, and moisture transfer in grain storage. Nanofluids are a 

combination of a host fluid and nano-sized metal particles [3]. Nanofluids are widely used in the 

cooling process of heat exchangers and electronic devices [4]. In particular, the analysis of heat transfer 

and chemical reactions of nanofluids is expected to receive more attention in the near future because 

of its practical applications in petroleum extraction, nuclear reactors, evaporation, chemistry, and 

refrigeration industries [5−15]. Nanofluids—suspensions of nano-sized particles in base fluids—are 

drawing wide interest for their superior heat transfer capabilities. Early experiments revealed 

discrepancies between predicted and measured heat transfer coefficients (Yang et al. [5]). Nonetheless, 

subsequent findings underscore their broad potential. Putra et al. [6] show that adding nanofluids and 

thermoelectric cooling “significantly enhances heat removal”. Mahian et al. [7] report that nanofluids 

“boost solar collector efficiency”, while Rashidi et al. [8] highlight their impact on condensation and 

evaporation processes. In porous media, Khanafer and Vafai [9] call nanofluids “an effective means” 

to enhance convective heat transfer. Alhuyi Nazari et al. [10] confirm their ability to lower thermal 

resistance in heat pipes. Sajid and Ali [11], however, emphasize “key challenges”, including high 

pumping power. Wahab et al. [12] demonstrate “notable performance gains” in solar energy systems, 

given proper stability management. Saidina et al. [13] confirm strong cooling effects for electronics, 

stressing the need for property optimization. Li et al. [14] propose neural networks for “accurate 

modeling” of nanofluid thermal behavior. Finally, Sheremet et al. [15] observes “substantial progress”, 

while urging further research on stability and standardization. Mathematically, the chemical reaction is 

characterized by Arrhenius kinetics [16,17]. Rahman et al. [18] explored how exothermic reactions, 

modeled by Arrhenius kinetics, influence natural convection in a porous square cavity with nanofluids, 

utilizing the Galerkin finite element method (GFEM). Raees-ul-Haq [19] simulated the effects of 

exothermic reactions on free convection within a magnetized nanofluid-filled triangular porous cavity. 

Similarly, Hasan et al. [20] applied GFEM to examine magnetohydrodynamics (MHD) driven 

convective flows in a cavity influenced by such chemical reactions. Magnetic field and nanofluid flow 

interactions within cavities are valuable in engineering applications, such as refrigeration and cooling 

systems [21−23]. Aly et al. [24] used the incompressible smoothed particle hydrodynamics (ISPH) 

approach to examine how varying magnetic fields and helical structures affect convection within a 

ferrofluid cavity. Aly [25] also leveraged ISPH to simulate the thermosolutal convection in a nanofluid 

cavity, highlighting magnetic and thermal diffusion effects. Introduced by Gingold and Monaghan [26] and 

Lucy [27], the meshless Lagrangian nature of the SPH method has led to its widespread use in 

handling complex fluid dynamics scenarios, such as multi-phase flows, free surfaces, strong 

nonlinearities, and turbulent behaviors like jet impingement and nozzles [28−32]. Violeau and Issa [28] 

provided an extensive overview of the SPH method’s capabilities in modeling turbulent, complex free-

surface flows, highlighting its potential for simulating challenging fluid dynamics scenarios. Qiang et 
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al. [29] utilized the SPH approach to study two-dimensional droplet collisions, effectively addressing 

the complexities of multi-phase flows with large density variations. Aly et al. [30] applied the ISPH 

method to investigate mixed convection in an inclined cavity with sinusoidal heated walls, advancing 

the understanding of convective flows in confined spaces. Garoosi and Shakibaeinia [31] proposed a 

refined high-order ISPH approach for simulating free-surface flows and heat transfer, enhancing 

accuracy in complex fluid–thermal interactions. More recently, Shimizu et al. [32] examined the 

applicability of a higher-order consistent ISPH method, assessing its performance in detailed 

simulations for ocean and polar engineering applications. To enhance heat and mass transfer in closed 

systems, heat exchangers and solar cells frequently utilize fins or textured surfaces. Saeid [33] 

investigated the influence of fin geometry on heating within a square cavity. Aly and El-Sapa [34] 

employed ISPH to analyze MHD thermosolutal convection in a nanofluid cavity featuring a rotating 

cylinder and a cross-shaped fin. Meanwhile, El Moutaouakil et al. [35] studied the impact of vertical 

fins on natural convection within cavities. Recent studies have explored the application of artificial 

neural networks (ANNs) to heat and mass transfer in cavities, demonstrating the potential of these 

models to accurately predict complex thermal and solutal behaviors under various boundaries and 

initial conditions. ANNs are a powerful computational tool in various fields due to their ability to 

represent complex nonlinear interactions and rapidly process large datasets. They are particularly 

useful for complex boundary conditions or multi-physics phenomena. ANNs can accurately forecast 

system behavior, improve performance, and provide real-time solutions. They have been used to 

predict thermal conductivity, examine fluid flow properties, and analyze convection in heat exchangers. 

Their generalization capability makes them an ideal complement to conventional numerical techniques 

like ISPH. This study shows that combining ANNs with ISPH improves accuracy and computing 

efficiency in addressing exothermic thermosolutal convection in a nanofluid-filled square cavity. ANN 

models have become instrumental in handling nonlinear interactions and diverse parameters like 

temperature, concentration, velocity, and Nusselt and Sherwood numbers ([36−38]). Lagaris et al. [39] 

utilized an ANN model to solve ordinary and partial differential equations, showing its effectiveness 

for complex equations. Díaz et al. [40] applied ANNs to simulate heat exchanger performance, 

improving predictive accuracy. Varol et al. [41] predicted natural convection flow and temperature in 

a triangular enclosure using ANN and ANFIS models. Motahar [42] used ANN to estimate non-

Newtonian nanofluid behavior with phase change materials. Alhejaili et al. [43] combined ANN with 

ISPH to study heat and mass transfer in nano-encapsulated materials within complex cavities. 

Elshehabey et al. [44] integrated ANN and ISPH for modeling thermal radiation in porous, finned 

cavities. Lastly, Abdelsalam et al. [45] applied AI-powered ANN for bioconvection analysis involving 

nano-encapsulation and oxytactic microorganisms. This research explores the effects of exothermic 

reactions, magnetic fields, and Cattaneo–Christov heat flux on thermosolutal convection by applying 

the ISPH method within a nanofluid-filled cavity containing a rotating Z-shaped fin. The ANN model 

is also employed to precisely estimate average Nusselt and Sherwood numbers, providing deeper 

insights into the heat and mass transfer processes in this setup. 

2. Mathematical analysis 

2.1. Physical model and governing equations 

The initial setup of the rotating Z-shaped fin for thermosolutal convection analysis is depicted in 

Figure 1. The fin rotates with a circular velocity, represented by 𝐕 = 𝜔(𝐫 − 𝐫0), and is maintained at 

a specified low temperature (𝑇𝑐) and concentration (𝐶𝑐). The cavity’s vertical walls are maintained at 
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elevated temperature (𝑇ℎ) and concentration (𝐶ℎ), while the horizontal walls are adiabatic. The flow is 

modeled under the following assumptions: 

• The flow is incompressible, laminar, and time dependent. 

• The Boussinesq approximation is applied, accounting for buoyancy effects due to 

temperature and concentration variations. 

• The fluid is Newtonian, and the nanofluid properties are assumed to be constant, except for 

density in the buoyancy term. 

• Heat and mass transfer are driven by both thermal and solutal gradients. 

• The governing equations are formulated in a Cartesian coordinate system (𝑥, 𝑦) to represent 

the geometry of the square cavity. 

• The rotating Z-shaped fin is modeled as a rigid body with no deformation. 

 

Figure 1. Diagram of a rotating Z-shaped fin, illustrating the rotational direction in 

thermosolutal convection studies. 

The dimensional form of the governing equations, as outlined in references [46−48], is:  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,           (1) 

𝑑𝑢

𝑑𝑡
= −

1

𝜌nf

𝜕𝑝

𝜕𝑥
+

𝜇nf

𝜌nf
(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) −

𝜎nf 𝐵0
2

𝜌nf
(𝑢 sin2𝛾 − 𝑣 sin𝛾 cos𝛾),     (2) 

𝑑𝑣

𝑑𝑡
= −

1

𝜌nf

𝜕𝑝

𝜕𝑦
+

𝜇nf

𝜌nf
(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) +

(𝜌𝛽𝑇)nf

𝜌nf
 g(𝑇 − 𝑇𝑐) +

(𝜌𝛽𝐶)nf

𝜌nf
 g(𝐶 − 𝐶𝑐) 

−
𝜎nf 𝐵0

2

𝜌nf
(𝑣 cos2𝛾 − 𝑢 sin𝛾 cos𝛾),         (3) 

𝑑𝑇

𝑑𝑡
= 𝛻 ∙ (𝛼nf 𝛻𝑇) +

1

(𝜌𝐶𝑃)nf
𝛻 ∙ (𝐷1 𝛻𝐶) +

1

(𝜌𝐶𝑃)nf
 
𝑄𝑘𝑜𝑎

𝑒
𝐸

𝑅𝑇
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−𝛿1 (𝑢
𝜕𝑇

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝑢2 𝜕2𝑇

𝜕𝑥2 + 𝑣2 𝜕2𝑇

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑇

𝜕𝑥𝜕𝑦
+ 𝑢

𝜕𝑇

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑥

𝜕𝑢

𝜕𝑦
),     (4) 

𝑑𝐶

𝑑𝑡
= 𝛻 ∙ (𝐷2 𝛻𝑇) + 𝛻 ∙ (𝐷𝑚 𝛻𝐶).         (5) 

The subsequent dimensionless variables [46−48] are substituted into Eqs (1)−(5) as:  

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝜏 =

𝑡𝛼f

𝐿2
, 𝑈 =

𝑢𝐿

𝛼f
, 𝑉 =

𝑣𝐿

𝛼f
,     𝛼𝑓 =

𝑘f

(𝜌𝐶𝑃)f
  

𝑃 =
𝑝𝐿2

𝜌nf 𝛼f
2 

, 𝜃 =
𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
, Φ =

𝐶−𝐶𝑐

𝐶ℎ−𝐶𝑐
.         (6) 

The dimensionless equations [46−48] are obtained as: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,           (7) 

𝑑𝑈

𝑑𝜏
= −

𝜕𝑃

𝜕𝑋
+

𝜇nf

 𝜌nf𝛼f
(

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2) −
σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(U sin2𝛾 − V sin𝛾 cos𝛾),    (8) 

𝑑𝑉

𝑑𝜏
= −

𝜕𝑃

𝜕𝑌
+

𝜇nf

 𝜌nf𝛼f
(

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
) +

(𝜌𝛽)nf

𝜌nf 𝛽f
𝑅𝑎 Pr(𝜃 + 𝑁Φ) 

−
σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(V cos2𝛾 − U sin𝛾 cos𝛾),       (9) 

𝑑𝜃

𝑑𝜏
=

1

(𝜌𝐶𝑃)nf
 𝐷𝑢 (

𝜕2Φ

𝜕𝑋2
+

𝜕2Φ

𝜕𝑌2
) +

𝛼𝑛𝑓 

𝛼𝑓 
(

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
) +

1

(𝜌𝐶𝑃)nf
𝐹𝑘𝑒𝜃 

−𝛿𝐶 (𝑈
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2 𝜕2𝜃

𝜕𝑋2 + 𝑉2 𝜕2𝜃

𝜕𝑌2 + 2𝑈𝑉
𝜕2𝜃

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑌
),    (10) 

𝑑Φ

𝑑𝜏
= 𝑆𝑟 (

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2) +
1 

𝐿𝑒 
(

𝜕2Φ

𝜕𝑋2 +
𝜕2Φ

𝜕𝑌2 ),      (11) 

where 𝑆𝑟 =
𝐷2

𝛼𝑓
(

(𝑇ℎ−𝑇𝑐)

(𝐶ℎ−𝐶𝑐)
) is the Soret number, 𝐷𝑢 =

𝐷1

𝛼𝑓
(

(𝐶ℎ−𝐶𝑐)

(𝑇ℎ−𝑇𝑐)
) is the Dufour number, 𝛿𝐶 =

𝜈𝑓𝛿1

𝐿2  

is a parameter of Cattaneo–Christov heat flux, 𝐻𝑎 = √
𝜎f 

𝜇f
 𝐵0𝐿  is the Hartmann number, 𝑅𝑎 =

g𝛽𝑇(𝑇ℎ−𝑇𝑐)𝐿3

𝜈𝑓𝛼f
 is Rayleigh’s number, 𝑃𝑟 =

𝜈𝑓

𝛼𝑓
 is the Prandtl number, 𝐿𝑒 =

𝛼𝑓

𝐷𝑚
 is the Lewis number, 

and 𝑁 =
𝛽𝐶(𝐶ℎ−𝐶𝑐)

𝛽𝑇(𝑇ℎ−𝑇𝑐)
 is a buoyancy ratio. 

2.2. Dimensionless boundary conditions 

The boundary conditions for the model are defined as follows: 

Vertical walls: Temperature (𝜃) and concentration (Φ) are set to 1, with no-slip velocity 

conditions (𝑈 = 0, 𝑉 = 0). 

(12) 
Horizontal walls: Adiabatic and impermeable conditions are applied, ensuring no heat or 

mass flux (
∂𝜃

∂𝑌
= 0, 

∂Φ

∂𝑌
= 0) and no-slip velocity (𝑈 = 0, 𝑉 = 0).  

Inner Z-shaped fin: The fin rotates, imposing velocity conditions (𝑈 = 𝑈rot, 𝑉 = 𝑉rot) 

and maintaining lower temperature and concentration levels (𝜃 = 0, Φ = 0). 

The mean values for Nusselt and Sherwood numbers are: 
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𝑁𝑢̅̅ ̅̅ = − ∫
𝑘nf

𝑘f
 (

𝜕𝜃

𝜕𝑋
) 𝑑𝑌

1

0
,         (13) 

𝑆ℎ̅̅ ̅ = − ∫ (
𝜕Φ

𝜕𝑋
) 𝑑𝑌

1

0
.          (14) 

2.3. Nanofluid properties  

The nanofluid properties are determined using the following equations [49−51]: 

𝜌nf = 𝜌f +  𝜙(𝜌np − 𝜌f)          (15) 

(𝜌𝐶𝑝)
nf

= (𝜌𝐶𝑝)
f

+ 𝜙 ((𝜌𝐶𝑝)
np

− (𝜌𝐶𝑝)
f
)       (16) 

(𝜌𝛽)nf = (𝜌𝛽)f + 𝜙((𝜌𝛽)np − (𝜌𝛽)f)        (17) 

𝜎nf = (
3𝜙(𝜎np/𝜎f−1)

(𝜎np/𝜎f+2)−(𝜎np/𝜎f−1)𝜙
+ 1) 𝜎f        (18) 

𝛼nf =
𝑘nf

(𝜌𝐶𝑝)
nf

            (19) 

𝑘nf = (𝑘np + 2𝑘f) + 𝜙
((𝑘np+2𝑘f)𝑘f−2𝜙(𝑘f−𝑘np)𝑘f)

(𝑘f−𝑘np)
      (20) 

𝜇nf =
𝜇f

(1−𝜙)2.5.           (21) 

3. The SPH formulation 

The core concept of the SPH approximation is: 

〈𝑓(𝒓𝑖)〉 =
1

𝜉𝑖
∑

𝑚𝑗

𝜌𝑗
𝑓(𝒓𝑗)𝑊(𝒓𝑖𝑗 , ℎ)𝑗 .       (22) 

Here, 𝑊 is a quintic smoothing function: 

𝑊(𝑞, ℎ) = 𝜅 {

(2 − 𝑞)5 − 16(1 − 𝑞)5 0 ≤ 𝑞 ≤ 1

(2 − 𝑞)5 1 < 𝑞 ≤ 2,
 0 𝑞 > 2

      (23) 

where 𝜅 =
3

16 𝜋 ℎ2
, and 𝑞 = 𝒓𝑖𝑗 ℎ⁄  with ℎ as a smoothing length.  

The renormalization factor 𝜉𝑖 is defined as [47,52]: 

𝜉𝑖  = ∫ 𝑊(|𝒓𝑎𝑏|)𝑑Ω(𝒓𝑗)
Ω𝑖

.        (24) 

The first derivative is: 

∇𝜉𝑖𝑒 = − ∫ 𝒏(𝒓𝑗) 𝑊(𝒓𝑖𝑗)𝑑Γ(𝒓𝑗)
𝑒2

𝑒1
 .      (25) 

Figure 2 shows the initial schematic description of the SPH discretization of a target geometry and 

kernel (smoothing) function. The initial geometry is discretized into uniform nodes (particles). Any 

hydrodynamic function is calculated according to the SPH approximation.  
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(a)  (b)  

Figure 2. Initial schematic description of (a) the SPH discretization of a target geometry 

and (b) the kernel (smoothing) function.  

4. The ISPH method 

The ISPH algorithm [46,47,53,54] is summarized in the following steps: 

Step 1: Predict velocities. 

𝑈∗ = 𝑈𝑛 +
𝜇nf 𝛥𝜏

 𝜌nf𝛼f
(

𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑌2
)

𝑛

−
𝛥𝜏σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(𝑈𝑛 sin2𝛾 − 𝑉𝑛 sin𝛾 cos𝛾),   (26) 

𝑉∗ = 𝑉𝑛 +
𝜇nf 𝛥𝜏

 𝜌nf𝛼f
(

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
)

𝑛

+
 𝛥𝜏 (𝜌𝛽)nf

𝜌nf 𝛽f
𝑅𝑎 Pr  (𝜃𝑛 + 𝑁Φ𝑛) 

−
𝛥𝜏σnf 𝜌𝑓 

σf 𝜌𝑛𝑓
 Ha2 Pr(𝑉𝑛 𝑐𝑜𝑠2𝛾 − 𝑈𝑛 sin𝛾 cos𝛾).        (27) 

Step 2: Solve the pressure Poisson equation.  

𝛻2𝑃𝑛+1 =
1

 𝛥𝜏
(

𝜕𝑈∗

𝜕𝑋
+

𝜕𝑉∗

𝜕𝑌
).        (28) 

Step 3: Correct velocities.  

𝑈𝑛+1 = 𝑈∗ − 𝛥𝜏 (
𝜕𝑃

𝜕𝑋
)

𝑛+1

,        (29) 

𝑉𝑛+1 = 𝑉∗ − 𝛥𝜏 (
𝜕𝑃

𝜕𝑌
)

𝑛+1

.         (30) 

Step 4: Update thermal and solutal equations. 
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𝜃𝑛+1 = 𝜃𝑛 +
𝛼𝑛𝑓 𝛥𝜏

𝛼𝑓 
(

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
)

𝑛

+
𝛥𝜏

(𝜌𝐶𝑃)nf
 𝐷𝑢 (

𝜕2Φ

𝜕𝑋2
+

𝜕2Φ

𝜕𝑌2
)

𝑛

 

−𝛥𝜏 𝛿𝐶 (𝑈
𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑌
+ 𝑈2

𝜕2𝜃

𝜕𝑋2
+ 𝑉2

𝜕2𝜃

𝜕𝑌2
+ 2𝑈𝑉

𝜕2𝜃

𝜕𝑋𝜕𝑌
+ 𝑈

𝜕𝜃

𝜕𝑌

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑋

𝜕𝑈

𝜕𝑌
)

𝑛

 

+
𝛥𝜏

(𝜌𝐶𝑃)nf
𝐹𝑘𝑒𝜃𝑛

,           (31) 

Φ𝑛+1 = Φ𝑛 + 𝛥𝜏 𝑆𝑟 (
𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
)

𝑛

+
𝛥𝜏 

𝐿𝑒 
(

𝜕2Φ

𝜕𝑋2
+

𝜕2Φ

𝜕𝑌2
)

𝑛

.      (32) 

Step 5: Update the position of particles. 

𝒓𝑛+1 = ∆𝜏 𝐔𝑛+1 + 𝒓𝑛.         (33) 

The shifting technique [55,56] is as follows:  

φ𝑖′ = φ𝑖 + (𝛁φ)𝑖 ∙ (−𝒟 𝛁𝐶) + 𝒪(𝛿𝑟𝑖𝑖′
2 ).       (34) 

Boundary treatment 

This study employs the boundary particle renormalization method to handle boundary conditions 

within the ISPH framework. Figure 3 illustrates the setup, including the dummy boundary particles, 

renormalization boundary particles, and the computation of the kernel renormalization factor (𝛾𝑎). 

• Dummy boundary particles: These consist of a layer of boundary particles supplemented by 

two fictitious particles. The fictitious particles exert repulsive forces to minimize truncation 

errors in the smoothing function near the wall boundary. However, the use of dummy particles 

can lead to increased computational complexity in three-dimensional simulations due to the 

requirement for multiple particle layers. 

• Renormalization boundary particles: This approach requires only a single boundary layer, 

significantly enhancing computational efficiency. The method calculates the kernel 

renormalization factor (𝛾𝑎) and its gradient (∇𝛾𝑎) at the boundary to implement the boundary 

conditions [47,52]. The Dirichlet conditions (e.g., fixed temperature and concentration) are 

straightforward to apply, while Neumann conditions (e.g., zero flux) are more challenging in 

complex geometries. 

By adopting the renormalization approach, the study ensures accurate and computationally 

efficient boundary condition handling, suitable for the complex geometries involved in the cavity. 
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(a) (b) 

Figure 3. (a) Primary description of dummy boundary particles and renormalization 

boundary particles and (b) initial calculation of a kernel renormalization factor 𝛾𝑎. 

5. Validation tests 

The validation section highlights the effectiveness and accuracy of the ISPH method by 

comparing its results with benchmark FEM simulations [57] and Davis’s numerical data [58] across 

various Rayleigh numbers (𝑅𝑎), demonstrating its robustness for natural convection scenarios. Figure 4 

presents a comparative analysis between the current ISPH model and previously validated finite 

element method (FEM) results [57] for natural convection in a square cavity at various Rayleigh 

numbers (𝑅𝑎 = 103, 104, 105, 106). Figures 4(a)–4(c) depict vertical velocity at 𝑋 = 0.5, horizontal 

velocity at 𝑌 = 0.5, and temperature profiles at 𝑌 = 0.5, respectively. The results indicate strong 

agreement between the ISPH and FEM models, with deviations primarily at higher Rayleigh numbers 

due to the increasing nonlinearity of natural convection. The velocity and temperature profiles show 

consistent trends across all 𝑅𝑎  values, demonstrating the accuracy and reliability of the ISPH 

approach for capturing flow and thermal behaviors. These validations establish the robustness of the 

ISPH method in simulating natural convection and provide confidence in its application to complex 

configurations. Table 1 compares the average Nusselt numbers (Nu̅̅ ̅̅ ) obtained using the present ISPH 

model, the FEM method [57], and benchmark results from Davis [58] for natural convection in a square 

cavity across Rayleigh numbers (𝑅𝑎) ranging from 103  to 106 . The results show that the ISPH 

model closely aligns with both the FEM [57] and Davis benchmarks [58], with deviations becoming 

slightly more noticeable at higher 𝑅𝑎. These differences are attributed to the inherent approximations 

in numerical methods and the increased complexity of convection phenomena at higher 𝑅𝑎. The 

comparison demonstrates that the ISPH method provides reliable and accurate predictions, validating 

its effectiveness in modeling natural convection scenarios. Figure 5 illustrates the comparison of 

isotherm contour maps generated by the present ISPH method and the FEM [57] results at different 

Rayleigh numbers (𝑅𝑎). Figures 5(a)–5(d) correspond to 𝑅𝑎 = 103 , 𝑅𝑎 = 104 , 𝑅𝑎 = 105 , and 

𝑅𝑎 = 106 , respectively. The contours represent temperature distributions within the cavity, with 

values ranging from 0 to 1.0 at intervals of 0.1. The isotherms exhibit progressively steeper gradients 

and more pronounced curvature as 𝑅𝑎 increases, indicating intensified convection. At lower Rayleigh 

numbers, the conduction-dominated regime produces smoother contours, while at higher 𝑅𝑎 , 

convection becomes dominant, leading to more complex isotherm patterns. The close agreement 
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between the ISPH and FEM results across all cases demonstrates the reliability and accuracy of the 

ISPH method for modeling thermal behavior in natural convection scenarios. 

  

 

(a) (b) (c) 

Figure 4. Comparison between (─) present ISPH method and (---) FEM results [57]. 

(a) Vertical velocity at 𝑋 = 0.5 , (b) horizontal velocity at 𝑌 = 0.5 , and (c) 

temperature profile at 𝑌 = 0.5. 

Table 1. Comparison of the current ISPH outcomes with Davis [58] and FEM simulations [57] 

for natural convection within a square cavity across different Rayleigh numbers (𝑅𝑎). 

𝑁𝑢̅̅ ̅̅  𝑅𝑎 = 103 𝑅𝑎 = 104 𝑅𝑎 = 105 𝑅𝑎 = 106 

Davis [58] 1.118 2.243 4.519 8.798 

FEM [57] 1.115 2.239 4.512 8.800 

ISPH method 1.095 2.187 4.388 8.651 

    

(a) (b) (c) (d) 

Figure 5. Comparison of isotherm contour maps: (─) present ISPH, (---) FEM [57]; (a) 

𝑅𝑎 = 103, (b) 𝑅𝑎 = 104, (c) 𝑅𝑎 = 105, (d) 𝑅𝑎 = 106.  

6. ANN modeling 

An ANN model was developed to estimate 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ using an artificial intelligence-based 

approach. The model follows a multilayer perceptron (MLP) structure, a versatile neural network 

model known for its strong learning capabilities [59]. MLP networks consist of interconnected layers, 

with each layer directly connected to the next layer. There are basically three types of layers in an MLP 
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network: input, hidden, and output layers. Within this MLP framework, time (𝜏) and the Frank-

Kamenetskii number (Fk) are used as input features, while the output layer generates the values of 𝑁𝑢̅̅ ̅̅  

and 𝑆ℎ̅̅ ̅. The ANN architecture was based on an MLP with a single hidden layer. Determining the 

optimal number of neurons in the hidden layer posed a significant challenge, as no universally 

applicable method exists for this task [60]. To address this, an iterative approach was employed. 

Various configurations with different neuron counts were systematically tested, and their performance 

was evaluated based on metrics. Among these configurations, the model with 13 neurons in the hidden 

layer demonstrated the best overall performance, achieving a balance between accuracy and 

computational efficiency. Figure 6 displays the structure of the ANN model. The training process 

required careful organization of the dataset to ensure robust model generalization. A total of 56 data 

points were curated, following established methodologies in the literature [61]. These data points were 

divided into three subsets: 40 data points were allocated for training the model, 8 data points for 

validation, and 8 data points for testing. The training subset was used to optimize the model’s weights 

and biases through backpropagation, while the validation subset served to monitor the model’s 

performance during training and to prevent overfitting. Finally, the testing subset provided an 

independent evaluation of the model’s predictive capability. The training process employed the 

Levenberg–Marquardt algorithm, a widely used optimization method in ANN applications due to its 

efficiency in handling nonlinear optimization problems. The activation function used in the hidden 

layer was the hyperbolic tangent sigmoid (tansig) function, which facilitates learning complex 

nonlinear relationships, while the output layer utilized a linear activation function to accommodate the 

continuous output variables. The equations for these transfer functions are: 

𝑓(𝑥) =
1

1+𝑒𝑥𝑝 (−𝑥)
          (35) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥)  =  𝑥.          (36) 

The training process was terminated when the validation error failed to improve for a 

predetermined number of epochs (early stopping criterion), thereby minimizing the risk of overfitting. 

This detailed procedure ensured that the ANN model was appropriately configured, trained, and 

validated to achieve an accurate solution to the governing equations while maintaining computational 

efficiency. To assess the model’s performance, several standard metrics were used, including mean 

squared error (MSE), coefficient of determination (R), and margin of deviation (MoD). The formulas 

for these metrics, essential in evaluating model accuracy, are provided below [60]: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑡𝑎𝑟𝑔 (𝑖) − 𝑋𝑝𝑟𝑒𝑑(𝑖))2𝑁

𝑖=1        (37) 

𝑅 = √1 −
∑ (𝑋𝑡𝑎𝑟𝑔(𝑖)−𝑋𝑝𝑟𝑒𝑑(𝑖))

2𝑁
𝑖=1

∑ (𝑋𝑡𝑎𝑟𝑔(𝑖))
2𝑁

𝑖=1

        (38) 

𝑀𝑜𝐷 (%) = [
𝑋𝑡𝑎𝑟𝑔−𝑋𝑝𝑟𝑒𝑑

𝑋𝑡𝑎𝑟𝑔
] 𝑥 100        (39) 
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(a)  

(b)  

Figure 6. ANN model. (a) Configuration architecture. (b) Principal structure. 

The ANN model’s training performance was evaluated for its robustness and reliability. The 

dataset was designed to capture a wide range of parametric variations in a problem. The model’s 

predictive accuracy and generalization ability were assessed using a comparison between predicted 

and target values. The results showed high prediction accuracy, minimal residual errors, and strong 

correlation between predicted and target values. The consistency of the model’s performance across 

validation and testing subsets confirmed its security and diversity, demonstrating the model’s 

representativeness and dependability. 

7. Results and discussion 

This study performed numerical simulations to analyze the impact of exothermic chemical 

reactions, magnetic fields, and the Cattaneo–Christov heat flux on double diffusion within a nanofluid-

filled cavity with a rotating Z-shaped fin. The following ranges for the controlling parameters were 

considered: Frank-Kamenetskii number (𝐹𝑘): 0 ≤ 𝐹𝑘 ≤ 6; Cattaneo–Christov heat flux coefficient 

(𝛿𝑐 ): 0 ≤ 𝛿𝑐 ≤ 0.001; Hartmann number (𝐻𝑎): 0 ≤ 𝐻𝑎 ≤ 50; Soret number (𝑆𝑟): 0 ≤ 𝑆𝑟 ≤ 2; 

Dufour number (𝐷𝑢): 0 ≤ 𝐷𝑢 ≤ 2; nanoparticle volume fraction (𝜙): 0 ≤ 𝜙 ≤ 0.15; and Z-shaped 

fin height from 0.5 to 0.6 𝑚, width from 0.4 to 0.7 𝑚, and length from 0.3 to 0.8 𝑚. Fixed parameters 

included 𝛿𝑐 = 0.0001 , Rayleigh number ( 𝑅𝑎 = 104 ), 𝑆𝑟 = 1.2 , 𝐷𝑢 = 0.6 , 𝜙 = 0.05 , fin 

orientation angle (𝛾 = 45∘), 𝐹𝑘 = 2, 𝑁 = 2, and 𝐻𝑎 = 10. Figures 7–9 depict temperature contours 

(𝜃), concentration contours (Φ), and the velocity field (𝑉) under varying 𝐹𝑘 values across time 
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intervals 𝜏 = 0.01, 0.1, and 0.3. When 𝐹𝑘 increases, heat transfer intensifies, expanding thermal 

contours over time (𝜏). At 𝜏 = 0.01, the cooling region covers much of the cavity, with hot areas 

along the vertical walls. As time progresses, the isotherms spread upward. Figure 8 shows that 

concentration (Φ) shifts slightly as 𝐹𝑘  increases, while rotation of the Z-shaped fin at 𝜏 = 0.3 

causes Φ to spread from top to bottom. In Figure 9, higher 𝐹𝑘 values enhance the maximum velocity 

field. Figure 10 illustrates how varying the Hartmann number (𝐻𝑎) affects 𝜃 , 𝛷 , and 𝑉 , with 

Lorentz forces from a larger 𝐻𝑎  value slowing fluid velocity. When 𝐻𝑎  rises from 0 to 50, 

maximum velocity drops by 61.99%. Higher 𝐻𝑎  values also narrow the temperature and 

concentration distributions. Figure 11 shows the variations in the average Nusselt number (𝑁𝑢̅̅ ̅̅ ) and 

average Sherwood number (𝑆ℎ̅̅ ̅) over dimensionless time (𝜏) under different Hartmann numbers (𝐻𝑎), 

demonstrating the influence of magnetic fields on heat and mass transfer. At 𝐻𝑎 = 0, where no 

magnetic field is present, 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ are highest due to enhanced convection. As 𝐻𝑎 increases to 20 

and 50, the Lorentz force suppresses fluid motion, leading to reduced convective heat and mass transfer, 

as reflected in the decreasing 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ values. These results highlight the magnetic field’s ability 

to regulate convection, which has significant applications in industries such as magnetic cooling, MHD 

pumps, and thermal management systems. The ability to control 𝐻𝑎 offers practical solutions for 

optimizing processes that require precise heat and mass transfer control, such as preventing 

overheating or improving chemical reactor efficiency. The observed suppression of convection with 

increasing Hartmann number (𝐻𝑎) demonstrates its applicability in magnetic cooling systems and 

MHD pumps, where precise thermal regulation is critical. Figure 12 assesses Dufour number (𝐷𝑢) 

effects on 𝜃, Φ, and 𝑉. Results suggest that 𝐷𝑢, which relates mass gradients to energy flux, has 

minimal impact on temperature, concentration, and velocity fields, likely due to the cooling fin’s 

presence. 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  remained largely unaffected by 𝐷𝑢  variations. Figure 13 examines how 

temperature, concentration, and velocity fields respond to increases in nanoparticle volume fraction 

(𝜙), representing the percentage of solid particles within the nanofluid mixture. Higher 𝜙 values 

extend the cooling region and raise fluid viscosity, reducing velocity. When 𝜙 increases from 0 to 

0.15, maximum velocity decreases by 19.71% due to increased viscosity. Figure 14 indicates that as 

𝜙 grows from 0 to 0.15, 𝑁𝑢̅̅ ̅̅  increases by 22.43%, and 𝑆ℎ̅̅ ̅ increases by 116.3%. The enhancement 

in 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅  with increasing nanoparticle volume fraction ( 𝜙 ) highlights its potential for 

optimizing heat exchangers and nanofluid-based solar collectors. Figures 15 and 16 analyze the 

Cattaneo–Christov heat flux (𝛿𝑐)  effects on 𝜃  and 𝑉  across times 𝜏 = 0.01 , 0.1 , and 0.3 , 

showing mild changes in temperature fields and a slight velocity rise with increasing 𝛿𝑐. Figures 17 

and 18 explore the influence of Soret number (𝑆𝑟) on 𝜃, Φ, and 𝑉, and on 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. As 𝑆𝑟 

increases, thermal gradients cause lighter particles to move toward warmer areas and heavier particles 

toward cooler zones. Figure 17 shows that higher 𝑆𝑟 slightly modifies the isotherms and significantly 

enhances concentration. With 𝑆𝑟 increasing from 0 to 2, maximum velocity accelerates by 130.27%. 

Figures 19 and 20 explore how altering Z-shaped fin length affects 𝜃 , Φ, 𝑉 , and 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. 

Reducing the fin’s length strengthens temperature and concentration distributions within the cavity, 

raising maximum velocity by 16.99%. The Z-shaped fin’s presence, despite slow rotation, acts as a 

flow barrier, highlighting the importance of optimal fin sizing for industrial cooling. Figure 20 shows 

that reducing fin size results in decreases in 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅, underscoring the fin’s role in regulating heat 

and mass transfer and fluid velocity within the cavity.  

The training process of the ANN model was thoroughly evaluated using performance metrics and 

visual aids for better understanding and clarity. Figure 21 illustrates the training performance graph, 

which tracks the variation of the MSE over successive training epochs. The graph clearly demonstrates 

a consistent decline in MSE values, starting from an initially high value and converging toward 
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minimal error levels as the training progressed. The convergence indicates effective learning and 

optimization of the ANN model. For clarity, annotations in Figure 21 highlight key stages in the 

training process, such as the initialization phase with high errors, the rapid error reduction phase, and 

the stabilization of error levels as the model approaches optimal performance. These annotations 

provide insight into the dynamics of the training process, aiding readers in interpreting the graph more 

effectively. Figure 22 provides additional validation of the model’s training through an error histogram, 

which visualizes the distribution of prediction errors across the dataset. The error values are 

concentrated near zero, confirming that the model achieves a high degree of accuracy and minimal 

residuals. Following training verification, Figure 23 compares ANN-predicted and target 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ 

values, with close alignment seen. Figure 24 presents MoD values, which largely remain near zero, 

signifying minimal prediction error. Mean deviation rates for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ are 0.01% and 0.06%, 

respectively. In Figure 25, differences between target and ANN values further support model precision. 

Figure 26 plots target values (x-axis) against ANN predictions (y-axis), showing alignment along the 

zero-error line for both outputs. The ANN model’s MSE was 4.21 × 10−6 and 𝑅 value was 0.99994, 

confirming high prediction accuracy for 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. 
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Figure 7. Isotherms 𝜃  under the variation of Frank-Kamenetskii number 𝐹𝑘  at 

different time instances 𝜏 = 0.01, 01, and 0.3.  
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Figure 8. Isoconcentration Φ under the variation of Frank-Kamenetskii number 

𝐹𝑘 at different time instances 𝜏 = 0.01, 01, and 0.3. 
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Figure 9. Velocity field 𝑽 under the variation of Frank-Kamenetskii number 𝐹𝑘 at 

different time instances 𝜏 = 0.01, 01, and 0.3. 
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Figure 10. Distributions of 𝜃, Φ, and 𝑽 under variations of Hartmann number 𝐻𝑎. 
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Figure 11. Average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under variations of Hartmann number 𝐻𝑎. 
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Figure 12. Distributions of 𝜃, Φ, and 𝑽 under variations of Dufour number 𝐷𝑢. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5847 

AIMS Mathematics  Volume 10, Issue 3, 5830–5858. 

 𝜙 = 0 𝜙 = 0.07 𝜙 = 0.15 

𝜃 

   

Φ 

   

𝐕 

   

Figure 13. Distributions of 𝜃, Φ, and 𝑽 under variations of solid volume fraction 𝜙. 
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Figure 14. Average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under variations of solid volume fraction 𝜙. 
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Figure 15. Isotherms 𝜃  under variation of the Cattaneo–Christov heat flux 

parameter 𝛿𝑐 at different time instances 𝜏 = 0.01, 01, and 0.3. 
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Figure 16. Velocity field 𝑽  under variation of the Cattaneo–Christov heat flux 

parameter 𝛿𝑐 at different time instances 𝜏 = 0.01, 01, and 0.3. 



5849 

AIMS Mathematics  Volume 10, Issue 3, 5830–5858. 

 

𝑆𝑟 = 0 𝑆𝑟 = 1.6 𝑆𝑟 = 2 

𝜃 

   

Φ 

   

𝐕 

   

Figure 17. Distributions of 𝜃, Φ, and 𝑽 under variations of Soret number 𝑆𝑟. 
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Figure 18. Average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under variations of Soret number 𝑆𝑟. 
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Figure 19. Distributions of 𝜃, Φ, and 𝑽 under variations of Z-shaped length. 
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Figure 20. Average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ under variations of Z-shaped length. 
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Figure 21. Training performance graph of the ANN model. 

 

Figure 22. Error histogram of the ANN model. 
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Figure 23. Target values for each data point with the data obtained from the ANN model. 

  

Figure 24. MoD values according to data number. 

  

Figure 25. MoD values according to data number. 
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Figure 26. Target and prediction values. 

8. Conclusions 

This study employed numerical simulations to investigate the effects of exothermic chemical 

reactions, magnetic fields, and Cattaneo–Christov heat flux on thermal and solutal transport within a 

nanofluid-filled square cavity containing a rotating Z-shaped fin. The ISPH approach facilitated the 

analysis of fluid-structure interactions between the rotating fin and nanofluid, providing insights 

applicable to cooling, energy, and heat exchange systems. The study revealed that increasing the 

Frank-Kamenetskii number significantly enhances convection, improving thermal and concentration 

transfer and velocity. Magnetic field–induced Lorentz forces were shown to suppress fluid motion, 

reducing velocity by 61.99% and leading to decreases in average Nusselt and Sherwood numbers by 

16.87% and 11.81%, respectively. Increasing the nanoparticle volume fraction to 15% raised the 

average Nusselt number by 22.43% and the Sherwood number by 116.3%, despite slowing fluid 

velocity by 19.71% due to increased viscosity. The Soret effect significantly improved concentration 

and velocity fields, while fin geometry was found to play a critical role in optimizing heat and mass 

transfer. The integration of an ANN model demonstrated high accuracy in predicting average Nusselt 

and Sherwood numbers, making it an effective tool for evaluating nanofluid performance. This work 

advances the understanding of heat exchange in nanofluids by providing a detailed analysis of the 

combined effects of magnetic fields, exothermic reactions, and nanoparticle concentration. The 

novelty lies in the integrated ISPH-ANN framework, which efficiently models complex thermal and 

solutal interactions, enabling accurate predictions for practical applications such as thermal 

management systems, energy storage devices, and industrial cooling processes. These findings offer 

valuable guidance for designing and optimizing advanced heat exchange technologies in various 

industrial settings. Future work could explore extending the model to three-dimensional systems, 

considering non-Newtonian nanofluids, or incorporating transient effects of dynamic fin motion. 

Additionally, experimental validation and application of the ISPH-ANN framework to practical 

systems, such as solar collectors, desalination units, and heat exchangers, would provide deeper 

insights and further generalize the findings. 
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Limitations of the study 

This study assumes incompressible, laminar, and two-dimensional flow using the Boussinesq 

approximation and constant nanofluid properties, which may not fully capture real-world complexities 

such as three-dimensional effects or variable properties. The boundary conditions, including adiabatic 

and impermeable walls, simplify practical scenarios. The results are specific to the chosen geometry 

and parameter ranges, limiting generalizability to other configurations. Additionally, the Z-shaped fin 

is modeled as a rigid body with fixed rotational speed, excluding potential effects of deformation or 

variable speeds. Finally, computational constraints, such as resolution and the efficiency of the ISPH 

method, may restrict the precision of the simulations. These limitations highlight areas for future 

research to enhance the model’s applicability and accuracy. 
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