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Abstract: In this paper, we defined and discussed a new class of fuzzy soft open (FS-open) sets,
called r-fuzzy soft y-open (r-FS-y-open) sets in fuzzy soft topological spaces (FSTSs) based on fuzzy
topologies in the sense of Sostak. The class of r-FS-y-open sets is contained in the class of r-FS-B-open
sets, and contains all r-FS-semi-open and r-FS-pre-open sets. However, we introduced the closure and
interior operators with respect to the classes of r-FS-y-closed and r-FS-y-open sets, and studied some
of their properties. Thereafter, we defined and studied some new FS-functions using r-FS-y-open and
r-FS-y-closed sets, called FS-y-continuous (respectively (resp. for short) FS-y-irresolute, FS-y-open,
FS-y-irresolute open, FS-y-closed, and FS-y-irresolute closed) functions. The relationships between
these classes of functions were discussed with the help of some illustrative examples. We also explored
and established the notions of FS-weakly (resp. FS-almost) y-continuous functions, which are weaker
forms of FS-y-continuous functions. We showed that FS-y-continuity = FS-almost y-continuity =
FS-weak y-continuity, but the converse may not be true. After that, we presented some new types of
FS-separation axioms, called r-FS-y-regular and r-FS-y-normal spaces using r-FS-y-closed sets, and
investigated some properties of them. Finally, we introduced a new type of FS-connectedness, called
r-FS-y-connected sets using r-FS-y-closed sets.

Keywords: FS-topology; r-FS-y-open set; FS-y-closure operator; FS-y-continuity; FS-weak
y-continuity; FS-y-irresoluteness; r-FS-y-normal space; r-FS-y-connected set
Mathematics Subject Classification: 54A05, 54A40, 54C05, 54C08, 54D15

1. Introduction

The need for theories that cope with uncertainty emerges from daily experiences with complicated
challenges requiring ambiguous facts. In 1999, the theory of soft sets (S-sets) was given by the
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Russian mathematician Molodtsov [1] as a tool for modeling mathematical problems that deal with
uncertainties. Molodtsov’s [1] S-set is a contemporary mathematical approach to coping with these
difficulties. Soft collection logic is founded on the parametrization principle, which argues that
complex things must be seen from several perspectives, with each aspect providing only a partial
and approximate representation of the full item. Also, Molodtsov [1] studied several applications
of S-sets theory in solving different practical problems in medical science, economics, mathematics,
engineering, etc. Thereafter, Maji et al. [2] focused on abstract research of S-set operators with
applications in decision-making problems. Moreover, the concept of soft topological spaces (STSs)
defined over an initial universe with a predetermined set of parameters was proposed by Shabir and
Naz [3]; their work centered on the theoretical studies of STSs. Majumdar and Samanta [4] presented
mappings on S-sets and their application in medical diagnosis. Kharal and Ahmed [5] brought up the
view of soft mapping with properties; subsequently, soft continuity of soft mappings was instigated by
Aygunoglu and Aygun [6]. Many works devoted to studying soft continuity and its characterizations
can be found in the literature reviews provided [7-9]. Overall, many researchers have successfully
generalized the theory of general topology to the soft setting; see [10—13].

The generalization of soft open sets (S-open sets) plays an effective role in a soft topology through
their ability to improve on many results, or to open the door to explore and discuss several soft
topological notions such as soft continuity [10, 11], soft separation and regularity axioms [12], soft
connectedness [11, 13], etc. Moreover, the notions of S-a-open sets and S-B-open sets were defined
and studied in STSs by the authors of [14-16]. Al-shami et al. [17] introduced and discussed the
concepts of weakly S-$-open sets and weakly S-S-continuous functions. Furthermore, Kaur et al. [18]
initiated a novel approach to discussing soft continuity. In addition, many researchers have contributed
to the theory of S-sets in several fields such as topology and algebra, see [19,20].

The concept of a fuzzy set (F-set) of a nonempty set Q is a mapping i : Q — I (where I = [0, 1]).
This concept was first defined in 1965 by Zadeh [21]. The concept of fuzzy topological spaces (FTSs)
was presented in 1968 by Chang [22]. Several authors have successfully generalized the theory of
general topology to the fuzzy setting with crisp methods. According to Sostak [23], the notion of a
fuzzy topology being a crisp subclass of the class of F-sets and fuzziness in the notion of openness
of an F-set have not been considered, which seems to be a drawback in the process of fuzzification
of a topological space. Therefore, Sostak [23] defined a novel definition of a fuzzy topology as
the concept of openness of F-sets. It is an extension of a fuzzy topology introduced by Chang.
Many researchers (see [24-27]) have redefined the same notion and studied FTSs being unaware of
Sostak’s work.

The notion of fuzzy soft sets (FS-sets) was first defined in 2001 by Maji et al. [28], which combines
the S-set [1] and F-set [21]. The concept of FSTSs was introduced and many of its properties such
as FS-continuity, FS-closure operators, FS-interior operators, and FS-subspaces were studied [29, 30]
based on fuzzy topologies in the sense of Sostak [23]. Also, a novel approach to discussing FS-
regularity axioms and FS-separation axioms using FS-sets was explored by Taha [31,32]. The notions
of r-FS-regularly-open sets, r-FS-pre-open sets, r-FS-semi-open sets, r-FS-a-open sets, and r-FS-3-
open sets were introduced by the authors of [33—-36]. Furthermore, Alshammari et al. [37] defined and
investigated the concepts of r-FS-d-open sets and FS-d-continuous functions based on fuzzy topologies
in the sense of Sostak [23]. Overall, Alshammari et al. [37] introduced and discussed the concepts of
FS-weak (resp. FS-almost) continuity, which are weaker forms of FS-continuity [29].
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We lay out the remainder of this paper as follows. Section 2 contains some basic definitions that help
in understanding the obtained results. In Section 3, we display a new class of FS-open sets, called r-FS-
y-open sets in FSTSs based on fuzzy topologies in the sense of Sostak. The class of r-FS-y-open sets
is contained in the class of r-FS-B-open sets, and contains all -FS-a-open, r-FS-semi-open, and r-FS-
pre-open sets. Some properties of r-FS-y-open sets along with their mutual relationships were specified
with the help of some illustrative examples. Thereafter, we introduce the closure and interior operators
with respect to the classes of r-FS-y-closed and r-FS-y-open sets, and study some of their properties.
In Section 4, we explore and characterize some new FS-functions using r-FS-y-open and r-FS-y-closed
sets, called FS-y-continuous (resp. FS-y-irresolute, FS-y-open, FS-y-irresolute open, FS-y-closed, and
FS-y-irresolute closed) functions between FSTSs (Q, 7)) and (S, 7). Also, the relationships between
these classes of functions are discussed with the help of some illustrative examples. In Section 5,
we define and discuss the notions of FS-weakly (resp. FS-almost) y-continuous functions, which
are weaker forms of FS-y-continuous functions. We also show that FS-y-continuity = FS-almost y-
continuity = FS-weak y-continuity, but the converse may not be true. However, we present some new
types of FS-separation axioms, called r-FS-y-regular and r-FS-y-normal spaces using r-FS-y-closed
sets, and investigate some properties of them. Moreover, we introduce a new type of FS-connectedness,
called r-FS-y-connected sets using r-FS-y-closed sets. In the last section, we close this paper with
conclusions and proposed future researches.

2. Preliminaries

In this study, nonempty sets will be denoted by Q, S, W, etc. Also, M is the family of each parameter
for Q and C € M. Moreover, I¢ is the family of all F-sets on Q and for u € I, u(q) = u, for every
q € Q. The following notions will be used in the next sections.

Definition 2.1. [29,38,39] An FS-set #c on Q is a function from M to 12, such that z-(m) is an F-set
on Q, foreverym € C and tc(m) =0,if m ¢ C. On Q, (Qj\?) is the family of all FS-sets.

Definition 2.2. [40] An FS-point m,, on Q is defined as follows:

| oqu, it k=m,
m%(k)‘{ 0, if ke M- {(m),

where ¢, is an F-point on Q. Moreover, we say that m,, belongs to f¢ (my,€ t¢) if u < tc(m)(q). On Q,
P,(0) is the family of all FS-points.

Definition 2.3. [41] On Q, m,, € P—XQ/) is called an S-quasi-coincident with 7 € (Q,\IVI) and is
denoted by m,, V t¢,if u+tc(m)(q) > 1. An FS-set 1¢ € (Q,\M) is called an S-quasi-coincident with
hp € (0, M) and is denoted by 7¢ V hp, if thereis m € M and g € Q, such that zc(m)(q)+hp(m)(q) > 1.
If ¢ is not an S-quasi-coincident with hp, t¢ v hp.

Definition 2.4. [29] A function 7 : M —> I@™ ig called a fuzzy soft topology (FST) on Q if it
satisfies the following statements, for every m € M:

(i) T(®) = T, (M) = 1.

(ii) Tou(tc M hp) = Toltc) A Tlhp), for every tc, hy € (O, M).

(iif) TonlLieo(fc)) 2 Aieo Tn((tc)o), for every (tc); € (O, M), i € ©. .

Thus, (Q, Ty ) is called an FSTS based on fuzzy topologies in the sense of Sostak [23].
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Definition 2.5. [30,33] In an FSTS (Q,Ty), for each hc € (O, M), m € M, and r € I, (where
I, = (0, 1]), we define FS-operators Cs and I : M X (Q,\M) X[, — (Q,\M) as follows:

Cr(m,te,r) =M {hp € (O, M) : tc T hp, T(hs,) > r}.
Ir(m,te,r) = U {hp € (O, M) : hp C te, T(hp) > r}.

Definition 2.6. [33-35] Let (Q,7 ) be an FSTS and r € I,. An FS-set ¢ is said to be an r-FS-
regularly-open (resp. r-FS-pre-open, r-FS-B-open, r-FS-semi-open, r-FS-a-open, and r-FS-open) set
if tc = Iy(m,Cy(m,tc, 1), 1) (resp. tc & Iy(m,Cqr(m,tc,1),1), tc E Cq(m, ly-(m, Co-(m,tc, 1), 1), 1),
tc C Cq(m, I+-(m, tc, 1), 1), tc C Iq-(m, Co-(m, I-(m, tc, 1), r),r), and tc C Iq(m, tc, 7)) ¥ me M.

Definition 2.7. [29,30,33] Let (Q,7y) and (S,7,) be FSTSs, m € M, and (n = y(m)) € N. An
FS-function ¢y, : (Q,\M) — (/S-,\N/) is called

(i) FS-continuous if Tm(¢;1(hD)) > 7,/ (hp), for every hp € (3-,\1\7/), me M,

(i1) FS-open if 7, (py(tc)) = Tw(tc), for every tc € (@,\M), me M,

(ii1) FS-closed if 7 ((py(c))) = Tu(1(), for every tc € (Q,\M), me M.

Definition 2.8. [35,36] Let (Q, 7) and (S,7;) be FSTSs. An FS-function ¢, : (0, M) — (5,N)
is called FS-a-continuous (resp. FS-semi-continuous, FS-pre-continuous, and FS-B-continuous) if
ga;l(hD) is an r-FS-a-open (resp. r-FS-semi-open, r-FS-pre-open, and r-FS-B-open) set, for every
hp € (S,N) with 7*(hp) > r, m € M, and (n = y(m)) € N.

The basic results and notations that we need in the sequel are found in previous studies [29, 30, 33,
35, 36].

3. On r-fuzzy soft y-open sets

In this section, we introduce the notion of r-FS-y-open sets in an FSTS. Some properties of r-FS-
v-open sets along with their mutual relationships are studied using some problems. The notions of
FS-y-closure operators and FS-y-interior operators are defined and investigated.

Definition 3.1. Let (Q, 7)) be an FSTS and r € I,. An FS-set z¢- € (/Q7\//1) is said to be an
(i) r-FS-y-open set if t¢ © Cr-(m, I-(m, tc, r), r) U Iy-(m, Cr-(m, tc, 1), r) for every m € M,
(i1) r-FS-y-closed set if t¢ 3 Cr(m, I-(m, tc,r), r) M I-(m, Cr-(m, tc, 1), r) for every m € M.

Remark 3.1. The complement of r-FS-y-open sets (resp. r-FS-y-closed sets) are r-FS-y-closed
sets (resp. r-FS-y-open sets).

Proposition 3.1. Let (Q, 7)) be an FSTS and r € I,. Then
(1) each r-FS-semi-open set is an r-FS-y-open set;
(i1) each r-FS-y-open set is an r-FS--open set;
(ii1) each r-FS-pre-open set is an r-FS-y-open set.

Proof. (1) Let ¢ be an r-FS-semi-open set. Then
tC C C’T(m’ IT(m9 tCa r)9 r)
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C Cq(m, Iy-(m,tc,r), r) U I-(m, tc, r)
C Cr(m, Ir-(m,tc, r), r) U I-(m, Cq-(m, tc, 1), 7).
Thus, ?¢ is an r-FS-y-open set.
(ii) Let t¢ be an r-FS-y-open set. Then
tc C Cq(m, I-(m,tc,r), r) U Iq-(m, Cq-(m, te, 1), r)
C Cy(m, Iy-(m, Cq-(m, tc, r), r), r) U I-(m, Co-(m, tc, 1), 1)
C Cq(m, Iy-(m,Cy-(m,tc,r), 1), 7).
Thus, t¢ is an r-FS-B-open set.
(ii1) Let ¢ be an r-FS-pre-open set. Then
tc C Iy(m,Cr(m,tc,r), 1)
C I+-(m,Cq(m,tc,r),r) U Ie-(m, tc, r)
C I+-(m,Cq(m,tc,r), r) U Co-(m, I-(m, tc, 1), 7).
Thus, t¢ is an r-FS-y-open set.

Remark 3.2. From the previous discussions and definitions, we have the following diagram.

r-FS-open set

l

r-FS-a-open set

/ N
r-FS-pre-open set <« r-FS-semi-open set
N /

r-FS-y-open set
3

r-FS-$-open set

Remark 3.3. The converse of the above diagram fails as Examples 3.1-3.3 will show.

Example 3.1. Let Q = {ql,qz} M = {my,m,}, and define hy, fir, 1y € (O, M) as follows: hy =
{(ml,{g_z_ 03}) (mZ’ g_ip% fM (m17 g_lz, g%}),(mZ,{%’ 3_26})} lM {(mla{oqlSa 07}) (mZ’{g_IS, 51_27})}
Define 7, : M —s 1@ a5 follows:

. if Iy € (@, M), . if Iy € (@, M),
s if lM = hMa s if lM = hMa
it Iy = fus T

T (In) = T (In) =

lf lM = hM Il fM,
it Iy =hyU fu,
, otherwise,

lf lM = hM Il fM,
it Iy =hyU fu,
otherwise.

-

O DI—= WIN R— D= =
O Bl= NI A= A= =

-

Thus, t); is a i-FS-y-open set, but it is neither i-FS-pre-open nor ;lt-FS-a-open.
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Example 3.2. Let QO = ql,qz} M = {my,m,}, and define hy, fy,ty € (Q M) as follows: hy =
{m AL, B, (ma, { 5“3,522 S = A S B, mo {5, DYt = (i AL, B, (mo, {2, ED)
Define 73, : M —s 1@ a5 follows:

1, if Iy €{®,M)}, 1, if Iy €{®,M),

LoSf 1y = hyy, Lot Iy = hy,
Ty =12 MM Ty =13 MM

e it Iy = fu, 7 it Iy = fu,

0, otherwise, 0, otherwise.

Thus, 7, is a +-FS-y-open set, but it is not }-FS-semi-open.

Example 3.3. Let Q0 = {q1.q2}, M = {m;,m;), and define hy.ty € (0. M) as follows: hy =
{mi AL, B, ma AL BNt = (A &D, (o, {E. &), Define Ty : M — 19 as
follows:

1, if Iy e{®,M), 1, if Iy €{®,M),
Tml(lM) = %$ if lM = hM9 Tmz(lM) = %’ if lM = hM’
0, otherwise, 0, otherwise.

Thus, #;,1s a %—FS—B—open set, but it is not %—FS—y—open.

Corollary 3.1. Let 7¢ be an r-FS-y-open set in an FSTS (Q,7Ty),m € M, and r € [,.
(1) If #¢ is an r-FS-regularly-open set, then #¢ is r-FS-semi-open.
(i1) If ¢ 1s an r-FS-regularly-closed set, then #¢ is r-FS-pre-open.
(iii) If I+-(m, tc, r) = @, then t¢ is r-FS-pre-open.
(iv) If Cy-(m, tc,r) = @, then t¢ is r-FS-semi-open.

Proof. The proof follows by Definitions 2.6 and 3.1.

Corollary 3.2. Let 7¢ be an r-FS-y-closed set in an FSTS (Q,7y),m € M,and r € L.
(1) If #¢ is an r-FS-regularly-open set, then #¢ is r-FS-pre-closed.
(11) If ¢ 1s an r-FS-regularly-closed set, then #¢ is r-FS-semi-closed.
(iii) If I-(m, tc, r) = @, then t¢ is r-FS-semi-closed.
(iv) If Cy-(m, tc,r) = @, then ¢ is r-FS-pre-closed.

Proof. The proof follows by Definitions 2.6 and 3.1.

Corollary 3.3. Let (Q,7 ) be an FSTS and r € I,. Then
(1) the union of r-FS-y-open sets is r-FS-y-open;
(i1) the intersection of r-FS-y-closed sets is r-FS-y-closed.

Proof. This is easily proved by Definition 3.1.

Definition 3.2. In an FSTS (Q T u), for each tc € (/Q\]\J/I) m € M, and r € I,, we define an FS y—
closure operator yCq : M X (Q M)yx I, — (Q M) as follows: yCqy(m,tc,r) =M {hp € (Q M) :
hp, hp is r-FS-y-closed}.
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Proposition 3.2. Let (Q, 7)) be an FSTS, t¢- € (@,\IT//I), m e M, and r € I,. Then t¢ is an r-FS-y-closed
set iff ’)/CT(m, tc, 1) = tc.

Proof. The proof follows by Definition 3.2.

Theorem 3.1. In an FSTS (O, Ty), for each tc,hp € (Q,\Z\J/I), m € M, and r € I,, an FS-operator
vCq : M X (@,\M) X I, — (@,\M) satisfies the following properties.

1) yCr(m, ®,r) = .

(ii) tc © yCq(m,tc,r) E Cr(m, tc, 1).

(1) yCq(m, tc,r) E yCq(m, hp, r) if tc T hp.

(iv) yCq(m,yCq(m, ic,r),r) = yCq(m, tc,1).

V) yCq(m, tc U hp,r) 3 yCq(m, tc,r) U yCq(m, hp, ).

(vi) yCq(m, Cy-(m, tc,r), 1) = Cy(m, ic, r).

Proof. (1)—(iii) are easily proved by Definition 3.2.

(iv) From (ii) and (iii), we have yCs(m, tc,r) C yCq(m, yCqr(m, tc, 1), ).

Now, we show that yCy(m,tc,r) 2 yCy(m,yCqr(m,tc,r),1r). If yCq(m,tc,r) does not contain
vCq(m,yCq(m,tc,r),r), then there is g € Q and u € (0, 1) such that

yCor(m, tc, r)(m)(q) < u <yCq(m,yCq(m, tc,r), r)(m)(q). (K)

Since yCq(m, tc,r)(m)(q) < u, by Definition 3.2, there exists hp that is r-FS-y-closed and - C hp
such that yCq(m, tc,r)(m)(q) < hp(m)(g) < u. Since t¢c E hp, then yCq(m,tc,r) & hp. Again, by
Definition 3.2, we have yCq-(m, yCsr(m,tc, 1), 1) C hp.

Hence, yCy(m,yCq(m,tc, 1), r)(m)(q) < hp(m)(g) < u, which is a contradiction for (K). Thus,
YCqr(m,tc,r) A yCq(m,yCq(m,ic,1),1), 80 yCq(m,yCr(m,tc,r),r) = yCq(m, ic,1).

(v) Since t¢ € tc U hp and hp T ¢ U hp, hence by (iii), yCq(m, tc,r) E yCq(m,tc U hp,r) and
vCq(m, hp, r) C yCq(m,tc U hp, r). Thus, yCy-(m, tc U hp,r) 3 yCqr(m, tc,r) U yCq(m, hp,r).

(vi) From Proposition 3.2 and the fact that Cs(m,tc,r) is r-FS-y-closed, then
vCoq(m,Cy(m, tc,r),r) = Cq(m, tc,1).

Definition 3.3. In an FSTS (Q, 74), for each itc € (O, M), m € M, and r € I,, we define an FS-y-
interior operator yly : M X (Q,\Z\//I) X [, — (Q,\M) as follows: yIy-(m,tc,r) = U {hp € (Qﬁ\/l) chp C
tc, hp is r-FS-y-open}.

Proposition 3.3. Let (Q, 7) be an FSTS, tc € (O, M), m € M, and r € I,. Then 7c is an r-FS-y-open
set iff ’)’If/’(l’l’l, tc, r) = Ic.

Proof. The proof follows by Definition 3.3.

Theorem 3.2. In an FSTS (Q, 7 ), for each t-, hp € (@,\]\/4), m € M, and r € I,, an FS-operator
vl : M X (/Qj\//l) X[, — (le//l) satisfies the following properties.

() yIr(m, M, r) = M.

(11) I¢(m, tc, I") C ’}’I{]’(l’l’l, tc, 1") C tc.

(iii) yly-(m, tc,r) € ylye-(m, hp, r) if tc T hp.

(v) ylr-(m, yly-(m, tc,r),r) = ylr(m, ic,r).

(V) yly-(m,tc,r) N yly-(m, hp, r) 3 yly(m, tc T hp, r).
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Proof. The proof is similar to that of Theorem 3.1.

Proposition 3.4. Let (Q, 73,) be an ESTS, 7c € (Q, M), m € M, and r € I,. Then
(D) yIr(m,i¢,r) = (yCr(m, ic, 1)) ;
(11) VC‘T(m, tc s r) = (’)/IT(ma tCa r))c'

Proof. (i) For each tc € (Q,M) and m € M, we have ylr(m,t,r) = Ulhp € (O, M) : hp C
., hp is r-FS-y-open} = [M{KS, € (O, M) : tc C kS, K, is r-FS-y-closed}]® = (yC.(m, tc, r))".
(i1) This is similar to that of (i).

4. On fuzzy soft y-continuous functions

In this section, we introduce and study some new FS-functions using r-FS-y-open sets and r-FS-
v-closed sets, called FS-y-continuous (resp. FS-y-irresolute, FS-y-open, FS-y-irresolute open, FS-
y-closed, and FS-y-irresolute closed) functions between FSTSs (Q, 7)) and (S, 7). However, the
relationships between these classes of functions are discussed.

Definition 4.1. Let (Q, 7y) and (S, 7) be FSTSs, ic € (O, M), hp € (S,N),m € M, (n = y(m)) € N,
and r € I,. An FS-function ¢, : (Q, M) — (§,N) is called

(i) FS-y-continuous if gol;l(hD) is an r-FS-y-open set, for every hp with 7, (hp) > r;

(i1) FS-y-open if ¢, (#c) is an r-FS-y-open set, for every tc with 7,,(tc) > r;

(iii) FS-y-closed if ¢, (#¢) is an r-FS-y-closed set, for every 7¢c with 7,(t¢) > r;

(iv) FS-y-irresolute if ¢;1(hD) is an r-FS-y-open set, for every r-FS-y-open set hp;

(v) FS-y-irresolute open if ¢, (t¢) is an r-FS-y-open set, for every r-FS-y-open set #¢;

(vi) FS-y-irresolute closed if ¢, (t¢) is an r-FS-y-closed set, for every r-FS-y-closed set #c.

Remark 4.1. From the previous definitions, we have the following diagram.

FS-continuity

!

FS-a-continuity

vd N
FS-pre-continuity <«  FS-semi-continuity
N /

FS-y-continuity
\

FS-(3-continuity

Remark 4.2. The converse of the above diagram fails as Examples 4.1-4.3 will show.
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Example 4.1. Let O = ql,qz} M = {my,m,}, and define hy, fy,ty € (Q M) as follows: hy =
{m AL, ED, (mo, (S, gg S = A AS ED, (o (S, EDY tr = {(m (L, B, (mo, {2, D)
Define Ty, 75, : M — 1@ a5 follows: Vm € M,

1, if Iy e{®, M),
104F 1y = hy, _
zo M L if Iy € (M),
2 lf lM = fM, " 1 .
Tullu) =45 . Tullw) =13, if Iy =tu,
3> lf lM = hM Il fM’ X
| ] 0, otherwise.
55 lf lM = hM L fMa
0, otherwise,

Then, the identity FS-function ¢y : (Q,7w) — (Q,7T,,) is FS-y-continuous, but it is neither FS-
pre-continuous nor FS-a-continuous.

Example 4.2. Let Q = {ql,qz} M = {m;,m,}, and define hy, fy, ty € (Q\M) as follows: hy, =
{(ml’{gg’ 02}) (mZ’ 51139% fM (mb (;1179 08}) (mZ’{g.;’ Oq_%})}’ tM:{(mb{O]S’ 04}) (m25{%’g_i})}
Define 73, 7, : M — 1@ a5 follows: Vm € M,

Lo if € (@, M), 1, if 1y € (@, M)
Lo by = hy, . o T
8’ M= A 0, otherwise.

, otherwise,

Then, the identity FS-function ¢, : (Q,7y) — (Q,7,,) is FS-y-continuous, but it is not FS-semi-
continuous.

Example 4.3. Let O = {q1,q2}), M = {mi,m;), and define hy,ty € (0, M) as follows: hy =
{(ml’{gls’ 04}) (mQ’{gIS’ %})}’ tM = {(mla{gip 05}) (mZ’{gi"gzs})} Deﬁne TMaTAZ M — I(Q’M)
as follows: Ym € M,

1, if Iy €{®,M), 1, if Iy €{®,M),
Tnly) = % it Iy = hy, Tny) = §, it Iy =ty
0, otherwise, 0, otherwise.

Then, the identity FS-function ¢, : (Q,7u) — (Q,7T,,) is FS-B-continuous, but it is not FS-y-
continuous.

Theorem 4.1. Let (Q,7 ) and (S, 7 ) be ESTSs, m € M, (n = y(m)) € N, and r € I,. An FS-function
Yy (Q,\M) — (E,\N) is FS-y-continuous iff for any m,, € P:,TQ/) and any hp € (E,\]V) with 7/ (hp) > r
containing ¢, (m,, ), there exists f¢ € (Q,\M ) that is an r-FS-y-open set containing m,, with ¢, (fc) C hp.

Proof. (=) Letm,, € P;TQ/) and hp € (:S_',\N/) with 7 (hp) > r containing ¢,(m,,), and then golzl(hD) cE
yIr(m, ¢, (hp), ). Since my,&py' (hp), then we obtain m,, & ylr(m, ¢, (hp), 1) = tc (say). Hence,
fc € (@,\ZT//I) is an r-FS-y-open set containing m,, with ¢,(tc) C hp.
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(&) Letmy, € P.(0) and hp € (S,N) with T .+ (hp) > r such that m,, & go;l(hD). According to the
assumption there exists t¢c € (Q,\IVI) that is an r-FS-y-open set containing m,,, such that ¢, (tc) C hp.
Hence, m,, € tc T gol/_,l(hD) and m,, € ylr(m, gol;l(hD), r). Thus, go;l(hD) C ylr(m, (pl/‘,l(hD), r), SO
go(;l(hD) is an r-FS-y-open set. Thus, ¢, is FS-y-continuous.

Theorem 4.2. Let (Q, 7) and (S, 77) be FSTSs and ¢, : (0, M) — (S, N) be an FS-function. Then
the following statements are equivalent for every #- € (@T]VI), hp € (/S_,\N/), me M, (n =y(m)) €N,
andr € I..:

(1) ¢y 18 FS—y-continuous.

(i1) ‘pl;l(hD) is r-FS-y-closed, for every hp € (S,\]V) with 77 (h$) > r.

(ii1) @y (yCr(m, tc, 1)) T Cr(n, @y(tc), r).

(iv) yCr(m, ¢, (hp), 1) C ¢, (Cq(n, hp, 1)).

V) @' 7+ (n, hp, 1)) E ylr-(m, @' (hp), 7).

Proof. (i) & (ii) The proof follows from Definition 4.1 and ¢, (h3,) = (¢, (hp))°.
(ii) = (iii) Let tc € (Q, M); then by (ii), ¢, (C7-(n, ¢ (tc). 1)) is r-FS-y-closed, hence

YCq(m,tc,r) € yCq(m, ‘Pl}l(s%(fc)), r) C yCq(m, 901;1((:7*(”, ey(tc),r)),r) = SDJI(CT*(”, @y(tc), r)).

ThuS, ‘)Dlﬁ(yCT(m’ Ic, r)) ;/_Cj\‘Ti(n, ()OLD(IC)’ 7").

(iii) = (iv) Let ip € (S,N); hence by (iii), ¢, (yCr(m, ¢, (hp), 1)) E Cr(n,¢4(g, ' (hp)), 1) T
CT* (na hD9 r)' Thusa ')’CT(m, 901;1 (hD)9 r) C SD(Z/] (SD(P(YCT(ma Sol;l (hD)’ r))) C Sol;l (C'T* (l’l, hDa r))

(iv) & (v) The proof follows from Proposition 3.4 and ;' () = (¢, (hp))°.

(v) = (i) Let hp € (S,N) with 7;/(hp) > r. By (v), we obtain ¢;'(hp) = ¢ (Ur-(n,hp, 7)) C
yIr(m, ¢, (hp), 1) T @' (hp). Then, ylr(m, ¢, (hp),1) = @,'(hp). Thus, ¢,'(hp) is r-FS-y-open,
S0 ¢y 1s FS-y-continuous.

Lemma 4.1. Every FS-y-irresolute function is FS-y-continuous.
Proof. The proof follows from Definition 4.1.
Remark 4.3. The converse of Lemma 4.1 fails as Example 4.4 will show.

Example 4.4. Let O = {q1.q2}, M = {mi,my), and define hy,ty € (0, M) as follows: hy =
{(ml,{%’ g%})’(mZ’{%’ Oq_zs})}a tM = {(mla{%a %})’(mZ’{%a (()I_i})} Deﬁne TMaTAZ M — I(Q’M)
as follows: Ym € M,

1, if Iy €{®,M), 1, if Iy e{®,M),
Tm(lM) = %, lf lM = lM, T,:;(ZM) = %, lf lM = I’LM,
0, otherwise, 0, otherwise.

Then, the identity FS-function ¢, : (Q,7Ty) — (Q,7;,) is FS-y-continuous, but it is not FS-y-
irresolute.

Theorem 4.3. Let (Q, 7)) and (S,77;) be FSTSs and ¢, : (Q, M) —> (S, N) be an FS-function. Then
the following statements are equivalent for every #- € (O, M), hp € S,N),me M, (n = w(m)) € N,
andr € [:
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(1) ¢y 18 FS—y-irresolute.
(ii) godjl(hD) is r-FS-y-closed, for every r-FS-y-closed set hp.
(ii1) @y (yCq(m, tc, 1)) C yCo=(n, @y (tc), 1).
(iv) yCr(m, ¢, (hp), 1) C @, (yCr(n, hp, 7).
V) ¢, (vlr-(n, hp, 1) E yI7(m, ¢, (hp), r).
Proof. (i) & (i1) The proof follows from Definition 4.1 and gol;l(hj)) = (gol;l(hD))C.
(i1) = (iii) Let t¢ € (Q,\M); then by (ii), go;l(nyr* (n, py(tc), r)) is r-FS-y-closed, hence

yCor(m, tc,r) E yCr(m, ;' (¢y(1c)), 1) T yCor(m, @, (yCr-(n, @y (tc). 1)), 1) = @, (yCr(n, 9y (i), 7).

ThuS, ‘)Dlﬁ(yCT(m’ Ic, r)) C ’)//_Ci—/*(n’ ‘plﬁ(tC), 7").

(ili) = (iv) Let ip € (S,N); hence by (iii), ¢, (yCr(m, ¢, (hp), 1) E yCo-(n, 9y(g," (hp)), 7) T
yCr-(n, hp, ). Thus, yCo-(m, ¢, (hp), ) € ¢, (0, (yCr(m, ¢, (hp), 1)) E @' (yCr-(n, hp, 7).

(iv) & (v) The proof follows from Proposition 3.4 and ;' (h3,) = (¢}, (hp))°.

(v) = (1) Let hp be an r-FS-y-open set. By (v),

¢y (hp) = @3 (YIr-(n, hp, 1) E ylr(m, ;' (hp), 1) C @, (hp).
Thus, yl7-(m, ¢, (hp), 1) = @, (hp). Therefore, @' (hp) is r-FS-y-open, so ¢, is FS-y-irresolute.

Proposition 4.1. Let (Q. 7). (W,3y), and (S,75) be FSTSs, and ¢, : (0.M) — (W.H), ¢,
(W.H) — (S,N) be two FS-functions. Then the composition ;. o ¢, is FS-y-continuous (resp.
ES-y-irresolute) if ¢, is FS-y-irresolute and ¢,,. is FS-y-continuous (resp. FS-y-irresolute).

Proof. The proof follows from Definition 4.1.

Lemma 4.2. (i) Every FS-y-irresolute open function is FS-y-open.
(i1) Every FS-y-irresolute closed function is FS-y-closed.

Proof. The proof follows from Definition 4.1.
Remark 4.4. The converse of Lemma 4.2 fails as Example 4.5 will show.

Example 4.5. Let O = {q1,q2}), M = {mi,m;), and define hy,ty € (0, M) as follows: hy =
(i {22, ), ma (s, 1), 1y = {O0ma, (2, 20, (o, (2, 2))). Define 7o, 75, : M — 129
as follows: Ym € M,

1, if Iy e{®,M), 1, if Iy e{®,M),
0, otherwise, 0, otherwise.

Then, the identity FS-function ¢, : (Q,7y) — (Q,7,,) is FS-y-open, but it is not FS-y-
irresolute open.

Theorem 4.4. Let (Q, 7)) and (S, 77;) be FSTSs and ¢, : (0, M) —> (S, N) be an FS-function. Then
the following statements are equivalent for every ¢ € (O, M), hp € (S,N),m € M, and (n = w(m)) € N:
(1) ¢y 1s FS-y-open.

AIMS Mathematics Volume 10, Issue 3, 5285-5306.



5296

(1) py(Ir-(m, ic, 1)) C ylr-(n, @y(ic), r).

(iii) L7 (m, @, (hp), 1) € @ (VI (n, hp, 7).

(iv) For every hp and every tc with 7,,(¢7) > r and gol;l(hp) C ¢, there exists gg € (:S:,\ZV) that is
r-FS-y-closed with A, T gg such that ¢ (g5) C tc.

Proof. (1) = (i1) Since ¢, (I-(m, tc,r)) T @y(tc), hence by (1), ¢, (I-(m, tc, r)) is r-FS-y-open. Then,
wyIr(m,tc,r)) C ylr(n, u(tc), r).

(ii) = (iii) Set fc = ¢;'(hp) and hence by (ii), ¢, (Ir-(m, ¢, (hp). 1)) T Yr-(n,0y(¢; (hp)), 1) C
yIr-(n, hp, ). Then, Ir-(m, ¢, (hp), ) T @' (Yly-(n, hp, 1)).

(iii) = (iv) Let hp € (5,N) and tc € (Q, M) with 7,,(2) > r such that ¢;'(hp) E tc. Since
te. C go;l(hf)), te. = Iy(m,te,r) C Iy(m, gol/‘ll(hf)), r). Hence by (iii), 1, T Iy (m, go;l(hi)),r) C

@, (ylr+(n, hiy, ). Thus, we have 7c 2 (¢, (vlr(n, hiy, 1) = ¢, (yCo+(n, hp, 1)). Then, there exists
yCq(n, hp, r) € (S, N) that is r-FS-y-closed such that iy, T yCo(n, hp, r) and

¢, (yCr+(n, hp, ) E tc.

(iv) = (i) Let fy € (Q.M) with T,,(fa) > r. Set hp = (g,(f)° and tc = f5, ¢, (hp) =
90(;1((90¢( f1))°) T tc. Hence by (iv), there exists gz € (S,N) that is r-FS-y-closed with hp C gp
such that w;l(gg) C tc = fi. Thus, ¢u(fa) C gow((pl;l(g%)) C g%. On the other hand, since hp C gg,
wy(fa) = h$, 3 g%. Hence, ¢,(f1) = g% and ¢, (f4) is an r-FS-y-open set. This shows that ¢, is an

FS-y-open function.

Theorem 4.5. Let (Q, 7)) and (S, 77;) be FSTSs and ¢, : (0, M) —> (S, N) be an FS-function. Then
the following statements are equivalent for every 7 € (@T]VI), hp € (:S—',\JV), m e M,and (n = y(m)) € N:

(1) ¢y 1s FS-y-closed.

(1) yCr-(n, @y(tc), r) € @y (Cr(m, tc,7)).

(iii) ;' (vCo- (1, hp, 1)) T Cor(m, 03 (), 7).

(iv) For every hp and every tc with 7,,(tc) > r and gol/_/l(hD) C tc, there exists g € (3’,\1\7) that is
r-FS-y-open with /i, T gg such that ¢,'(¢s) C c.

Proof. The proof is similar to that of Theorem 4.4.

Theorem 4.6. Let (Q, 7) and (S, 77;) be FSTSs and ¢, : (Q, M) —> (S, N) be an FS-function. Then
the following statements are equivalent for every tc € (Q, M), hp € (S,N),m € M, and (n = Y(m)) € N:

(1) ¢y 1s FS-y-irresolute open.

(i1) oy (ylr(m,tc,r)) C ylr-(n, ou(tc), r).

(iii) yI7-(m, ;' (hp), ) © @, (17 (n, hp, 1)).

(iv) For every hp and every r-FS-y-closed set t¢ with <p;1(hD) C fc, there exists gg € (:S;,\N/) that is
r-FS-y-closed with /i, T g such that ¢ (g5) C tc.

Proof. The proof is similar to that of Theorem 4.4.

Theorem 4.7. Let (Q, 7T y) and (S, 7 ) be FSTSs and ¢, : (@\/4) — (g,\ﬁ) be an FS-function. Then
the following statements are equivalent for every ¢ € (Qj\? ), hp € (:8’7\7), m e M, and (n = y(m)) € N:
(1) ¢y 18 FS-y-irresolute closed.

(i1) yCr+(n, py(tc), r) C @y (yCo(m, tc, 1)).

AIMS Mathematics Volume 10, Issue 3, 5285-5306.



5297

(iii) ¢, ' (yCr(n, hp, 1)) © yCr(m, @y, (hp), 7).

(iv) For every hp and every r-FS-y-open set #c with go;l(hD) C ¢, there exists g € (S,\N/) that is
r-FS-y-open with /i, T gg such that ¢,'(¢s) C c.
Proof. The proof is similar to that of Theorem 4.4.

Proposition 4.2. Let (Q,7,) and (S,77) be FSTSs, and ¢, : (0, M) — (S5, N) be a bijective FS-
function. Then ¢, is FS-y-irresolute open iff ¢, is FS-y-irresolute closed.
Proof. The proof follows from:

SDIZI(YC‘T* (n’ hDa r)) E '}/C‘T(l’l, ()01/_/1 (hD)’ r) — 901/_/1 (71‘7* (n’ th, r)) = 'YIT(m» @l;l(h;)), r)'

Definition 4.2. Let (Q,7) and (S, 77) be ESTSs. A bijective FS-function ¢, : (0, M) — (S, N) is
called an FS-y-irresolute homeomorphism if ¢, and go;l are FS-y-irresolute.

The proof of the following corollary is easy and so is omitted.

Corollary 4.1. Let (Q,7 ) and (S, 7 ) be FSTSs, and ¢, : (Qﬁﬂ) — (:9,\]\7) be an FS-function and
bijective. Then the following statements are equivalent for every #¢ € (O, M), hp € (S,N),me M, (n =
Y(m)) e N,and r € I,

(1) ¢y 18 an FS-y-irresolute homeomorphism.

(i1) ¢, 18 FS-y-irresolute closed and FS-y-irresolute.

(ii1) ¢, 18 FS-y-irresolute open and FS-y-irresolute.

(iv) py(ylr-(m, tc, 1)) = ylr(n, o (tc), r).

V) @y (yCq(m, tc, 1)) = yCq-(n, py(tc), r).

Vi) yIr-(m, ¢, (hp), 1) = @, (yI7(n, hp, 7).

(vii) yCr-(m, ¢, (hp), 1) = ¢, (yCr+(n, hp, 1)).

5. Some applications

In this section, the notions of FS-weak y-continuity and FS-almost y-continuity, which are weaker
forms of FS-y-continuity and are introduced and investigated between FSTSs. Furthermore, we defined
and discussed new types of FS-separation axioms, called r-FS-y-regular spaces and FS-y-normal
spaces using r-FS-y-closed sets. In addition, the notion of r-FS-y-connected sets is defined and studied.

e Fuzzy soft weak and almost y-continuity:

Definition 5.1. Let (Q, 7 y) and (S, 7 ) be FSTSs,m € M, (n = y/(m)) € N, and r € I,. An FS-function
Yy (Q,\M) — (E,\N) is called FS-weakly y-continuous if

‘P(Zl(hD) C VIT(m, SDLZI(CT* (n9 hD5 r))» r)’

for each hp € (S, N) with 7 *(hp) > r.
Lemma 5.1. Every FS-y-continuity is an FS-weak y-continuity.
Proof. The proof follows from Definitions 4.1 and 5.1.

Remark 5.1. The converse of Lemma 5.1 fails as Example 5.1 will show.
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Example 5.1. Let Q = {q1,92,93}, M = {m;,m,}, and define hy, fy,ty € (@,\IVI) as follows:
hy = {(mla{%,%,%})’ (mz’{g_4 % 3—4})} fu = {(ml,{%ﬁ,gﬁ}), (mz,{gfls,%,(%})},
vy = {m (85, & ED (m, {8, &, ED). Define Ty, T,y : M — 1% as follows: Ym € M,

1, if Iy e{® M), _ _

Do (@, M) 1, if Iy e (D, M),

7 if Iy = hy, . 1 .

Tn(lm) = Loif Ly = Tull) =47, if Ly =ty,
37 M _ M 0, otherwise.
0, otherwise,

Then, the identity FS-function ¢, : (Q,7w) — (Q,T,,) is FS-weakly vy-continuous, but it is not
FS-y-continuous.

Theorem S.1. Let (Q, 7)) and (S, 7)) be FSTSs, m € M, (n = y(m)) € N, and r € I,. An FS-function
WYy - (Q,\M) — (3,\]V/) is FS-weakly y-continuous iff for any m,, € ISL,\(Q/) and any hp € (g,\N/) with
T (hp) > r containing ¢,(m,,), there exists t¢c € (Qj\//l ) that is an r-FS-y-open set containing m,, with
@y(tc) E Cq+(n, hp, r).

Proof. (=) Letm,, € ﬁ:ZQ/) and hp € (:S—',\N/) with 7 (hp) > r containing ¢,(m,,), and then <pl/‘/1(hD) cE
yIr(m, ¢, (Cq(n, hp, 1)), r). Since my,& @' (hp), then m,, & yly-(m, ¢, (Cr-(n, hp, 1), 1) = tc (say).
Hence, ¢ € (Q,\M) is an r-FS-y-open set containing m,, with ¢y (t¢) € Cr-(n, hp, ).

(<) Let m,, € P,(0) and hp € (5,N) with 7;7(hp) > r such that m,,& @' (hp). According
to the assumption there exists 7 € (Q,\Z\//I) that is an r-FS-y-open set containing m,, with ¢y (fc) C
Cq+(n,hp,r). Hence, m,, € tc C cp;l(CT*(n, hp,r)) and mgy € yly-(m, go(;l(C(r*(n,hD, r)),r). Thus,
¢, (hp) E yI7(m, ¢, (Cq-(n, hp, 1)), r), 50 ¢, is FS-weakly y-continuous.

Theorem 5.2. Let (Q, 7)) and (S,77;) be FSTSs and ¢, : (Q, M) —> (S, N) be an FS-function. Then
the following statements are equivalent for every hp € (:S_',\JV), m e M, and (n = Yy(m)) € N:
(1) ¢y 1s FS-weakly y-continuous.

(i) ¢, ' (hp) 3 yCo(m, @, (Ir(n, hp, 1), 1), if Ty (hiy) = r.
(iii) yI7(m, ¢, (Cq-(n, hp, 1)), ) 2 @, (I7(n, hp, 7).
(iv) yCr(m, 90;,1(17*(’1 hp,r)),r) C SO;I(CT*(”! hp,1)).
Proof. (i) & (ii) The proof follows from Definition 5.1, Proposition 3.4, and ¢, ' (h5,) = (¢, (hp))“.
(i) = (iii) Let hp € (S ,N). Hence, by (ii),

yCor(m, ¢, (Ir-(n, Cr+(n, Ky, 1), 7)), ) E @, (Co+(n, 1y, 7).

Thus, ' (I7-(n, hp, 1) E yIy-(m, ¢, (Cr-(n, hp, 1), 7).
(iii) & (iv) The proof follows from Proposition 3.4 and gowl(h ) = (gowl(hD))C
(iv) = (i) Let hp € (S,N) with 7. (hp) > r. Hence, by (iv), yCq(m, gowl(lw(n,h”,r)), r) C
@, (Cro(n i, 1) = @' (i), Thus, @} (hp) £ yir(m, @, (Cr-(n, hp, 1), 7). 50 @ i FS-weakly y-
continuous.

Definition 5.2. Let (Q, 7 y) and (S, 7 ) be FSTSs,m € M, (n = y/(m)) € N, and r € I,. An FS-function
Yy (@,\M) — (/S,\N/) is called FS-almost y-continuous if

SDzZI(hD) C YIT(ma 90;1(17'* (na CT* (na hD9 r)9 r))a r)a
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for each hp € (S, N) with 7*(hp) > r.

Lemma 5.2. Every FS-almost y-continuity is an FS-weak y-continuity.
Proof. The proof follows from Definitions 5.1 and 5.2.

Remark 5.2. The converse of Lemma 5.2 fails as Example 5.2 will show.

Example 5.2. Let Q = {q1,92,93}, M = {m;,m,}, and define hy, fy,ty € (QTM) as follows:

hM = {(mla{g_lﬁ, %9% )a (mZ’{%9 %a g_i‘_})}’ fM = {(ml’{%ﬁ9 g_;})’ (m29{%’ %, g_;})}’
e = AG. & ED, o, (5. &, ED). Define Ty, 75, : M — 19" as follows: Ym € M,
L0 Ly € (@, M), 1, if Iy e {D,M)
LA by = hy, ) o T
3. it Iy =1y, .
0, otherwise.

0, otherwise,

Then, the identity FS-function ¢, : (Q,7y) — (Q,7,,) is FS-weakly y-continuous, but it is not
FS-almost y-continuous.

Remark 5.3. From the previous discussions and definitions, we have the following diagram.
FS-y-continuity

3

FS-almost y-continuity

l

FS-weak y-continuity

Theorem 5.3. Let (Q, 7)) and (S, 7)) be FSTSs, m € M, (n = y(m)) € N, and r € I,. An FS-function
Yy - (Q,\A//[) — (3,\17) is FS-almost y-continuous iff for any m,, € ﬁ,rQ/) and any hp € (:S_',\IV) with
7. (hp) > r containing ¢, (m,, ), there exists ¢ € (Q,\IVI) that is an r-FS-y-open set containing m,, with
ey(tc) C Ir+(n, Cr-(n, hp, 1), 7).

Proof. The proof is similar to that of Theorem 5.1. O

Theorem 5.4. Let (Q, Ty) and (S, 7)) be FSTSs and g, : (Q, M) —> (S, N) be an FS-function. Then
the following statements are equivalent for every hp € (3’,\]\7), m e M, and (n = y(m)) € N:

(1) ¢, 18 FS-almost y-continuous.

(i1) ‘Pl/_/l (hp) is r-FS-y-open, for every r-FS-regularly-open set /.

(111) go;l(hD) is r-FS-y-closed, for every r-FS-regularly-closed set Ap.

@iv) yCq(m, cp;l(hD), r)C gol;l(Cfr* (n, hp, r)), for every r-FS-y-open set hp.

) yCr(m, ¢, (hp), 1) E ¢, (Cy(n, hp, 1)), for every r-FS-semi-open set /.
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Proof. (i) = (ii) Let m,, € FT,ZQ/) and hp be an r-FS-regularly-open set such that m,, & go;l(hD).
Hence, by Theorem 5.3, there exists tc € (Q,\M) that is r-FS-y-open with m,, € fc and ¢,(tc) C
I7+(n,Cq<(n, hp,r),r). Thus, tc C gol/‘,l(lrr*(n, Cq(n,hp,r),r)) = tp;l(hD) and m,, € yly(n, tp;l(hD), r).
Then, @' (hp) E ylr(n, ¢, (hp), 1), 50 ¢, (hp) is r-FS-y-open.

(i) = (iii) Let A be r-FS-regularly-closed. Then, by (ii), @' (h3,) = (¢, (hp))* is r-FS-y-open, hence
@, (hp) is an r-FS-y-closed set.

(111)) = (v) Let hp be r-FS-y-open and since Cq(n, hp,r) is r-FS-regularly-closed, then by (iii),
¢, (Cr(n, hp, 1)) is r-FS-y-closed. Since ¢, (hp) E ¢, (Cr(n, hp, 1)), hence we have

yCT(ma SD(ZI(hDL r) C SDAZI(CT" (na hD7 r))

(iv) = (v) The proof follows from the fact that any r-FS-semi-open set is an r-FS-y-open set.

(v) = (1) Let hp be r-FS-regularly-closed, and then hp is r-FS-semi-open, hence by (v),
yCr(m, @, (hp), 1) C @, (Cr(n, hp, 1)) = @, (hp). Thus, ¢, (hp) is an r-FS-y-closed set.

(ii1)) = (1) Let m,, € IirQ/) and hp € (3’,\]\7) with 7 (hp) > r such that m, € go;l(hD), and then
we have m,, € gol;l(l(r* (n,Cy+(n, hp,r),r)). Since [I5+(n, Cr(n, hp, r), r)]° is r-FS-regularly-closed, by
(iii), goyj]([IT* (n, Cy~(n, hp, r), r)]°) is r-FS-y-closed. Hence, gol;l(lr,—* (n, Cy~(n, hp, r), r)) is r-FS-y-open
and m,, € ylyr-(m, (p@l (Ir(n,Cq+(n, hp,r),r)),r). So,

0, (hp) T yIr(m, @, Ur-(n, Cr+(n, hp, 1), 1)), 7).
Hence, ¢, is FS-almost y-continuous.

Proposition 5.1. Let (Q, 7). (W,34), and (S,75) be FSTSs, and ¢, : (0.M) — (W.H), ¢, :
(W,H) —> (S, N) be two FS-functions. Then the composition gy o @, is FS-almost y-continuous if ¢,
is FS-y-continuous (resp. FS-y-irresolute) and ¢},. is FS-continuous (resp. FS-almost y-continuous).

Proof. The proof follows from the previous definitions.
e r-fuzzy soft y-regular and y-normal spaces:

Definition 5.3. Let t¢, hp € (Q, M), m,, € P,(0), and r € I,. An FSTS (Q, Ty) is called an (i) r-FS-
y-regular space iff mqﬁ tc for each r-FS-y-closed set 7c, there is g3, € (@,\]\71) with 7°(gp,) > r for
j € (1,2}, such that m, & gg,, tc C gs,, and gz, V gp,;

(i1) r-FS-y-normal space iff z¢ v hp for each r-FS-y-closed sets 7c and hp, there is g, € (@,\M) with
T (gs;) = r for j € {1,2}, such that tc C gp,, hp C gs,, and gg, v 8B,-

Theorem 5.5. Let (Q,7y) be an FSTS, m,, € P,(0), tc,hp € (Q, M), and r € I.. The following
statements are equivalent.

(1) (Q, T m) 1s an r-FS-y-regular space.

(i) If m,, & tc for each r-FS-y-open set tc, there is hp with 7 (hp) > r, such that m, € hp C
Cq(m,hp,r) C 1c.

(iii) If m,,V ¢ for each r-FS-y-closed set fc, there is gz, € (0, M) with T (gz,) > r for j € {1,2},
such that m,, € g, tc C gp,, and Cy-(m, gg,, ) v Cy(m, gp,, 7).
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Proof. (i) = (ii) Let m,, € tc for each r-FS-y-open set #¢, then mqﬁ t¢.. Since (Q, T y) is r-FS-y-regular,
there is hip, g € (O, M) with 7 (hp) > r and T (gp) > r, such that m,,& hp, 15 C gp, and iy, V gp. Thus,
mqué hp C g% E fc, SO mqué hp C Cq(m, hp, 1) C tc.
(i1) = (iii) Let m%i tc for each r-FS-y-closed set #¢, then m, € t;.. By (ii), there is hp with 7 (hp) > r,
such that m, € hp C Cq(m, hp,r) C t.. Since 7 (hp) > r, then hp is an r-FS-y-open set and m,, € hp.
Again, by (ii), there is gg with 7 (gg) > r such that m, € gg C Cy(m, gp, 1) C hp T Cq-(m, hp,r) C 1.
It implies tc T (Cy(m, hp,r))* = Ig(m, hi,, r) © hY,. Set fo = Ir(m, hi), r), and then 7(fy) > r. So,
Cr(m, fa,r) T IS, C (Cr(m, gg, 1), that is, C-(m, fa,7) V Cq-(m, gg, 1).
(ii1)) = (i) The proof is obvious.
Theorem 5.6. Let (Q,7 ) be an ESTS, f4,tc,hp, € (Q,\I\//I), and r € I,. The following statements
are equivalent.

(1) (Q, Tu) 1s an r-FS-y-normal space.

(i) If f4 C t¢ for each r-FS-y-closed set f and r-FS-y-open set t¢, there is hp with 7 (hp) > r, such
that fA C hp T Cyr(m,hp,r) Ctc.

(iii) If f4 V 1 for each r-FS-y-closed sets fx and fc, there is g, € (Q,\IT//I) with 7 (gp,) > r for

j € 11,2}, such that f4 C g, fc C gp,, and Cy-(m, g,, 1) V Co-(m, gp,, 7).
Proof. The proof is similar to that of Theorem 5.5.

Theorem 5.7. Let ¢, : (Q,\M) — (/S_',\]V) be a bijective FS-y-irresolute and FS-open function.
If (Q,Twm) is an r-FS-y-regular (resp. r-FS-y-normal) space, then (S, 7 ) is an r-FS-y-regular (resp.
r-FS-y-normal) space.

Proof. Let nsli tc for each r-FS-y-closed set t¢ € (:9-7\7/) and FS-y-irresolute function ¢, then go;l(tc)
is an r-FS-y-closed set. Set ny, = ¢,(m,,), and then m, V gp;l(tc). Since (Q, Ty ) is an r-FS-y-regular
space, there is gp; € (@,\M) with 7(gp,) > r for j € {1,2}, such that m, € gp,, go;ll(tc) C gp,, and
gs V gs,. Since ¢, is an FS-open and bijective function, n,,€ ¢,(gs,), tc = gow(gol/‘/l(tc)) C ¢,(ga,), and
vu(gB,) V ¢u(gp,)- Hence, (S, Ty) is an r-FS-y-regular space. The other case also follows similar lines.

Theorem 5.8. Let ¢ : (0,M) — (S,N) be an injective FS-continuous and FS-y-irresolute closed
function. If (§,7) is an r-FS-y-regular (resp. r-FS-y-normal) space, then (Q, 7)) is an r-FS-y-
regular (resp. r-FS-y-normal) space.

Proof. Let mquﬁ tc for each r-FS-y-closed set ¢ € (0, M) and injective FS-y-irresolute closed function
¢y, and then ¢, (tc) is aln\r;FS—y—closed set and ¢, (m,, ) v @y(tc). Since (S, 7 ) is an r-FS-y-regular
space, there is gp, € (S, N) with 7"(gp,) = r for j € {1,2}, such that ¢, (my, )€ gp,, ¢y(tc) E gs,,
and g, Y g, Since ¢y is an FS-continuous function, we have m,, & (pl/‘,l(gBl), tc € (pl/‘,l(ng) with

T (¢, (gs)) = rfori € (1,2}, and ¢, (gs,) v ¢,'(gs,)- Hence, (Q, T) is an r-FS-y-regular space. The
other case also follows similar lines.

Theorem 5.9. Let ¢ : (Q,\M) — (:9,\1\7) be a surjective FS-y-irresolute, FS-open, and FS-closed
function. If (Q,7y) is an r-FS-y-regular (resp. r-FS-y-normal) space, then (S,7) is an r-FS-y-
regular (resp. r-FS-y-normal) space.

Proof. The proof is similar to that of Theorem 5.7.

AIMS Mathematics Volume 10, Issue 3, 5285-5306.



5302

o r-fuzzy soft y-separated and y-connected sets:

Definition 5.4. Let (Q, T3) be an FSTS, r € L, and ¢, hp € (O, M), and then we have:

(i) Two FS-sets tc and hp are said to be r-FS-y-separated sets iff hp v vCq(m,tc,r) and
te V yCq(m, hp, r) for each m € M.

(i1) Every FS-set which can not be expressed as the union of two r-FS-y-separated sets is said to be
an r-FS-y-connected set.

Theorem 5.10. Let (Q, 7)) be an FSTS, r € I,, and ¢, hp € (@,\]T//I), and then we have:

(i) If t¢ and hp are r-FS-y-separated sets and f4, gp € (Q,\IT//I) with f4 C ¢ and g C hp, then f; and
gp are r-FS-y-separated sets.

(1) If #¢ v hp and either both are r-FS-y-closed sets or both r-FS-y-open sets, then t- and hp are
r-FS-y-separated sets.

(ii1) If zc and hy, are either both r-FS-y-closed sets or both r-FS-y-open sets, then 7c Mg, and hp Mz,
are r-FS-y-separated sets.

Proof. The proofs of (i) and (i1) are obvious.

(ii1) Let 7¢ and hp be r-FS-y-open sets, and since tc M hy) C hY,, yCq(m,tc T hy,, r) C hi,. Hence,
yCq(m, tc MK, 1) V hp. Thus, yCq(m, tc 1K, 1) V (hp T1£5).

Again, since hp M t¢. T t;, yCqy(m,hp N tg,r) T 1. Hence, yCq(m, hp Mg, 1) v tc. Thus,
vCq(m, hp 1., 1) v (tc M hg). Therefore, 1c M hY, and hp M. are r-FS-y-separated sets. The other case
also follows similar lines.

Theorem 5.11. Two FS-sets - and hp are r—FS—y—separateEl sets in an F§TS (O, T ) iff there exist two
r-FS-y-open sets fy and gp such that tc C f4, hp C gp, tc V gp, and hp V f;.

Proof. (=) Let t¢ and hp be r-FS-y-separated sets in an FSTS (Q, Ty), tc E (yCq(m, hp, 1)) = fa,
and hp C (yCy(m,tc,1))° = gp, where gg and f4 are r-FS-y-open sets. Thus, gp v vCq(m, tc, r) and
fa v vCq(m, hp, r). Therefore, hp v fa and t¢c v g3

(&) Let f4 and gp be r-FS-y-open sets such that hp T gg, tc T fa, hp v fa, and t¢ v gg. Then,
hp E f; and t¢c C g%. Thus, yCq(m, hp,r) C fi and yCq(m, tc,r) E g5 Hence, yCq(m, hp, 1) v tc and
vCq(m, tc, r) v hp. Therefore, t- and hp are r-FS-y-separated sets.

Theorem 5.12. In an FSTS (Q, Tw), if hp € (O, M) is an r-FS-y-connected set such that /iy C tc C
vCq(m, hp, r), then t¢ is an r-FS-y-connected set.

Proof. 1f tc is not an r-FS-y-connected set, then there exists r-FS-y-separated sets f; and g}, € (Q,\M)
such that tc = f; U g5. Let fy = hp 1 f} and gg = hp M g%, and then hp = gp L fu. Since fy C f; and
gs C g, hence by Theorem 5.10, f4 and gp are r-FS-y-separated sets. This is a contradiction. This
shows that 7. is an r-FS-y-connected set.

6. Conclusions
In this study, a new class of FS-open sets, called r-FS-y-open sets, has been defined in FSTSs based
on fuzzy topologies in the sense of Sostak. The class of r-FS-y-open sets is contained in the class

of r-FS-B-open sets, and contains all r-FS-a-open, r-FS-semi-open, and r-FS-pre-open sets. Some
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characterizations of r-FS-y-open sets along with their mutual relationships have been specified with
the help of some illustrative examples. Overall, the notions of FS-y-closure and FS-y-interior operators
have been introduced and studied. Thereafter, we defined and characterized some new FS-functions
using r-FS-y-open and r-FS-y-closed sets, called FS-y-continuous (resp. FS-y-irresolute, FS-y-open,
FS-y-irresolute open, FS-y-closed, and FS-y-irresolute closed) functions between FSTSs (Q, 7y)
and (S, 7). The relationships between these classes of functions have been discussed with the help
of some illustrative examples. Moreover, the notions of FS-weakly (resp. FS-almost) y-continuous
functions, which are weaker forms of FS-y-continuous functions, have been introduced and studied
between FSTSs (Q, 7)) and (S, 7). We also showed that FS-y-continuity = FS-almost y-continuity
— FS-weak y-continuity, but the converse may not be true. However, we defined new types of FS-
separation axioms, called r-FS-y-regular and r-FS-y-normal spaces, and some properties have been
obtained. In the end, the notion of an r-FS-y-connected set has been introduced via r-FS-y-closed sets.
In the next articles, we intend to explore the following topics:

e Introducing r-FS-y-compact (resp. r-FS-nearly y-compact and r-FS-almost y-compact) sets.

e Defining upper and lower y-continuous (resp. weakly y-continuous) FS-multifunctions.

e Extending these new notions given here to include FS-r-minimal spaces as defined in [34,42].

¢ Finding a use for these new notions given here in the frame of fuzzy ideals as defined in [43—45].
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