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Abstract: This study explores the combined effects of exothermic chemical reactions and Cattaneo—
Christov heat flux on thermosolutal convection within a nanofluid-filled square cavity containing a
rotating Z-shaped fin. The incompressible smoothed particle hydrodynamics (ISPH) approach was
employed, utilizing boundary particle renormalization to accurately model boundary conditions. An
artificial neural network (ANN) model, trained on ISPH simulation data, predicted the average Nusselt
number (Nu,,,) and average Sherwood number (Sh,,,) with high accuracy. A dataset comprising 56
data points was used, from which 40 data points were used for training, 8 for validation, and 8 for
testing. The Z-shaped fin, centrally positioned, rotates at a fixed angular velocity, maintaining lower
temperature and concentration levels, while the cavity’s vertical walls exhibit elevated thermal and
solutal conditions. Results indicate that the Z-shaped fin’s geometry, exothermic reaction rates, and
magnetic field strength significantly influence heat and mass transfer and fluid dynamics. For instance,
increasing the Hartmann number (Ha) from 0 to 50 decreased nanofluid velocity by 61.99%, while
Nu,,, and Sh,,, were reduced by 16.87% and 11.81%, respectively. Additionally, increasing the
nanoparticle volume fraction from 0 to 0.15 enhanced Nu,,, by 22.43% and Sh,,, by 116.3%. The

ANN model, employing the Levenberg—Marquardt algorithm, achieved a coefficient of determination
R =0.99994 and a mean squared error MSE = 4.21 X 107°, demonstrating its reliability in
predicting thermal performance. These findings underscore the study’s relevance to applications such
as energy systems, refrigeration, and heat exchangers.
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1. Introduction

Convection heat transfer in ventilated cavities has numerous applications in industrial systems for
building ventilation, thermal control of electronic devices, and removal of contaminated particles [1,2].
In addition, exothermic chemical reactions play an important role in chemical fractionation,
combustion, explosions, oil recovery, and moisture transfer in grain storage. Nanofluids are a
combination of a host fluid and nano-sized metal particles [3]. Nanofluids are widely used in the
cooling process of heat exchangers and electronic devices [4]. In particular, the analysis of heat transfer
and chemical reactions of nanofluids is expected to receive more attention in the near future because
of its practical applications in petroleum extraction, nuclear reactors, evaporation, chemistry, and
refrigeration industries [5—15]. Nanofluids—suspensions of nano-sized particles in base fluids—are
drawing wide interest for their superior heat transfer capabilities. Early experiments revealed
discrepancies between predicted and measured heat transfer coefficients (Yang et al. [5]). Nonetheless,
subsequent findings underscore their broad potential. Putra et al. [6] show that adding nanofluids and
thermoelectric cooling “significantly enhances heat removal”. Mahian et al. [7] report that nanofluids
“boost solar collector efficiency”, while Rashidi et al. [8] highlight their impact on condensation and
evaporation processes. In porous media, Khanafer and Vafai [9] call nanofluids “an effective means”
to enhance convective heat transfer. Alhuyi Nazari et al. [10] confirm their ability to lower thermal
resistance in heat pipes. Sajid and Ali [11], however, emphasize “key challenges”, including high
pumping power. Wahab et al. [12] demonstrate “notable performance gains” in solar energy systems,
given proper stability management. Saidina et al. [13] confirm strong cooling effects for electronics,
stressing the need for property optimization. Li et al. [14] propose neural networks for “accurate
modeling” of nanofluid thermal behavior. Finally, Sheremet et al. [15] observes “substantial progress”,
while urging further research on stability and standardization. Mathematically, the chemical reaction is
characterized by Arrhenius kinetics [16,17]. Rahman et al. [18] explored how exothermic reactions,
modeled by Arrhenius kinetics, influence natural convection in a porous square cavity with nanofluids,
utilizing the Galerkin finite element method (GFEM). Raees-ul-Haq [19] simulated the effects of
exothermic reactions on free convection within a magnetized nanofluid-filled triangular porous cavity.
Similarly, Hasan et al. [20] applied GFEM to examine magnetohydrodynamics (MHD) driven
convective flows in a cavity influenced by such chemical reactions. Magnetic field and nanofluid flow
interactions within cavities are valuable in engineering applications, such as refrigeration and cooling
systems [21—-23]. Aly et al. [24] used the incompressible smoothed particle hydrodynamics (ISPH)
approach to examine how varying magnetic fields and helical structures affect convection within a
ferrofluid cavity. Aly [25] also leveraged ISPH to simulate the thermosolutal convection in a nanofluid
cavity, highlighting magnetic and thermal diffusion effects. Introduced by Gingold and Monaghan [26] and
Lucy [27], the meshless Lagrangian nature of the SPH method has led to its widespread use in
handling complex fluid dynamics scenarios, such as multi-phase flows, free surfaces, strong
nonlinearities, and turbulent behaviors like jet impingement and nozzles [28—32]. Violeau and Issa [28]
provided an extensive overview of the SPH method’s capabilities in modeling turbulent, complex free-
surface flows, highlighting its potential for simulating challenging fluid dynamics scenarios. Qiang et
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al. [29] utilized the SPH approach to study two-dimensional droplet collisions, effectively addressing
the complexities of multi-phase flows with large density variations. Aly et al. [30] applied the ISPH
method to investigate mixed convection in an inclined cavity with sinusoidal heated walls, advancing
the understanding of convective flows in confined spaces. Garoosi and Shakibaeinia [31] proposed a
refined high-order ISPH approach for simulating free-surface flows and heat transfer, enhancing
accuracy in complex fluid-thermal interactions. More recently, Shimizu et al. [32] examined the
applicability of a higher-order consistent ISPH method, assessing its performance in detailed
simulations for ocean and polar engineering applications. To enhance heat and mass transfer in closed
systems, heat exchangers and solar cells frequently utilize fins or textured surfaces. Saeid [33]
investigated the influence of fin geometry on heating within a square cavity. Aly and El-Sapa [34]
employed ISPH to analyze MHD thermosolutal convection in a nanofluid cavity featuring a rotating
cylinder and a cross-shaped fin. Meanwhile, El Moutaouakil et al. [35] studied the impact of vertical
fins on natural convection within cavities. Recent studies have explored the application of artificial
neural networks (ANNSs) to heat and mass transfer in cavities, demonstrating the potential of these
models to accurately predict complex thermal and solutal behaviors under various boundaries and
initial conditions. ANNs are a powerful computational tool in various fields due to their ability to
represent complex nonlinear interactions and rapidly process large datasets. They are particularly
useful for complex boundary conditions or multi-physics phenomena. ANNs can accurately forecast
system behavior, improve performance, and provide real-time solutions. They have been used to
predict thermal conductivity, examine fluid flow properties, and analyze convection in heat exchangers.
Their generalization capability makes them an ideal complement to conventional numerical techniques
like ISPH. This study shows that combining ANNs with ISPH improves accuracy and computing
efficiency in addressing exothermic thermosolutal convection in a nanofluid-filled square cavity. ANN
models have become instrumental in handling nonlinear interactions and diverse parameters like
temperature, concentration, velocity, and Nusselt and Sherwood numbers ([36—38]). Lagaris et al. [39]
utilized an ANN model to solve ordinary and partial differential equations, showing its effectiveness
for complex equations. Diaz et al. [40] applied ANNs to simulate heat exchanger performance,
improving predictive accuracy. Varol et al. [41] predicted natural convection flow and temperature in
a triangular enclosure using ANN and ANFIS models. Motahar [42] used ANN to estimate non-
Newtonian nanofluid behavior with phase change materials. Alhejaili et al. [43] combined ANN with
ISPH to study heat and mass transfer in nano-encapsulated materials within complex cavities.
Elshehabey et al. [44] integrated ANN and ISPH for modeling thermal radiation in porous, finned
cavities. Lastly, Abdelsalam et al. [45] applied Al-powered ANN for bioconvection analysis involving
nano-encapsulation and oxytactic microorganisms. This research explores the effects of exothermic
reactions, magnetic fields, and Cattaneo—Christov heat flux on thermosolutal convection by applying
the ISPH method within a nanofluid-filled cavity containing a rotating Z-shaped fin. The ANN model
is also employed to precisely estimate average Nusselt and Sherwood numbers, providing deeper
insights into the heat and mass transfer processes in this setup.

2. Mathematical analysis
2.1. Physical model and governing equations

The initial setup of the rotating Z-shaped fin for thermosolutal convection analysis is depicted in
Figure 1. The fin rotates with a circular velocity, represented by V = w(r — ry), and is maintained at

a specified low temperature (T,) and concentration (C,.). The cavity’s vertical walls are maintained at
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elevated temperature (T},) and concentration (Cy), while the horizontal walls are adiabatic. The flow is
modeled under the following assumptions:
e The flow is incompressible, laminar, and time dependent.

e The Boussinesq approximation is applied, accounting for buoyancy effects due to
temperature and concentration variations.

e The fluid is Newtonian, and the nanofluid properties are assumed to be constant, except for
density in the buoyancy term.

e Heat and mass transfer are driven by both thermal and solutal gradients.

e The governing equations are formulated in a Cartesian coordinate system (x, y) to represent
the geometry of the square cavity.

e The rotating Z-shaped fin is modeled as a rigid body with no deformation.
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Figure 1. Diagram of a rotating Z-shaped fin, illustrating the rotational direction in
thermosolutal convection studies.

The dimensional form of the governing equations, as outlined in references [46—48], is:

ou 0Jv
Frs 3y = 0, 1)
d 10 of (02 92 nf BE . .
d_lt‘ =— p_nfﬁ ’;—n‘; (ﬁ a_yz) — opro (u sin?y — v siny cosy), 2)
dv 10 0%v  0%v
ki ___P @( ‘ 2) + (p,BT)nf g(T _ Tc) + (p.BC)nf g(C _ Cc)
dt Pnf ay Pnf 0x ay nf nf
O'nfBg 2 .
- (v cos®y — u siny cosy), 3
nf
dT 1 1 Qk,a
— =V (ayVT) + V-(D,VC)+ —_—
dt nf (pCP)nf ! (pCP)nf e%

AIMS Mathematics Volume 10, Issue 3, 5830-5858.



5834

_ aT du aTdv | 5 9%T 262 a2T aT dv aT du
01 (u axox TV 3y ay y TWoz TVt Zuv axdy tu dy ox TV 6y)' )
E: V-(D,VT)+V-(D,VC). 5)
The subsequent dimensionless variables [46—48] are substituted into Eqs (1)—(5) as:
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The dimensionless equations [46—48] are obtained as:
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is a parameter of Cattaneo—Christov heat flux, Ha = ’Z—f ByL is the Hartmann number, Ra =
f

_ 3
W is Rayleigh’s number, Pr = Z—f is the Prandtl number, Le = g—f is the Lewis number,
fef f m

and N = Bc(Ch=Cc)

1s a buoyancy ratio.
Br(Tp—Tc) oyancy

2.2. Dimensionless boundary conditions

The boundary conditions for the model are defined as follows:
Vertical walls: Temperature (6) and concentration (@) are set to 1, with no-slip velocity
conditions (U =0, V = 0).
Horizontal walls: Adiabatic and impermeable conditions are applied, ensuring no heat or

mass flux (Z =0, W = 0) and no-slip velocity (U = 0, V = 0).

Inner Z-shaped fin: The fin rotates, imposing velocity conditions (U = Uyor, V = Vigr)
and maintaining lower temperature and concentration levels (8 = 0, & = 0).
The mean values for Nusselt and Sherwood numbers are:

(12)
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2.3. Nanofluid properties

The nanofluid properties are determined using the following equations [49—51]:
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3. The SPH formulation

The core concept of the SPH approximation is:
1a M
(@) =z%; JHF ()W (ryj,h)
Here, W is a quintic smoothing function:

2-g)°—-16(1—q)° 0<qg<1
W(q,h) =« (2 —¢q)° 1<qg<2,
0 q>2

where k = ﬁ, and q = r;j/h with h asasmoothing length.

The renormalization factor &; is defined as [47,52]:

§i = fQi W (|7 qp ().
The first derivative is:

Véie = — J,, n(r)) W (ry;)dr(r;).

(13)

(14)

(15)
(16)
(17)
(18)
(19)

(20)

e2y)

(22)

(23)

(24)

(25)

Figure 2 shows the initial schematic description of the SPH discretization of a target geometry and
kernel (smoothing) function. The initial geometry is discretized into uniform nodes (particles). Any

hydrodynamic function is calculated according to the SPH approximation.
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Target Geometry

» The SPH discretization

(b)

Figure 2. Initial schematic description of (a) the SPH discretization of a target geometry

and (b) the kernel (smoothing) function.

4, The ISPH method

The ISPH algorithm [46,47,53,54] is summarized in the following steps:
Step 1: Predict velocities.

n
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Step 2: Solve the pressure Poisson equation.

1 foU*  av*
et = = (2420,
At \ 0X ay

Step 3: Correct velocities.

U = U* — Ar (Z—f})nﬂ’
V= Y — A (Z—’;)n+1

Step 4: Update thermal and solutal equations.

(26)

(27)

(28)

(29)

(30)
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Step 5: Update the position of particles.
r*tl = A7 Ut (33)
The shifting technique [55,56] is as follows:
@i = @; + (Vo); - (=D VC) + 0(677). (34)

Boundary treatment

This study employs the boundary particle renormalization method to handle boundary conditions

within the ISPH framework. Figure 3 illustrates the setup, including the dummy boundary particles,
renormalization boundary particles, and the computation of the kernel renormalization factor (y,).

Dummy boundary particles: These consist of a layer of boundary particles supplemented by
two fictitious particles. The fictitious particles exert repulsive forces to minimize truncation
errors in the smoothing function near the wall boundary. However, the use of dummy particles
can lead to increased computational complexity in three-dimensional simulations due to the
requirement for multiple particle layers.

Renormalization boundary particles: This approach requires only a single boundary layer,
significantly enhancing computational efficiency. The method calculates the kernel
renormalization factor (y,) and its gradient (Vy,) at the boundary to implement the boundary
conditions [47,52]. The Dirichlet conditions (e.g., fixed temperature and concentration) are
straightforward to apply, while Neumann conditions (e.g., zero flux) are more challenging in
complex geometries.

By adopting the renormalization approach, the study ensures accurate and computationally

efficient boundary condition handling, suitable for the complex geometries involved in the cavity.
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Figure 3. (a) Primary description of dummy boundary particles and renormalization
boundary particles and (b) initial calculation of a kernel renormalization factor y,.

5. Validation tests

The validation section highlights the effectiveness and accuracy of the ISPH method by
comparing its results with benchmark FEM simulations [57] and Davis’s numerical data [58] across
various Rayleigh numbers (Ra), demonstrating its robustness for natural convection scenarios. Figure 4
presents a comparative analysis between the current ISPH model and previously validated finite
element method (FEM) results [57] for natural convection in a square cavity at various Rayleigh
numbers (Ra = 103,10%,105, 10°). Figures 4(a)—4(c) depict vertical velocity at X = 0.5, horizontal
velocity at Y = 0.5, and temperature profiles at Y = 0.5, respectively. The results indicate strong
agreement between the ISPH and FEM models, with deviations primarily at higher Rayleigh numbers
due to the increasing nonlinearity of natural convection. The velocity and temperature profiles show
consistent trends across all Ra values, demonstrating the accuracy and reliability of the ISPH
approach for capturing flow and thermal behaviors. These validations establish the robustness of the
ISPH method in simulating natural convection and provide confidence in its application to complex
configurations. Table 1 compares the average Nusselt numbers (Nu) obtained using the present ISPH
model, the FEM method [57], and benchmark results from Davis [58] for natural convection in a square
cavity across Rayleigh numbers (Ra) ranging from 103 to 10°. The results show that the ISPH
model closely aligns with both the FEM [57] and Davis benchmarks [58], with deviations becoming
slightly more noticeable at higher Ra. These differences are attributed to the inherent approximations
in numerical methods and the increased complexity of convection phenomena at higher Ra. The
comparison demonstrates that the ISPH method provides reliable and accurate predictions, validating
its effectiveness in modeling natural convection scenarios. Figure 5 illustrates the comparison of
isotherm contour maps generated by the present ISPH method and the FEM [57] results at different
Rayleigh numbers (Ra). Figures 5(a)-5(d) correspond to Ra = 103, Ra = 10*, Ra = 10°, and
Ra = 10°, respectively. The contours represent temperature distributions within the cavity, with
values ranging from 0 to 1.0 at intervals of 0.1. The isotherms exhibit progressively steeper gradients
and more pronounced curvatureas Ra increases, indicating intensified convection. At lower Rayleigh
numbers, the conduction-dominated regime produces smoother contours, while at higher Ra,
convection becomes dominant, leading to more complex isotherm patterns. The close agreement
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between the ISPH and FEM results across all cases demonstrates the reliability and accuracy of the

ISPH method for modeling thermal behavior in natural convection scenarios.
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Figure 4. Comparison between (—) present ISPH method and (---) FEM results [57].
(@) Vertical velocity at X = 0.5, (b) horizontal velocity at Y = 0.5, and (c)
temperature profile at Y = 0.5.

Table 1. Comparison of the current ISPH outcomes with Davis [58] and FEM simulations [57]
for natural convection within a square cavity across different Rayleigh numbers (Ra).

Nu Ra = 103 Ra = 10* Ra = 105 Ra = 106
Davis [58] 1.118 2.243 4519 8.798
FEM [57] 1.115 2.239 4512 8.800
ISPH method | 1.095 2.187 4.388 8.651

(2) (b) © (d)

Figure 5. Comparison of isotherm contour maps: (—) present ISPH, (---) FEM [57]; (2)
Ra =103, (b) Ra = 10*, (c) Ra = 10>, (d) Ra = 10°.

6. ANN modeling

An ANN model was developed to estimate Nu and Sh using an artificial intelligence-based
approach. The model follows a multilayer perceptron (MLP) structure, a versatile neural network
model known for its strong learning capabilities [59]. MLP networks consist of interconnected layers,
with each layer directly connected to the next layer. There are basically three types of layers in an MLP

AIMS Mathematics
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network: input, hidden, and output layers. Within this MLP framework, time (7) and the Frank-
Kamenetskii number (Fk) are used as input features, while the output layer generates the values of Nu
and Sh. The ANN architecture was based on an MLP with a single hidden layer. Determining the
optimal number of neurons in the hidden layer posed a significant challenge, as no universally
applicable method exists for this task [60]. To address this, an iterative approach was employed.
Various configurations with different neuron counts were systematically tested, and their performance
was evaluated based on metrics. Among these configurations, the model with 13 neurons in the hidden
layer demonstrated the best overall performance, achieving a balance between accuracy and
computational efficiency. Figure 6 displays the structure of the ANN model. The training process
required careful organization of the dataset to ensure robust model generalization. A total of 56 data
points were curated, following established methodologies in the literature [61]. These data points were
divided into three subsets: 40 data points were allocated for training the model, 8 data points for
validation, and 8 data points for testing. The training subset was used to optimize the model’s weights
and biases through backpropagation, while the validation subset served to monitor the model’s
performance during training and to prevent overfitting. Finally, the testing subset provided an
independent evaluation of the model’s predictive capability. The training process employed the
Levenberg—Marquardt algorithm, a widely used optimization method in ANN applications due to its
efficiency in handling nonlinear optimization problems. The activation function used in the hidden
layer was the hyperbolic tangent sigmoid (tansig) function, which facilitates learning complex
nonlinear relationships, while the output layer utilized a linear activation function to accommodate the
continuous output variables. The equations for these transfer functions are:

f&) =

purelin(x) = «x. (36)

(35)

1+exp( x)

The training process was terminated when the validation error failed to improve for a
predetermined number of epochs (early stopping criterion), thereby minimizing the risk of overfitting.
This detailed procedure ensured that the ANN model was appropriately configured, trained, and
validated to achieve an accurate solution to the governing equations while maintaining computational
efficiency. To assess the model’s performance, several standard metrics were used, including mean
squared error (MSE), coefficient of determination (R), and margin of deviation (MoD). The formulas
for these metrics, essential in evaluating model accuracy, are provided below [60]:

1
MSE = NZIiV=1(Xtarg i — Xpred(i))2 (37)
R — 1 _ E?Ll(xl\jarg(i)_xprezd(i))z (38)
Zi:l(Xtarg(i))

MoD (%) = [M] 100 (39)

Xtar g
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(b)
Figure 6. ANN model. (a) Configuration architecture. (b) Principal structure.

The ANN model’s training performance was evaluated for its robustness and reliability. The
dataset was designed to capture a wide range of parametric variations in a problem. The model’s
predictive accuracy and generalization ability were assessed using a comparison between predicted
and target values. The results showed high prediction accuracy, minimal residual errors, and strong
correlation between predicted and target values. The consistency of the model’s performance across
validation and testing subsets confirmed its security and diversity, demonstrating the model’s
representativeness and dependability.

7. Results and discussion

This study performed numerical simulations to analyze the impact of exothermic chemical
reactions, magnetic fields, and the Cattaneo—Christov heat flux on double diffusion within a nanofluid-
filled cavity with a rotating Z-shaped fin. The following ranges for the controlling parameters were
considered: Frank-Kamenetskii number (Fk): 0 < Fk < 6; Cattaneo—Christov heat flux coefficient
(6.): 0 <4, <0.001; Hartmann number (Ha): 0 < Ha < 50; Soret number (Sr): 0 < Sr < 2;
Dufour number (Du): 0 < Du < 2; nanoparticle volume fraction (¢): 0 < ¢ < 0.15; and Z-shaped
fin height from 0.5t0 0.6 m, width from 0.4 t0 0.7 m, and length from 0.3 t0 0.8 m. Fixed parameters
included &, = 0.0001, Rayleigh number (Ra =10%*), S, =12, Du=0.6, ¢ =0.05, fin
orientation angle (y = 45°), F, =2, N = 2,and H, = 10. Figures 7-9 depict temperature contours
(@), concentration contours (&), and the velocity field (V) under varying F, values across time
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intervals T = 0.01, 0.1, and 0.3. When F, increases, heat transfer intensifies, expanding thermal
contours over time (7). At T = 0.01, the cooling region covers much of the cavity, with hot areas
along the vertical walls. As time progresses, the isotherms spread upward. Figure 8 shows that
concentration (@) shifts slightly as F, increases, while rotation of the Z-shaped fin at 7 = 0.3
causes @ to spread from top to bottom. In Figure 9, higher F,, values enhance the maximum velocity
field. Figure 10 illustrates how varying the Hartmann number (Ha) affects 6, &, and V, with
Lorentz forces from a larger Ha value slowing fluid velocity. When Ha rises from 0 to 50,
maximum velocity drops by 61.99%. Higher Ha values also narrow the temperature and
concentration distributions. Figure 11 shows the variations in the average Nusselt number (Nu) and
average Sherwood number (Sh) over dimensionless time (7) under different Hartmann numbers (Ha),
demonstrating the influence of magnetic fields on heat and mass transfer. At Ha = 0, where no
magnetic field is present, Nu and Sh are highest due to enhanced convection. As Ha increases to 20
and 50, the Lorentz force suppresses fluid motion, leading to reduced convective heat and mass transfer,
as reflected in the decreasing Nu and Sh values. These results highlight the magnetic field’s ability
to regulate convection, which has significant applications in industries such as magnetic cooling, MHD
pumps, and thermal management systems. The ability to control Ha offers practical solutions for
optimizing processes that require precise heat and mass transfer control, such as preventing
overheating or improving chemical reactor efficiency. The observed suppression of convection with
increasing Hartmann number (Ha) demonstrates its applicability in magnetic cooling systems and
MHD pumps, where precise thermal regulation is critical. Figure 12 assesses Dufour number (Duw)
effects on 6, @, and V. Results suggest that Du, which relates mass gradients to energy flux, has
minimal impact on temperature, concentration, and velocity fields, likely due to the cooling fin’s
presence. Nu and Sh remained largely unaffected by Du variations. Figure 13 examines how
temperature, concentration, and velocity fields respond to increases in nanoparticle volume fraction
(¢), representing the percentage of solid particles within the nanofluid mixture. Higher ¢ values
extend the cooling region and raise fluid viscosity, reducing velocity. When ¢ increases from 0 to
0.15, maximum velocity decreases by 19.71% due to increased viscosity. Figure 14 indicates that as
¢ grows from 0 to 0.15, Nu increases by 22.43%, and Sh increases by 116.3%. The enhancement
in Nu and Sh with increasing nanoparticle volume fraction (¢ ) highlights its potential for
optimizing heat exchangers and nanofluid-based solar collectors. Figures 15 and 16 analyze the
Cattaneo—Christov heat flux (6.) effects on 8 and V across times 7 =0.01, 0.1, and 0.3,
showing mild changes in temperature fields and a slight velocity rise with increasing §.. Figures 17
and 18 explore the influence of Soret number (Sr) on 6, &, and V, and on Nu and Sh. As Sr
increases, thermal gradients cause lighter particles to move toward warmer areas and heavier particles
toward cooler zones. Figure 17 shows that higher Sr slightly modifies the isotherms and significantly
enhances concentration. With Sr increasing from 0 to 2, maximum velocity accelerates by 130.27%.
Figures 19 and 20 explore how altering Z-shaped fin length affects 6, &, V, and Nu and Sh.
Reducing the fin’s length strengthens temperature and concentration distributions within the cavity,
raising maximum velocity by 16.99%. The Z-shaped fin’s presence, despite slow rotation, acts as a
flow barrier, highlighting the importance of optimal fin sizing for industrial cooling. Figure 20 shows
that reducing fin size results in decreases in Nu and Sh, underscoring the fin’s role in regulating heat
and mass transfer and fluid velocity within the cavity.

The training process of the ANN model was thoroughly evaluated using performance metrics and
visual aids for better understanding and clarity. Figure 21 illustrates the training performance graph,
which tracks the variation of the MSE over successive training epochs. The graph clearly demonstrates
a consistent decline in MSE values, starting from an initially high value and converging toward
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minimal error levels as the training progressed. The convergence indicates effective learning and
optimization of the ANN model. For clarity, annotations in Figure 21 highlight key stages in the
training process, such as the initialization phase with high errors, the rapid error reduction phase, and
the stabilization of error levels as the model approaches optimal performance. These annotations
provide insight into the dynamics of the training process, aiding readers in interpreting the graph more
effectively. Figure 22 provides additional validation of the model’s training through an error histogram,
which visualizes the distribution of prediction errors across the dataset. The error values are
concentrated near zero, confirming that the model achieves a high degree of accuracy and minimal
residuals. Following training verification, Figure 23 compares ANN-predicted and target Nu and Sh
values, with close alignment seen. Figure 24 presents MoD values, which largely remain near zero,
signifying minimal prediction error. Mean deviation rates for Nu and Sh are 0.01% and 0.06%,
respectively. In Figure 25, differences between target and ANN values further support model precision.
Figure 26 plots target values (x-axis) against ANN predictions (y-axis), showing alignment along the
zero-error line for both outputs. The ANN model’s MSE was 4.21 x 107¢ and R value was 0.99994,
confirming high prediction accuracy for Nu and Sh.

[EEEE
22z

Figure 7. Isotherms 6 under the variation of Frank-Kamenetskii number Fj at
different time instances 7 = 0.01,01, and 0.3.
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Figure 8. Isoconcentration @ under the variation of Frank-Kamenetskii number
F}, at different time instances 7 = 0.01,01, and 0.3.

=2 Fk=4

Figure 9. Velocity field V under the variation of Frank-Kamenetskii number Fj, at
different time instances 7 = 0.01,01, and 0.3.
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Figure 11. Average Nu and Sh under variations of Hartmann number Ha.
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Figure 12. Distributions of 8, ®, and V under variations of Dufour number Du.
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Figure 14. Average Nu and Sh under variations of solid volume fraction ¢.
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Figure 15. Isotherms 6 under variation of the Cattaneo—Christov heat flux
parameter §, at different time instances 7 = 0.01,01, and 0.3.

8. = 0.0005 5, = 0.

- J

2 B S

2722y
T 042 |

12361l &
=001 o
oool!

T
=0.1
T
=03
Figure 16. Velocity field V under variation of the Cattaneo—Christov heat flux
parameter §, at different time instances 7 = 0.01,01, and 0.3.
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Figure 18. Average Nu and Sh under variations of Soret number Sr.

AIMS Mathematics Volume 10, Issue 3, 5830-5858.



5850

Z (0.5 — 0.6)

0
P
\'
Figure 19. Distributions of 8, ®, and V under variations of Z-shaped length.
Nu Sh
6 40
—Z(0.3-08) —Z{0308)
—z@407) —Z (0407
—Z(0.508) 351 —Z(05409)
5
4
1z ]

0.5 4

T T 0.0 T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

T

Figure 20. Average Nu and Sh under variations of Z-shaped length.
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8. Conclusions

This study employed numerical simulations to investigate the effects of exothermic chemical
reactions, magnetic fields, and Cattaneo—Christov heat flux on thermal and solutal transport within a
nanofluid-filled square cavity containing a rotating Z-shaped fin. The ISPH approach facilitated the
analysis of fluid-structure interactions between the rotating fin and nanofluid, providing insights
applicable to cooling, energy, and heat exchange systems. The study revealed that increasing the
Frank-Kamenetskii number significantly enhances convection, improving thermal and concentration
transfer and velocity. Magnetic field—induced Lorentz forces were shown to suppress fluid motion,
reducing velocity by 61.99% and leading to decreases in average Nusselt and Sherwood numbers by
16.87% and 11.81%, respectively. Increasing the nanoparticle volume fraction to 15% raised the
average Nusselt number by 22.43% and the Sherwood number by 116.3%, despite slowing fluid
velocity by 19.71% due to increased viscosity. The Soret effect significantly improved concentration
and velocity fields, while fin geometry was found to play a critical role in optimizing heat and mass
transfer. The integration of an ANN model demonstrated high accuracy in predicting average Nusselt
and Sherwood numbers, making it an effective tool for evaluating nanofluid performance. This work
advances the understanding of heat exchange in nanofluids by providing a detailed analysis of the
combined effects of magnetic fields, exothermic reactions, and nanoparticle concentration. The
novelty lies in the integrated ISPH-ANN framework, which efficiently models complex thermal and
solutal interactions, enabling accurate predictions for practical applications such as thermal
management systems, energy storage devices, and industrial cooling processes. These findings offer
valuable guidance for designing and optimizing advanced heat exchange technologies in various
industrial settings. Future work could explore extending the model to three-dimensional systems,
considering non-Newtonian nanofluids, or incorporating transient effects of dynamic fin motion.
Additionally, experimental validation and application of the ISPH-ANN framework to practical
systems, such as solar collectors, desalination units, and heat exchangers, would provide deeper
insights and further generalize the findings.
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Limitations of the study

This study assumes incompressible, laminar, and two-dimensional flow using the Boussinesq
approximation and constant nanofluid properties, which may not fully capture real-world complexities
such as three-dimensional effects or variable properties. The boundary conditions, including adiabatic
and impermeable walls, simplify practical scenarios. The results are specific to the chosen geometry
and parameter ranges, limiting generalizability to other configurations. Additionally, the Z-shaped fin
is modeled as a rigid body with fixed rotational speed, excluding potential effects of deformation or
variable speeds. Finally, computational constraints, such as resolution and the efficiency of the ISPH
method, may restrict the precision of the simulations. These limitations highlight areas for future
research to enhance the model’s applicability and accuracy.
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