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1. Introduction

The study of derivatives and integrals of fractional orders has a rich and intricate history that dates
back several centuries. The concept of fractional derivatives was first introduced in the late 17th
century, with the contributions of notable mathematicians such as Gottfried Wilhelm Leibniz and
Leonhard Euler [1, 2]. In 1695, Leibniz raised the question of the meaning of a derivative of
order 1

2 , which initiated interest in the concept of fractional order. Fractional calculus has gained
significant momentum and continues to evolve to this day, finding applications in different domains,
including engineering, biology, epidemiology, physics, and fluid dynamics [3–9]. Its increasing use in
these domains underscores its growing importance in contemporary science; read [10] and the given
references therewith. Fractional partial differential equations (FPDEs) are a significant extension of
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the traditional fractional differential equations (FDEs). Certainly, these equations modeled several
complex phenomena in various fields like physics, engineering, finance, and biology [11, 12] among
others. The mathematical formulation of FPDEs typically involves the use of fractional derivatives
defined by various approaches such as the Grunwald–Letnikov, Caputo, and Riemann–Liouville
fractional definitions. The choice of definition can impact the formulation of the problem and the
methods used for finding solutions. On the other hand, the initial-value problems (IVPs), boundary-
value problems (BVPs), and initial-boundary value problems (IBVPs) featuring FPDEs play vital
parts in various mathematical physics models. These problems help describe complex physical and
engineering systems that involve nonstandard dynamics or long-term memory effects, such as heat
diffusion in heterogeneous materials [13], fluid motion affected by high viscosity [14], and biological
processes with long-term interactions [15]. In fact, the implication of these problems is associated with
their capability to describe phenomena that are challenging to accurately model using the traditional
differential equations of integer orders. Solutions to BVPs and IVPs in FPDEs can provide more
precise models for intricate interactions among variables, making them essential tools for researchers
in fields like engineering physics, chemistry, biology, and finance. These problems also demand
advanced analytical and numerical techniques, as exact analytical solutions are rare and challenging.
Studies, therefore, rely on numerical methods such as the modified Adomian decomposition method
(MADM) and the variational iteration technique (VIM), which have proven effective in yielding
approximate solutions. Due to the complexity of FPDEs, traditional analytical methods may not
always be applicable. Therefore, various computational and semi-analytical approaches have been
devised to tackle these equations. Some of the prominent techniques include the homotopy analysis
method [16], Laplace decomposition method (LDM) [17], VIM [18], Adomian decomposition method
(ADM) [19, 20], and the weighted average finite difference methods [21], to mention a few; see also
other relevant methods in [22, 23] and the references therein.

However, among the multitude of available techniques to tackle the governing class of FPDEs,
this study has adopted the ADM as its base method. This method has gained tremendous popularity
due to its reliability in handling diverse functional equations immediately after its introduction by
George Adomian in 1984 [24, 25]. The method has undergone numerous enhancements aimed at
increasing its accuracy, speed, and computational efficiency, as well as adapting it to a broader range of
equations. These improvements have significantly accelerated the rapidity of the solution in contrast
to the original ADM, marking substantial advancements in the method. In [26], new results were
presented related to the Adomian series, which is used as a tool for analyzing and solving certain
categories of differential and integral equations. In [18], authors have employed the ADM for tracking
nonlinear FPDEs, while [27] discusses the applications of LDM on nonlinear FPDEs. In addition,
the reduced differential transform coupled with the ADM was proposed on the class of FPDEs amidst
the attachment of a conformable fractional operator in [28]; the authors estimated the approximate
solutions for the one- and two-dimensional time-FPDEs, while the presentation of the aiming new
MADM for the system of nonlinear FPDEs has been featured in [29]. Certainly, the MADM has
been proven to be highly effective and computationally efficient for dissimilar problems, making it a
valuable tool for scientists. It is important to note that the convergence of the Adomian series solution
has been studied for different problems by many authors. In [30,31], the convergence was investigated
when the method was applied to general functional equations, while specific types of equations were
considered in [32–34].
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In particular, this study intends to extend the application of MADM, which was recently utilized
in [35–38] for various types of IVPs and BVPs in the class of FPDEs by presenting three distinct
algorithms. Algorithm 1 and Algorithm 2 will address the BVPs through the x-differential operator,
while Algorithm 3 will handle the IVPs via the t-differential operator. Finally, the manuscript follows
the following arrangement: Section 2 provides some fundamental definitions related to the properties
of fractional operators. Section 3 explains the developed schemes for FPDEs. Section 4 applies the
derived computational schemes on various examples, while Section 5 recaps with the closing note.

2. Preliminaries on fractional calculus

The current section presents certain definitions for fractional operators, including some notable
operators like the Caputo and Riemann–Liouville fractional [39].

Definition 2.1. The fractional derivatives Dα
a+y and Dα

b−y, with α ∈ C (R(α) ≥ 0) as a fractional order,
are defined by Riemann–Liouville, respectively, as follows [39]:

(
Dα

a+y
)

(x) =
1

Γ(n − α)

(
d
dx

)n ∫ x

a
(x − t)−α+n−1y(t)dt, (x > a); n = [<(α)] + 1), (2.1)

and (
Dα

b−y
)

(x) =
1

Γ(n − α)

(
−

d
dx

)n ∫ b

x
(t − x)−α+n−1y(t)dt, (x < b; n = [<(α)] + 1). (2.2)

Definition 2.2. The fractional derivatives
(

CDα
a+y

)
(x) and

(
CDα

b−y
)

(x) with α ∈ C (R(α) ≥ 0) as a
fractional order is defined by Caputo if α < N0, respectively, as follows [39]:(

CDα
a+y

)
(x) =

1
Γ(n − α)

∫ x

a
(x − t)−α+n−1y(n)(t)dt =:

(
In−α
a+ Dny

)
(x), (2.3)

and (
CDα

b−y
)

(x) =
(−1)n

Γ(n − α)

∫ b

x
(t − x)−α+n−1y(n)(t)dt =: (−1)n (

In−α
b− Dny

)
(x). (2.4)

Moreover, when α = n ∈ N0, the aforementioned fractional derivatives by Caputo takes the following
definitions:

CDα
a+y(x) = y(n)(x) and CDα

b−y(x) = (−1)ny(n)(x) (n ∈ N), (2.5)

and if α = 0, we have (
CD0

a+y
)

(x) =
(

CD0
b−y

)
(x) = y(x). (2.6)

Definition 2.3. Riemann–Liouville fractional integrals
(
Iαa+y

)
(x) and

(
Iαb−y

)
(x) having the fractional

order α ∈ C(R(α) > 0) are respectively defined as follows:(
Iαa+y

)
(x) :=

1
Γ(α)

∫ x

a
(x − t)−1+αy(t)dt, (x > a;R(α) > 0), (2.7)

and (
Iαb−y

)
(x) :=

1
Γ(α)

∫ b

x
(t − x)−1+αy(t)dt, (x < b;R(α) > 0). (2.8)
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Property 2.1. Some important properties for the fractional differential and integral operators are
outlined in what follows:

i)
IαIβy(x) = Iα+βy(x); α, β ≥ 0 . (2.9)

ii)

Iα CDα
∗y(x) = y(x) −

m−1∑
k=0

y(k) (0+) xk

Γ(1 + k)
, α ∈ (m − 1,m). (2.10)

iii)

Iα CDβ
∗y(x) = Iβ−αy(x) −

m−1∑
k=0

y(k) (0+) xk−α+β

Γ(1 + k − α + β)
, (2.11)

where α > β, and m − 1 < β, α ≤ m.

iv)

Iαxn =
Γ(1 + n)

Γ(1 + n + α)
xn+α, (2.12)

where m − 1 < α ≤ m, n > −1, and x > 0.

v)

CDα
∗ xr =

 Γ(r+1)
Γ(1+n−α) xr−α, r ≥ m − 1,

0, r < m − 1.
(2.13)

vi)
CDα
∗k = 0, when k represents a constant real number . (2.14)

3. Modified Adomian decomposition method

The present section dwells on the application of the three MADM-based algorithms for solving the
IBVP featuring the wider class of FPDEs. To exhibit the MADM for the governing class of equations,
one considers a universal linear FPDE as follows:

Dα
t u(x, t) + Lu(x, t) + Ru(x, t) = g(x, t); m − 1 < α < m, x ∈ (a, b), t > 0, (3.1)

admits the prescription of the initial and boundary data, respectively, as follows

u(x, 0) = f (x), a ≤ x ≤ b,

and
u(a, t) = g0(t), u(b, t) = g1(t), t > 0,

where the function u(x, t) is unknown, Dα
t is the fractional differential operator defined in Caputo’s

sense of order α, m ∈ N, L is the highest partial derivative, which might involve other fractional
derivatives of order less than α and R is the remainder while g(x, t) is the source function.

Thus, to derive the explicit analytical solution for the governing IBVP, which features a fractional
order derivative, we will apply the MADM based on the three algorithms that follow.
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3.1. MADM with respect to x-differential operator

In this subsection, we will propose two different algorithms, which are based on MADM, to solve
the FPDE (3.1) with respect to the linear x-differential operator defined as follows:

L(·) =
∂2

∂x2 (·),

where L is a second-order linear differential operator defined in the x-variable.
Algorithm 1: First, applying the inverse operator (of the latter linear differential operator)

L−1(·) =

∫ x

a

∫ x

a
(·) dx dx, (3.2)

on (3.1) and using its properties yields as follows:

u(x, t) = u(a, t) + xu′(a, t) + L−1 [
g(x, t)

]
− L−1 [Ru(x, t)] − L−1[Dα

t u(x, t)]. (3.3)

Note, we will further put u′(a, t) = c in what follows. Next, on using the standard ADM procedure
[24, 25], the latter equation becomes

∞∑
n=0

un(x, t) = u(a, t) + cx + L−1 [
g(x, t)

]
− L−1

 ∞∑
n=0

Run(x, t)

 − L−1

Dα
t

 ∞∑
n=0

un(x, t)

 , (3.4)

where the solution u(x, t) in (3.4) is decomposed into a sum of infinite components un(x, t), for n =

0, 1, 2, 3, . . ., that is,

u(x, t) =

∞∑
n=0

un(x, t).

In addition, the algorithm by MADM proceeds by adding the expression

− pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn

 , (3.5)

in the right-hand side of (3.4) to obtain

∞∑
n=0

un(x, t) =u(a, t) + cx + L−1[g(x, t)] − pL−1

 ∞∑
n=0

anxn


+ L−1

 ∞∑
n=0

anxn

 − L−1 [Run(x, t)] − L−1

Dα
t

 ∞∑
n=0

un(x, t)

 . (3.6)

Therefore, one obtain from (3.6) the following recursive relation:

u0(x, t) = u(a, t) + cx + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = L−1[g(x, t)] − L−1 [Ru0(x, t)] − L−1 [

Dα
t u0(x, t)

]
− pL−1

 ∞∑
n=0

anxn

 ,
un+1(x, t) = −L−1 [Run(x, t)] − L−1 [

Dα
t un(x, t)

]
, n ≥ 1.

(3.7)
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Lastly, one obtains the explicit values for the constants an, for n = 0, 1, 2, 3, . . . , upon which u1 = 0.
In this regard, it is obvious that u2 = u3 = u4 = · · · = 0. Moreover, by letting p = 1, one obtains the
solution of (3.1) as u(x, t) = u0(x, t). Additionally, one eventually substitutes the values for an in the
determined solution, alongside making use of the last boundary datum u(b, t) = g1(t) to get hold of the
presumed constant c.

Algorithm 2: Algorithm 2 commences by defining the inversion operator L−1, which is based on
the submission in [40] as follows:

L−1(.) =

∫ x

a
dx′

∫ x′′

a
(.)dx′′ −

x − a
b − a

∫ b

a
dx

∫ x′′

a
(.)dx′′. (3.8)

Remarkably, among the advantages of this inversion operator is that its capability to admit all the
prescribed boundary data unswervingly.

Therefore, applying the current inverse operator on (3.1), one gets

u(x, t) = u(a, t) + u(b, t)x − u(a, t)x + L−1[g(x, t)] − L−1 [Ru(x, t)] − L−1[Dα
t u(x, t)]. (3.9)

Accordingly, adding the expression in (3.5) to the right-hand side of (3.9), alongside using u(x, t) =∑∞
n=0 un(x, t) gives

∞∑
n=0

un(x, t) =u(a, t) + xu(b, t) − xu(a, t) + L−1[g(x, t)] − pL−1

 ∞∑
n=0

anxn


+ L−1

 ∞∑
n=0

anxn

 − L−1

 ∞∑
n=0

Run(x, t)

 − L−1

Dα
t

 ∞∑
n=0

un(x, t)

 , (3.10)

which then gives the overall recurrent scheme as follows:

u0(x, t) = u(a, t) + xu(b, t) − xu(a, t) + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = L−1[g(x, t)] − L−1 [Ru0(x, t)] − L−1 [

Dα
t u0(x, t)

]
− pL−1

 ∞∑
n=0

anxn

 ,
un+1(x, t) = −L−1 [Run(x, t)] − L−1 [

Dα
t un(x, t)

]
, n ≥ 1.

(3.11)

Moreover, as in the above case, one computes the explicit values for an (n ≥ 0) by setting u1(x, t) = 0,
and subsequently p = 1. In addition, substituting the obtained values into u0(x, t) gives the overall
closed-form solution that u(x, t) = u0(x, t).

3.2. MADM with respect to t-differential operator

The current subsection derives an efficient algorithm based on utilizing a linear t-differential
operator for solving IVPs featuring the class of FPDEs.

Algorithm 3: In this algorithm, the linear direct operator and its corresponding inverse operator for
the integer or fractional t-differential operators are respectively considered as follows:

L =
∂

∂t
, and L−1(.) =

∫ t

0
(·) dt, (3.12)

or

AIMS Mathematics Volume 10, Issue 3, 5806–5829.
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L(.) = Dα
t (.), and L−1(.) =

1
Γ(α)

∫ x

0
(x − s)α−1(.)ds. (3.13)

Thus, upon deploying the inversion operator (3.12) on (3.1), one then obtains

u(x, t) = u(x, 0) + L−1[g(x, t)] − L−1 [Ru(x, t)] − L−1[Dα
t u(x, t)]. (3.14)

Consequently, the MADM process requires the inclusion of the aforementioned expression into the
latter equation, coupled with the usual ADM decomposition of the solution u(x, t) to obtain as
following:

∞∑
n=0

un(x, t) =u(x, 0) + L−1[g(x, t)] − pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn


− L−1

 ∞∑
n=0

Run(x, t)

 − L−1

Dα
t

 ∞∑
n=0

un(x, t)

 , (3.15)

that eventually leads to the following recurrent scheme

u0(x, t) = u(x, 0) + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = L−1[g(x, t)] − pL−1

 ∞∑
n=0

anxn

 − L−1 [Ru0(x, t)] − L−1 [
Dα

t u0(x, t)
]
,

un+1(x, t) = −L−1 [Run(x, t)] − L−1 [
Dα

t un(x, t)
]
, n ≥ 1.

(3.16)

Accordingly, the procedure for the computation of the explicit values for an (n ≥ 0) remains the same
as in the above algorithm. That is, setting u1(x, t) = 0, and afterward p = 1. In addition, substituting
the obtained values into u0(x, t) gives the overall closed-form solution that u(x, t) = u0(x, t).

4. Numerical examples

The present section considers several test IBVPs for FPDEs to demonstrate the helpfulness of the
proposed algorithms.

Example 4.1. Consider the time-fractional IBVP for the diffusion-convection equation as follows [41]:

Dα
t u(x, t) +

∂2u(x, t)
∂x2 + x

∂u(x, t)
∂x

= 2x2 + 2tα + 2, 0 < x < 1, t > 0, 0 < α ≤ 1, (4.1)

subject to the following initial and boundary data

u(x, 0) = x2; u(0, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α, u(1, t) = 1 +
2Γ(α + 1)
Γ(2α + 1)

t2α.

Accordingly, the governing IBVP admits the following exact solution:

u(x, t) = 2
Γ(α + 1)
Γ(2α + 1)

t2α + x2.

AIMS Mathematics Volume 10, Issue 3, 5806–5829.
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Algorithm 1: To solve (4.1) applying inverse operator L−1 in (3.2) on both sides such that u′(x, t) =

c gives

u(x, t) = cx + u(0, t) + L−1[2x2 + 2tα + 2] − L−1[Dα
t u(x, t) + x

∂u(x, t)
∂x

]. (4.2)

Now using MADM As explained previously, we write

∞∑
n=0

un(x, t) =cx +
2Γ(α + 1)
Γ(2α + 1)

t2α + L−1

 ∞∑
n=0

anxn

 − p

L−1
∞∑

n=0

anxn


+ L−1

[
2x2 + 2tα + 2

]
− L−1

[
Dα

t un−1(x, t) + x
∂un−1(x, t)

∂x

]
. (4.3)

Thus, adopting

u0(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + cx + L−1
[
a0 + a1x + a2x2 + · · ·

]
,

u1(x, t) = −pL−1
[
a0 + a1x + a2x2 + · · ·

]
+ L−1

[
2x2 + 2tα + 2

]
− L−1

[
Dα

t u0(x, t) + x
∂u0(x, t)
∂x

]
.

(4.4)

When expressed explicitly by using L−1 and property (2.13), this results

u0(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + cx + a0
x2

2
+ a1

3
6

+ a2
x4

12
+ · · · ,

u1(x, t) = −p
[
a0

x2

2
+ a1

x3

6
+ a2

x4

12
+ · · ·

]
+

x4

6
+ tαx2 + x2 −

cx3

6
− a0

x4

12
+ a1

x5

40
+ a2

x6

90
+ · · ·

− tαx2 −
cx3t−α

6Γ(1 − α)
−

a0x4t−α

24Γ(1 − α)
−

a1x5t−α

120Γ(1 − α)
−

a2x6t−α

360Γ(1 − α)
.

But u1(x, t) = 0 to calculate ai, i = 1, 2 · · · and with opposite signs simplified, we have

u1(x, t) = − p
[
a0

x2

2
+ a1

x3

6
+ a2

x4

12
+ · · ·

]
+

x4

6
+ x2 −

cx3

6
− a0

x4

12
− a1

x5

40
− a2

x6

90
+ · · ·

−
cx3t−α

6Γ(1 − α)
−

a0x4t−α

24Γ(1 − α)
−

a1x5t−α

120Γ(1 − α)
−

a2x6t−α

360Γ(1 − α)
= 0.

Now, considering that p = 1 and equating the coefficients of xn it can be readily shown that a0 = 2 and
a1 = a2 = 0. Therefore, on substituting the values of a0, a1anda2 into u0(x, t), we obtain the solution as

u(x, t) = u0(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + cx + x2. (4.5)

At last, to find the value of c, we must first find u(1, t), that is, u(1, t) = 1 +
2Γ(α+1)
Γ(2α+1) t

2α we have c = 0, So
one obtains

u(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + x2, (4.6)

which gives the exact solution for the IBVP (4.1).
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Algorithm 2: We begin with applying the inverse operator (3.8) on both sides of (4.1) with a = 0,
and b = 1, to obtain

u(x, t) = u(0, t) + xu(1, t) − xu(0, t) + L−1
[
2x2 + 2tα + 2

]
− L−1

[
Dα

t u(x, t) + x
∂u(x, t)
∂x

]
. (4.7)

Thus, upon implementing the MADM procedure, one further gets

∞∑
n=0

un(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + x
(
1 +

2Γ(α + 1)
Γ(2α + 1)

t2α
)
−

2Γ(α + 1)
Γ(2α + 1)

t2αx − pL−1

 ∞∑
n=0

anxn


+ L−1

 ∞∑
n=0

anxn

 + L−1
[
2x2 + 2tα + 2

]
− L−1

[
Dα

t un−1(x, t) + x
∂un−1(x, t)

∂x

]
, (4.8)

that gives the following leading scheme

u0(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + x + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pL−1

 ∞∑
n=0

anxn

 + L−1
[
2x2 + 2tα + 2

]
− L−1

[
Dα

t u0(x, t) + x
∂u0(x, t)
∂x

]
.

Then,

u0(x, t) =
2Γ(α + 1)
Γ(2α + 1)

t2α + x + a0
x2

2
+ a1

x3

6
+ a2

x4

12
+ · · · − x

(
a0

1
2

+ a1
1
6

+ a2
1

12
+ · · ·

)
,

and

u1(x, t) = − p
[
a0

x2

2
+ a1

x3

6
+ a2

x4

12
− x

(
a0

1
2

+ a1
1
6

+ a2
1

12

)]
+

x4

6
+ tαx2 + x2 − x

(
1
6

+ tα + 1
)

−
x3

6
− a0

x4

12
− a1

x5

40
− a2

x6

90
+ x

(
1
6

+ a0
1

12
+ a1

1
40

+ a2
1

90

)
+

x3

6

(
a0

1
2

+ a1
1
6

+ a2
1

12

)
−

x
6

(
a0

1
2

+ a1
1
6

+ a2
1

12

)
− tαx2 −

x3t−α

6Γ(1 − α)
−

a0x4t−α

24Γ(1 − α)
−

a1x5t−α

120Γ(1 − α)

−
a2x6t−α

360Γ(1 − α)
+

x3t−α

6
(a0

1
2

+ a1
1
6

+ a2
1

12
) + tαx +

xt−α

6Γ(1 − α)
+

a0xt−α

24Γ(1 − α)

+
a1xt−α

120Γ(1 − α)
+

a2xt−α

360Γ(1 − α)
−

xt−α

6

(
a0

1
2

+ a1
1
6

+ a2
1
12

)
.

In the same way, we set p = 1, and u1(x, t) = 0, to accordingly obtain a0 = 2, and a1 = a2 = 0, which
then leads to u(x, t) = u0(x, t) as follows:

u(x, t) = 2
Γ(α + 1)
Γ(2α + 1)

t2α + x2,

the known exact solution.
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Algorithm 3: This algorithm commences by applying the inversion operator L−1 alongside the
property (2.10) on (4.1) to obtain

u(x, t) = u(x, 0) + Iαt
[
2x2 + 2tα + 2

]
− Iαt

[
x
∂u(x, t)
∂x

+
∂2u(x, t)
∂x2

]
. (4.9)

Then, on using the MADM, one obtains

∞∑
n=0

un(x, t) = x2 + Iαt

 ∞∑
n=0

anxn

 − pIαt

 ∞∑
n=0

anxn

 + Iαt
[
2x2 + 2tα + 2

]
− Iαt

[
x
∂un−1(x, t)

∂x
+
∂2un−1(x, t)

∂x2

]
.

Now, coupling the MADM with the reliable modification in [42], one gets the recursive relation as
follows:

u0(x, t) = x2 + Iαt [2tα] + Iαt [a0 + a1x + a2x2 + · · · ], (4.10)

u1(x, t) = −pIαt [a0 + a1x + a2x2 + · · · ] + Iαt
[
2x2 + 2

]
− Iαt [

∂2u0(x, t)
∂x2 + x

∂u0(x, t)
∂x

], (4.11)

or equivalently the following after applying the inversion operator

u0(x, t) = x2 +
2Γ(α + 1)t2α

Γ(2α + 1)
+

tα

Γ(α + 1)

(
a0 + a1x + a2x2

)
,

u1(x, t) = −p
tα

Γ(α + 1)

(
a0 + a1x + a2x2

)
+

2x2tα

Γ(α + 1)
+

2tα

Γ(α + 1)
−

2x2tα

Γ(α + 1)
−

2tα

Γ(α + 1)

−
2a2t2α

Γ(2α + 1)
−

a1xt2α

Γ(2α + 1)
−

2x2a2t2α

Γ(α + 1)
.

Finally, after eliminating similar terms and setting p = 1, we establish and compare the coefficients of
xn, yielding to a0 = a1 = a2 = 0. Thus, putting these values into u0(x, t) gives the exact solution

u(x, t) = 2
Γ(α + 1)
Γ(2α + 1)

t2α + x2,

which is the required exact solution for the model.

Example 4.2. Consider the time-fractional IBVP for the linear nonhomogeneous Burgers
equation [43]:

Dα
t u +

∂u
∂x
−
∂2u
∂x2 =

2t2−α

Γ(3 − α)
+ 2x − 2, 0 < x < 1, t > 0, 0 < α ≤ 1, (4.12)

with the prescribed initial and boundary data as follows:

u(x, 0) = x2; u(0, t) = t2, u(1, t) = 1 + t2,

and satisfying the following actual solution

u(x, t) = t2 + x2.
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Algorithm 1: Applying the inverse operator (3.2) to (4.12) with the assumption that u′(0, t) = c
yields

u(x, t) = cx + u(0, t) − L−1
[

2t2−α

Γ(α − 3)
+ 2x − 2

]
+ L−1

[
Dα

t u(x, t) +
∂u(x, t)
∂x

]
. (4.13)

Now, employing the MADM on the above equation gives

∞∑
n=0

un(x, t) =cx + t2 − L−1
[

2t2−α

Γ(α − 3)
+ 2x − 2

]
− pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn


+ L−1

[
Dα

t un−1(x, t) +
∂un−1(x, t)

∂x

]
, (4.14)

which plainly gives

u0(x, t) =cx + t2 + L−1

 ∞∑
n=0

anxn


=cx + t2 + a0

x2

2
+ a1

x3

6
+ a2

x4

12
t + · · ·

u1(x, t) = − pL−1

 ∞∑
n=0

anxn

 − L−1
[

2t2−α

Γ(α − 3)
+ 2 − 2

]
+ L−1

[
Dα

t u0(x, t) +
∂u0(x, t)
∂x

]
= − p

[
a0

x2

2
+ a1

x3

6
+ a2

x4

12

]
−

t2−αx2

Γ(3 − α)
−

x3

3
+ x2 +

cx3t−t

6Γ(1 − α)
+

t2−tx2

Γ(3 − α)
+

a0x4t−t

24Γ(1 − α)

+
a1x5t−α

120Γ(1 − α)
+

a2x6t−α

360Γ(1 − α)
+

cx2

2
+

a0x3

6
+

a1x4

24
+

a2x5

60
.

Accordingly, the processes gives yields a0 = c + 2, and a1 = a2 = 0, upon which u0(x, t) gives the
following

u0(x, t) = cx + t2 +
cx2

2
+ x2. (4.15)

In addition, the second boundary datum u(1, t) = 1 + t2 affirms that c = 0, upon which the overall
solution yields

u(x, t) = t2 + x2,

which is the same as the referenced exact solution of the examining model.
Algorithm 2: Applying the inverse operator (3.8) with a = b = 0 to (4.12) unveils

u(x, t) = u(0, t) + xu(1, t) − xu(0, t) − L−1
[

2t2−α

Γ(α − 3)
+ 2x − 2

]
+ L−1

[
Dα

t u(x, t) +
∂u(x, t)
∂x

]
. (4.16)

Thus, upon implementing the MADM procedure, one obtains

∞∑
k=0

un(x, t) =t2 + x − L−1
[

2t2−α

Γ(α − 3)
+ 2x − 2

]
− pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn


+ L−1

[
Dα

t un−1(x, t) +
∂un−1(x, t)

∂x

]
,

(4.17)
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that results in the acquisition of the following scheme

u0(x, t) = t2 + x + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −p

L−1
∞∑

n=0

anxn

 − L−1
[

2t2−α

Γ(α − 3)
+ 2x − 2

]
+ L−1

[
Dα

t u0(x, t) +
∂u0(x, t)
∂x

]
.

Accordingly, the application of the governing inverse operator on the last expressions gives

u0(x, t) = t2 + x + a0
x2

2
+ a1

x3

6
+ a2

x4

12
+ · · · − x

(
a0

1
2

+ a1
1
6

+ a2
1

12
+ · · ·

)
,

and

u1(x, t) = − p
[
a0

x2

2
+ a1

x3

6
+ a2

x4

12
− x

(
a0

1
2

+ a1
1
6

+ a2
1

12

)]
−

t2−α

Γ(α − 3)
x2 −

x3

6
+ x2

− x
(
−

2t2−α

Γ(α − 3)
+

2
3

)
−

x2

2
+ a0

x3

6
+ a1

x4

24
+ a2

x5

60
−

x2

2

(
a0

1
2

+ a1
1
6

+ a2
1

12

)
− x

(
1
2

+ a0
1

12
+ a1

1
24

+ a2
1

40

)
+

t2−α

Γ(α − 3)
x2 +

x3t−α

6Γ(1 − α)
+

a0x4t−α

24Γ(1 − α)
+

a1x5t−α

120Γ(1 − α)

+
a2x6t−α

360Γ(1 − α)
−

x3t−α

12Γ(1 − α)

(
a0

1
2

+ a1
1
6

+ a2
1

12

)
− x

(
t2−α

Γ(3 − α)
+

t−α

6Γ(1 − α)
+

a0t−α

24Γ(1 − α)

+
a1t−α

120Γ(1 − α)
+

a2t−α

360Γ(1 − α)
−

t−α

12Γ(1 − α)

(a0

2
+

a1

6
+

a2

2

))
.

Hence, one acquires the coefficients a0 = 2 and a1 = a2 = 0, such that the u(x, t) = u0(x, t) is obtained
as follows:

u(x, t) = t2 + x2,

affirming the already said exact solution.
Algorithm 3: Applying the inverse operator L−1 of the current algorithm to (4.12), alongside the

use of (2.10) and (2.12), reveals as follows:

u(x, t) = u(x, 0) + Iαt

[
2t2−α

Γ(α − 3)
+ 2x − 2

]
+ Iαt

[
∂2u(x, t)
∂x2 −

∂u(x, t)
∂x

]
. (4.18)

Further, the application of MADM with the modification in [42] further renders the latter equation as
follows:

∞∑
n=0

un(x, t) =u(x, 0) + Iαt

[
2t2−α

Γ(α − 3)
+ 2x − 2

]
+ Iαt

 ∞∑
n=0

anxn

 − pIαt

 ∞∑
n=0

anxn


+ Iαt

[
∂2un−1(x, t)

∂x2 −
∂un−1(x, t)

∂x

]
.

(4.19)

Therefore, in accordance with the described methodology, one obtains

u0(x, t) = x2 + Iαt

[
2t2−α

Γ(α − 3)

]
+ Iαt

 ∞∑
n=0

anxn

 = x2 + t2 +
tα

Γ(α + 1)

(
a0 + a1x + a2x2 · · ·

)
,

and
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u1(x, t) = − pIαt

 ∞∑
n=0

anxn

 + Iαt [2x − 2] + Iαt

[
∂2uo(x, t)
∂x2 −

∂u0(x, t)
∂x

]
= − p

tα

Γ(α + 1)

(
a0 + a1x + a2x2 · · ·

)
+

2xtα

Γ(α + 1)
−

2tα

Γ(α + 1)
+

2tα

Γ(α + 1)

+
2a2t2α

Γ(2α + 1)
−
−2xtα

Γ(α + 1)
−

a1t2α

Γ(2α + 1)
−

2a2xt2α

2Γ(α + 1)
.

After eliminating similar terms and setting p = 1, we establish and compare the coefficients of xn,
yielding a0 = a1 = a2 = 0 that eventually gives the exact solution from u0(x, t) as follows:

u(x, t) = t2 + x2,

confirming the trueness of the already reported actual solution of the IBVP.

Example 4.3. Consider the time-fractional IBVP for the heat equation as follows [44]:

Dα
t u(x, t) =

∂2u(x, t)
∂x2 , 0 < x < 1, t > 0, 0 < α ≤ 1, (4.20)

subject to the initial and boundary constraints as follows:

u(x, 0) = x2; u(0, t) =
2tα

Γ(α + 1)
, u(1, t) = 1 +

2tα

Γ(α + 1)
,

and admitting the following exact solution is

u(x, t) = x2 +
2tα

Γ(α + 1)
.

Algorithm 1: Accordingly, solving (4.20) through this algorithm goes by applying the inverse
operator in (3.2) on the governing equation, coupled with setting u′(x, t) = c to obtain

u(x, t) = u(0, t) + cx + L−1 [
Dα

t u(x, t)
]
. (4.21)

Equally, MADM yields from the latter equation as follows:

∞∑
k=0

un(x, t) =
2tα

Γ(α + 1)
+ cx − pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn

 + L−1 [
Dα

t un−1(x, t)
]
. (4.22)

Thus, it obtains the following recurrent formula:

u0(x, t) =
2tα

Γ(α + 1)
+ cx + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pL−1

 ∞∑
n=0

anxn

 + L−1 [
Dα

t u0(x, t)
]
,
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which, when expressed explicitly by using L−1 and property (2.13), yields as follows:

u0(x, t) =
2tα

Γ(α + 1)
+ cx + a0

x2

2
+ a1

x3

6
+ a2

x4

12
+ · · · ,

u1(x, t) = −p
(
a0

x2

2
+ a1

x3

6
+ a2

x4

12

)
+ x2 +

tα

Γ(α + 1)

(
cx3

6
+ a0

x4

24
+ a1

x5

120
+ a2

x6

360

)
.

(4.23)

Hence, one obtains a0 = 2 and a1 = a2 = 0, upon which the closed-form solution takes the following
expression

u(x, t) = x2 +
2tα

Γ(α + 1)
,

which is after utilizing the second boundary datum to obtain c = 0; equally affirming the trueness of
the reported exact solution.

Algorithm 2: The present inverse operator (3.8) when a = 0, b = 1 reveals from (4.20) as follows:

u(x, t) = u(0, t) + xu(1, t) − xu(0, t) + I
[
Dα

t u(x, t)
]
. (4.24)

Further, the implementing the MADM procedure gives

∞∑
r=0

un(x, t) =
2tα

Γ(α + 1)
+ x + L−1 [

Dα
t un−1(x, t)

]
− pL−1

∞∑
n=0

anxn + L−1

 ∞∑
n=0

anxn

 , (4.25)

which subsequently gives the scheme in the following form

u0(x, t) =
2tα

Γ(α + 1)
+ x + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pL−1

 ∞∑
n=0

anxn

 + L−1 [
Dα

t u0(x, t)
]
,

or equally

u0(x, t) =
2tα

Γ(α + 1)
+ x + a0

x2

2
+ a1

x3

6
+ a2

x4

12
− x

(a0

2
+

a1

6
+

a2

12

)
,

u1(x, t) = −p
[
a0

x2

2
+ a1

x3

6
+ a2

x4

12

]
+ x2 +

t−α

Γ(1 − α)

(
x3

6
+

a0x4

24
+

a1x5

120
+

a2x6

360

)
− x

[
1 +

t−x

Γ(1 − α)

(
1
6

+
a0

24
+

a1

120
+

a2

360

)]
.

In view of that, one obtains the coefficients a0 = 2 and a1 = a2 = 0 upon which the resultant solution
takes the following expression:

u(x, t) = x2 +
2tα

Γ(α + 1)
,

serving as the established exact solution.
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Algorithm 3: Applying the leading inverse operator in the algorithm together with the mentioned
property in (2.10) to (4.20) reveals as follows:

u(x, t) = u(x, 0) + Iαt

[
∂2u(x, t)
∂x2

]
. (4.26)

Next, the adopted MADM expresses the latter equation as follows:

∞∑
n=0

un(x, t) = x2 + Iαt

[
∂2un−1(x, t)

∂x2

]
− pIαt

 ∞∑
n=0

anxn

 + Iαt

 ∞∑
n=0

anxn

 , (4.27)

upon which we iteratively consider

u0(x, t) = x2 + Iαt

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pIαt

 ∞∑
n=0

anxn

 + Iαt

[
∂2u0(x, t)
∂x2

]
,

(4.28)

or equivalently after the action of the inversion operator as follows:

u0(x, t) = x2 +
tα

Γ(α + 1)

(
a0 + a1x + a2x2

)
,

u1(x, t) = −p
[

tα

Γ(α + 1)

(
a0 + a1x + a2x2

)]
+

2tα

Γ(α + 1)
+

2t2αa2

Γ(2α + 1)
.

In the same manner, one gets a0 = 2 and a1 = a2 = 0, yielding the resulting solution as follows:

u(x, t) = x2 +
2tα

Γ(α + 1)
,

which aligns with the established actual solution.

Example 4.4. Consider the time-fractional IBVP for wave dispersion as follows [44]:

D1+β
t u(x, t) =

∂2u(x, t)
∂x2 , 0 < x < 1, t > 0, 0 < β ≤ 1, (4.29)

coupled with the following initial and boundary data

u(x, 0) = x2; u(0, t) =
2t1+β

Γ(β + 2)
, u(1, t) = 1 +

2t1+β

Γ(α + 1)
,

that satisfies the following exact solution

u(x, t) =
2t1+β

Γ(β + 2)
+ x2.
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Algorithm 1: To solve (4.29), one begins by applying the inversion operator L−1 in (3.2) on the
main equation, and further letting u′(x, t) = c to obtain

u(x, t) =
2t1+β

Γ(β + 2)
+ cx + L−1

[
D1+β

t u(x, t)
]
. (4.30)

Accordingly, the MADM renders the latter equation to the following
∞∑

n=0

un(x, t) =
2t1+β

Γ(β + 2)
+ cx − pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn

 + L−1
[
D1+β

t un−1(x, t)
]
, (4.31)

such that the resulting scheme takes the following form

u0(x, t) =
2t1+β

Γ(β + 2)
+ cx + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pL−1

 ∞∑
n=0

anxn

 + L−1
[
D1+β

t u0(x, t)
]
,

or equally after applying the inversion operator L−1 together with the property (2.13) mentioned the
following:

u0(x, t) =
2t1+β

Γ(β + 2)
+ cx + a0

x2

2
+ a1

x3

6
+ a2

x4

12
+ · · · ,

u1(x, t) = −p
(
a0

x2

2
+ a1

x3

6
+ a2

x4

12

)
+ x2 +

t1+β

Γ(β + 2)

(
cx3

6
+ a0

x4

24
+ a1

x5

120
+ a2

x6

360

)
.

(4.32)

In the same way, one determines the related coefficients as a0 = 2, and a1 = a2 = 0, and the constant
c = 0 is determined from the second boundary data. Lastly, the net sum yields

u(x, t) =
2t1+β

Γ(β + 2)
+ x2,

which is the already stated exact solution of the model.
Algorithm 2: Applying the inverse operator (3.8) with a = 0, b = 1 on (4.29) gives

u(x, t) = u(0, t) + xu(1, t) − xu(0, t) + L−1
[
D1+β

t u(x, t)
]
. (4.33)

Therefore, the latter equation is re-expressed through the MADM procedure as follows:
∞∑

n=0

un(x, t) =
2t1+β

Γ(β + 2)
+ x + L−1

[
D1+β

t un−1(x, t)
]
− pL−1

 ∞∑
n=0

anxn

 + L−1

 ∞∑
n=0

anxn

 , (4.34)

which then leads to the following scheme

u0(x, t) =
2t1+β

Γ(β + 2)
+ x + L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pL−1

 ∞∑
n=0

anxn

 + L−1
[
D1+β

t u0(x, t)
]
.

AIMS Mathematics Volume 10, Issue 3, 5806–5829.



5822

In addition, the above expressions are then plainly expressed after making use of the related inversion
operator L−1 as follows:

u0(x, t) =
2t1+β

Γ(β + 2)
+ x + a0

x2

2
+ a1

x3

6
+ a2

x4

12
− x

(a0

2
+

a1

6
+

a2

12

)
,

u1(x, t) = −p
[
a0

x2

2
+ a1

x3

6
+ a2

x4

12

]
+ x2 +

t−1−β)

Γ(−β)

(
x3

6
+

a0x4

24
+

a1x5

120
+

a2x6

360

)
− x

[
1 +

t−1−β

Γ(−β)

(
1
6

+
a0

24
+

a1

120
+

a2

360

)]
.

Consequently, with the determination of the related coefficients as a0 = 2, and a1 = a2 = 0, one obtains
the following final solution:

u(x, t) =
2t1+β

Γ(β + 2)
+ x2,

serving as the already known exact solution.
Algorithm 3: Applying the t-inverse differential operator (3.12) L−1(·) = 1

Γ(β+1)

∫ x

0
(x − s)β(·) ds,

together with the property in (2.10) to (4.29) gives

u(x, t) = u(x, 0) + I1+β
t

[
∂2u(x, t)
∂x2

]
, (4.35)

upon which the MADM writes the earlier equation as follows:

∞∑
n=0

un(x, t) = x2 + I1+β
t

[
∂2un−1(x, t)

∂x2

]
− pI1+β

t

 ∞∑
n=0

anxn

 + I1+β
t

 ∞∑
n=0

anxn

 , (4.36)

that recurrently yields

u0(x, t) = x2 + I1+β
t

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pI1+β

t

 ∞∑
n=0

anxn

 + I1+β
t

[
∂2u0(x, t)
∂x2

]
,

(4.37)

or equally after expanding, deploying the inversion operator, the following

u0(x, t) = x2 +
tα

Γ(β + 2)

(
a0 + a1x + a2x2

)
,

u1(x, t) = −p
[

t1+β

Γ(β + 2)

(
a0 + a1x + a2x2

)]
+

2t1+β

Γ(β + 2)
+

2t1+βa2

Γ(2β + 3)
.

In the same fashion, one obtains the coefficient values as a0 = 2, a1 = 0, and a2 = 2; leading to the
resulting solution, as explained as follows:

u(x, t) =
2t1+β

Γ(β + 2)
+ x2,
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re-affirming the trueness of the exact solution of the fractional IBVP.
Note: Based on the previous examples, it is evident that solving the problem by the t-differential

operator, utilizing the initial condition(s), only simplifies the computations and thus accelerates
obtaining the solution. Therefore, the following examples will focus exclusively on the application
of Algorithm 3.

Example 4.5. Consider space-fractional IBVP [44]:

∂u(x, t)
∂t

= D2α
x u(x, t); 0 < x < 1, t > 0,

1
2
< α ≤ 1, (4.38)

along with the initial and boundary data as follows:

u(x, 0) =
2x2α

Γ(1 + 2α)
; u(0, t) = 2t, u(1, t) = 1 +

2
Γ(2α + 1)

.

In addition, the above fractional IBVP admits the following actual exact solution:

u(x, t) =
2x2

Γ(2α + 1)
+ 2t.

Algorithm 3: We equally start by taking the inverse operator L−1, defined in (3.12) of the leading
equation, to obtain

u(x, t) = u(x, 0) + L−1
[
D2α

x (x, t)
]
. (4.39)

Then, the MADM and the mentioned property in (2.13) help to get from the latter equation the
following

un(x, t) =
2x2α

Γ(1 + 2α)
− pL−1

 ∞∑
n=0

anxn

 + L−1
x

 ∞∑
n=0

anxn

 + L−1
[
D2α

x un−1(x, t)
]
. (4.40)

Further, the resulting relevant iterates are obtained as follows:

u0(x, t) =
2x2α

Γ(1 + 2α)
+ L−1

 ∞∑
n=0

anxn

 ,
u1(x, t) = −pL−1

x

 ∞∑
n=0

anxn

 + L−1
[
D2α

x u0(x, t)
]
,

or after expanding the inverse operator as follows:

u0(x, t) =
2x2α

Γ(1 + 2α)
+ t

[
a0 + a1x + a2x2

]
,

u1(x, t) = −p
[
t
(
a0 + a1x + a2x2

)]
+ 2t +

x2α

Γ(2α + 1)

[
t2a0

2
+

t2xa1

2
+

a2t2x2

2

]
.

Accordingly, one obtains the coefficients a0 = 2, and a1 = a2 = 0 such that one obtains

u(x, t) =
2x2α

Γ(2α + 1)
+ 2t,

which is the known exact expression of the model. Notably, upon assuming the full integer order by the
fractional order, that is, when α = 1, one eventually recovers the exact solution of the corresponding
integer order heat equation as follows: u(x, t) = x2 + 2t.
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Example 4.6. Consider the space–time fractional IBVP [44]:

Dβ
t u(x, t) = D2α

x u(x, t), 0 < x < 1, t > 0,
1
2
< α ≤ 1, 0 < β ≤ 1, (4.41)

subject to

u(x, 0) =
2x2α

Γ(1 + 2α)
; u(0, t) =

2t2β

Γ(2β + 1)
, u(1, t) =

2
Γ(2α + 1)

+
2tβ

Γ(1 + β)
,

and satisfying the following exact solution

u(x, t) =
2x2α

Γ(2α)
+

2tβ

Γ(1 + β)
.

Algorithm 3: Applying the inverse operator L−1(.) = 1
Γ(β)

∫ x

0
(x − s)β−1(.)ds on (4.41), one gets as

follows:
u(x, t) = u(x, 0) + Iβt

[
D2α

x u(x, t)
]
,

such that MADM expresses the later equation as follows:

∞∑
n=0

un(x, t) =
2x2α

Γ(1 + 2α)
− pIβt

 ∞∑
n=0

anxn

 + Iβt

 ∞∑
n=0

anxn

 + Iβt
[
D2α

x un−1(x, t)
]
. (4.42)

Equally, the relevant iterates are accordingly obtained as follows:

u0(x, t) =
2x2α

Γ(1 + 2α)
+ Iβt

 ∞∑
n=0

anxn


=

2x2α

Γ(1 + 2α)
+

tβ

Γ(β + 1)

(
a0 + a1x + a2x2

)
,

and

u1(x, t) = −pIβt

 ∞∑
n=0

anxn

 + Iβt
[
D2α

x uo(x, t)
]

= −p
tβ

Γ(β + 1)

(
a0 + a1x + a2x2

)
+

2tβ

Γ(β + 1)
+

t2β

Γ(2β + 1)

(
a−2α

0

Γ(1 − 2α)
+

a1x1−2α

Γ(2 − 2α)
+

2a2x2−2α

Γ(3 − 2α)

)
.

What is more, the method equally yields the related coefficients as follows: a0, a1 and a2, which means
that the exact solution of the IBVP is obtained as follows:

u(x, t) =
2tβ

Γ(1 + β)
+

2x2α

Γ(2α + 1)
.

Remarkably, considering α = β = 1, the obtained fractional exact solution corresponds to that of an
integer order heat equation as follows: u(x, t) = x2 + 2t. Conversely, when α = 1, and β = 2, the
fractional solution reduces to u(x, t) = x2 + t2, which is the exact solution of the analogous integer
order wave propagation equation.
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Example 4.7. Consider the space-time fractional IBVP as follows [44]:

D2β
t u(x, t) = D2α

x u(x, t), 0 < x < 1, t > 0,
1
2
< α, β ≤ 1, (4.43)

subject to

u(x, 0) =
2x2α

Γ(1 + 2α)
; u(0, t) =

2t2β

Γ(2β + 1)
, u(1, t) =

2
Γ(2α + 1)

+
2t2β

Γ(1 + 2β)
,

and admitting the exact solution as follows

u(x, t) =
2x2α

Γ(2α + 1)
+

2t2β

Γ(1 + 2β)
.

Algorithm 3: Accordingly, by taking the inverse operator Iβt , defined as L−1(.) = 1
Γ(2β)

∫ x

0
(x−s)2β−1ds

of (4.43), one obtains as follows

u(x, t) = u(x, 0) + I2β
t

[
D2α

x u(x, t)
]
.

Next, the MADM gives

∞∑
n=0

un(x, t) =
2x2α

Γ(1 + 2α)
− pI2β

t

 ∞∑
n=0

anxn

 + I2β
t

 ∞∑
n=0

anxn

 + I2β
t

[
D2α

x un−1(x, t)
]
, (4.44)

such that the resulting scheme looks as follows:

u0(x, t) =
2x2α

Γ(1 + 2α)
+ I2β

t

 ∞∑
n=0

anxn


=

2x2α

Γ(1 + 2α)
+

t2β

Γ(2β + 1)

(
a0 + a1x + a2x2

)
,

u1(x, t) = −pI2β
t

 ∞∑
n=0

anxn

 + I2β
t

[
D2α

x uo(x, t)
]

= −p
t2β

Γ(2β + 1)

(
a0 + a1x + a2x2

)
+

2t2β

Γ(2β + 1)

+
t2β

Γ(2β + 1)

(
a0x−2α

Γ(1 − 2α)
+

a1x1−2α

Γ(2 − 2α)
+

2a2x2−2α

Γ(3 − 2α)

)
.

In the like manner, we obtain the coefficients as a0 = 2, and a1 = a2 = 0, such that the resulting exact
solution is obtained as follows:

u(x, t) =
2t2β

Γ(1 + 2β)
+

2x2α

Γ(2α + 1)
.

Notably, one can observe from the above solution, after setting α = β = 1 to obtain the solution of the
corresponding integer order wave equation.
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5. Conclusions

This study makes an original mathematical contribution by developing three modified algorithms
based on the Adomian Decomposition Method (MADM) for solving FPDEs, particularly those
involving initial and boundary conditions. The procedures for each algorithm were explained
extensively. Two of the algorithms were designed using the x-differential operators for boundary
conditions, while the third algorithm utilized the t-differential operator for initial conditions. Through
practical examples, it was confirmed that all three algorithms provided accurate and reliable solutions.
Moreover, the proposed methods were found to drastically reduce the number of iterations due to
relying solely on u0 and u1, unlike the standard ADM, which typically requires numerous iterations. As
a result, the computational workload is considerably reduced. For more complex calculations, Maple
software can be used to perform the computations. It was also observed that the third algorithm, which
relies on initial conditions only, significantly simplified the calculations. Furthermore, the proven
effectiveness of the proposed algorithms suggests future applications for nonlinear FPDEs and systems
of FPDEs, offering great potential for fields like engineering, physics, and biology. Certainly, the
proposed algorithms could help in developing solutions for advanced problems in these areas.
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